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Abstract
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of the relevant family FF of Lie algebras of basis {e1,...,e,} and nonzero brackets
lei,en] € (e€1,...,en—1) over a finite field F,, with p prime. At this end we first
introduce the concept of the structure tuple of a Lie algebra and specifically prove
that there exist n isotopism classes in F2 and three families of isomorphism classes
depending on the first component of their structure tuple.
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1 Introduction.

An n-dimensional Lie algebra g over a field K is an n-dimensional vector space over
K endowed with a second inner law, named bracket product, that is bilinear and anti-
commutative and that which satisfies the Jacobi identity

J(u,v,w) = [u, [v,w]] + [w, [u,v]] + [v, [w,u]] =0, for all u,v,w € g. (1)

The center of g is the set Z(g) = {u € g | [u,v] =0, for all v € g}, which constitutes
an ideal of g. The Lie algebra is said to be abelian if Z(g) = g. Two Lie algebras g and b
are isotopic [1] if there exist three non-singular linear transformations f, g and h from g to
b such that

[f(u),g(v)] = h(]u,v]), for all u,v € g. (2)

Anti-commutativity implies that f = g. It is then denoted as g ~ b and the tuple (f, f, h)
is called an isotopism of Lie algebras. If h is the identity transformation, which will be
denoted from now on as €, then the isotopism is said to be principal. On the other hand,
if f = h, then it is an isomorphism of Lie algebras and it is denoted f instead of (f, f, f).

In such a case, it is denoted as g = h.

Regarding Lie algebras, it is an interesting topic to consider isotopism and isomorphism
classes of finite dimensional Lie algebras over finite fields. This paper addresses both Lie
algebras and finite field.

The usual criterion for classifying Lie algebras is that based on isomorphism classes.
Nevertheless, the classification of Lie algebras into isotopism classes is also interesting
because it allows for combining non-isomorphic algebras that share some properties that
are not detected by isomorphisms. The study of classifications of Lie algebras into isotopism
classes was recently initiated for filiform Lie algebras in [5]. Previously, isotopisms have also
been used to classify distinct algebraic and combinatoric structures such as Jordan algebras
[10], alternative algebras [2], division algebras [11], alternating forms [7], quasigroups [6]
and Latin squares [§].

Given a Lie algebra of basis {e1, ..., e, } and a natural m < n, let us denote by V,,, , the
vector space defined over the finite field Fj,, with p prime, and generated by the elements of
the set {e1,...,em}. The current paper addresses the distribution into isomorphism and
isotopism classes of the family F% of n-dimensional Lie algebras defined over F,, such that
there exists a basis {ey, ..., e, } verifying that

o [ej,ej] =0forall i,j <n.
L d [eiven] € anl,p-

This family is remarkable because, in a certain sense, it is considered to be the precursor
of filiform Lie algebras. Any algebra g € F, can be uniquely identified with a structure



(n—1)-tuple T € Vf_‘ﬁp, whose " component Z;‘:—ll tije; coincides with [e;, ey], where
tij € Fp for all 4,5 € {1,...,n — 1}. Such an algebra will be then denoted as gr. The
family F% was introduced by Boza et al. [3| for p = 2, where each algebra of the family was
uniquely identified with a directed pseudo-graph and their distribution into isomorphism
classes was then explicitly obtained for n < 5, by considering the properties of such graphs.
More recently, the case p = 3 and n < 5 was similarly analyzed in [4, 9]. The known
isomorphism classes are shown in Table 1, where the representative elements have been
chosen to agree with the results of the current paper.

p n Isomorphism classes

2 2 13:(0) b3 : (e1)

3 bi:(0,0) b3 : (e1,0) b3 : (e2,0)
hg:(el,eg) hg : (e2,e1) hg:(52,61+62)

4 bi:(0,0,0) hg : (e1,0,0) hg : (e2,0,0)
by : (e1,e2,0) Rj : (e1,e3,0) RS : (e2,e1,0)
B : (e2,e1 + e2,0) b : (e2,e3,0) b3 : (e1,e2,e3)
039 : (e2,e1,e3) b3t ¢ (e2,e3,e1) b3% ¢ (e2,e1 +es,e1)
b33 : (e2,e1 + e, e3) b3 : (e2,e2 +es,e1)

5 bi:(0,0,0,0) hg : (e1,0,0,0) h§ : (e2,0,0,0)
b3 : (e1,e2,0,0) b2 : (e1,e3,0,0) bg : (e, e1,0,0)
e : (e2,e1 +e2,0,0) b : (e2,e3,0,0) b3 : (e3,eq,0,0)
h%o:<51v5275310) 5%11(61162»6470) h%2=(€2,8116370)
hi% . (e2,e1,e4,0) hit: (e2,e3,e1,0) 035 : (e, es, eq,0)
26 : (e2,eq,e3,0) b7 : (e2,e1 + ez, eq,0) b8 : (e2,e1 +es,e1,0)
hégi(62v€1+€3,6370) h§01(62762+6316170) hgl :(e1,e2,e3,¢€4q)
22 : (e2,e1, €3, e4) 23 : (e2,e1, e, e3) b2t : (e2, e3,e1,e4)
25 : (e2, e3,eq,e1) H2 : (e2, e + ez, eq,e1 +e3) BE' : (ea,eq,e1 +e2,e3)
bgs (e2,e2 +eq,€1,€3) h§91(62762+63v61764) h§D=(€27837€1+62,64)
ba' i (e2,e1 + ea, e + €4, e3) 132 : (e2,e1 +e3, €3, eq) 02% ¢ (e2,e3 + ea, e3,€1)
b5t : (e2,e3,e4,e1 + €3)

32 el 2 (e

3 g}:(0,0) 93 : (e1,0) a3 : (e2,0)
93 : (e1,e2) g3 : (e2,e1) g5+ (e2,2e1)
g;:(ez,el—kez) g%:(eg,261+52) )

4 g;:(0,0,0) 93 : (e1,0,0) 93 : (e2,0,0)
g5 : (e1,e2,0) g5 : (e1,e3,0) 9§ : (e2,e1,0)
04 : (e2,2e1,0) 94?1 : (e2,e1 + e2,0) 9321 (e2,2e1 + e2,0)
930 ¢ (e2,e3,0) ait : (e1,e2,2e3) 03° ¢ (e2,e1,e3)
93% ¢ (e2,2e1, e3) g5t : (e2,e1 + e2,e3) 93° : (es,e2,e1 + e2)
01% ¢ (e3, e2,2e1 + 2e3) 05" : (e3,e2,2e1 + ez +2e3) 955 i (es, ez + es,e1 + e2)
957 i (es,e2 + ez er + e +e3) 030 : (e3, ez +es,e1 + 2ez) 07"t (e3,e2 +e3, e1 + 2ea + 2e3)

93" : (e3,ea,e1 + 2e3)

Table 1: Isomorphism classes of Fp.

The current paper addressed from an algebraic point of view, the distribution of % into
not only isomorphism classes but also isotopism classes. In Section 2, we prove that there
exist n isotopism classes in Fi, whatever p is. Specifically, we obtain that any non-abelian
Lie algebra of F} is isotopic to that related to a structure tuple (ei,...,emn,0,...,0) €
Vf:l{p, for some m € {1,...,n—1}. Section 3 focuses on the distribution of the set F% , of
non-abelian Lie algebras g7 € F4 such that dim(Z(gr)) = n —m — 1. Isomorphism classes
are distributed into three families, depending on the first component of their structure

tuples.



2 Isotopism classes of FP.

In the current section, we determine the distribution of F% into isotopism classes. We start

with a basic property that which must verify any isotopism of Lie algebras.

Lemma 1. Given an isotopism (f, f,h) between two Lie algebras g and g, it is verified
that the 1mage by [ of the center of g coincides with the center of ¢'.

Proof. Because f is a non-singular linear transformation, we have that f(g) = ¢’ and thus,
given u € Z(g), [f(u),v] = h([u, f~1(v)]) = 0 for all v € ¢’. Hence, f(Z(g)) C Z(g'). The
equality holds once we consider the isotopism (f~1, f~!,A~!) between g’ and g. O

The following results focus on the structure tuples of two isotopic Lie algebras of Fh.

Lemma 2. Given two tuples of V;L:ll’p that are equal up to permutation of their components
and relabeling the sub-indices of the elements of V,_1,p, the Lie algebras gr and gr/ are

1sotopic.

Proof. Let T = (3727 tijej, -, 251 tn1);6) and T' = (550 8 5e5, oy 0521 H 1))
be two tuples of Vg__lljp verifying the hypothesis. There exist two permutations « and
of the set {1,...,n — 1} such that t’a(i)ﬁ(j) = t;; for all 4,5 € {1,...,n — 1}. It is then
sufficient to define, using linearity, the isotopism (f, f,h) such that f(e,) = h(e,) = e,
and f(e;) = eq(;) and h(e;) = egy for all i € {1,...,n — 1}. Here, we have that

[F(e)s fen)lop = [Catiys enlaps Z i€ = Zt ()8()€BG) =
n—1
=Y tijepy) = hlleis enlor),
j=1
forallie {1,...,n—1}. O

Lemma 3. Giwen T = (t1,...,t,—1) € V"i1 and i,7 € {1,...,n— 1} such that i # j, it
is verified that g ~ grv, where T = (t1,...,ti—1,t; —i—t],tH_l,... 1) eV, 1

Proof. Let us define using linearity the principal isotopism (f, f, €) such that f(e;) = e;—e;
and f(er) = ey for all k € {1,...,n}\{i}. In particular, we have that

[€i7 en]gT/ - [ei - ej + Bj, en]gT/ = [f(el + ej)? f(en)]gT/ =

= [ei + e, e’n]BT = [eia en]ET + [eja en]BT‘



According to Lemma 2, given any Lie algebra g € %, there always exists a structure
tuple T = (Z;:ll t1€js - - s Z;L;ll tin—1)j€j) € V#:llyp such that gr ~ g and verifies that,
given ¢ > 1, if t;; = 0, t;, = 0 for all 5,k > <. If t1;7 = 0, then g is the abelian Lie
algebra. Otherwise, we define using linearity the isotopism (e, €, h) such that h(e;) =
tzfl_l(el — 2?2—21 tijej) and h(ej) = e; for all j # 1. We obtain in this way a Lie algebra g7
that is isotopic to g7 where by

n—1
[e1, enlor = [e(e1), e(en)lay = Aller, enlsr) = R tijes) =
j=1
n—1
tllh(el) + Ztljej =e1.
=2

Now, from Lemmas 2 and 3, we can find a structure tuple 7" = (eq, 2?2—21 t9i€js <o

Z’;:_QI t’(n_l)jej) € Vrfjﬁp such that g7 ~ g7 ~ gr and such that given ¢ > 2, if ¢/, = 0
then t;-k, = 0 for all j,k > i. If thy, = 0, then 7" = (e1,0,...,0). Otherwise, we can
follow similar reasoning previously used to define 7" and find a structure tuple 7" =
(61,62,2?;31 t35€5, . - .,Z?;; tin—1)j€j) € Vg_]l’p such that g7 ~ gr and verifies that,
given i > 3, if t;; = 0, then t;;, = 0 for all 5,k > 7. We can repeat the procedure with the
remaining components of the structure tuple and hence, the following result holds.

Proposition 1. There exist n isotopism classes in Fh.

Proof. With the previous reasoning, any non-abelian Lie algebra of F} is isotopic to an
algebra related to a tuple T,,, = (e1,...,€m,0,...,0) € :—_11,;)’ for some m € {1,...,n—1}.
In addition, because Z(gr,,) = (€m+1,...,6n ) forallm € {1,...,n—1}, Lemma 1 implies
that g7, is not isotopic to g7, for any m,l € {1,...,n — 1} such that m # [. Therefore,
the n-dimensional abelian Lie algebra together with the algebras gr,, determine the set of

isomorphism classes of JF4. O

Table 2 shows the distribution into isotopism classes of the isomorphism classes that

appear in Table 1.

p n  Isotopism classes
2 2 b b3

3 by b3=~bi  h3=b3 b

4 by b2~pd pi~..~hf bl o~ bt

5 b b2~ bio~o~p? p0~ . 20 p2lo . ~pPt
3 2 g g3

3 93 @i~ g..g)

4 9i ei~oi ei~...~e’ gi'~...~g°

Table 2: Isotopism classes of FP.



3 Isomorphism classes of FZ.

The current section addresses the distribution of F5 into isomorphism classes. One such
class is determined by the abelian Lie algebra. To study the remaining classes, given m &
{1,...,n—1}, let us denote by F5 ,, the set of non-abelian Lie algebras gr € F, such that
dim(Z(gr)) = n—m— 1. Because the center of a Lie algebra is preserved by isomorphism,
the set JFh ,, is invariant by isomorphism and we can suppose that the structure tuple T
of any of its Lie algebras gr € FJ is of the form (Z;:ll tij€j, . .. ,Z?;ll tmj€;,0,...,0) €
V" 1Lp>
it is sufficient to consider a change of the basis of gr to obtain that ¢;; = 0 for all ¢ > m

where the rows of the coefficient matrix (¢;;) are linearly independent. Otherwise,

and j < n. The following results are satisfied
Lemma 4. Given a Lie algebra gp € Fh m, it is verified that gp = g for all k € Fp\{0}.

Proof. Tt is sufficient to define using linearity the isomorphism f such that f(e;) = ke; if
i <nand f(e,) = e,/k, because we then obtain

(€6 enlgr = ke en/ kg = [f(€i), f(en)lgr = f([ei; enlg Z ktije;.
L]
Lemma 5. Given a tuple T = (Z;l;ll t1€j5, .-, 27;11 tmje;,0,...,0) € Vg__l{p such that

there exists a natural i < m so that t; # 0, the Lie algebra gr € fﬁ,m 1s 1somorphic to the
Lie algebra b € Fh o, where

> k<m tikek, if =1,

lej, € ]h =
e [€), enlgr, otherwise.

Proof. 1t is sufficient to define using linearity the isomorphism f such that f(e;) = e; —
tf;l Zj>m tije; and f(e;) = e; for all j # i. The Lie algebra b € F% ,, isomorphic to g
with respect to f verifies that

1 1
lei,enly = [f(ei + 88 thej Ny = f(lei + & Ztue],en ar)
j>m j>m
= f([es, enlgr the] + tiif(e;) Z tije;.
J#i Jj<m

O

Given a Lie algebra g € fﬁ,m and a natural ¢« < m, we consider the number pg; =
min{j < n: t;; # 0}. The following results hold



Lemma 6. Any Lie algebra g € fﬁ,m 15 1somorphic to a Lie algebra gr € ]:ﬁ,m of structure
tuple T = (Z?;ll t1j€j, ..., Z;L;ll tmje;s,0,...,0) € ijﬁp such that ti,, ; = 0 for all
1,5 < m such that i # j.

Proof. We define using linearity the isomorphism f; such that f(e1) = e; and f(e;) =
p—1
1pg,1
the Lie algebra g1 € Fh,,, isomorphic to g with respect to f; is that of the first component

e;—t Lipg1€1 for all ¢ > 1. The only nonzero coefficient of €pgq iDL the structure tuple of

of such a tuple. O

Proposition 2. Given a Lie algebra g7 € Fh m of the structure tuple T = (Zy;ll tij€ej,. ..,
Z?:_ll tmj€;,0,...,0) € Véz__ll’p, is isomorphic to a Lie algebra b € Fh n, verifying that

e1, if [e1, enlgr = t11€1,

le1, enly = < €2, if there exists j € {2,...,m} such that t1; # 0,
em+1, if j1 > m.

Proof. We can suppose that t1;, = 1. Otherwise, we use the Lie algebra g,p-1,,, which is
171

isomorphic to gr from Lemma 4. We study each case separately.

e If [e1, e,]g, = €1, then the result follows in a straightforward manner by considering
b=gr.

e If j1 = 1 and if there exists j > 1 such that ¢;; # 0, we can then suppose from
Lemma 6 that 7 < m. It is then sufficient to define using linearity the isomorphism
f such that f(e;) = e; if i # j and f(e;) = tzfj_l(ej — €1 — X igq ) trei). The Lie
algebra g’ isomorphic to gy with respect to f verifies that

[el,en]g/ = [f(e1), f(en)]g/ = f([el»en]gT) =€j-

Now, we can define using linearity the isomorphism g such that g(e;) = ez, g(e2) = ¢;
and g(e;) = e; for all i € {2,5}. The Lie algebra b isomorphic to g’ with respect to
g verifies that [eq, e,]y = ea.

e Finally, if j; # 1, then we define using linearity the isomorphism f such that f(e;) =
ei if i # ji and that f(ej;,) =ej, — > ;- t1jej. The Lie algebra g’ isomorphic to gr
with respect to f verifies that

lex, enly = [f(er), flen)ly = F(lex enlgr) = flen) + D trje; = e
J>i
If j» € {2,...,m}, we can then use the isomorphism ¢ defined in the previous case
to obtain a Lie algebra b isomorphic to g7 and such that [e1, e,]y = e2. Analogously,

if § > m, then it is sufficient to define using linearity the isomorphism g such that
g(ej) = em, g(em) = e; and g(e;) = ¢; for all i & {m, j}.



O

The previous result can be used to determine the distribution of .7-"3271 into isomorphism
classes.

Theorem 1. Given n > 2 and p prime, there exist two isomorphism classes of Lie algebras
of Fp1. They are determined by the structure tuples (e1,0,...,0) and (es,0,...,0) of
Vnn—_ll,p'

Proof. According to Proposition 2, any Lie algebra of ]:5,1 is isomorphic to g, 0,....0) OF
9(es,0,...,0) 1 .7:571. Moreover, g1 and g2 are not isomorphic because isomorphisms preserve

the center of Lie algebras and, in our case, [g2,g2] € Z(g2), but [g1,91] € Z(g1). O

Even if Proposition 2 is useful for simplifying the first component of the structure tuples
of the representative Lie algebras of the isomorphism classes of Fh ., it cannot be directly
used to classify them. One can observe, for instance, that the Lie algebras g(e, e,,0) and
O(ez,e04e3,0) 11 .7-"272 are isomorphic, but their structure tuples have distinct first components
in {e1,e2}. Indeed, the majority of the isomorphism classes of F4 ., can be rewritten in
such a way that the first component of their structure tuples is es. To prove this, the
following result determines explicitly the isomorphism classes of F# ,, that do not have
any representative Lie algebra with a structure tuple of the first component equal to es.
It is the case, for instance, for the isomorphism class h? of structure tuple (eq,e3,0,0) in
Table 1.

Theorem 2. Given a Lie algebra gr € Fhm, if gr is not isomorphic to a Lie alge-
bra b € Fh., such that [e1,e,]y = ea, then there exists m’ € {0,...,m} such that
2m —m/ < n — 1 and gr is isomorphic to a Lie algebra of structure tuple of the form

n—1
(6’1,t2€2 ey b e s €maly - - o5 €2m_m/, 0, ... ,0) € Vn—l,p’ where ta < ... <ty

Proof. f T = (Z;”:_ll tijej, -, Z;L:_ll tmje;,0,...,0) € Vg__llyp is the structure tuple of gr,
then the hypothesis is possible only if ¢;; = 0 for all ¢, 5 < m such that ¢ # j. Otherwise,
we can define using using linearity an isomorphism f such that f(e1) = e;, f(e;) = ex
and f(ex) = ey if K € {1,i}. The Lie algebra b € Fk,, isomorphic to gy with respect
to f should then verify that the product [ei, e,y would contain the addend t;;e;, with
tij # 0, and Proposition 2 would imply that b is isomorphic to a Lie algebra b’ such that
le1, enly = ea. Hence, it must be

n—1
[€i) enlgr = tii€i + Z tije;, for all ¢ < m.
j=m+1
Let m’ be the number of naturals ¢ € {1,...,m} such that ¢;; # 0 and let us define using
linearity the isomorphism f such that f(e;) = tfl-_l(ei —Z}:}nﬂ tije;), if ti; # 0; otherwise,



f(e;) = e;. The Lie algebra b isomorphic to g with respect to f verifies that

tiie;, if ty; # 0,

leisenly = ., .
Ej:m—i—l tije;, otherwise.
Because h € Fh ,, there exists (m —m’) distinct naturals i1, . .., im_m < m and (m—m')

distinct naturals ji, ..., jm—m € {m+1,...,n—1} such that ¢; ; # 0 for all k < m —m/.
Let us define using linearity the isomorphism ¢ such that

€is if ¢ Q {ila s 7im—m’}’

glei) =
tikjkp_l(ejk — Zj?éjk tikjej), if © = 4 for some k < m — m'.

After applying the isomorphism g to b, we can relabel conveniently the elements of the

basis and apply Lemma 4 to find m — 1 numbers ta,...,tn, tmy1, - .., tam—2 € Fp\{0},
such that to < ... <t and the Lie algebra g with 7" = (e1,t2€2, . . ., ty€m/s tint1€m+1,
s tom—mr€am—m,0,...,0) € Vg’:ﬁp structure tuple is isomorphic to h. In particular, it

must be 2m —m’ < n— 1. Finally, if we define using linearity the isomorphism A such that
h(e;) = tf_lei ifie{m+1,...,2m —m'},and h(e;) = e;, otherwise, then the Lie algebra
g7 is isomorphic to that of structure tuple (e1,t2€2, ..., tm/€msy €mt1y- -+ €2m—ms, 0y ...y
-1
0) € Vi,
O

Once we have identified the isomorphism classes of ]:ﬁ,m of Theorem 2, we focus
our study on those Lie algebras gr € Fh ., of structure tuple 7' = (62,2?;11 tajej, ...,
Z?:_ll tmje;,0,...,0) € VT?__ﬁp. We can suppose that ¢ = 0 for all ¢ > 2. Otherwise, we
define using linearity the isomorphism f such that f(e;) = e;if j # i and f(e;) = e;+tizer.
Let us consider the number jo = min{j < n: j # 2 and t9; # 0}. Analogously to Propo-
sition 2 and Theorem 2, the next result holds

Proposition 3. Given a Lie algebra gr € Fh . of structure tuple T = (e, E;le taj€j, ...,
Z;l:_ll tmj€;,0,...,0) € ng:l{p, it is isomorphic to a Lie algebra b € Fh , verifying that
[6’1, en]b = €2 and

to1e1 + tagez, if jo =1,

[627671]() = toge2 + €3, ’ifjg € {3,...,m},

too€a + emy1, if j2 > m.
In particular, if gr is not isomorphic to a Lie algebra b € Fh p such that [es, en]y €
(e1,ea,e3), then it is isomorphic to the Lie algebra of structure tuple (e2,tosea +€myi, ...,
em—-1,0,..., 0) € Vnn—_ll,p'

We study each one of the three cases of Proposition 3.



Similar to what is observed for [e1, e,], the majority of the isomorphism classes of Fh
can be rewritten in such a way that the first components of their structure tuples are es.

To this end, we invoke a previous definition. Given a natural m’ < n —m and two Lie
algebras gr € fp e and g € FP

nmmm

n—1 n—1
T = (Z t1j€5, .0,y Ztm/jej,(), R ,0) € V::lljp
p =1

, of respective structure tuples

and
n—m/—1 n—m/—1

m
2 : / § : n—m’—1
tljej,... 6],0, . ey ) Vn m’'— lp,

j=1 j=1

we define the Lie algebra grqr € ]-"n,m of structure tuple
n—m'—1 n—m'—

n—1
T@T’:(Ztueg‘y-- Ztm]e], Z tljemﬂ,... Z m]emﬂ, 0,...,0).
j=1

The following result holds

Theorem 3. Given a Lie algebra g € ]-'nm, there exists a Lie algebra g’ € FF_, m—1 Such
that

§=gn, ©9,
where Th = (e1,0,...,0) € Vf:llp
Proof. Because g € .7:57’71”, there is a structure tuple T' = (ey, Z;l;ll o€, -, 27;11 tmje;,
0,...,0) € V:—_ﬁp such that g = gp. We can suppose that ¢;; = 0 for all i € {2,...,m}.
Otherwise, we define using linearity the isomorphism f such that f(e;) = e; if j # i and
f(ei) = e; + tirer. Hence, it is sufficient to consider g’ = g7 € F —1m—1 where

n—2 n—2
T — (Z t2(j+1)€j7 ey Z tm(j+1)€j7 0,... ,O) S Vr?—_QQ,p'

O

From Theorem 3, the isomorphism classes of fn m are uniquely determined by those of
the three families F2"'| m—1, for i € {1,2,3}.

We can also suppose that t;0 = 0 for all ¢ > 2. Otherwise, we define using linearity the
isomorphism f such that f(e;) = e; + tizer and f(ej) = e; if j # i. We now distinguish
the following three cases

e Case 1. t;; =0 forall 7 > 2.

10



e Case 2. to; # 0.

e Case 3. to1 = 0 and there exists ¢ > 2 such that ¢;; # 0.

4 Relationship between isotopism and isomorphism classes
of ]-"ﬁ’m

The distribution of Lie algebras of FP into isotopism classes can be used to determine their
distribution into isomorphism classes. Because two isomorphism classes must belong to the
same isotopism class, the methodology that we are going to follow to obtain such a distribu-
tion is to consider the isotopism class associated to a non-abelian Lie algebra g1, € F#, for

some m < n, where T), = (e1,...,em,0,...,0) € V'~ 11p, and to determine all their related
isomorphism classes. Let gr € Fh n, Where T = (e, ij_ll t2j€j,. .., Z;";ll tmj€i,0,. ..,

0) € V', and ji € {1,2,m+1}.
Let (f, f,h) be an isotopism between gr and gr,,, that is,

[f(u), f(v)lg, = h([u,v]g,), for all u,v € gr. (3)

Let F' = (fi;) and H = (h;j) be the non-singular matrices of order n—1 related respectively
to f and h, that is, such that f(e;) = >, fijei and h(e;) = Y1, hije; for all j €
{1,...,n}. Because gr is a Lie algebra of F%, it is [g7,97]g; € Va—1, and thus, the
numbers hj, do not have any influence in the expression (3), for any ¢ € {1,...,n}. The
numbers ¢;;, fi; and h;; are related by the expressions that appear in the following result

Lemma 7. That the following are verified

i. frifng = faifij for alli,j <n and k <m.

Trifan — frifin, if kK <m,

. Given i < m, we have that Zn ! tijhi; =
0, otherwise.

Wit fri = fni =0 forallie {m+1,...,n—1} and k < m.

Proof. The first assertion follows from the fact that, given i, j < n, we have

0 = h(lei ejlor) = [F(e), F(€)lar, = [D friens Y frierlon
k=1 =1

= (frifnj = Fuifes)ex

k=1
Now, given ¢ < n, we have
n n—1
Z Ztmhk]ek = Ztmh 6] [ei’en]gT) = [f(ei), f(en)]ng =
k=1 j=1
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m

= friers > finerlr, = > (frifan — fuifen)er:
k=1 k=1

k=1
If ¢ < m, then the second assertion follows from the coefficients of each e; in the previous
expression. Otherwise, because t;; = 0 for all ¢ > m and j < n, we have

Sfrifon = frifin, foralli >m, j <nand k < m. (4)

If there exists i9 < n such that fp;, 7# 0, then (i) implies that there exists a number oy, € F),
such that fx; = g fni for all i < n. If ig > m, then (4) implies that fx, = o fnn and hence
F is non-singular, which is a contradiction. Therefore, f,,; = 0 for alli € {m+1,... ,n—1}.
Now, if ig < m, then fi; = agfni = 0 for all £ < m and ¢ > m. Finally, if f,; = 0 for all
i < m, then fp, # 0 because F' is non-singular and thus, (4) implies again that fi; = 0 for
all £k <m and 7 > m. O

Let My = (m;;) be the matrix of order (n — 1) x n such that m;; = t;; if j < n;
otherwise 0. According to Lemma 7 (ii), it is verified that

fllfnn_fnlfln fmlfnn_fnlfmn 0 0

M 'th flmfnnffnmfln fmmfnnffnmfmn 0 0
r 0 0 0o ... 0|’

0 0 0 ... 0

where H! is the transpose of the matrix H. Because H is non-singular, we can define the
matrix B = (b;;) = (H')~! and thus, it is verified that

. Sor i (frifun — frifwn)bij, for all i <m and j <mn, 5)
Y 0, otherwise.

According to the previous results, the following proposition holds

Proposition 4. An algebra g7 € Fh of structure tuple T = (Z?;ll tije;, 72?;11 tmj;,
0,...,0) € V::l{p 1s isotopic to gr,, if and only if there exist two non-singular square

matrices of order n, A = (a;j) and B = (b;j), such that
i QkiGnj = Apiakj for all 1,5 <n and k < m.
i Qg = an; =0 forallie {m+1,....,n—1} and k < m.
i tij = > peq (QkiGnn — Aniagn)bi; for all i <m and j < n.
From now on, given two non-singular square matrices A = (a;;) and B = (b;;) of order
n such that A satisfies Conditions (i) and (ii) of Proposition 4, we will denote by ga g the

Lie algebra of Fh whose structure tuple satisfies Condition (iii) of such a result. There are
two cases to study
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e Case 1. ap; =0 for all j <n.

In such a case, Condition (i) is immediately satisfied. Because A is non-singular, it
must be true that a,, # 0 and

. Ann Y peq Gkibgj, for all i <m and j < n,
i = )
0, otherwise.

We can suppose that a,, = 1. Otherwise, it is sufficient to define using linearity the
isomorphism f such that f(e;) = aﬁﬁlei for all i <n and f(e,) = annen.
e Case 2. There exists jo < m such that a,j, # 0.

In such a case, from Condition (i) of Proposition 4, given k < m, there exists ay, € F},
such that ar; = aa,; for all j < n. Hence,

; ni 9y (Qnpn — Qg )i, for all i <m and j < n,
ij = )
0, otherwise.

Observe that, because A is non-singular, it must be true that ag, # qgayy, for all
k<m.
If m = 1, then the previous two cases are reduced to the following
e Case 1.
anblj, ifi=1 and 7 < n,

tij = )
0, otherwise.

e Case 2.

; ani(Q1ann — a1n)bij, if i =1 and j <mn,
ij = )
0, otherwise.

We show in Table 3 the isomorphism classes of F3.
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: (0,0,0,0)

: (0,0, e4,€e3)

: (0,0,2eq4,e3 + eyq)

: (0,0, e3,€eq)

: (0, eq,€3, e + 2ey4)

: (0,2eq,e3,ea + 2e4)

: (e4,0,e3,e2 + eq)

: (0,e3,€q4,€e2 + 2ey4)

: (0, e3 + 2e4, €4, €2 + 2e4)

: (eq,e3 + 2eq4,0,e2)
:(eq,e3,€e2,€1)

i (eq,e3 +eq,e2 +eq,e1)
(2eq,e3,e2 +eq, €1 + eq)

i (eq,e3,e2 +e3 +eq,e1 +eyq)

i (2e4,e3,e2 + e3,e1 + 2eq)
 (2e4,2e3,e2 + eq,€1)

: (2e4,2e3 +eq,e2 +e3 +eq,e1 +eyq)
: (e3,2eq,e2,e1 + e4)

i (e3 +eq,eq,e2,e1)

i (e3+eq,eq,e2 +eq,e1 + 2eq)
: (e3 +2eq,eq,€2,€1)

: (e3 + 2eq,e4q,e2 + eq, €1 + 2e4)
:(e3 +2eq,2eq,e2 +eq,e1 + e4)
: (eq, €2, €3, e1 + 2eq)
:(e1,e2,€e3,€4)

:(0,0,eq4,e3 + e4)

gg : (0,e4,0,e3)

: (e3,0,0,e2)

05" : (0,eq,e3 +eq,e2)

g5’ :(0,2eq,e3 + eq,e2 + 2e4)
g5 :(e4,0,e3,e2 + 2eq)

(0, e3 + eq, eq, €2)

g5 : (e4,e3,0,e2)

g5 1 (0,eq,e3,e2)
:(eq,e3,e2,e1 +eq)

95° ¢ (2eq,e3,e2,€1)
:(eq,e3,e2 +e3,e1 + eq)
g5 :(2eq,e3,e2 +e3,€e1)

g5~ : (2e4,2e3,e2,€1)

95" (2e4,2e3,e2 +e3,e1 +eq)
05 :(e3,eq,e2,e1 + eq)

g5° : (e3,2eq,e2 +eq,€1)

05° ¢ (e3 + eq,eq,e2,e1 + eq)
: (e3 +eq,2eq,e2,e1 + €4)
g5° : (e3 +2eq,eq,e2 +eq,e1)
05 ¢ (e3 + 2e4q,2eq,€2,€1 + €4)
i (ea,e2,e3,e1)

05 ¢ (2eq,e2,e3,¢€1)

92 : (0,0,0,e4)
5
5

g% :(0,0,eq4,0)
5
9
5

ge : (0,0, 2eq,e3)

g5 :(0,e4,0,e3 + eq)

B%f :(0,e4q,e3,e2 + eq)

B;,; :(0,2eq, €3, €2)

g5 : (e4,0,e3,e2)

a2l (eq,0,e3 + ea,e2 + )
Bgi (0, e3 + eq, eq, €2 + €4)

g5 : (e4,e3 +eq,0,e2 + eq)
g5 :(0,e2,e3,¢eq)
:(eq,e3,e2 +eq,€1)

05 ¢ (2eq,e3,e2,e1 + eq)

g%z :(eq,e3,e2 + e3,e1 + 2eq)

o5 : (2eq,e3,e2 +e3,e1 +eq)

957 ¢ (2ea,2e3, €2, e1 + e4)

g5% : (2e4,2e3, €2 + e3 + ea, e1 + ea)
921 : (e3,eq,e2 +eq,e1)

a2% : (e3,2e4, e + eq, e1 + 2e4)

o5  :(e3 +eq,eq,e2 +eq,e1 +eq)

ggo : (e3 +eq,2eq,e2 +eq,€1)

a8 : (e3 + 2e4,e4,e2 +eq,e1 + €a)
a0 : (e3 + 2e4,2eq,e2 + eq,e1)
989 1 (eq,e2,e3,e1 +eq)

05° : (2eq,e2,e3,e1 + 2ey)

Table 3: Isomorphism

classes of F3.

n Isomorphism classes

2 f3:(0) J3 i (e1)

3 f3:(0,0) f3:(0,e2) 13 i (e2,0)
f§ i (2, 1) I3+ (e1 e2) fg i (e2,e1 + e2)
f3 @ (e2,e1 + 2e2) f3 : (2e2,e1) f3 : (2e2,e1 + 2e2)
£39: (1, e2)

4 fl:(0,0,0) f2:(0,0,e3) 13 :(0,e3,0)
ff:((),eg,eg) f}? : (0,e3,e2 + e3) fg:(0,€3,82+283)
FI (0, 2e3, e2) 18 :(0,2e3, ea + e3) £9 ¢ (0,2e3, ea + 2e3)

fy_ ¢ (e3,0,€2)

132+ (es, e, e1)
£i% ¢ (e3,e2,e1 + 3es)
132 (2e3,e2,e1)

£32 ¢ (2e3,e2,e1 + 3e3)
f25 : (3e3,e2,e1 +e3)
£38 ¢ (4e3,e2,e1 + e3)
fggi : (dez, ez +e3,e1 + 2e3)

fi” :(e2 + ez, e3,e1 + e3)
féf: : (e2 + e3,2e3,e1 + 2e3)
£4° : (e2 + 2e3, e3, €1 + de3)

fi' i (e3,0,e2 +e3)

fi*: (e3,e2,e1 +e3)

fi7 : (es, e2, e1 + de3)

130 : (2e3,e2,e1 + e3)
£33+ (2e3,e2, e1 + deg)
135 (3e3,e2,e1 + 3es)
£3% ¢ (de3, ez, e1 + 2e3)
£3% i (e2,es3,e1 + e3)

135+ (e2 + e, e3, €1 + 3e3)

5t (e2 + e3,2e3, e1 + 4e3)
: (e2 + 2e3,2e3, €1)

fi2:(0,e2,e3)

£i5: (es, ez, e1 + 2e3)
£i8 : (e3,e2 +e3,e1)
fit: (2e3,e2,e1 + 2e3)
f3: (3es,e2,e1)

f27: (3e3, ez, e1 + 4eg)
£39 ¢ (4e3, €2, e1 + de3)
£33 (e2,e3,e1 + 2e3)
£3% ¢ (e2 + e3,2e3,e1)

£32 ¢ (e2 + 2e3, e3, €1 + e3)
: (e1,e2,e3)

Table 4: Isomorphism classes of 72, for 2 < n < 4.
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