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Abstract A new continuous location model is presented and embedded
in the literature on robustness in facility location. The multimodality of
the model is investigated, and a branch and bound method based on dc
optimization is described. Numerical experience is reported, showing that
the developed method allows one to solve in a few seconds problems with
thousands of demand points.
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1 Introduction

The perception of the term robustness in the field of supply chain design,
and, more specifically, in facility location, is wide. de Neufville (2004) de-
fines robustness from the perspective of systems as ”the ability of a sys-
tem to maintain its operational capabilities under different circumstances”,
whereas Dong (2006) defines the robustness of a supply chain network as
”the extent to which the network is able to carry out its functions despite
some damage done to it, such as the removal of some of the nodes and/or
links in a network.”

The perception from the viewpoint of design from de Neufville (2004)
and Dong (2006) comes close to the idea that robust means that a design
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performs under all circumstances. Robustness from this perspective is a
measure of how robust a design is. What is generic here is that performance
is seen from a YES/NO perspective. The design performs, works, fulfills
specifications in a yes or no sense. If it always does, we perceive a design
as robust. Formally, design z is robust if (z,w) € Q Vw € W, where the
set (Q is a set of desired performance and W is the set of outcomes of the
uncertain parameter w. In other words, if (), denotes the set of parameter
values w such that (z,w) € @, = is seen as robust if w € @, for all w € W.

In the literature on facility location, see e.g. Owen and Daskin (1998) and
Snyder (2006), the design variable x expresses usually locations of facilities,
the uncertain parameters w represent demand, buying power, population
etc., and the set @ is described with a threshold concept: a cost or a reward
function f(x,w) and a threshold value 7 are given, and @ is defined as the
set

Q = {(z,w)|f(z,w)#7}, (1)

where # can be <,>, <, >.

Within this framework we can consider two main concepts of robust-
ness, referred to in what follows as deviation robustness and probabilistic
robustness.

In deviation robustness models, a nominal value p of the uncertain pa-
rameter w is given; for any feasible x, one can pose the question of how
far deviations from the nominal value p may go such that the design still
performs as intended:

R(z) = min{[lv—ull : v & Qu}, (2)

where || - || is a norm used to measure deviations in the parameter space
W. Observe that, for any = not performing properly for the nominal value
i, ie., p ¢ Q, its robustness R(x) is zero. The most robust solution, i.e.,
the solution z with maximum value for R(z), is sought. Such deviation ro-
bustness concept is called in Olieman (2008) the maximum inscribed sphere
problem, as means one wishes to find a maximum sized sphere of cir-
cumstances around the nominal value p for which the design is still feasible.
This concept has the advantage that no information is needed about the
set of realisations, no probability distribution is required nor a range or
worst-case outcome. It is thus well suited to problems with very high un-
certainty, as happens, for instance, in long-term planning problems as those
encountered in facility location.

Under particular forms of function f in 7 a more tractable expression
for R can be derived. Indeed, as shown in Hendrix, Mecking and Hendriks
(1996) and Carrizosa and Nickel (2003), if f(x,w) is linear in w, i.e., if f
has the form

fo,w) = e(a)Tw (3)

for a vector-valued function ¢, and # is >, then R(x) can be expressed as

R(z) :max{%—ﬁ}, (4)
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where || - ||° denotes the norm dual to || - ||. For instance, if || - || is the ¢,
norm, then || - ||° is the ¢; norm, with 1/p+1/¢ = 1.

Observe that, as soon as some x* exists with strictly positive robustness
R(z*), maximizing R turns out to be equivalent to maximizing R, defined
as

— clz) ' p—r
M) = e )

Deviation robustness has been investigated in Carrizosa and Nickel (2003)
within the field of continuous location for Weber problems. In such a prob-
lem, {p;}icr is the set of demand points, which represent the geographical
location of the customers, f(z,w) is defined as the total transportation cost
if a facility is located at x, and transportation costs to demand point p;
are assumed to be proportional to the distance d;(x) between z and de-
mand point p;. In other words, f is assumed to have the form , with
c(x) = (ci(x));cr» ci(x) = di(x) and each w; is an uncertain parameter rep-
resenting the demand of a demand point p;, for which just a nominal value
1; is given. Robustness, as defined in is maximized via a finite-time con-
vergent algorithm for particular models of distance functions d; and choices
of || - ||. The reader is also referred to Hendrix et al. (1996) and Casado,
Hendrix and Garcia (2007) for applications of deviation robustness to other
related problems.

Whereas deviation robustness can be seen as a worst-case measure, the
concept of probabilistic robustness takes a probabilistic view, since it con-
siders the circumstances w as a random variable w and defines robustness
as

R(z) = P{(z,w) € Q}. (6)

In the literature on location, we see this robustness back under the terminol-
ogy of “threshold” (without being called robustness) in Drezner, Drezner
and Shioge (2002), who address a threshold model which maximizes the
probability of reaching a minimum market share 7

R(z) = P{c(x) w > 7}, (7)

where the functions ¢; measure market share according to the Huff model,
(Blanquero and Carrizosa 2009a, Drezner et al. 2002),

1

(8)

d;(x) is again the distance from demand point p; to a facility located at z,
A > 1 (typically A = 2) and h; is typically a positive constant that represents
the relative attractiveness of competing facilities.

Even inspecting R in is, in general, very hard, since it involves multi-
variate calculus. In Drezner et al. (2002) it is assumed that w has a normal
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distribution with mean g and covariance matrix V, and thus R takes the

simpler form
clx)'p—1
Rlz)=o | QL KL"T ) 9
(=) < c(:c)TVc(x)> ©)

where @ is the cumulative distribution function of the standard normal dis-
tribution. Hence, maximizing R(x) is equivalent to maximizing the nonlinear
c(x) pu—r

The challenge in general with Huff-like models is that the market share
functions ¢; in are neither convex nor concave. Hence, optimizing f(z) =
w'¢(x) is a global optimization problem even for w fixed. This is inherited
by the threshold model @, even under the assumption that w follows a
normal distribution. In Drezner et al. (2002), a multistart strategy is used,
thus no guarantee of having found the true global optimum is provided. As
will be seen later, the probabilistic model @ can be seen as a particular case
of the deviation robustness model, for which a global optimization approach
is proposed here.

fractional function

The remainder of this paper is organized as follows. In Section [2| we
introduce the problem of locating a competitive facility in the plane, where
competition is described by a Huff-like model, and deviation robustness is
to be maximized. It is shown in particular that the model of Drezner et al.
(2002) appears as a particular case for a given choice of the norm || - ||.

The multimodal character of the optimization problem is investigated.
Deterministic solution approaches that guarantee a global optimum solution
are discussed in Section [3] Numerical results are reported in Section [}
Finally we conclude in Section [f]

2 A competitive robustness location model

We address the problem of locating a competitive facility with uncertain
demand optimizing a deviation robustness criterion. Users are identified by
an index ¢ € I :={1,2,..., N}, a demand location p;, and a nominal value
w; for the demand. Market is captured following a Huff model: The market
captured by the facility at = given demand w is f(z,w) = c(x) "w, where c
is defined by .

The question which is answered is how far demand can fluctuate in a
distance sense from its nominal value p without capturing less than a given
threshold value 7. The robustness R(z) of a facility located at x, to be
maximized, is given by (), or if some x* exists with R(z*) > 0. No
assumptions are made on the norm || - ||, and different choices of the norm
lead to different models. We may take, for instance, the ¢; or £, norm to
measure deviations with respect to the nominal value of the demand. Hence,
for a given location z, R(x) measures the maximum deviation (in the dual
norm, £, or {1 respectively) in the demand w with respect to its nominal
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value p such that the market captured remains above the threshold value
T.

In particular, the stochastic programming formulation of Drezner et al.
(2002) in (9) is a particular case of our model (5] by defining the norm | - ||

as
w]| = VwTV-—tw, (10)

which means that deviations with respect to the nominal vector of demands
w are measured by the dual || - ||° of || - ||,

lw||° = VwTVuw.

As the Huff-like continuous location problem is a global optimisation
problem, one may expect that this structure is inherited by R(x). The next
research question is how multimodal is such model. We explore how pa-
rameters affect the number of local optima and we check the feasibility
of nonlinear optimization local search to solve the optimization problem.
The following repeatable experiment is carried out. A total of m demand
points is randomly generated on [0, 1] with generated demand yu from [0, 1]
and k competing facilities. The competing facilities give values to h; in

according to
"o
g Y

where 0;; is the Euclidean distance between demand point p; and existing
facility j. The threshold was kept on 7 = 1 and the norm || - || was the
Euclidean norm for all experiments. The resulting objective function of a
generated instance is depicted in Figure |1} having k = 3 competitors.

To get a feeling for the multimodality of the problem we also generated
the same instance, but then having & = 50 competitors. As one can ob-
serve from Figure [2] the number of local maxima increases substantially.
To investigate the trend for increasing number of demand points and com-
petitors, we generated 50 intances for each setting varying the number of
demand points as m = 40,200, 1000 and the number of competing facilities
as k = 2,4,8,16,32. Multistart using 10 x k£ random starting points was
applied for each generated instance to count the number of local optima
found. FMINUNC was used to generate local optima. The average number of
detected optima using this multistart strategy is given in Table[I} As can be
observed, the number of optima depends mainly on the number of existing
competing facilities.

A multistart strategy, as suggested by Drezner et al. (2002), can give us
some confidence on the local optimum found. Indeed, if we knew we have
about m optima, and we can assume the region of attraction of the global
optimum to occupy %% of the search space, then the probability to detect
a global optimum after r independent local searches is

le—(m_1>i (12)

m
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Fig. 1 Function R in . Randomly generated instance, m = 200, k = 3

Table 1 Average number of optima over 50 instances, k competitors m demand
points

m\k| 2 4 8 16 32
40 276 3.74 6.76 13.88 26.12
200 | 3.06 5.82 13.78 3172 54.40
1000 | 2.08 4.28 10.12 28.88 68.72

see for instance Hendrix and Toth (2010). Under these assumptions, if for
example the number of local optima is m = 10, we need r = 44 trials to
have a probability of P = 99% to reach the global optimum.

In other words, stochastic algorithms can reach, under some assump-
tions, a probabilistic target on effectiveness. Deterministic methods can be
used to reach a guarantee on an accuracy of the reached optimum, Hendrix
and Toth (2010). A specific method is elaborated in the next section.

3 A deterministic solution method

The basic idea in branch and bound methods consists of a recursive de-
composition of the original problem into smaller disjoint subproblems until
the solution is found. The method avoids visiting those subproblems which
are known not to contain a solution. The initial set T is subsequently
partitioned in more and more refined subsets (branching) over which up-
per and lower bounds of an objective function value can be determined
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Fig. 2 Function R in . Randomly generated instance, m = 200, k = 50

(bounding). In continuous location optimization, the most common branch-
ing procedures use rectangles and simplices (triangles). They are known in
the literature as Big Square Small Square (BSSS), Hansen, Peeters, Richard
and Thisse (1985), and Big Triangle Small Triangle (BTST), Drezner and
Suzuki (2004).

To construct bounds, the classical approach in continuous location, al-
ready advocated in the seminal paper Hansen et al. (1985), exploits mono-
tonicity and bounds derived with interval arithmetic. In recent years, alter-
native bounding schemes have been proposed in the literature of continuous
location based on expressing the objective as a difference of two convex
functions, see Drezner (2007), Blanquero and Carrizosa (2009a).

In this paper we observe that the objective is not only dc (it can be
written as a difference of two convex functions), but it can be written in
terms of compositions of convex and convex monotonic functions. In the
terminology of Blanquero and Carrizosa (2009a), the functions involved are
dem functions (difference of convex monotonic), and thus the bounding
strategies developed in Blanquero and Carrizosa (2009a) can be used here.

The following key result, stated in Bello, Blanquero and Carrizosa (2009)
and with straightforward proof, enables one to express the function in
as difference of convex monotonic functions.

Proposition 1 Given h > 0,A > 1, define dy as

= (iivm)
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and the functions ®, ', % : R, — R as

P(d) = s (13)
B2(d) = {(d;(do) + @' (dp)(d — do) — P(d) Z;l § ;lg (15)
One has:
1. =P — @2

2. &L &% are smooth convexr nonincreasing functions in R

Define
1
P, - -
i(d) 1+ hid*’
w(dlv"'de) = (@1(d1)77q§N(dN))

i=1,2,....,N

Observe that
c(z) =¥(di(z),...,dn(2)).

By Proposition |1} we can express the function ¥(dy,...,dy) p — 7 as
a difference of convex nonincreasing functions in Ry. We follow Blanquero
and Carrizosa (2009a) to obtain bounds by respectively majorizing by a
convex function the numerator and minorizing by a concave function the
denominator in (4)) on a given polytope T in R2.

First, one easily obtains a convex function U such that

c(x) p—1<U(x) Vo e T. (16)

Indeed, since, by assumption, each d; is convex, if 2 is an arbitrary point
of T and &; is a subgradient of d; at x}, one has

di(z) > di(x}) + & (x — aF) Vo eT. (17)
Since @} is nonincreasing, one has by that
D} (di(2)) < i (di(a) + & (@ —a7))  VzeT. (18)

Observe also that the right-hand side function in is the composition of
a convex and an affine function, and it is thus convex.
On the other hand, ¢? is a convex smooth function. Hence thus

@3(d) > &7 (di(a7)) + (27 (di(27))) (d = di(w}))  ¥d =0, (19)

D2 (di(2)) = P3(d;(z})) + (D3 (di(2)))) (di(z) — di(a})) Vo eT. (20)
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Moreover, @7 is nonincreasing, (7 (dz(xf)))/ < 0, thus the right-hand side
function in is concave.
Joining and we have that

b} (di(2)~P}(di(2)) < U() = @3(di(wi‘)%?(fﬂ-fﬂi—‘))—¢?(dz’(x?))—(45?(;&(%?))' (di(x)—di(;

(21)
and U is convex in 7.
Let us consider now the denominator. The following proposition is a

consequence of the results in Blanquero and Carrizosa (2000) and Blanquero
and Carrizosa (2009b)

Proposition 2 Given a norm || - ||, the functions z € R* — ||¢)|| and
d — ||U(d)|| can be expressed as the difference of convex functions. More-
over, if the norm || -|| is monotonic in the positive orthant, then the function
d — ||&(d)|| can be expressed as the difference of two convex nonincreasing
functions.

Hence, given a polytope T in the plane, we can find a concave function
L such that
c(z)|| > L(x)  VoeT. (22)

Note that ¢, norms satisfy the monotonicity assumptions on || - ||. This
assumption also holds for the norm as soon as V is a matrix of non-
negative elements, i.e., that the demand at different users are positively
correlated. However, the monotonicity assumption does not hold for arbi-
trary norms, and thus for arbitrary norms, or, for instance, for norm
with negative correlations, the weaker result should be used. Nevertheless
Drezner et al. (2002) claim that “it is likely that the distributions of buying
power at two demand points are positively correlated. This might be due
to good economic conditions or other factors resulting in either higher or
lower than expected buying power in any community.” Hence, the strongest
assumptions seem to be applicable also in real world problems.

If we can guarantee that L(z) > 0 for all € T, then U/L is the ratio
of a convex over a positive concave function, thus it is quasiconvex. This
implies it attains its maximum at extreme points on 7, i.e.,

c(x)Tp—7 _Ux) A U(v)
@l = Tle) = o220 To) (23)
and thus
R(z) < max {0 max U) } (24)
- ’veemt(T) L(’U) '

Hence, we have an upper bound for the objective as soon as we can
asssert that L(z) > 0 for all z € T Since L is concave on T, such a condition
is equivalent to

in L(v)> 0. 25
i (v) (25)
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4 Computational experiments

In this section we show how the bounding scheme outlined in Section [3| can
be used to solve the problem
2
max R(z) (26)
where R(x) is given by under the assumptions described in Section
The bounding strategy based on dcm functions here applied has been

successfully used to solve other nonconvex location problems, see Blanquero
and Carrizosa (2009a) and Bello et al. (2009).

Instances of are generated in the following way:

— The feasible region is assumed to be the unit square S = [0,1] x [0, 1].

— There are 10 existing facilities, with locations randomly and uniformly
distributed in S.

— Demand points are also randomly and uniformly generated in S. The
number N of demand points ranges from very small (N = 10) to large
(N = 10000).

For each number N of demand points, a nominal vector p was randomly
generated in [0,1]", and the optimal objective value 2,4, of the problem
maxg;cs c(x)Tu was computed. Observe that in order to compute Zz,om,
a global optimization problem is solved. The optimization problem
was solved using different values of the threshold, ranging from 0.3z, to
1.52p0m with a step of 0.052,,0,. The norm || - || considered in was the
Euclidean.

For each choice of N and 7, ten instances were generated and solved using
the BSSS method. The program code was written in Fortran, compiled by
Intel Fortran 10.1 and ran on a 2.4GHz computer under Windows XP. The
solutions were found to an accuracy of 1078,

The bounds for the numerator of R(z) were computed according to the
procedure proposed in Blanquero and Carrizosa (2009a), as has been de-
tailed in Section [3] Regarding the denominator, a dem decomposition for it
was obtained combining the same procedure with Theorem 1 in Blanquero
and Carrizosa (2009b), since the norm considered is monotonic in RY. The
bounds obtained using this result are better than those provided by Propo-
sition 1.1 in Blanquero and Carrizosa (2000), which could have also been
used.

Tables[2] to [[] report, for the different threshold values 7 and number N
of demand points, statistics on the number of iterations, the memory usage,
measured via the maximum size of the list of squares to be inspected in the
branch and bound, and the CPU time.

The numerical results for different threshold values 7 are shown in Tables
where one can observe that the computational effort needed to solve the
problem decreases as soon as the threshold value grows, especially when
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the threshold exceeds z,om, since in that case R(z) =0 Vz € S, and the

algorithm quickly closes the gap.

Average CPU time and number of iterations for different number of
demand points is shown in Figures [3| and [4] for different threshold values 7.
For the instances with positive robustness, i.e., with 7 < z,m, the average
running times and number of iterations increase at most linearly in the
number N of demand points. Finally, Figure [f] illustrates the evolution of
the average CPU time as a function of the threshold value, for N equal to
100, 1000, 5000 and 10000.

N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min Max Ave
10 157 393 268,50 22 64 45,10 0,000 0,016 0,008
20 198 291 240,90 31 53 40,80 0,000 0,016 0,013
50 242 472 328,00 44 78 58,80 0,016 0,047 0,030
100 316 1100 435,70 71 176 92,90 0,047 0,203 0,081
200 339 550 412,30 78 133 103,70 0,125 0,219 0,153
500 367 1347 635,20 108 195 150,00 0,344 1,250 0,588
1000 397 1116 562,60 93 203 160,90 0,719 2,063 1,036
2000 434 1273 662,40 145 258 184,20 1,594 4,719 2,445
5000 526 2136 847,10 192 357 283,60 4,906 19,891 7,834
10000 713 3854 1724,90 305 570 396,70 13,188 71,328 31,888

Table 2 Computational results for 7 = 0.3zn0m

N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min Max Ave
10 160 542 276,20 21 101 45,60 0,000 0,016 0,003
20 182 338 228,40 25 56 39,70 0,000 0,016 0,009
50 240 626 341,80 38 101 55,70 0,016 0,063 0,030
100 294 551 387,10 57 103 77,30 0,047 0,094 0,069
200 338 724 459,30 63 142 95,50 0,125 0,266 0,170
500 353 1237 670,60 96 187 138,20 0,328 1,156 0,619
1000 339 1168 661,40 79 216 159,40 0,625 2,172 1,223
2000 455 1293 728,30 136 283 184,20 1,688 4,781 2,686
5000 544 3198 1303,50 182 483 293,30 5,016 29,672 12,075
10000 800 3204 1556,90 252 438 352,10 14,766 59,344 28,794

Table 3 Computational results for 7 = 0.4zn0m

5 Conclusion

Two different robustness concepts, deviation robustness and probabilistic,
are described. The deviation concept has been elaborated in a new generic
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N Iterations Max squares Time (s)
Min Max Ave Min Max Ave Min Max Ave
10 155 484 239,20 22 88 38,80 0,000 0,016 0,008
20 160 1147 306,70 23 255 56,80 0,000 0,031 0,013
50 223 722 373,30 31 137 64,90 0,016 0,063 0,036
100 271 448 321,10 43 88 65,10 0,047 0,078 0,059
200 305 810 474,90 47 146 89,60 0,125 0,297 0,178
500 362 1339 662,10 70 258 134,60 0,328 1,250 0,616
1000 355 1355 838,30 75 206 150,40 0,656 2,500 1,550
2000 486 1111 757,90 96 238 164,20 1,797 4,125 2,795
5000 627 2022 1254,80 197 333 258,20 5,781 18,750 11,605
10000 751 3185 1670,50 193 509 331,30 13,859 58,844 30,883
Table 4 Computational results for 7 = 0.5zn0m
N Iterations Max squares Time (s)
Min Max Ave Min Max Ave Min Max Ave
10 136 430 210,40 20 84 34,40 0,000 0,016 0,005
20 130 723 247,30 19 158 42,90 0,000 0,031 0,013
50 177 528 294,50 25 93 48,50 0,016 0,047 0,028
100 215 450 303,20 30 87 54,90 0,047 0,094 0,058
200 260 492 386,90 34 93 62,60 0,094 0,172 0,142
500 391 4166 923,70 51 987 180,00 0,359 3,844 0,856
1000 544 2427 907,10 81 570 168,90 1,000 4,500 1,681
2000 596 1458 1011,70 75 215 160,40 2,203 5375 3,744
5000 991 2446  1324,40 127 434 239,40 9,188 22,594 12,241
10000 916 3034 1916,40 143 447 280,90 16,891 56,047 35,456
Table 5 Computational results for 7 = 0.6zn0m
N Iterations Max squares Time (s)
Min Max Ave Min Max Ave Min Max Ave
10 123 371 193,70 19 71 32,40 0,000 0,016 0,005
20 117 369 201,10 16 70 32,30 0,000 0,016 0,009
50 156 440 232,80 23 74 37,60 0,016 0,047 0,022
100 192 380 244,60 29 57 41,60 0,031 0,078 0,045
200 229 488 314,80 32 71 48,20 0,078 0,172 0,117
500 306 779 448,30 41 130 69,60 0,281 0,719 0,416
1000 465 655 571,80 68 157 93,80 0,859 1,203 1,058
2000 482 1055 795,40 63 219 125,20 1,797 3,906 2,947
5000 647 1400 1031,40 89 248 167,60 6,000 12,891 9,542
10000 834 2169 1361,30 112 337 183,60 15,563 40,016 25,181

Table 6 Computational results for 7 = 0.7znom
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N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min Max Ave
10 117 403 191,00 18 84 33,00 0,000 0,016 0,005
20 103 243 165,60 15 45 27,50 0,000 0,016 0,009
50 126 531 221,10 19 103 37,70 0,000 0,047 0,023
100 150 514 231,30 21 100 38,00 0,031 0,094 0,044
200 179 301 231,50 24 46 35,60 0,063 0,109 0,086
500 243 706 359,20 33 101 54,60 0,234 0,656 0,339
1000 335 721 472,60 45 130 73,10 0,609 1,391 0,881
2000 376 795 525,90 49 149 81,20 1,406 2,938 1,948
5000 445 1766 812,40 58 265 118,10 4,141 16,359 7,509
10000 555 1352 856,60 72 179 113,00 10,344 25,016 15,869

Table 7 Computational results for 7 = 0.8zp0m

N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min Max Ave
10 106 612 196,10 16 156 38,60 0,000 0,000 0,000
20 93 206 139,60 15 32 21,50 0,000 0,016 0,008
50 108 288 156,10 15 47 24,40 0,016 0,016 0,016
100 119 580 201,80 17 137 36,00 0,016 0,109 0,039
200 144 239 183,10 21 39 27,60 0,047 0,094 0,069
500 190 443 260,60 28 65 39,00 0,172 0,406 0,242
1000 245 500 332,80 32 87 51,80 0,453 0,922 0,616
2000 253 523 359,60 31 101 52,80 0,938 1,938 1,331
5000 318 1081 529,00 45 165 74,10 3,000 9,984 4,895
10000 372 852 531,80 50 109 69,10 6,922 15,734 9,853

Table 8 Computational results for 7 = 0.9z,0m

N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min  Max Ave
10 90 234 142,20 12 46 23,60 0,000 0,016 0,002
20 83 145 115,40 12 26 17,00 0,000 0,016 0,003
50 94 226 130,80 14 37 20,20 0,000 0,016 0,006
100 99 210 138,40 14 38 20,00 0,016 0,031 0,023
200 115 190 140,10 15 29 19,50 0,031 0,078 0,052
500 149 239 179,70 16 37 25,00 0,141 0,219 0,167
1000 174 295 208,20 22 41 29,10 0,328 0,547 0,386
2000 163 393 230,10 19 59 32,00 0,594 1,453 0,853
5000 181 440 273,50 25 73 37,70 1,672 4,078 2,533
10000 164 388 244,40 24 50 32,10 3,063 7,156 4,533

Table 9 Computational results for 7 = 1.0znom
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N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min  Max Ave
10 8 19 11,50 3 7 4,50 0,000 0,000 0,000
20 10 25 18,00 4 10 6,70 0,000 0,000 0,000
50 11 24 17,90 4 10 7,30 0,000 0,016 0,002
100 13 33 18,80 5 12 7,50 0,000 0,016 0,005
200 12 26 20,00 5 10 8,50 0,000 0,016 0,008
500 15 28 22,30 5 12 9,00 0,016 0,031 0,023
1000 16 35 23,70 8 11 9,10 0,031 0,063 0,045
2000 17 34 24,40 9 14 10,20 0,063 0,141 0,092
5000 15 36 24,50 6 11 9,30 0,141 0,328 0,228
10000 14 28 21,40 5 10 8,80 0,266 0,516 0,400

Table 10 Computational results for 7 = 1.1zp0m

N Iterations Max squares Time (s)

Min Max Ave Min Max Ave Min  Max Ave
10 5 14 8,00 2 5 3,80 0,000 0,000 0,000
20 716 12,00 3 7 510 0,000 0,016 0,002
50 7 17 12,40 4 8 5,60 0,000 0,000 0,000
100 7 20 14,50 4 9 6,40 0,000 0,016 0,002
200 10 18 14,80 5 9 7,40 0,000 0,016 0,006
500 10 20 16,50 5 10 7,60 0,016 0,031 0,017
1000 10 21 16,40 5 10 7,70 0,016 0,047 0,036
2000 12 21 17,60 710 850 0,047 0,078 0,064
5000 14 21 18,70 5 10 8,50 0,125 0,203 0,172
10000 10 21 17,20 4 10 8,10 0,188 0,406 0,327

Table 11 Computational results for 7 = 1.2zp0m

robust competitive continuous location model. We show it also captures
stochastic programming models that follow the probabilistic approach.

The model inherits the multimodal character of the underlying Huff-
model. We found that the number of optima for such a model mainly
depends on the number of existing competitive facilities and it does not
increase substantially with the number of demand points.

A branch and bound approach gives a guaranteed global optimum of a
competitive location model. The computational experiments reported sup-
port the idea that using dc-programming techniques enables one to solve
problems with thousands of demand points in a few seconds.
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