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Abstract

This paper deals with the notion of Gröbner δ-base for some rings of linear differential operators by
adapting the works of W. Trinks, A. Assi, M. Insa and F. Pauer. We compare this notion with the one of
Gröbner base for such rings. As an application, and following a previous work of A. Assi, we give some
results on finiteness and on flatness of finitely generated left modules over these rings.

1 Introduction.

We will study Gröbner δ-bases for some rings of linear differential operators.
We have adapted to the differential case some notions and some results obtained by W. Trinks in [TRI]

and A. Assi (in [ASS-1] and [ASS-2]) for the case of a commutative polynomial ring with coefficients in a
commutative unitary ring.

The notion of Gröbner δ-base we introduce here is equivalent to the one of Gröbner base defined by M. Insa
and F. Pauer in [IN-PA]. Nevertheless, we reserve the name Gröbner base for the classical notion introduced
in [CAS-1] (see also [CAS-2]). Besides the k-algebras appearing in [IN-PA], the cases H = k[[X]][X−1] and
H = k{X}[X−1] (when k = R,C) will be especially interesting in order to extend the results of [ACG-1]
and [ACG-2] to the rings of linear differential operators with coefficients in H.

Section 2 is devoted to the definition of the class of rings of linear differential operators we will study and
to the theory of Gröbner δ-bases. We have, in these rings, a reduction algorithm which allows the effective
construction of a Gröbner δ-base for a given ideal, defined by a finite system of generators. This is the aim
of the sections 3,4 and 5.

In section 6 we compare the notions of Gröbner δ-base and Gröbner base in the case of the Weyl algebras.
We prove that any Gröbner base (in the sense of [CAS-1] (see also [CAS-2])) of a left ideal of a Weyl algebra
is a Gröbner δ-base with respect to an appropriate well-ordering. We also prove that the converse is not
true.

We can deduce adapted algorithms for membership problem, elimination problem and syzygies problem
by using Gröbner δ-bases (instead of Gröbner bases) that could be in some cases with better complexity.

In section 7 we apply previous results to the study of flatness of some modules in a (local) relative
situation. We also give a finiteness results for some modules. These flatness results could be compared to
those of [SAB] for Rees modules over Rees rings.
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2 Gröbner δ-bases.

Here, k is a field of zero characteristic. Let us denote by k[[X]] = k[[x1, . . . , xn]] the ring of formal power
series and by k((X)) its quotient field.

Let us denote by k((X))[∂] = k((X))[∂1, · · · , ∂n] the ring of linear differential operators with coefficients
in k((X)), where ∂i stands for the partial derivative with respect to the variable xi.

Let us consider a noetherian sub-k-algebra H ⊂ k((X)) stable under the action of the partial derivatives
∂1, · · · , ∂n. Let us denote by D (or H[∂]) the sub-k-algebra (of k((X))[∂]) of linear differential operators
generated by H and {∂1, · · · , ∂n}.

More generally, we will consider differential rings as D = H[∂1, . . . , ∂n] for any noetherian sub-k-algebra
H of k((X̃)) = k((x1, . . . , xn, xn+1, . . . , xn+m)), stable under the action of ∂i for i = 1, . . . , n.

The ring D is the set of formal finite sums

∑

α∈Nn

pα∂α,

where pα ∈ H.
Let < be a well-ordering, compatible with the sum in Nn (i.e. a well-ordering such that, for all γ ∈ Nn,

we have α + γ < β + γ if and only if α < β).

Definition 1 Let P =
∑

α∈Nn pα∂α be a non-zero element of D. The Newton δ-diagram of P is the set

N δ(P ) = {α ∈ Nn : pα 6= 0} .

Definition 2 Let P be a non-zero element of D. We call the element of Nn, max<{N δ(P )}, the δ-exponent
of P with respect to <. It will be denote by expδ

<(P ) or by expδ(P ) when no confusion is possible.

Definition 3 Let P be a non-zero element of D. We call the element pα ∈ H, where α = expδ(P ), the
δ-coefficient of P with respect to <. It will be denote by cδ

<(P ) or by cδ(P ) when no confusion is possible.

With these notations we have the following (see [MOR, page 106-108]):

Lemma 4 Given two non-zero elements P, Q in D. Then the following properties hold:

1. expδ(PQ) = expδ(P ) + expδ(Q) and expδ([P, Q]) < expδ(PQ).

2. If expδ(P ) 6= expδ(Q) then expδ(P + Q) = max<

{
expδ(P ), expδ(Q)

}
.

3. If expδ(P ) = expδ(Q) and cδ(P )+cδ(Q) 6= 0 then expδ(P +Q) = expδ(P ) = expδ(Q) and cδ (P + Q) =
cδ(P ) + cδ(Q).

4. If expδ(P ) = expδ(Q) and cδ(P ) + cδ(Q) = 0 then expδ(P + Q) < expδ(P ).

All the ideals we will consider in D will be left ideals.
Let I be a non-zero ideal of D. We denote by

Expδ
<(I) =

{
expδ(P ) : P ∈ I \ {0}

}
⊆ Nn.

We write Expδ(I) when no confusion is possible.

Remark 5 By Lemma 4 we have Expδ(I) + Nn = Expδ(I). So, by Dickson’s Lemma (see for example
[CLO]), there is a finite generating subset F of Expδ(I), i.e.

Expδ(I) = ∪α∈F (α + Nn).

Any of the subset F is called a δ-stair of I.

We denote by H[ζ] = H[ζ1, · · · , ζn] the (commutative) polynomial ring with coefficients in H and with
variables ζ1, · · · , ζn.

Definition 6 Let P =
∑

α pα∂α be a non-zero element of D. The δ-initial form of P , with respect to <, is

inδ
<(P ) = cδ(P )ζexpδ(P ) ∈ H[ζ]. We write inδ(P ) when no confusion is possible.
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Definition 7 Let I be a non-zero ideal of D. The ideal generated by

{
inδ(P ) : P ∈ I \ {0}

}

is called the δ-initial ideal of I with respect to < (and it is denoted by inδ
<(I)). We write inδ(I) when no

confusion is possible.

Remark 8 Note that inδ(I) is a ζ-monomial ideal in H[ζ]. If I is generated by {P1, · · · , Pm} (i.e. I =
D(P1, · · · , Pm)), then the ideals H[ζ](inδ(P1), · · · , in

δ(Pm)) and inδ(I) may be different.

Definition 9 Let I be a non-zero ideal of D. A finite family {P1, · · · , Pm} ⊂ I is called a Gröbner δ-base
of I, with respect to the well ordering <, if

inδ(I) = H[ζ](inδ(P1), · · · , in
δ(Pm)).

Remark 10 When H = k (i.e. in the ring k[∂] = k[∂1, · · · , ∂n]), the notion of Gröbner δ-base and the
one of Gröbner base coincide. Here k[∂] is the ring of linear differential operators with constant coefficients
which is a commutative polynomial ring.

3 Reduction in D.

Let F be a non-empty set in D and α ∈ Nn. Here we will use some notations of [ASS-1]. Let

K(α; F ) =
{

cδ(P ) : P ∈ F, α ∈ expδ(P ) + Nn
}

.

We denote by C(α; F ) the ideal, in H, generated by K(α; F ), i.e.

C(α; F ) = HK(α; F ).

If K(α; F ) = ∅ then C(α; F ) = {0}.

Example 1 Let consider F = {P1, P2} ⊆ k[x1, x2][∂1, ∂2], where P1 = a(x1)∂
2
1+b(x2)∂1 and P2 = c(x2)∂

2
2+

e(x1)∂2 with a(x1), e(x1) ∈ k[x1], a(x1) 6= 0 and b(x2), c(x2) ∈ k[x2] with c(x2) 6= 0. We consider the
lexicographic order(c.f. [CLO]) in N2 with ∂1 > ∂2.

Then expδ(P1) = (2, 0) and expδ(P2) = (0, 2). Since K((1, 1); F ) = ∅ we have C((1, 1); F ) = {0}. We
also have

C ((2, 2); F ) = 〈a(x1), c(x2)〉, C ((2, 0); F ) = 〈a(x1)〉, C ((0, 2); F ) = 〈c(x2)〉,

where 〈N〉 stands for the ideal (in k[x1, x2]) generated by N .

It is easy to check that

1. If β ∈ α + Nn then K(α; F ) ⊆ K(β; F ) and C(α; F ) ⊆ C(β; F ).

2. If F1 ⊆ F2 then K(α; F1) ⊆ K(α; F2) and C(α; F1) ⊆ C(α; F2) for all α ∈ Nn.

Remark 11 If I is a non-zero ideal of D then:
a) K(α; I) =

{
cδ(P ) : P ∈ I, expδ(P ) = α

}
. Moreover, K(α; I)

⋃
{0} = C(α; I).

b) C(0; I) = I ∩ H.

Remark 12 ¿From now on, we suppose H verifying two additional conditions:

1) For any subset {f1, · · · , fr} ⊂ H and for any f ∈ H we can decide if f ∈ H(f1, · · · , fr), and in this
case, it is possible to find q1, · · · , qr ∈ H such that f =

∑r
i=1 qifi.

2) For any subset {f1, · · · , fr} ⊂ H it is possible to find a system of generators of the H-module of syzygies
of {f1, · · · , fr}.

The algebras
H = k[X], k(X), k[[X]], k((X)), k[[X]][x−1

1 , · · · , x−1
n ]

and the algebra k{X}[x−1
1 , · · · , x−1

n ] with k = R or C verify conditions 1) and 2).
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Definition 13 Let F = {P1, · · · , Pm} ⊆ D \ {0} with Pi 6= 0, 1 ≤ i ≤ m and P ∈ D. We will say that P is
reduced with respect to F , if expδ(P ) /∈

⋃m
i=1

(
expδ(Pi) + Nn

)
or if expδ(P ) ∈

⋃m
i=1

(
expδ(Pi) + Nn

)
then

cδ(P ) /∈ C(expδ(P );F ).

Let F be a non-empty subset of D \ {0}. We denote

R(F ) = {R ∈ D : R is reduced to respect F} .

Remark 14 R(F ) is not necessarily a vector space over k.

Theorem 15 (Reduction algorithm) Let F = {P1, · · · , Pm} ⊆ D, with Pi 6= 0, i = 1, · · · , m and P ∈ D.
Then there exist Q1, · · · , Qm, R ∈ D such that

1. P =
∑m

i=1 QiPi + R.

2. R ∈ R(F ).

3. max1≤i≤m{expδ(QiPi), expδ(R)} = expδ(P ).

ProofW e proceed by induction on expδ(P ) = α.
If α = 0, then P ∈ H. So, we can consider two cases:

1. If 0 /∈
⋃m

i=1

(
expδ(Pi) + Nn

)
, then

P =

m∑

i=1

0Pi + P, with P ∈ R(F ).

2. If 0 ∈
⋃m

i=1

(
expδ(Pi) + Nn

)
, then we consider the set

Λ =
{

i : 0 ∈ expδ(Pi) + Nn
}

= {i : expδ(Pi) = 0}.

Thus for i ∈ Λ we have Pi ∈ H and we can consider two cases:

(a) If P ∈ H(Pi : i ∈ Λ) then P =
∑

i∈Λ

qiPi with qi ∈ H (according our assumption on H we can

calculate such elements qi). In this case we have P =
∑

QiPi +R where Qi = qi, for i ∈ Λ; Qi = 0
for i /∈ Λ and R = 0.

(b) If P /∈ H(Pi : i ∈ Λ) then P ∈ R(F ).

Suppose α > 0 and the theorem proved for expδ(P ) < α.
Let P ∈ D be such that expδ(P ) = α. We have two possible cases:

1. If α /∈
⋃m

i=1

(
expδ(Pi) + Nn

)
, then P =

m∑

i=1

0Pi + P and P ∈ R(F ).

2. If α ∈
⋃m

i=1

(
expδ(Pi) + Nn

)
then we consider the set

Λ =
{

i : α ∈ expδ(Pi) + Nn
}

and the following two cases are possible:

(a) If cδ(P ) ∈ C(α; F ), then there exists (qi)i∈Λ ∈ H such that

cδ(P ) =
∑

i∈Λ

qic
δ(Pi).

We may write,

P (1) = P −
∑

i∈Λ

qi∂
γi

Pi, with γi + expδ(Pi) = α.

By construction, expδ(P (1)) < expδ(P ). Hence, by induction, we may write P (1) =
∑m

i=1 Q′
iPi+R′,

with R′ ∈ R(F ) and finally P =
∑

i/∈Λ Q′
iPi +

∑
i∈Λ

(
Q′

i + qi∂
γi
)

Pi + R′.

4



(b) If cδ(P ) /∈ C(α; F ) then P ∈ R(F ).

So, we have proved the existence of Q1, . . . , Qm, R verifying conditions 1. and 2. of the statement. The
condition 3. is easy to verify. That ends the proof. �

Remark 16 We call R ∈ D a remainder of the reduction of P by (P1, · · · , Pm) ⊆ Dm. We denote by

R̃ (P ; P1, · · · , Pm) , the set of remainders of the reduction of P by {P1, · · · , Pm}.

Remark 17 The proof of Theorem 15 provides an algorithm to reduce an operator P ∈ D to respect a subset
F of D.

Theorem 18 Let I be a non-zero ideal of D and {P1, · · · , Pr} ⊂ I. Then the following statements are
equivalent:

1. {P1, · · · , Pr} is a Gröbner δ-base of I.

2. For α ∈ Nn, we have C(α; I) = C(α; P1, · · · , Pr).

3. For P ∈ I we have R̃ (P ; P1, · · · , Pr) = {0}.

Proof. 1. =⇒ 2.: C(α; P1, · · · , Pr) is clearly contained in C(α; I). Conversely, let p(x) ∈ C(α; I) then there
exists P ∈ I \ {0} such that inδ(P ) = p(x)ζα and inδ(P ) ∈ inδ(I). But by hypothesis, we have

inδ(I) = H[ζ](inδ(P1), · · · , in
δ(Pr)).

Let us denote
inδ(Pi) = pi(x)ζαi with 1 ≤ i ≤ r,

then

p(x)ζα =
r∑

i=1

qi(x, ζ)pi(x)ζαi ,

where
qi(x, ζ) =

∑

β

qiβ
(x)ζβ ∈ H[ζ] with qiβ

(x) ∈ H.

Thus,

p(x)ζα =
∑

i,β

qiβ
(x)pi(x)ζβ+αi ,

hence,
p(x)ζα ∈ H[ζ](pi(x)ζαi : α ∈ αi + Nn)

and so,
p(x) ∈ C(α; P1, · · · , Pr).

Therefore C (α; I) ⊆ C (α; P1, · · · , Pr) and it follows that

C (α; I) = C (α; P1, · · · , Pr) .

2. =⇒ 3.: Let P ∈ I \ {0}, then by Theorem 15, there exists Q1, · · · , Qr, R ∈ D such that

P =

r∑

i=1

QiPi + R,

where R ∈ R̃ (P ; P1, · · · , Pr).
Suppose R 6= 0. Since R = P −

∑r
i=1 QiPi ∈ I, we can consider two cases:

i) If expδ(R) /∈
⋃r

i=1

(
expδ(Pi) + Nn

)
, then C(expδ(R);P1, · · · , Pr) = (0). Therefore cδ(R) /∈ C(expδ(R); P1, · · · , Pr)

and by hypothesis 2, cδ(R) /∈ C(expδ(R); I). But this is impossible since R ∈ I .

ii) If expδ(R) ∈
⋃r

i=1

(
expδ(Pi) + Nn

)
, then

cδ(R) /∈ C(expδ(R);P1, . . . , Pr) = C(expδ(R); I)

because R is reduced with respect to {P1, . . . , Pr}, and this contradicts that R ∈ I .
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Therefore R = 0.
3. =⇒ 1.: We must show that inδ(I) = H[ζ](inδ(P1), · · · , in

δ(Pr)). Clearly 〈inδ(P1), · · · , in
δ(Pr)〉 ⊆ inδ(I).

Let P ∈ I be a non-zero operator. Then we can write

P = pα0
∂α0 + P̂

where pα0
∈ H \ {0} and expδ(P̂ ) < α0.

Then, by hypothesis and by Theorem 15, we have:

α0 ∈
r⋃

i=1

(
expδ(Pi) + Nn

)
and cδ(P ) ∈ C (α0; P1, · · · , Pr) .

We consider the set Λ =
{
i : α0 ∈ expδ(Pi) + Nn

}
. Then cδ(P ) =

∑
i∈Λ q

(1)
i cδ(Pi).

Let
P (1) = P −

∑

i∈Λ

q
(1)
i ∂γi

Pi, with γi + expδ(Pi) = α0,

then P (1) ∈ I and expδ(P (1)) < α0.

Now we can consider two cases:

i) If P (1) = 0, then P =
∑

i∈Λ q
(1)
i ∂γi

Pi and it can be checked that

inδ(P ) =
∑

i∈Λ

q
(1)
i ζγi

inδ(Pi).

ii) If P (1) 6= 0, then by repeating the same procedure, we can obtain a family P (k) ∈ I with expδ(P (k)) <
expδ(P (k−1)). So, as < is a well-ordering in Nn, there exists l, such that P (l) = 0.

This completes the proof. �

As a straightforward consequence of Theorem 18 we get the following result:

Corollary 19 Any Gröbner δ-base of an ideal I ⊆ D is a system of generators of I. Moreover, if {P1, . . . , Pr}
is a Gröbner δ–base of I then

Expδ(I) =
r⋃

i=1

(expδ(Pi) + Nn).

4 Sδ-operators.

Let F = {P1, · · · , Pr} ⊆ D \ {0}. Let

K(F ) =
{

α ∈ Nn : ∃N ⊆ F, α = lcm{expδ(P ); P ∈ N}
}

,

where lcm stands for less common multiple, and

Fα =

{
(λ1, · · · , λr) ∈ Hr :

r∑

k=1

λkcδ(Pk) = 0 where λk = 0 if α /∈ expδ(Pk) + Nn

}
⊆ Hr.

Fα is isomorphic to the H-module of syzygies of
{

cδ(Pk) : α ∈ expδ(Pk) + Nn, 1 ≤ k ≤ r
}

.

Since H is a noetherian algebra then Fα is finitely generated (as a H-module). Let {(λτ
1 , · · · , λτ

r )},
1 ≤ τ ≤ rα, be a system of generators of Fα.

Definition 20 With the notations as above, for τ = 1, · · · , rα, the element

Sδ
α,τ =

r∑

k=1

λτ
k∂α−expδ(Pk)Pk

will be called a Sδ-operator of the set Fα.

Proposition 21 With the notations as above, we have

expδ
(
Sδ

α,τ

)
< α.
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Proof. We can write

Sδ
α,τ =

r∑

k=1

λτ
k∂α−expδ(Pk)Pk =

=

r∑

k=1

λτ
k∂α−expδ(Pk)cδ(Pk)∂expδ(Pk) +

r∑

k=1

∑

β<expδ(Pk)

λτ
k∂α−expδ(Pk)pβ,k∂β.

Since
∂α−expδ(Pk)cδ(Pk) = cδ(Pk)∂α−expδ(Pk) + Ak with expδ(Ak) < α − expδ(Pk),

∂α−expδ(Pk)pβ,k = pβ,k∂α−expδ(Pk) + Bk with expδ(Bk) < α − expδ(Pk)

and
∑r

k=1 λτ
kcδ(Pk) = 0, finally

Sδ
α,τ =

r∑

k=1

λτ
kAk∂expδ(Pk) +

r∑

k=1

∑

β<expδ(Pk)

(
λτ

kpβ,k∂α−expδ(Pk)+β + Bk∂β
)

.

�

Proposition 22 Let I be a non-zero ideal of D and {P1, · · · , Pr} be a system of generators of I. Then the
following are equivalent:

1. {P1, · · · , Pr} is a δ-Gröbner base of I.

2. For all P ∈ I, we have R̃(P ; P1, · · · , Pr) = {0}.

3. For all Sδ-operator, Sδ
α,τ , of {P1, · · · , Pr} we have 0 ∈ R̃

(
Sδ

α,τ ; P1, · · · , Pr

)
.

Proof. 1. =⇒ 2.: See Theorem 18.

2. =⇒ 3.: Since Sδ
α,τ ∈ I , then, by assumption, 0 ∈ R̃

(
Sδ

α,τ ; P1, · · · , Pr

)
.

3. =⇒ 1.: Let P ∈ I be a non-zero operator. We must show that inδ(P ) ∈ H[ζ](inδ(P1), · · · , in
δ(Pr)).

We may write P =
∑r

i=1 HiPi, with Hi ∈ H[∂].
Suppose

α0 = maxi

{
expδ(HiPi)

}
and expδ (Hik

Pik
) = α0, k = 0, · · · , t.

Hence, by Lemma 4,
expδ (Hik

) + expδ (Pik
) = α0, k = 0, · · · , t.

We can consider two cases:

a) If
∑t

k=0 cδ (Hik
) cδ (Pik

) 6= 0 then

inδ(P ) = cδ(P )ζα0 , with cδ(P ) =
t∑

k=0

cδ (Hik
) cδ (Pik

) .

Therefore,

inδ(P ) =

t∑

k=0

cδ (Hik
) cδ (Pik

) ζα0 =

t∑

k=0

cδ (Hik
) ζα0−expδ(Pik

)inδ(Pik
)

and so, inδ(P ) ∈ H[ζ](inδ(P1), · · · , in
δ(Pr)).

b) Suppose now
∑t

k=0 cδ (Hik
) cδ (Pik

) = 0. Let us denote αi = expδ(Pi), i = 1, . . . , r; we consider the
set Λ =

{
i : expδ(Hi) + αi = α0

}
, and we suppose γ = lcm{expδ(Pi) : i ∈ Λ}.

We may write

P =
∑

i/∈Λ

HiPi +
∑

i∈Λ

cδ(Hi)∂
expδ(Hi)Pi +

∑

i∈Λ

(Hi − cδ(Hi)∂
expδ(Hi))Pi.

We can identify
(
cδ(Hi)

)
i∈Λ

with an element of Fγ . Let λ1, · · · , λp be a family of generators of Fγ

where
λτ = (λτ

1 , · · · , λτ
r ) with λτ

j = 0 if γ /∈ expδ(Pj) + Nn.
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Now for each i ∈ {1, . . . , r} we define si as follows:

si =

{
cδ(Hi) if i ∈ Λ
0 if i /∈ Λ.

Hence s = (s1, · · · , sr) ∈ Fγ , and then there exist u1, · · · , up ∈ H such that s =
∑p

τ=1 uτλτ . Let us
denote βi = expδ(Hi), for i ∈ Λ, then

∑

i∈Λ

cδ(Hi)∂
βi

Pi =

p∑

τ=1

uτ

(
r∑

i=1

λτ
i ∂βi

Pi

)
.

The element α0 is, by definition, a common multiple of the elements {expδ(Pi) : i ∈ Λ} then there
exists ǫ ∈ Nn such that α0 = γ + ǫ and so βi = γ − αi + ǫ.
If j /∈ Λ and γ ∈ expδ(Pj) + Nn we denote βj = γ − αj + ǫ. Therefore,

∑

i∈Λ

cδ(Hi)∂
βi

Pi =

p∑

τ=1

uτ

(
r∑

i=1

∂ǫλτ
i ∂γ−αi

Pi

)
+

p∑

τ=1

uτ




∑

i|γ−αi>0

Bτ
i ∂γ−αi

Pi




where expδ(Bτ
i ) < ǫ.

Therefore, by Definition 20,

∑

i∈Λ

cδ(Hi)∂
βi

Pi =

p∑

τ=1

uτ∂ǫSδ
γ,τ +

∑

i|γ−αi>0

(
p∑

τ=1

uτBτ
i

)
∂γ−αi

Pi.

But by hypothesis, we have

Sδ
γ,τ =

r∑

j=1

Qγ,τ
j Pj ,

with γ > expδ(Sδ
γ,τ ) = max 1≤j≤r{expδ(Qγ,τ

j Pj)}. Hence,

∑

i∈Λ

cδ(Hi)∂
βi

Pi =
r∑

j=1

(
p∑

τ=1

uτ∂ǫQγ,τ
j

)
Pj +

∑

j|γ−αj>0

(
p∑

τ=1

uτBτ
j

)
∂γ−αj

Pj .

Therefore

P =
r∑

i=1

H ′
iPi

where

• If i ∈ Λ,

H ′
i = Hi − cδ(Hi)∂

βi

+

p∑

τ=1

uτ∂ǫQγ,τ
i +

p∑

τ=1

uτBτ
i ∂γ−αi

.

• If i /∈ Λ and γ − αi > 0,

H ′
i = Hi +

p∑

τ=1

uτ∂ǫQγ,τ
i +

p∑

τ=1

uτBτ
i ∂γ−αi

.

• If i /∈ Λ and γ − αi is not greater than 0,

H ′
i = Hi +

p∑

τ=1

uτ∂ǫQγ,τ
i .

Hence, we have obtained an expression for P as a combination of the Pi where expδ(H ′
iPi) < α0, then

maxi{expδ(H ′
iPi)} < α0. But this process stops because < is a well-ordering in Nn. So, there exists

an expression of P with the conditions of the case a).

�
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5 Construction of a Gröbner δ-base.

Let I be a non-zero ideal of D and let F = {P1, . . . , Pr} be a system of generators of I . We will show here
how to build a Gröbner δ-base of the ideal I (with respect to a ordering <). We will follow the main lines
of Buchberger’s algorithm, adapted to our case (see [BUCH], [TRI] and [ASS-1]).

Let K(F ) =
{
α1, . . . , αs

}
(see Section 4). Let

{
Sδ

αj ,τ

}
,1 ≤ j ≤ s, 1 ≤ τ ≤ rj the family of Sδ-operators

associated to F .
We suppose that {P1, . . . , Pr} is not a Gröbner δ-base for I , then (by Proposition 22) there exists Sδ

α0,τ

such that 0 /∈ R̃
(
Sδ

α0,τ ; P1, · · · , Pr

)
, then let

Pr+1 ∈ R̃
(
Sδ

α0,τ ; P1, · · · , Pr

)

and we repeat this process with {P1, · · · , Pr, Pr+1}.

Remark 23 If a Sδ-operator, S, of F verify that 0 ∈ R̃ (S; P1, · · · , Pr) then 0 ∈ R̃ (S; P1, · · · , Pr, Pr+1).

The following Proposition assures that this procedure terminates

Proposition 24 With the notations as above, there exists ρ ∈ N such that for all Sδ-operator S of
{P1, · · · , Pr+ρ} we have 0 ∈ R̃ (S; P1, · · · , Pr+ρ) .

Proof. See [MOR, pages 131-133]. �

6 Gröbner bases and the Gröbner δ-bases.

In this section we will work on the Weyl algebra An(k) = k[X][∂], so we suppose here H = k[X] =
k[x1, . . . , xn].

Let <x, <∂ be monomial orderings in Nn.
We denote by Xα∂β the monomial

xα1

1 · · ·xαn
n ∂β1

1 · · · ∂βn
n

Let us define on Nn × Nn the total ordering (denoted <) by

(α(1), β(1)) < (α(2), β(2)) ⇐⇒





β(1) <∂ β(2)
or

β(1) = β(2) and α(1) <x α(2).

Remark 25 The relation <, defined in Nn × Nn, is a monomial ordering. This well-ordering is called an
elimination order (see for example [CLO]).

For the notion of Gröbner base on An(k) and some related results we follow here [CAS-1] (see also
[CAS-2]).

Theorem 26 Let G = {P1, · · · , Pr} be a system of generators for a non-zero ideal I ⊂ An(k). Then if G is
a Gröbner base for I, with respect to <, then G is a Gröbner δ-base for I with respect to <∂ .

Proof. Let P ∈ I be a non-zero operator. We must show that

inδ(P ) ∈ H[ζ](inδ(P1), · · · , in
δ(Pr)).

For i = 1, . . . , r, we may write Pi = ai∂
αi + P̂i where expδ(Pi) = αi, expδ(P̂i) < αi and ai ∈ H. Thus

inδ(Pi) = aiζ
αi . By the division algorithm in An(k), (see [CAS-1] and [CAS-2]) there exists Qi1 , · · · , QiN ∈

An(k), 1 ≤ ij ≤ r, satisfying P = Qi1Pi1 + · · · + QiN PiN where exp<(QiPi) 6= exp<(QjPj) for i 6= j.
We can suppose

exp<(QiN PiN ) < exp<(QiN−1
PiN−1

) < · · · < exp<(Qi1Pi1).

We can write
Qij = cij ∂

βij + Q̂ij
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where expδ(Qij ) = βij , expδ(Q̂ij ) < βij , cij ∈ H. Thus exp<(Qij ) = (exp<x
(cij ), βij ).

Therefore,

P =
N∑

j=1

cij aij ∂
βij

+αij +
N∑

j=1

cij Aij ∂
αij +

N∑

j=1

cij ∂
βij P̂ij +

N∑

j=1

Q̂ij aij ∂
αij +

N∑

j=1

Q̂ij P̂ij

where, expδ
(∑N

j=1 cij aij ∂
βij

+αij

)
≤ max1≤j≤N{βij + αij},

expδ
(∑N

j=1 cij Aij ∂
αij

)
< max1≤j≤N{βij + αij},

expδ
(∑N

j=1 cij ∂
βij P̂ij

)
< max1≤j≤N{βij + αij},

expδ
(∑N

j=1 Q̂ij aij ∂
αij

)
< max1≤j≤N{βij + αij } and

expδ
(∑N

j=1 Q̂ij P̂ij

)
< max1≤j≤N{βij + αij }.

Let j0 be such that

βij0+1
+ αij0+1

< βij0
+ αij0

= βij0−1
+ αij0−1

= · · · = βi1 + αi1 .

Since
∑j0

j=1 cij aij 6= 0, we have inδ(P ) =
(∑j0

j=1 cij aij

)
ζβi1

+αi1 . Therefore,

inδ(P ) =

j0∑

j=1

cij inδ(Pij )ζ
βij

and so inδ(P ) ∈ H[ζ](inδ(P1), · · · , in
δ(Pr)). This completes the proof. �

The converse result is not true as we show in the following example:

Example 2 Let I ⊂ A2(C) = C[x1, x2][∂1, ∂2] be the left ideal generated by the operators

P1 = x1∂1 + a∂2 + b, P2 = (x2 − x1)∂2 − d

with a, b, d ∈ C[x1, x2].
We will prove1 that {P1, P2} is a Gröbner δ-base which is not a Gröbner base of I, for a particular choice

of the polynomials a, b, d.
We have

exp<(P1) = (1, 0, 1, 0), exp<(P2) = (1, 0, 0, 1).

Then
S(P1, P2) = ∂2P1 + ∂1P2 = x2∂1∂2 + ∂2a∂2 + ∂2b − ∂1d − ∂2,

and then
exp< (S(P1, P2)) = (0, 1, 1, 1) /∈ 〈(1, 0, 1, 0), (1, 0, 0, 1)〉 =

〈
exp<(P1), exp<(P2)

〉
.

So, G = {P1, P2} is not a Gröbner base of the ideal I, for any a, b, d ∈ C[x1, x2].
We will prove that, for some a, b, d ∈ C[x1, x2], the set G = {P1, P2} is a Gröbner δ-base of I.
We have

expδ(P1) = (1, 0), cδ(P1) = x1

and
expδ(P2) = (0, 1), cδ(P2) = x2 − x1.

We will compute the associated Sδ-operators (see Definition 20).
As

α = lcm((1, 0), (0, 1)) = (1, 1)

we must first compute a system of generators of

F(1,1)(P1, P2) =
{
(λ1, λ2) ∈ C[x1, x2] : λ1c

δ(P1) + λ2c
δ(P2) = 0

}
.

In fact we have
Syz(cδ(P1), c

δ(P2)) = F(1,1)(P1, P2) = 〈(x2 − x1,−x1)〉

1By using the degree lexicographical order with ∂2 <∂ ∂1 and x2 <x x1

10



and then
Sδ

(1,1),(x2−x1,−x1) = (x2 − x1)∂
(1,1)−(1,0)P1 − x1∂

(1,1)−(0,1)P2 =

= (x2 − x1)a∂2
2 + (x2 − x1)∂2(a)∂2 + (x2 − x1)b∂2+

+(x2 − x1)∂2(b) + x1∂2 + x1d∂1 + x1∂1(d).

Now we reduce Sδ
(1,1),(x2−x1,−x1) by (P1, P2), say

Sδ
(1,1),(x2−x1,−x1) − dP1 − ∂2aP2 − bP2 =

= (x2 − x1)∂2(b) + x1∂2 + x1∂1(d) − a∂2 + a∂2(d) + ∂2(a)d =

= (x2 − x1)∂2(b) + (x1 − a)∂2 + x1∂1(d) + ∂2(ad).

Then {P1, P2} is a Gröbner δ-base of I if a = x1, b ∈ C[x1] and d ∈ C.

Remark 27 The example before proves a little more. Let us consider H = C[x1, . . . , xn] (for n ≥ 3) and
the ring of differential operators D = H[∂1, ∂2] (which is a sub-algebra of the Weyl algebra An(C)).

Let I ⊂ D be the left ideal generated by the operators

P1 = x1∂1 + a∂2 + b, P2 = (x2 − x1)∂2 − d

with a, b, d ∈ C[x1, . . . , xn]. An analogous computation to the one of example 2 proves that {P1, P2} is a
Gröner δ-base of I if a = x1, b ∈ C[x1, x3, . . . , xn] and d ∈ C[x3, . . . , xn].

7 Applications: Flatness and finiteness.

As elementary applications of Gröbner δ-bases, we have the effective solution for the ideal membership
problem, variable elimination problem and effective intersection of ideals. We also can calculate a generating
system of the H[∂]-module of syzygies of a finite subset {P1, · · · , Pr} of H[∂], as well as a free resolution of a
finitely generated (left) H[∂]-module. Calculating free resolutions of a H[∂]-module, we have found examples
where the use of Gröbner δ-bases is, in some sense, more efficient that the one of Gröbner bases (see [MOR,
page 189-190]).

In this section the ring H is a noetherian sub-k-algebra of

k((X̃)) = k((x1, . . . , xn, xn+1, . . . , xn+m)),

stable under the action of ∂i for i = 1, . . . , n and satisfying the two additional conditions of Remark 12. We
denote as before D = H[∂] = H[∂1, . . . , ∂n].

The aim of this section is to characterize flatness and finiteness of a D-module by using the notion of
Gröbner δ-bases, following the work of A. Assi [ASS-2] in the commutative case.

We can see the quotient D/I as a family of An(k)-modules, the space of parameters being Cm. In this
section we will see when this family is flat.

Let S be multiplicatively closed subset of H. The ring S−1H is a noetherian sub-k-algebra of k((X̃)),
stable under the action of the derivations ∂1, · · · , ∂n and satisfying the two additional conditions of Remark
12. So, we can consider the sub-k-algebra S−1D of k((X̃))[∂], generated by S−1H and ∂1, . . . , ∂n.

One can define in S−1D the notions of section 2.
Let I ⊂ D a left ideal. We denote by S−1I the ideal of S−1D generated by I and by inδ(S−1I) the ideal

(of S−1H[ζ]) generated by
{
inδ(P ) : P ∈ (S−1I) \ {0}

}
. Here S−1H[ζ] denotes the polynomial ring in the

variables ζ = (ζ1, . . . , ζn) and coefficients in S−1H. We have:

Proposition 28 Suppose {P1, · · · , Pr} is a Gröbner δ-base of I. If S be a multiplicatively closed subset of H
then inδ(S−1I) is generated by

{
inδ(P1), · · · , in

δ(Pr)
}

in S−1H[ζ]. In particular, inδ(S−1I) = S−1(inδ(I))
and {P1/1, . . . , Pr/1} is a Gröbner δ–base of S−1I.

Let P be a prime ideal of H. Then S = H \ P is a multiplicatively closed subset of H. We denote
HP = S−1H, DP = S−1D and IP = S−1I and .

For each ideal K in H, we denote V (K) = {P ∈ Spec(H) : K ⊆ P} , which is a Zariski closed subset of
Spec(H). Here we endowed the set Spec(H) of prime ideals of H with its Zariski topology.

Let consider J =
∏s

i=1 C (α(i); I) as an ideal in H, where {α(1), · · · , α(s)} is a δ-stair of the ideal I (see
Remark 5). Let us denote U = Spec(H) \ V (J). We have:

Theorem 29 With the notations as above, let P ∈ U . Then DP/IP is a free (and then a flat) HP -module.
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Proof. Let M be the free HP -module generated by
{
∂α : α ∈ Nn \ Expδ(I)

}
. Obviously we have Expδ(I) =

Expδ(IP). Let us consider a Gröbner δ-base {P1, . . . , Pr} of I . By Proposition 28, {P1/1, . . . , Pr/1} is a
Gröbner δ-base of IP . Now, applying the reduction algorithm with respect to {P1/1, . . . , Pr/1} (see Theorem
15), each P ∈ DP can be written as a sum

P = P ′ + P ′′

with P ′ ∈ IP and P ′′ ∈ M . Here we have used the equality C(α(i); IP = HP for each i = 1, . . . , s.
So, we have proved that DP = IP + M and it is obvious that IP ∩M = (0), so the HP–modules DP/IP

and M are isomorphic. Then M is a free HP-module. �

Proposition 30 With the notations as above, we have

1. If C(0; I) = I ∩ H 6= (0), then U = Spec(H) \ V (C(0; I)) is the maximal open set of flatness.

2. If C(α(k); I) = H for each k ∈ {1, . . . , s}, then D/I is a flat H-module.

Proof.

1. We have C(0; I) = H∩I (see Remark 11). Suppose U is not maximal, then there exists P ∈ Spec(H)\U
such that DP/IP is HP -flat. If C(0; I) 6= (0) then HP ∩ IP 6= (0), which is impossible by flatness of
HP [∂]/IP over HP .

2. We have C(αk; I) = H for each αk in a δ-stair of I . So, we have U = Spec(H) and then H[∂]/I is
H-flat.

�

Example 3 Let us denote C[X] = C[x1, . . . , xn] and consider the ideal of Example 2, i.e. I = {P1, P2} ⊂
D = C[X][∂1, ∂2] where

P1 = x1∂1 + x1∂2 + b, P2 = (x2 − x1)∂2 − d

with b ∈ C[x1, x3, . . . , xn] and d ∈ C[x3, . . . , xn]. We will suppose b is a multiple of x1. In particular, D/I
is not a flat C[x1, . . . , xn]–module, because the class of ∂1 + ∂2 + b/x1 mod. I has x1-torsion.

We know by Example 2 and Remark 27 that {P1, P2} is a Gröbner δ-base of I. Then a δ-stair of I is{
expδ(P1), expδ(P2)

}
, i.e. {(1, 0), (0, 1)}.

Moreover, by Theorem 18, we have

C((1, 0); I) = C((1, 0); P1, P2) = 〈x1〉, C((0, 1); I) = C((0, 1); P1, P2) = 〈x2 − x1〉.

Let us consider J = C((1, 0); I)C((0, 1); I), i.e. J = 〈x1(x2 − x1)〉. By Theorem 29, C[X]
P

[∂1, ∂2]/IP is
a flat C[X]

P
-module for P ∈ U = Spec(C[X]) \ V (J).

Theorem 31 Let I be an ideal of D. The following are equivalent:

1. D/I is a finitely generated H-module.

2. For each i = 1, · · · , n there exists ai ∈ N such that

α(i) = aiǫi ∈ Expδ(I)

and
C (α(i); I) = H,

here ǫi is the i-th element of the canonical base of Nn.

Proof. 1 =⇒ 2.: For each i ∈ {1, · · · , n} we consider the sub-H-module M ⊂ D/I generated by the set

{
1 + I, ∂i + I, · · · , ∂k

i + I, · · ·
}

.

So, by the finiteness of M over H, there exists α(i) = aiǫi ∈ Expδ(I) such that C (α(i); I) = H, for some
ai ∈ N.
2 =⇒ 1.: Let us write ∆ = Nn \

⋃n
i=1 (α(i) + Nn). Let us consider M as the H-module generated by the

finite set
{
∂α; α ∈ ∆

}
. We have D = I +M and then D/I is a quotient of M . Thus D/I is finitely generated

as H-module. �
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[IN-PA] M. Insa and F. Pauer. Gröbner bases in rings of differential operators. In Gröbner Bases and
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