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Chapter 1

Introduction

During the past twenty �ve years, following the massive use of internet and the EU single Market, Euro-

pean manufacturing companies struggle in a more competitive market, where �rms from di�erent countries

must �ght for common customers. As a consequence, prices of the products have decreased and the e�-

ciency in the production processes of the companies have become more and more important. Nowadays,

this fact is also increasing due to the competition from companies in developing countries whose labor

cost is substantially lower. Therefore, production management is a key element for companies to survive.

Production management involves decision making over several issues such as master scheduling, material

requirements planning, capacity planning, manufacturing scheduling, ... Among these decisions, manu-

facturing scheduling plays an essential role on resource productivity and customer service. Its role is also

increasing in many service industries as transportation, computer and communications industries, which

are moving towards manufacture-to-order and virtual environments.

Manufacturing scheduling deals with the determination of the jobs which are processed for each re-

source in each instant of time, i.e. establishes the schedules of the resources along the horizon under

consideration. In order to determine the best schedule for the shop �oor, both the speci�c constraints and

the goal of the shop have to be considered. In these environments, the di�culty of the scheduling problem

increases and becomes NP-hard even for the most simple scheduling problems, being extremely complex

for real manufacturing scenarios. Additionally, scheduling decisions should be made in short time intervals

requiring a rapid response time, due to several aspects such as the lifetime of a schedule, the delay in

the suppliers, arrivals of new jobs to be processed, rescheduling due to failures while processing a job, ....

All these issues strongly stress the need to �nd fast and e�cient solution procedures (i.e. heuristics and

metaheuristics) for solving manufacturing scheduling problems.

In practice, several processing layouts have been adopted by companies to manufacture their products.

9
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Among them, the Permutation Flowshop Scheduling Problem (PFSP in the following), which is the

problem addressed in this Thesis, stands out as the most relevant, being one of the most studied problems

in Operations Research. There are several reasons for this fact: On the one hand, the �ow shop layout

is the common con�guration in many real manufacturing scenarios, as it presents several advantages over

more general job shop con�guration, and, in addition, many job shops are indeed a �ow shop for most of

the jobs. On the other hand, many models and solution procedures for di�erent constraints and layouts

have their origins in the �owshop scheduling problem, which increases the importance to �nd e�cient

algorithms for this scheduling problem.

Despite the huge number of research conducted on the PFSP, we believe that there is room for

improving the current state of the art in the topic by

1. deepening the understanding of the problem with respect to their input parameters,

2. devising new approximate solution procedures for the common employed objectives, and

3. addressing problem extensions to capture more realistic situations.

1.1 Objectives and outline of the Thesis

As stated in the previous section, the goal of this Thesis tries to provide further insights into the PFSP,

both deeply analysing the in�uence of the di�erent input parameters and developing new e�cient tech-

niques to solve the problem as well as some problem extensions. To carry out this goal, the following

general research objectives are identi�ed:

GO1. To review the PFSP literature for the most common objectives, i.e. makespan, total completion

time and due-date-based objectives (total tardiness, and total earliness and tardiness).

GO2. To analyse the in�uence of the processing times and due dates of the jobs on the PFSP.

GO3. To provide schedulers with faster and more e�cient heuristics and metaheuristics to solve the PFSP

for makespan, total completion time, total tardiness, and total earliness and tardiness minimisation.

GO4. To demonstrate the e�ciency and good performance of the solution procedures developed in GO3.

GO5. To extend the proposals in Goal 3 to some constrained PFSP based on real manufacturing envi-

ronments.

To achieve these objectives, the Thesis have been structured in �ve parts as follows:
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• Part I is divided into two chapters. In Chapter 1.1, we introduce this Thesis and discuss its main

contributions. In Chapter 2, the problem under consideration is stated. The measures to compare

approximated algorithms are discussed in Chapter 3. There, the benchmarks used to evaluated

the algorithms are introduced and an alternative indicator is proposed to overcome some problems

detected using the traditional ones.

• In Part II, we analyse the problem in detail along three chapters. Dealing with Objective GO1, the

main contributions in the literature are review for the most-common objective functions in Chapter

4. Additionally, in Chapter 5, we extensively study the behaviour of the problem depending on the

con�guration of the shops, i.e. processing times and due dates of the jobs (see GO2).

• In Part III, we propose new novelties e�cient algorithms to solve the PFSP under several objectives.

The procedures, constructive and improvement heuristics and metaheuristics, exploit the speci�c

structure of the problem to both reduce the computational times of them and improve the quality

of the solutions. Additionally, they are validated in extensive computational evaluations, comparing

them with the state-of-the-art algorithms under the same conditions. More speci�cally, this part is

divided in four chapters and addresses the general research objectives GO3 and GO4. Firstly, a new

tie-breaking mechanism to minimise makespan, which can be incorporated in the two most e�cient

algorithms for the problem, is proposed in Chapter 6. In Chapter 7, two e�cient constructive

heuristics are proposed to minimise total �owtime. Several tie-breaking mechanisms are proposed

and compared to minimise total tardiness in Chapter 8. Finally, four procedures to minimise total

earliness and tardiness are proposed in Chapter 9.

• In Part IV, focused in more real manufacturing environment. New constraints are added to the

traditional problem as well as di�erent consideration and interaction between factories are taken

into account. The proposed environments are solved using e�cient approximate methods taken into

consideration ideas of the traditional PFSP. More speci�cally, an iterated non-population algorithm

to minimise makespan subject to a maximum tardiness is proposed in Chapter 10. In the Chapter 11,

we add the blocking constraints to the traditional PFSP. These constraints take into consideration

limited bu�ers between the machines. This problem, of permutation nature, is solved by means of

an e�cient beam-search-based constructive heuristic trying to minimise the total completion time.

In the Chapter 12, we consider the parallel �owshop scheduling problem also denoted as distributed

PFSP where several identical �owshop or even �owshop factories are available in parallel to assign

the jobs. The problem is solved using a bounded-search iterated greedy algorithm
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• Finally, in Part V, the conclusions of this research and future research lines are discussed.



Chapter 2

Problem statement

2.1 Problem description and notation

The problem under consideration is the permutation �owshop scheduling problem to minimise a certain

objective function. The problem consists of the determination of the sequence of n jobs which achieves

the minimal objective function value when all jobs are processed (in the order indicated by the sequence)

on the m machines of a shop. The following additional hypotheses are usually assumed for the PFSP:

• Processing times are known and deterministic.

• No preemption is allowed.

• Release times are set to 0.

• Sequence-dependent set-up times are considered insigni�cant.

• Sequence-independent setup times are considered as non-anticipatory and therefore, can be added

to the processing time of the jobs on the machines.

• Transportation times can be considered either insigni�cant or constant.

• Each job can be processed by at most one machine at the same time.

• Each machine can process only one job at the same time.

• Unlimited in-process inventory is considered.

• All machines are available on the whole scheduling horizon.

13
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The notation of the problem can be stated as follows: on each machine i, each job j has a processing

time denoted as tij . Given a sequence of jobs Π := (π1, . . . πn), let us denote pij(Π) the processing time

of job πj on machine i, i.e. pij(Π) = tiπj . Whenever it does not lead to confusion, this notation is

abbreviated to pij . Analogously, Ciπj (Π) (abbreviated to Cij whenever it does not lead to confusion)

denotes the completion time of job πj on machine i, whereas Ci[j] indicates the completion time of the

job scheduled in position j on machine i. Ciπj can be calculated in the following recursive manner:

Ciπj = max{Ci−1,πj , Ci,πj−1}+ tiπj (2.1)

where C0πj = Ci0 = 0.

Then, the completion time of job πj on the last machine of the shop, i.e. Cmπj , is denoted as Cπj for

simplicity. Analogously, the makespan or maximum completion time, Cmπn , can be denoted as Cmax.

Let dπj be the due date of job πj , and tπj =
∑m

i=1 tiπj the sum of the processing times of job

πj across all machines. The tardiness (earliness) of job πj is de�ned as Tπj = max{Cmπj − dπj , 0}

(Eπj = max{dπj−Cmπj , 0}) and the maximum tardiness (earliness) as Tmax = maxj=1,...,n{Tπj} (Emax =

maxj=1,...,n{Eπj
}).

Di�erent criteria have been considered in the literature for the described scheduling problem (see

e.g. the reviews by [49, 199, 137]). Without any hesitation, the most common ones are the maximum

completion time among the jobs or makespan, the total �owtime (sum of completion times of all jobs),

the total tardiness (sum of the tardiness of each job), and total earliness and tardiness.

Makespan and total completion time are related to the fast processing of the products and to a balanced

use of resources, both issues being of great importance in make-to-stock manufacturing scenarios. The

minimization of makespan, Cmax, (also denoted as maximum completion time or maximum �owtime) has

been commonly chosen by researchers as the objective to optimize in the PFSP (e.g. see [95], [197], [117],

[45] or [188] for other objectives in the PFSP). Regarding the minimisation of the sum of the completion

times of the jobs (or equivalently mean completion time), it has been consistently pointed out both as

relevant and meaningful for today's dynamic production environment [108]. Under the assumption of a

zero release time for the jobs, the minimization of total (average) completion time is equivalent to total

(average) �owtime minimisation, which leads to stable or even use of resources, a rapid turn-around of

jobs and the minimisation of in-process inventory [152].

In contrast, total tardiness and total earliness and tardiness focus on the satisfaction of customers

and it is therefore better suited for make-to-order manufacturing scenarios as due dates play a key role

[142, 89]. Particularly, the total tardiness highlights a critical concern for manufacturing systems (see e.g.
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[156, 141]), since delays may lead to an increase in costs such as penalty clauses in a contract, loss of

customers and/or bad reputation for other customers [180]. Regarding the just-in-time based-on objective,

i.e. the minimisation of total earliness and tardiness, it aims to reduce the complexity of detailed material

planning, the need for shop-�oor control, the work-in-process and �nal inventories, and the transactions

associated with shop-�oor and purchasing systems, since both the excess of inventory in the shop and the

delays on the due dates should be avoided( [202]).

In this Thesis, we focus on these objectives to solve the PFSP. They can be de�ned as:

• Minimisation of makespan: minCmax.

• Minimisation of total �owtime: min
∑

∀j Cj or, equivalently, min
∑

Cj .

• Minimisation of total tardiness: min
∑

Tj = min
∑

∀j Tj .

• Minimisation of total earliness and tardiness
∑

∀j Ej +
∑

∀j Tj or, equivalently, min
∑

Ej + Tj .

Regarding the notation for the PFSP analysed in this Thesis, we adopt the well-known classi�cation

based on the triplet α/β/γ (see e.g. a detailed description of this classi�cation in [47]). In this classi�-

cation, α indicates the machines layout (e.g. 1 for single machine, Pm for m identical parallel machines,

Fm for a �ow shop with m machines, Jm for job shops,...), β shows the constraints of the problem (e.g.

prmu for permutation problems, prec for precedence relationships,...), and �nally γ de�nes the objective

function. Thereby, the problems under study are denoted along this Thesis as:

• PFSP to minimise makespan: Fm|prmu|Cmax (see [58]).

• PFSP to minimise total �owtime: Fm|prmu|
∑

Cj (see [58]).

• PFSP to minimise total tardiness: Fm|prmu|
∑

Tj (see [146])

• PFSP to minimise total earliness and tardiness: Fm|prmu|
∑

Ej +
∑

Tj (see [146])

2.2 Taillard's accelerations

Taillard [189] proposed a very fast mechanism (denoted as Taillard's accelerations) to evaluate sequences

in insertion phases of the algorithms, which is explained in detail in this section. This mechanism,

originally proposed for the Fm|prmu|Cmax, is at the core of the excellent performance of the state-of-the-

art algorithms.

Firstly, let us assume that a partial schedule of k − 1 jobs has been constructed. An unscheduled job

r (whose processing time in machine i is denoted by tir) is to be inserted in position l (l = 1 . . . k), thus
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obtaining k partial sequences of k jobs denoting π(l) the sequence when the unscheduled job is inserted

in position l. Additionally, let us denote eij the earliest completion time of job πj in machine i before

inserting the unscheduled job. eij can be calculated as follows:

eij = max{ei,j−1, ei−1,j}+ pij , i = 1 . . .m, j = 1 . . . k − 1 (2.2)

with e0j = 0, and ei0 = 0. Similarly, qij the duration between the starting time of job πj on machine i

(before inserting the unscheduled job) and the end of all operations can be calculated according to the

following expression:

qij = max{qi+1,j , qi,j+1}+ pij , i = m. . . 1, j = k − 1 . . . 1 (2.3)

with qm+1,j = 0, and qi,k = 0.

One possibility to calculate the makespan of each of these k sequences is to use equation (2.1) for each

sequence, which results in a complexity O(n2m). [189] proposed a mechanism based on equations (2.2)

and (2.3) to reduce this complexity to O(nm): Since the earliest completion times of the jobs in π prior

to position l have not changed, then fil the completion time on machine i of job inserted in position l can

be computed in the following manner:

fil = max{ei,l−1, fi−1,l}+ tir, i = 1 . . .m (2.4)

with f0l = 0. Therefore, Cmax(l) the completion time of sequence π(l) is:

Cmax(l) = max
i=1...m

{fil + qil} (2.5)

These accelerations can be used in each insertion phase of the heuristics and metaheuristics for the

Fm|prmu|Cmax. Although this mechanism was originally proposed for that problem, it can be extended

to some other related manufacturing scheduling problems (such as e.g. DF |prmu|Cmax).



Chapter 3

Evaluation of algorithms

3.1 Introduction

Since the PFSP has been proved to be NP-complete if the number of machines is higher than two for all

the objectives considered in this Thesis, most of the contributions have focused on providing approximate

methods yielding good (but nor necessarily optimal) solutions in reasonable time. Addressing the general

objective GO3, several approximate algorithms are also proposed in this Thesis in Parts III and IV. To

obtain conclusions about the e�ciency of these approximated methods, they should always be compared

on large instances which consider several size of the problems. The benchmarks used to compare them

with the state-of-the-art algorithms are described in Section 3.2. Additionally, the value of the objective

function of the algorithms should be evaluated in instances with di�erent size (i.e. with di�erent values

of n and m). The indicators to evaluate the algorithms in each instance are described in Section 3.3.

Additionally, a new indicator is also introduced there in order to have non-instances-dependent indicators.

Finally, once the instances and the indicators are set, approximate methods should be compared under

the same conditions. In this Thesis, the procedure followed for it is explained in Section 3.4.

3.2 Benchmarks

To perform the comparisons between the proposed and the state-of-the-art algorithms, several sets of

instances are generated in this Thesis. Note that, as established below in Section 4, there are di�erent

set of instances in the literature for the problems under consideration. Without any hesitation, the set of

instances proposed by [190] are the most common ones for the Fm|prmu|Cmax and the Fm|prmu|
∑

Cj .

Recently, [198] propose a more extensive and exhaustive benchmark for the Fm|prmu|Cmax. Regarding

17
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the due-dated-based scheduling problems addressed in this Thesis, i.e. the Fm|prmu|
∑

Tj and the

Fm|prmu|
∑

Ej +
∑

Tj , algorithms are tested typically on the set of instances proposed by [199]. These

three benchmarks are used along this Thesis and can be described as follows:

• Benchmark B1 ([190]), which includes 120 instances with 12 di�erent sizes of instance combining

the values n ∈ [20, 50, 100, 200, 500] and m ∈ [5, 10, 20]. For each instance size, 10 di�cult instances

are constructed. Processing times are uniformly distributed from 1 to 99 in this testbed.

• Benchmark B2 (large instances of [198], denoted there as VRF_hard_large instances). This bench-

mark contains 240 instances for all the combinations of the parameters n ∈ [100, 200, 300, 400, 500, 600, 700, 800]

and m ∈ [20, 40, 60]. Processing times are uniformly distributed from 1 to 99. For each combination

of n and m, 2,000 instances are generated and the hardest 10 are chosen to form this benchmark.

• Benchmark B3 ([199]). This benchmark is composed of a set of 540 instances and is the most ex-

tended benchmark for the PFSP with due dates. The benchmark is formed by 5 instances for each

combination of n = {50, 150, 250, 350}, m = {10, 30, 50}, T = {0.2, 0.4, 0.6} and R = {0.2, 0.6, 1.0},

where T and R are parameters related to the mean and standard deviation of the due dates re-

spectively. These due dates are generated using the procedure described by [147], i.e. following a

uniform distribution between P · (1 − T − R/2) and P · (1 − T + R/2), where P is a lower bound

for the makespan. Processing times are generated using a uniform distribution [1, 99]. This set of

instances are available in http://soa.iti.es.

Additionally, in this Thesis, di�erent sets of instances are presented to evaluate the algorithms and to

calibrate the parameters in order to avoid an over calibration of the parameters of the proposed algorithms.

The calibration sets are:

• Calibration benchmark BC1. Five instances have been generated for several values of n and m,

n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20}, where the processing times of each job in each

machine are uniformly distributed between 1 and 99.

• Calibration benchmark BC2. It is composed of 340 instances generated following the procedure

described by [174]. This benchmark consists of 68 combinations of the parameters of n and m.

More speci�cally, n = {20, 50, 80, ..., 410, 440, 470, 500} and m = {5, 10, 15, 20}. Processing times

are uniformly distributed between 1 and 99, and 5 instances are generated for each combination of

n and m.

• Calibration benchmark BC3. It is generated according to the procedure by [197]. The number of

jobs and machines is set to n = {50, 150, 250, 350}, m = {10, 30, 50} and due dates are generated
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according to the procedure employed by [147] using an uniform distribution between P ·(1−T−R/2)

and P ·(1−T+R/2). Parameters T and P take the following values in the test: T = {0.2, 0.4, 0.6} and

R = {0.2, 0.6, 1.0}. Additionally, processing times are generated according to a uniform distribution

between 1 and 99. For each combination of parameters n, m, T and R, two instances are generated

summing 216 instances.

3.3 Indicators

For approximate algorithms, there is a trade-o� between the quality of the solutions and the time required

by the algorithm to obtain them. Therefore, both aspects should be weighted when selecting one algorithm

among the set of algorithms available for the problem. When facing an speci�c scheduling case, di�erent

decision intervals may be required, and di�erent quality of the solution can be accepted. Consequently,

in most cases there is no a priori knowledge of the precise trade-o� required by the Decision Maker.

Then, the idea of representing the algorithms along the two important criteria (quality of solutions and

computational requirements) and excluding the dominated algorithms allows providing the Decision Maker

with the set of Pareto-e�cient algorithms so he/she can select the most convenient for his/her speci�c

case.

Note that, for a given algorithm, di�erent measures can be devised both for its quality of the solutions

and for its computational requirements. However, these are mostly measured by the Average Relative

Percentage Deviation (ARPD1 or ARPD2) and by the average CPU time in seconds, respectively. The

ARPD1 (ARPD2) of algorithm h (out of a total of H algorithm) is obtained by averaging RPD1ih

(RPD2ih) the Relative Percentage Deviation of algorithm h in instance i over all instances a testbed:

RPD1ih =
Oih −min1≤h≤H Oih

min1≤h≤H Oih
· 100 (3.1)

RPD2ih =
Oih − UB

UB
· 100 (3.2)

where Oih is the objective function obtained by algorithm h when applied to instance i and UB is the

upper bound (best solution known) for that instance.

However, the usual indicator of the quality of algorithm h with respect to total tardiness when applied

to a given instance i is the so-called Relative Deviation Index (RDI), which is de�ned as follows:

RDIih =
sumTih −Besti
Worsti −Besti

· 100
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where sumTih is the total tardiness obtained by algorithm h when applied to instance i. Worsti and

Besti are the worst and best known total tardiness for instance j. RDI is usually employed for tardiness

instead of the average relative deviation (most used indicator for makespan or �owtime objectives) since

tardiness may yield 0 for some instances and therefore the value of the average relative deviation would

be distorted (see [199, 88, 90]).

Regarding a indicator to measure the computational e�ort, it is commonly evaluated by the researcher

using the average CPU time (denoted as ACPU , Expression (3.3)), which obtained by averaging the CPU

times required by algorithm h for all instances.

ACPUh =
I∑

i=1

Tih/I (3.3)

where Tih is the computation time of algorithm h when applied to instance i, and I the number of

instances of the testbed.

Using the indicators of the quality of the solutions (ARPD1, ARPD2 and ARDI) and the average

CPU times (ACPU) in the Pareto set presents a number of issues. ARPD1, ARPD2 and ARDI are

dimensionless indicators that are normalised with respect to the best result obtained for each instance,

therefore the in�uence of the instance (and thus the instance size) is somewhat smoothed. In contrast,

CPU times are heavily instance and instance-size dependent. Moreover, given the problem sizes of the most

typical benchmarks (see e.g. [190] and [198]), average CPU times of a algorithm are heavily compromised

by the CPU times obtained for the biggest 10 instances (those of size 500× 20).

To illustrate this shortcoming, let us consider the NEH. This algorithm is known to have a complexity

of O(n3 ·m) for the problem under consideration, therefore for the smallest problem size of e.g. Taillard's

testbed (20×5) its complexity is O(102), whereas it is O(1.6 ·108) for size 200×20 and O(2.5 ·109) for size

500× 20. This enormous di�erences in computation times imply that, using the CPU time data in [137],

the average CPU time for the last 20 instances of Taillard's testbed is 0.36 seconds, while the average for

all 120 instances is 0.37 seconds. As a consequence, more than 80% of the testbed (the �rst 100 instances

out of a total of 120) contributes with 0.01 seconds (less than 5%) to the indicator.

Besides, the most used testbed for the problem (Taillard's testbed) is not orthogonal with respect to

the number of machines and the number of jobs. More speci�cally, n ranges from 20 to 500, and m ranges

from 5 to 20. Therefore, the CPU times required for one (hypothetical) heuristic with complexity O(n3m)

would grow in this testbed much faster than that of another (hypothetical) heuristic with complexity

O(n2m2). This could compromise the average results, thus masking the e�ciency �or ine�ciency� of

some algorithms.
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In order to overcome these shortcomings, we propose an alternative measure to evaluate the e�ciency of

algorithms. More speci�cally, we propose the Average Relative Percentage computation Time (ARPT1h).

ARPT1h is de�ned as follows:

ARPT1h =
I∑

i=1

RPTih

I
(3.4)

where

RPTih =
Tih −ACTi

ACTi

and

ACTi =
H∑

h=1

Tih/H

where RPTih is the relative percentage computation time obtained by heuristic h for instance i, H

is the number of algorithms considered, and ACTi is the average (among all algorithms considered)

computational times for the instance i.

Additionally, let ARPT2h represent also the relative percentage computation time where 1 is added

to the RPTih to avoid negative numbers.

ARPT2h =
I∑

i=1

RPTih

I
+ 1 (3.5)

3.4 Experimental conditions

In this Thesis a total of 17 approximated methods are proposed and compared with more than hundred

algorithms. In order to have a fair comparison between the methods, all selected algorithms of this Thesis

(i.e. the state-of-the-art algorithms and the proposed ones) are again fully re-coded in C# and tested

under the same conditions which means:

• Using the same computer. This means same processor speed, bus speed, memory speed and size,

etc.

• Using the same programming language (C# under Visual Studio 2013) and compiler.

• Using the same operating system.

• Using the same libraries and common functions.

• Using the same stopping criteria for the metaheuristics.
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• Using the same set of instances in each comparison.

Additionally, to better �t the computational time of each heuristic, 5 runs are carried out for each

instance and the average values of the indicators, for both computational e�ort and quality of the solutions,

are collected.
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Chapter 4

State of the art

4.1 Introduction

Literally hundreds of heuristics and metaheuristics in the last decades have proposed exact and approx-

imate algorithms for the PFSP to �nd the best sequence of jobs according several criteria. Note that

the division between heuristics and metaheuristics is ambiguous and di�erent classi�cations have been

proposed in the literature (see e.g. [223], [212]). Along this Thesis, we use the same division as in [172],

where heuristics and metaheuristics are analysed separately. There, heuristics naturally stop when the

procedure is �nished whereas metaheuristics typically stop after a given number of iterations or elapsed

CPU time. Regarding heuristics, they can also be divided into constructive heuristics and improvement

heuristics ([172]). Constructive heuristics obtain the �nal sequence by appending jobs �usually in an it-

erative manner� to an incomplete sequence. Improvement heuristics are usually composed of two phases:

a construction phase where a complete sequence is formed, and an improvement phase where the solution

is improved by means of some method typically using speci�c knowledge of the problem.

Among the numerous algorithms in the literature, most research has focused in the minimisation of

makespan and total �owtime (see e.g. the reviews by [43], [172] and [137]), although other objectives have

been also considered (see e.g. [95] and [52] for the homogeneity of the completion times; [197] for total

tardiness; [117] and [179] for total tardiness and earliness; or [188] and [45] for several objectives). In this

section, we perform a comprehensive literature review for the problem (see Objective GO1). We focus in

the following objectives:

• Minimisation of makespan

• Minimisation of total �owtime

25
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• Minimisation of total tardiness

• Minimisation of total earliness and tardiness

The reviewed works �of computational/experimental nature� show that the PFSP is empirically hard,

in the sense that the optimal or quasi-optimal sequences statistically represent a very small fraction

of the space of feasible solutions, and that there are big di�erences among the corresponding objective

function values. The rest of the chapter is organised as follows: In Section 4.2, we review heuristics and

metaheuristics for the Fm|prmu|Cmax. The Fm|prmu|
∑

Cj is reviewed in Section 4.3. Finally, regarding

due-dates-based objectives, algorithms are reviewed in Section 4.4.

4.2 Makespan

The permutation �owshop scheduling problem with makespan objective (Fm|prmu|Cmax) involves the

determination of the order of processing of n jobs on m machines while all jobs have the same machine

sequence. This problem is, without doubt, one of the most studied problems in Operations Research (see

in this regard the reviews by [43, 160, 172]). Aside to the practical relevance of the problem, since the

early work by [80], contributions on the Fm|prmu|Cmax problem have pioneered the research in scheduling

with di�erent objectives and layouts.

The NP-hard nature of the problem for m ≥ 3 (see [166]) has led the vast majority of research

towards the proposal of approximate solutions (usually classi�ed either as heuristics or metaheuristics).

Traditionally divided into constructive and improvement types, heuristics have been extensively developed

for the Fm|prmu|Cmax either to yield a good solution in less CPU time or to �nd a seed sequence for

metaheuristics. Since the publication of the work by [172], more than 100 new algorithms have been

proposed in the literature over the last 10 years. Some of these methods �such as the iterated greedy

(IG) of [174]� have improved the best existing algorithms in [172]. However, the new state-of-the-art

algorithms remains unclear due to the lack of a homogeneous framework to conduct the comparison

among algorithms. More speci�cally, the following problems can be detected:

• Many algorithms are compared under di�erent conditions:

� Tested under di�erent computer conditions (di�erent programming languages and/or di�erent

computers, operating systems, etc.).

� Comparison of algorithms with di�erent CPU time usages.

� Use of di�erent benchmarks (see Section 4.2).
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• Many algorithms are compared in a non-conclusive way:

� Lack of comparison against the state-of-the-art (e.g. without comparing with the iterated greedy

proposed by [174]).

� Among the several runs performed in each instance to increase the power of the results, the

best runs are used instead of the average for some algorithms.

• New advances in the evaluation of the algorithms:

� A more extensive benchmark of instances has been recently proposed by [198] (see Section3.2).

This testbed can be used to establish statistical di�erences among algorithms in a sound way,

di�erently from what can be done with older benchmarks (such as those by [190], [10], [158],

[206], [30], [71]).

� A new indicator has been proposed in Chapter 3.3 to measure the CPU requirements of the

algorithms in relative terms. This indicator improves the de�ciencies of the most common

indicator (i.e. average CPU time) for the evaluation of e�cient heuristics.

Among the constructive heuristics, which have been proposed in the literature, most of them are

variants of the NEH heuristic by [127]. This heuristic consists of two phases:

1. First, jobs are ordered according to an initial order (decreasing sum of processing times).

2. The �rst job is removed from the initial order and placed in a partial sequence, initially without

any job. Next, following this order, each job is removed and tried to be inserted in each possible

position of the partial sequence. The position which minimizes the makespan is chosen for the job.

The procedure is repeated n-1 times until all jobs are placed in the partial sequence.

Note that the complexity of the main heuristic for the problem, i.e. the NEH, is O(n3m), as the

evaluation of an m-machine makespan can be accomplished in O(nm) and the evaluation of the k sub-

sequences resulting in step k can be completed in O(n2m). However, due to the Taillard's accelerations

explained in Section 2.2, the evaluation of the k subsequences can be done in O(nm) thus reducing the

overall complexity of the heuristic to O(n2m).

If we consider the NEH heuristic as a particular case of a family of heuristics, there are several elements

(options) within this family. These are:

• Starting order, i.e. how to obtain an initial order in which the jobs are arranged in the �rst phase.

• Sequence generation, i.e. how the candidate (sub)sequences are generated from the initial starting

order.
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• Tie-breaking mechanism, i.e. how ties are treated in the evaluation of the candidate (sub)sequences.

The starting order determines which job is to be picked for insertion in the current (sub)sequence. The

original proposal by [127] is to arrange the jobs in descending order of the sum of their processing times.

[42] conducted an extensive study with di�erent initial orders and showed that there were signi�cant

di�erences among them and that, the original order remained the best for the makespan objective. These

results were later con�rmed by [83]. [125] proposed a di�erent starting order based on an estimation of

an idle time of the jobs. Although the authors claimed that their proposal outperforms the original NEH,

an extensive simulation study carried out by [84] showed that this seems to be true only for m < 6 and

that the resulting di�erences were not statistically signi�cant. The latter authors also proposed an initial

starting order which they claim to outperform the original one. [35] proposed a modi�cation of the NEH

heuristic in which a speci�c mechanism for tie-breaking is applied in addition to a starting order based on

the mean and the variance of the processing times of the jobs and �nally, [85] proposed a new modi�cation

of the classical. Although this last modi�cation outperforms the original NEH (and the modi�cation of

the NEH proposed by [84] and [35], see [86]) in an extended test bed proposed by [85], it was not proved

that the proposed starting order was superior to the original in the benchmark set of [190] where the

starting order proposed by [35] presents the best results.

With respect to sequence generation, the original proposal is to insert the job in the k possible slots

of the current sequence. However, it is clear that di�erent strategies could be adopted, either by reducing

the number of candidates (by e.g. evaluating just a fraction of the k possible slots), or by exploring more

candidates. With respect to the former strategies, [151] limited the insertion to positions ⌊k/2⌋ to k with

good results, while di�erent strategies have been proposed for exploring more candidate solutions by [150]

(note that other strategies have been explored for the total �owtime by [207] and by [44], but there is no

proof that they are e�cient with respect to makespan). In all these contributions, the gains (losses) in

the quality of the solutions are compensated by the increase (decrease) in CPU time requirements.

Finally, with respect to the tie-breaking mechanism, modi�cations with respect to the original tie-

breaking mechanism have been suggested by several authors. Note that, in general, tie-breaking mech-

anisms may refer either to the starting order (i.e. how to rank jobs with the same indicator value in

the initial ordering sequence), or to the sequence generation phase (i.e. how to choose among di�erent

subsequences with the same best partial makespan). In this chapter we focus on the second type �labelled

insertion tie-breaking in the following� so existing contributions will be discussed in detail in Section 6.2.

With or without the aforementioned modi�cations, NEH has turned out to be the most e�cient

heuristic found for the problem, and nowadays it remains the cornerstone of subsequent heuristics that
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have been proposed for the problem and that can be seen as re�nements and/or enhancements of NEH.

The reason for this e�ciency probably lies in the procedure employed for inserting and evaluating �using

Taillard's acceleration� the non-scheduled jobs, a mechanism also present in the Iterated Greedy Algorithm

(denoted as IG_RSLS in the following) proposed by [174] and considered among the best heuristics for

the problem (see [174, 138]).

In this section, we propose a classi�cation to unify the numerous variants of the NEH heuristic pub-

lished in the literature. The classi�cation use the following notation formed by 3 �elds: NEH(a|b|c)

where the �elds a, b and c are de�ned by:

• a: Initial order used by the NEH. The following sorting criteria have been considered in the literature:

� rand: Jobs are randomly ordered. This order is used by [162] in RAER and RAER-di heuristics

as comparison heuristics.

� SD: Non decreasing sum of processing times (original order of the NEH) jobs. This order is

used by the following heuristics: NEHR [162], NEHR-di[162], NEH [127], NEH-di [162], NEH1

[83] and NEH1-di [162].

� AV: sum of the mean and deviation of the processing times (proposed by [35]).

� NM: order proposed by [125] and used in NEMR and NEMR-di heuristics by [162].

� KK1: Sorting criterion proposed by [84]. This initial order is applied in NEHKK1 [84] and

NEHKK1-di [162] heuristics.

� KK2: Sorting criterion proposed by [85] in NEHKK2 heuristic.

• b: Once a job is selected for insertion in all positions of a partial sequence, the same makespan can

be obtained for several positions causing ties in each iteration. These ties have a great in�uence

on the performance of the constructive heuristics (see [83]). In the original proposal, the �rst slot

(denoted as FS) for which the minimum makespan is achieved is kept as the best sequence. This

b �eld then de�nes the type of tie-breaking mechanism implemented in the NEH. The following

mechanisms have been considered in the literature:

� TBKK1: mechanism based on the Johnson's rule ([80]) proposed by [83].

� TBKK2: tie-breaking mechanism based on the Johnson's rule ([80]) proposed by [84].

� TBKK3: mechanism based on the Johnson's rule ([80]) proposed by [85].

� DHC: tie breaking mechanism based on a balance usage of machines proposed by [35].
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� RCT: idle-time-based tie breaking mechanism proposed by [162] increasing the complexity of

the NEH to max{n2 ·m2, n3 ·m}.

• c: This �eld is associated with the reversibility property of the problem (see [162]). It establishes

that the makespan of the permutation Π := (π1, . . . , πn) in instance I (instance formed by n jobs

and m machines with processing times equal to pij) is the same as the makespan of the reverse

permutation Π
′
:= (πn, . . . , π1) in instance I

′
(instance formed by n jobs and m machines with

processing times equals to p
′

ij = pm−j+1,i). Therefore, the following values can be adopted:

� d: This value is employed to denote a direct instance (i.e. the initial order Π is applied to

instances I and I
′
).

� i: It is employed when the same initial order π is applied to the instance I
′
. Accordingly, this

�eld contains the value di when the inverse instance is carried out after performing the direct

instance.

This notation has been employed to classify the di�erent variants of the original NEH heuristic �which

can be denoted as NEH(SD|FS|d) in our notation� proposed in the literature. These are summarized

in Table 4.1.

Among the heuristics proposed, some of them �i.e. NEH1, NEHKK1, NEHKK2 and NEHD by [83],

[84] and [35] respectively � maintain the original complexity of O(n2m). Other variants with a greater

complexity have been proposed by [162], see Table 4.1.

Two di�erent variants with a greater complexity have been proposed by [211] and are denoted as

CLWOTS and CLWTS. In CLWOTS, a new mechanism (denoted as the backward shift mechanism) is added

to the traditional insertion phase of the NEH. This mechanism increases the sequences to be evaluated

in each iteration by means of a movement of the jobs of the partial sequence. When the tie-breaking

mechanism of [162] is added to the CLWOTS, the heuristic is denoted as CLWTS

Furthermore, 10 heuristics which also modify the insertion phase of the NEH algorithm have been

proposed by [150]. These heuristics are denoted as: FRB1, FRB2, FRB3, FRB42, FRB44, FRB46,

FRB48, FRB410, FRB412 and FRB5. Among them, the FRB1 heuristic is statistically outperformed by

several heuristics (e.g. FRB42 and FRB44) with shorter average CPU times. Finally, [201] proposed a

constructive NEH-based heuristic, NEHI, which also considers di�erent interpretations for the ties in the

initial order of the NEH.

Regarding metaheuristics employed for the problem, a summary of them is shown in Tables 4.2 and

4.3. The �rst, second, third and fourth columns indicate the year of publication, the bibliographical
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Table 4.1: Summary of heuristics derived from NEH

Heuristic NEH Notation Paper
RAER NEH(rand|RCT |d) [162]
RAER-di NEH(rand|RCT |di) [162]
KKER NEH(KK1|RCT |d) [162]
KKER-di NEH(KK1|RCT |di) [162]
NEHR NEH(SD|RCT |d) [162]
NEHR-di NEH(SD|RCT |d&i) [162]
NEMR NEH(NM |RCT |d) [162]
NEMR-di NEH(NM |RCT |di) [162]

NEH NEH(SD|FS|d) [127]
NEH-di NEH(SD|FS|di) [162]
NEH1 NEH(SD|TBKK1|d) [83]

NEH1-di NEH(SD|TBKK1|di) [162]
NEHKK1 NEH(KK1|TBKK2|d) [84]

NEHKK1-di NEH(KK1|TBKK2|di) [162]
NEHKK2 NEH(KK2|TBKK3|d) [85]
NEHD NEH(AD|DHC|d) [35]

NEHD-di NEH(AD|DHC|di) [162]
CLWTS NEH(SD|FS|d) with a backward shift mechanism in the insertion phase [211]
CLWOTS NEH(SD|RCT |d) with a backward shift mechanism in the insertion phase [211]
NEHI Best of several runs of NEH(−| − |−) [201]
FRB1 Similar to NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB2 Similar to NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB3 NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB4k NEH(SD|FS|d) including a local search method in the insertion phase [150]
FRB5 NEH(SD|FS|d) including a local search method in the insertion phase [150]

reference, the type of metaheuristic and the acronym (maintaining the same acronym as in the original

papers) respectively. The �fth column shows the papers proposing metaheuristics that outperform the

referenced one. In the sixth column, the benchmark(s) used for the computational evaluation are shown

(the following notation is used: T1, [190]; T2, non-complete set of instances of [190]; R, [158], C, [10];

D, [30]; W, [206]; H, [71]; O, Other set of instances). The seventh column shows the ARPD2 values of

the metaheuristics when tested on Taillard's benchmark [190]. When the raw makespan value for each

instance is given in the paper, the ARPD2 is computed again using (3.2) and the best known value

for those instances in order to have a common reference. Otherwise, the ARPD2 values of the paper

are reported. Note that these papers could have used di�erent upper bounds (UB) and the values are

therefore only approximations. For papers using the same upper bounds as in [190], a factor of 0.565 is

added to correct the ARPD2. This value is the di�erence in ARPD2 between the actual upper bounds

and the upper bounds of [190].

The eight and ninth columns indicate the programming languages used for coding the algorithms as

well as the raw speed of the processors used for the evaluation. Finally, the average CPU time on Taillard's

instances as a function of the size of the problem (i.e. n and m) is calculated, when possible, in the last

column in order to analyze the CPU requirements of the algorithms. This value is expressed in terms of

tj for metaheuristic j, a variable traditionally used in the literature to measure its stopping criterion as

n ·m · tj/2 milliseconds (see e.g. [174]). When tj is not indicated and/or other stopping criteria are used,

tj is calculated as follows:
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tj =
∑
∀i

tij

and

tij =
2 · CPUij

ni ·mi

where CPUij is the CPU time in milliseconds required by algorithm j in instance i. ni and mi and

the number of jobs and machines in instance i. Therefore, tij balances the CPU time with the size of the

problem, and tj �average of tij� can be seen as an indicator of the average CPU time requirements of an

algorithm, since, given an instance, ni and mi are constants for di�erent algorithms.

For clarity, when a paper proposes several metaheuristics, these methods are included in the table as

long as they are used as reference metaheuristics in other papers. Otherwise, only the best one among

the reported results is selected. The language used to code the algorithms has been included in the table

since languages can result in much bigger di�erences than those caused by the use of varying computer

characteristics.
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4.3 Total �owtime

The Fm|prmu|
∑

Cj is known to be NP-hard, therefore most of the research on this topic is devoted to

developing approaches yielding good (but not necessarily optimal) solutions in reasonable computation

time. An excellent review on these heuristics is provided by [137] where 14 of these heuristics are identi�ed

as e�cient. In the following, we just outline the main aspects of these heuristics and refer the interested

reader to the paper by [137] for a more detailed description of all existing heuristics in the literature.

• Heuristic LR(x) [108]. This heuristic constructs a solution for the problem by appending, one by

one, the unscheduled jobs (jobs in set U in the following) at the end of a sequence S of already

scheduled jobs. To do so, ξjk an indicator of the suitability for job j (j ∈ U) to be scheduled in

last position (position k + 1 where k indicates the amount of scheduled jobs in each iteration) is

calculated according to:

ξjk = (n− k − 2) · ITjk +ATjk

where ITjk estimates the weighted idle time induced when scheduling job j in position k + 1, i.e.:

ITjk =
m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i+ k · (m− i)/(n− 2)

and ATjk is the so-called arti�cial �owtime and it is de�ned as the sum of the completion time of

job j plus the completion time of job p, an arti�cial job with processing times equal to the average

processing time of the other jobs in U (excluding job j), and can be computed as follows:

ATjk = Cmj + Cmp

More speci�cally, the LR(x) heuristic operates as follows:

1. Sort all jobs in ascending order of indicator ξj0 (Let us U denote such ordered set). Ties are

broken in favor of jobs with higher ITj0.

2. Use each of the �rst x ranked jobs in U as the �rst job in S, and then constructs a solution by

appending the rest of the jobs one by one using indicator ξjk

3. Out of the x solutions so obtained, select the one with the minimum �owtime.

• Heuristic LR(x)−FPE(y) [108]. This is a composite heuristic where a local search method (denoted

FPE(y)) is applied to the solution of LR(x). FPE(y) consists of the following steps: For each job
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j in a sequence, this job is exchanged with the next y jobs in the sequence, and the �owtimes of

the so-obtained solutions are evaluated. If any of the solutions has improved the �owtime, then the

local search procedure is repeated. Otherwise, the local search stops.

• Heuristic NEH [127] (see Section 4.2 for a detailed description). Originally conceived for minimizing

the makespan in a permutation �owshop, this well-known algorithm has been used as a reference

method for many problems in the literature. Its application to the �owtime minimisation problem

was discussed by [42], and it was found that the best option is to �rst sort the jobs in ascending

sum of their processing times.

• Heuristic Raj [151]: This heuristic can be seen as a version of the NEH, but here job k is inserted

only in slots ⌊k/2⌋ to k, thus reducing the computation time. Additionally, jobs are initially sorted

in ascending order of index Tj as de�ned in equation (4.1), breaking ties in favor of the job with the

lowest sum of total processing times.

Tj =
m∑
i=1

(m− j + 1) · pij (4.1)

• Heuristic LR − NEH(x) [137]. This is a composite heuristic where the last n/4 steps of each x

sequences obtained applying the LR(x) procedure are carried out according to the NEH heuristic

instead of the normal procedure of the LR(x) algorithm, i.e., the �rst 3/4n jobs of each sequence

are scheduled according to the LR(x) procedure and the rest according to the NEH procedure.

• Heuristic RZ [152]. This heuristic consists of two steps: An initial ordering, and an improvement

phase. With respect to the initial ordering, the jobs are sorted in ascending order of the total

processing times. The improvement phase (denoted iRZ in the following) consists of inserting each

job in the sequence in the rest of positions updating the sequence when a better solution is found.

• Heuristic RZ − LW [97]. This heuristic consists in iteratively performing iRZ until no further

improvement is found.

• Heuristic ICi [96]. This is a family of composite heuristics where an initial solution is obtained

by using LR(1) and then improved by using di�erent local search methods. If the local search is

performed using the iRZ procedure, then the heuristic is denoted IC1. Heuristic IC2 performs

FPE on the solution obtained by IC1. Finally, IC3 consists of running IC1 and then performing

a local search denoted as FPE − R, which is essentially FPE adding a restart from the �rst job

every time the current solution is improved.
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• Heuristic PRi(x) [137]. These are several composite heuristics: PR1(x) performs iRZ on each one of

the x sequences obtained by heuristic LR−NEH(x). PR2(x) �rst run the heuristic LR−NEH(x)

and then tries to improve this solution using a VNS-like (Variable Neighborhood Search) local

search method. This method was introduced by [192] and consists in an insertion and interchange

variant of the classical V NS where insertion and interchange movements are repeated until no

further improvement is found. PR3(x) performs x times a iRZ and two NEH methods after an

initial solution obtained by heuristic LR − NEH(10). Finally, PR4(x) replaces the iRZ method

of PR3(x) by a V NS local search. In order to bound the computation time of the heuristics, if

the CPU time reaches the value of 0.01 · n ·m seconds, a last loop is performed and the procedure

terminates.

All aforementioned heuristics have at least a complexity of O(n3 ·m), and most of them use the LR

heuristic to generate a seed solution.

4.4 Due-date related objectives

In this section, we review the PFSP minimising due-date-based objectives. We focus in two well-known

decision problems: the Fm|prmu|
∑

Tj and the Fm|prmu|
∑

Ej +
∑

Fj problems.

Regarding the Fm|prmu|
∑

Tj problem, most researchers have focused on developing solution pro-

cedures (i.e. heuristics) that do not guarantee the optimality of the solution, but that can provide a

(hopefully) good solution in a reasonable time interval due to the NP-hard nature of the problem. More

speci�cally, several heuristics and metaheuristics have been proposed in the literature for the problem,

such as those by e.g. [56, 90, 153, 46, 197].

The extensive computational evaluation of heuristics for the problem carried out by [199] shows that

NEHedd is a key constructive heuristic for the problem since, aside to being very e�cient, the rest of

e�cient heuristics in the literature with more average CPU time employ NEHedd as an initial solution.

More speci�cally, more than half of the state-of-the-art improvement heuristics or metaheuristics for the

problem use NEHedd as a starting solution. This fact can be also seen in more recent works, such as [197],

or [178]. The NEHedd heuristic di�ers from the NEH heuristic in the starting order (jobs are arranged

now according to the Earliest Due Date or EDD rule), and in the evaluation of the partial sequences (as

the one with lowest total tardiness is selected). Taillard's acceleration cannot be applied to the NEHedd,

and, although [197] propose a mechanism similar to that by [96], the complexity of the NEHedd remains

O(n3 ·m).
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Regarding the Fm|prmu|
∑

Ej +
∑

Fj problem, given the acceptance of just-in-time systems in prac-

tice, there is a growing interest in the last decades in analysing scheduling problems where both earliness

and tardiness are penalised (see e.g. reviews [4], [94], [81] and [183]). Although, this type of problems is

collectively known as E/T problems, the problem under consideration is the PFSP to minimise total ear-

liness and tardiness, Fm|prmu|
∑

Ej +
∑

Tj . Some exact approaches and approximate algorithms have

been proposed in the literature for this problem. However, both the NP-hard nature of the problem (see

[117]) and the huge computation times required by the optimal approaches even for small instances (not

more than 20 jobs) justify the need to develop fast approximate algorithms. The methods are classi�ed

into two groups:

• Methods for E/T problems on a �owshop where the idle time can be inserted.

• Methods for E/T problems on a �owshop where the idle time cannot be inserted.

On the one hand, regarding the problem allowing the insertion of idle times, [168] propose several

mixed-integer models for the problem including insertion of idle time as well as considering unlimited

and zero bu�er. [15] propose some approximate approaches to solve the PFSP to minimize the sum of

earliness and tardiness with common due dates for all jobs. Finally, [118] combine the VNS search with

the mixed integer programming to solve the same problem but without common due dates.

On the other hand, without insertion of idle times, [123] propose an optimal algorithm for the PFSP

with two machines to minimise the sum of maximum earliness and tardiness, as well as branch-and-bound

algorithms are developed in [114] for several multi-objective functions including the total earliness and

tardiness. [213] was �rst in proposing an approximate algorithm (more speci�cally a simulated annealing

algorithm) to solve the PFSP to minimise the sum of weighted earliness and tardiness. In [179], a genetic

algorithm (GA) has been developed which outperform several metaheuristics of similar research problems

as well as the algorithm proposed by [213]. Using the same benchmark, [117] propose an iterated local

search (ILS) where a variable neighborhood descent is iteratively repeated after a perturbation mechanism,

which gave better results than the GA. However, both the GA and the ILS algorithms use the NEHedd

(originally proposed for the Fm|prmu|
∑

Tj by [88]) and the Earliest Due Date or EDD rule respectively,

which are either very simple seed sequences or simple adaptations from another research problems.
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4.5 Conclusions

Makespan

Although the excellent performance of non-population based algorithms was shown by [174],[138], the

literature using this type of metaheuristic is scarce and researchers have mainly been focused on the

implementation of algorithms using several populations in parallel. Note that the best metaheuristics (see

e.g. iterated greedy algorithm) and the best heuristics (see e.g. NEH) include Taillard's accelerations,

which is a special characteristic of the Fm|prmu|Cmax. It probably represent the main reason for the

excellent behaviour of insertion phases in the algorithms and could explain its extensive use in the heuristics

and metaheuristics of the last decade, as well as the excellent performance of the NEH and IG-based

algorithms. Both in NEH and the Iterated Greedy algorithm, ties among (sub)sequences yielding the

lowest makespan may occur. In the original proposals, no speci�c mention on ties is given, so it is usually

assumed that the �rst slot for which the minimum makespan is achieved when inserting job in position k is

kept as the best (sub)sequence. However, the mechanism employed to break these ties has a great in�uence

on the performance of these algorithms, as well as it represents an advance in their intensi�cation, as [83]

�rst attested for the NEH. To the best of our knowledge, there is no proposal of integrating tie-breaking

mechanisms in the Iterated Greedy algorithm. In our opinion, these facts highlight that a special e�ort

should be made, �rstly, in a better understanding of the problem and its properties (speci�c objective SO1

and secondly in applying them to non-populations algorithms for the problem (speci�c objective SO2).

In view of Tables 4.1, 4.2 and 4.3, there are very few papers whose methods are directly compared

with the state-of-the-art algorithms (i.e. the IG_RSLS by [174]). Most of them are directly compared

with metaheuristics of the same type (i.e. papers proposing PSO metaheuristics are compared with other

PSO metaheuristics). Additionally, among all analyzed metaheuristics, only 9 papers (less than 10%)

explicitly state that the metaheuristics are compared using the same conditions. Finally, there is no

homogeneity in the set of instances used to compare the methods. Most metaheuristics (56) are tested

in Taillard's benchmark, although only 20 of these use all 120 instances of the testbed. The rest of the

testbeds used were mainly Reeves' (23 times) and Carlier's (15 times). From this literature review, the

current state-of-the-art is far from easy to identify.

As a conclusion, a new evaluation of the approximate methods for the Fm|prmu|Cmax problem is

pertinent (speci�c objective SO3) and may serve �rstly to establish a clear picture of the state-of-the-art

within this important problem, and secondly, to give indications of possible avenues for future research.

Additionally, a special e�ort should be also made when comparing e�cient heuristics against the best

metaheuristics under the same stopping criterion since the CPU time required by some heuristics is
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Figure 4.1: Pareto set using the average computational time [137]

relatively high in comparison with some metaheuristics (speci�c objective SO4).

Total �owtime

The heuristics discussed in Section 4.3 constitute the (so-far) set of e�cient heuristics for the problem, as

found by [137] in their exhaustive analysis of all existing heuristics for the Fm|prmu|
∑

Cj problem with

respect to the quality of the solutions and computational requirements. Since there is a clear tradeo�

between the solution obtained by one heuristic, and its computation time, the authors were able to depict

a Pareto set to place the e�cient heuristics for the problem in view of their performance on the well-known

Taillard's testbed (see Figure 4.1). As it turns out, this Pareto set is formed by the following heuristics:

Raj, LR(1), RZ, LR−NEH(5), LR−NEH(10), LR−NEH(15), LR−FPE, PR4(5), PR2(5), PR3(5),

PR4(10), PR4(15), PR2(15) and PR1(15).

From the analysis of the Pareto set, some conclusions can be derived:

• As it can be seen in Table 7.1, all the e�cient heuristics consist on variation/adaptations of the

following �ve main (or primary) procedures: NEH, LR(x), FPE, iRZ and V NS. More speci�cally,

the LR(x) heuristic is present in 12 of the 14 heuristics in the Pareto set.

• Regarding the complexity of the �ve primary procedures, NEH is known to be O(n3 ·m), the same

complexity as LR. It is easy to check that each iteration of iRZ is O(n3 · m). Hence, the iRZ
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has a complexity of k · n3 ·m with k the number of iterations in which there is an improvement in

the objective function. The complexity of FPE corresponds to x · k · n2 · m (for FPE − R, the

worst case is O(x · k · n3 ·m)), with k indicating again the number of iterations with improvement

in the objective function. From the complexity of these �ve procedures, the complexity of the rest

of algorithms in the Pareto set can be easily obtained (this information is summarised in Table

7.1). As it can be seen, each heuristic in the Pareto set has at least a complexity of n3 ·m. Note

that the parameter k cannot be nor bounded neither linked to the problem size. However, in the

computational experience carried out in Taillard's testbed (see Section 3.2), this value is usually

larger than both n and m.

A detailed analysis of this Pareto set reveals that 12 out of the 14 heuristics employ a mechanism

for constructing the solutions based in the heuristic by [108]. However, its complexity is still high in

comparison with the best heuristic of related scheduling problems (see e.g. Fm|prmu|Cmax). For this

problem, new advances should come from a reduction in the complexity of the heuristics to obtain similar

or even better solutions with much lesser CPU time (speci�c objective SO5)

Due-date related objective

Despite the excellent performance of the NEHedd heuristic, we believe that additional improvements

could be gained by further analysis of the problem under consideration. First, the Fm|prmu|
∑

Tj and

the Fm|prmu|
∑

Ej +
∑

Fj could resemble di�erent scheduling problems depending on the due dates of

the jobs for each speci�c instance: Intuitively, it is clear that, for an instance with due dates much greater

than the sum of the processing times of its jobs, almost every schedule may yield zero total tardiness for

the Fm|prmu|
∑

Tj (turning the problem into a trivial one), as well as the problem resembles that of

�owtime maximisation for the Fm|prmu|
∑

Ej +
∑

Fj . Analogously, unachievable due dates for each job

results in an instance for which almost every sequence yields tardiness for every job and therefore both

problems resembles that of minimising �owtime. By conducting an analysis of these possible scenarios

(speci�c objective SO6 and SO7), further insights into the problem can be obtained, so the performance

of the NEHedd procedure can be enhanced (speci�c objectives SO8 and SO9).

Summary of speci�c objectives

Several speci�c objectives for the PFSP have been identi�ed above, which will be addressed in this Thesis.

In this section, we summarise them:

SO1. To provide further insights into the problem and its properties.
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SO2. To propose non-populations algorithms for the Fm|prmu|Cmax problem.

SO3. To perform a new computational evaluation of heuristics and metaheuristics for the Fm|prmu|Cmax

problem.

SO4. To compare e�cient heuristics against the best metaheuristics under the same stopping criterion

for the Fm|prmu|Cmax problem.

SO5. To develop new e�cient heuristics decreasing the typical complexity of the algorithms for the

Fm|prmu|
∑

Cj problem.

SO6. To analyse di�erent scenarios depending on the due dates for the Fm|prmu|
∑

Tj problem.

SO7. To analyse di�erent scenarios depending on the due dates for the Fm|prmu|
∑

Ej + Tj problem.

SO8. To design e�cient heuristics for the Fm|prmu|
∑

Tj problem.

SO9. To develop of e�cient heuristics for the Fm|prmu|
∑

Ej + Tj problem.



Chapter 5

In�uence of input parameters

5.1 Introduction

In the vast majority of the works reviewed in Chapter 4, it has been assumed that a) processing times

are not job- and/or machine-correlated, b) processing times are not resource dependent, c) due dates are

generated by the same distribution for all jobs and d) all machines are initially available. In this chapter,

addressing Objectives GO2, SO1, SO6 and SO7, we try to go deeper in the understanding of the in�uence

of these assumptions over the PFSP.

Firstly, we will show that under certain conditions of the due dates, the Fm|prmu
∑

Tj and the

Fm|prmu
∑

EjTj can be reduced to other di�erent related scheduling problems. In order to show that,

several properties are shown for both scheduling problems, to identify the theoretical conditions required

for them. In addition, we analyse how far the due dates traditionally generated in the literature are from

the above conditions.

Secondly, we will show that under certain conditions, or correlated processing times, the PFSP could

be considered easily solvable or be equivalent to other decision problems. To address it, several properties

and dominance rules are presented to analyse the relation between the PFSP and the single machine

scheduling problem, denoted as SMSP, for makespan and total �owtime minimisation depending on the

processing times of the jobs. Additionally, in order to empirically compare the problems, 11 algorithms

(5 for makespan and 6 for total �owtime) are tested on an extensive testbed with more than 600,000

instances designed for the PFSP with machine correlated processing times. Four algorithms have been

designed to solve directly the instances of the PFSP. Five of them reduce each instance to an equivalent

SMSP considering only the most saturated machine, whereas the other 2 algorithms solve a reduced

PFSP without considering the machines before the most saturated one. Results show that the algorithms

43
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designed for the PFSP and for the SMSP tend to be very similar for several values of the parameters

of the testbed. The goal is to prove the intuition that, when in a PFSP there is a machine much more

saturated than the rest, then the problem should be similar to the equivalent SMSP considering only the

most saturated machine. Thereby, we intend to explore the theoretical and empirical boundaries between

these two problems.

Finally, we will also analyse the di�erent relationships between the processing time of an operation

and the number of resources assigned to that operation. Traditionally, di�erent functions have been

used in the literature in order to map the processing time of the operation with the amount of resources

assigned to the operation. Obviously, this relation depends on several factors such as the type of resource

and/or decision problem under study. Although in the literature there are hundreds of papers using these

relations in their models or methods, most of them do not justify the motivation for choosing a speci�c

relation over another one. In some cases, even wrong justi�cations are given and, hence, infeasible or

nonappropriated relations have been applied for the di�erent problems, as we will show. Thus, we intend

to �ll this gap establishing the conditions where each relation can be applied by analysing the relations

between the processing time of an operation and the amount of resources assigned to that operation.

More speci�cally, the outline of the rest of this chapter is organised as follows:

• In Section 5.2, the in�uence of the due dates is analysed.

• In Section 5.3, we discuss the in�uence of the processing times.

• In Section 5.4, we discuss the functions used in the literature for controllable processing times.

5.2 Due dates

The Fm|prmu|
∑

Tj and Fm|prmu|
∑

Ej +
∑

Tj problems are highly in�uenced by the due dates of

the jobs in a speci�c instance. In this section, we make an e�ort to gain a better understanding of the

problems so the performance of existing solution procedures can be enhanced.

Theoretical analysis

Let �rst state four simple properties:

Property 5.2.1. Let I be an instance of the Fm|prmu|
∑

Ej +
∑

Tj problem, and WM the worst

(maximum) makespan for the instance. If dj ≥WM ∀j, an optimal solution for I is obtained by solving

the corresponding Fm|prmu| −
∑

Cj problem for I.
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Proof. Since each due date is greater or equal than the worst makespan WM , then each due date dj is

greater or equal than its completion time, Cmj(Π) (i.e. dj ≥WM ≥ Cm,j(Π), ∀j,Π). Hence, minimising∑
∀j max{Cm,j(Π)−dj , 0}+

∑
∀j max{dj−Cm,j(Π), 0} = 0+

∑
∀j dj−Cm,j(Π) =

∑
∀j dj−

∑
∀j Cm,j(Π) =

const−
∑

∀j Cm,j(Π).

Property 5.2.2. Let I be an instance of the Fm|prmu|
∑

Ej+
∑

Tj problem verifying that dj ≤
∑m

i=1 tij

∀j. Then, an optimal solution for I can be obtained by solving the corresponding Fm|prmu|
∑

Cj problem

for I.

Proof. Considering dj ≤ tj ∀j, each completion time Cm,j(Π) (∀ Π) is greater or equal than its due

date, dj , since tj is a lower bound of the makespan of the job j. Hence
∑

∀j max{Cm,j(Π) − dj , 0} +∑
∀j max{dj−Cm,j(Π), 0} =

∑
∀j(Cm,j(Π)−dj)+0 =

∑
∀j Cm,j(Π)−

∑
∀j dj =

∑
∀j Cm,j(Π)+const.

Property 5.2.3. Let I be an instance of the Fm|prmu|
∑

Tj problem, and WM be the maximum (worst)

makespan that can be obtained for I. If dj ≥WM, ∀j, then each feasible sequence π is an optimal solution

for I. That is, I has n! optimal solutions.

Proof. The proof of this property is obvious: since WM is the worst makespan of the problem (i.e.

WM ≥ Cm,j , ∀j) and each due date is greater than or equal to WM (i.e. dj ≥ WM ≥ Cm,j , ∀j),

then minimising
∑

∀j max{Cm,j − dj , 0} is equal than minimising
∑

∀j max{−P, 0} = 0, where P is a

non-negative number, and hence each feasible solution is an optimal solution of the problem.

Property 5.2.4. Let I be an instance of the Fm|prmu|
∑

Tj problem with dj ≤
∑m

i=1 tij , ∀j. Then, an

optimal solution for I can be obtained by solving the corresponding Fm|prmu|
∑

Cj problem for I.

Proof. Trivial in view of Property of 5.2.2.

On the one hand, from Properties 5.2.1 and 5.2.2, it is clear that extremely loose due dates transform

the Fm|prmu|
∑

Ej + Tj into a PFSP with the objective of �owtime maximization. Extremely tight due

dates lead to a problem similar to the PFSP with �owtime minimisation. Both bounds represent opposite

objective functions and therefore, algorithms speci�cally focused on yielding good solutions for instances

with loose due dates would necessarily perform bad for tight due dates. Thereby, depending on the due

dates, three di�erent scheduling problems can be solved: the Fm|prmu|
∑

Cj problem in case of tight due

dates, the Fm|prmu| −
∑

Cj problem in case of loose due dates and the original Fm|prmu|
∑

Ej +
∑

Tj

problem in the rest of the cases. This fact speaks for the di�culties to �nd constructive heuristics that

perform well for the problem, which in our opinion is re�ected by the fact that the NEH �an algorithm

not designed for this speci�c problem� is the only constructive heuristic proposed so far.
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On the other hand, for the Fm|prmu|
∑

Tj problem, Properties 5.2.3 and 5.2.4 formalise the inter-

dependence between the due dates and processing times of an instance, and the type of optimisation

problem. If the due dates are extremely tight, the Fm|prmu|
∑

Tj is similar to that of �owtime minimi-

sation (Fm|prmu|
∑

Cj) according to Property 5.2.4 whereas extremely loose due dates lead to a trivial

problem according to Property 5.2.3.

Therefore, a problem instance can be classi�ed along these two extreme cases (extremely loose and

tight due dates). To do so, we �rst de�ne for each job j the following indicator vj :

vj =
dj − tj

WM − tj
(5.1)

Clearly, vj ≤ 0 indicates that the due date cannot be met for job j, regardless of the position where

it is scheduled. Similarly, vj ≥ 1 corresponds to the case where the completion time of job j is lower

than its due date. By adequately truncating vj , we can obtain a normalised indicator for job j, i.e.:

min{1;max{0; vj}} ∈ [0, 1].

Then, the indicator v can be de�ned as:

v =
n∑

j=1

min{1;max{0; vj}}
n

=
n∑

j=1

min{WM − tj ; max{0; dj − tj}}
n · (WM − tj)

(5.2)

It can be shown that v ∈ [0, 1], and that if, for a given instance, v = 0 (tight due dates), then

minimising the total tardiness is equivalent to minimising the total �owtime. On the other extreme, if

v = 1 (loose due dates), then any sequence is optimal.

In addition to how tight/loose the due dates are, the variability of the due dates among jobs also plays

an important role in the optimization problem, which is formalised using the following property:

Property 5.2.5. The sequence πedd :=
(
πedd
1 , · · · , πedd

n

)
obtained by the EDD rule, is an optimal solution

of the Fm|prmu|
∑

j Tj problem if dπedd
j
≥ dπedd

j−1
+
∑m

i=1 tiπedd
j

(or, equivalently, dπedd
j
≥

∑j
k=1

∑m
i=1 tiπedd

k
),

∀j > 1, and dπedd
1
≥

∑m
i=1 tiπedd

1
.

Proof. Taking into account that Cm,πedd
j−1

+
∑m

i=1 tiπedd
j

is an upper bound of Cm,πedd
j

, i.e. Cm,πedd
j−1

+∑m
i=1 tiπedd

j
≥ Cm,πedd

j
, the property can be easily proved recursively, as follows: Beginning with the �rst

job of the sequence, πedd
1 , and assuming that dπedd

1
≥

∑m
i=1 tiπedd

1
, then Cm,πedd

1
− dπedd

1
≤ Cm,πedd

1
−∑m

i=1 tiπedd
1

=
∑m

i=1 tiπedd
1
−

∑m
i=1 tiπedd

1
= 0, where it has been used that the completion time of the

�rst job is equal to the sum of processing times, i.e. Cm,πedd
1

=
∑m

i=1 tiπedd
1

. Hence, the �rst term of the

objective function is zero, i.e. Cm,πedd
1
− dπedd

1
≤ 0 −→ max(Cm,πedd

1
− dπedd

1
, 0) = 0.

Following with the job in second position and assuming that dπedd
2
≥ dπedd

1
+

∑m
i=1 tiπedd

2
, where
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Cm,πedd
1
≤ dπedd

1
by means of the job in the �rst position. Then dπedd

2
≥ Cm,πedd

1
+
∑m

i=1 tiπedd
2

. Note that

Cm,πedd
1

+
∑m

i=1 tiπedd
2

is an upper bound of Cm,πedd
2

and, hence dπedd
2
≥ Cm,πedd

1
+

∑m
i=1 tiπedd

2
≥ Cm,πedd

2

which implies that the completion time of the job in second position is again lower than its due date and

that the second term of the objective function is again zero, i.e. Cm,πedd
2
− dπedd

2
≤ 0 −→ max(Cm,πedd

2
−

dπedd
2

, 0) = 0.

For the job in a position j, we assume dπedd
j
≥ dπedd

j−1
+

∑m
i=1 tiπedd

j
. As Cm,πedd

j−1
≤ dπedd

j−1
from the

previous job and Cm,πedd
j−1

+
∑m

i=1 tiπedd
j
≤ Cm,πedd

j
, then the completion time of the job in position j is

lower than its due date as well as the jth term of the objective function is zero, i.e. Cm,πedd
j
− dπedd

j
≤

0 −→ max(Cm,πedd
j
− dπedd

j
, 0) = 0.

Taking into account the last expression, the minimisation of total tardiness can be written asmax
∑

max{Cm,j−

dj , 0} = max(0) and, hence, the EDD rule is optimal.

Property 5.2.5 suggests that, for instances with high values of indicator v (i.e. loose due dates)

and a high variability in the due dates of the jobs, the EDD rule may have a good performance for

Fm|prmu|
∑

Tj , as the due dates would have a greater in�uence on the objective function than the

completion times of the jobs. Clearly, for such instances, employing more sophisticated algorithms might

not pay o�.

Analysis of the methods to generate the due dates

The �ve simple properties stated above determine di�erent extreme cases of Fm|prmu|
∑

Tj and Fm|prmu|
∑

Ej+

Tj where good/optimal solutions by algorithms designed for di�erent problems (e.g. Fm|prmu|
∑

Cj and

Fm|prmu| −
∑

Cj). Obviously, the interest lies in �nding e�cient algorithms for instances in between

these extreme cases. Therefore it is useful to review the di�erent sets of instances that have been gener-

ated in the literature to check whether they adequately cover the speci�c tardiness minimisation case, or

not.

To the best of our knowledge, testbeds for both scheduling problems have been built employing three

di�erent methods to generate due dates:

• [56] generate the due dates according to a uniform distribution drawn between the sum of processing

time of the job and this sum plus an upper bound. This method for generating due dates is labelled

in the following as GS.

• [147] generate the due dates using two parameters, T and R, related to the mean and variance of

the due dates, respectively, according to an uniform distribution between P · (1 − T − R/2) and
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P · (1 − T + R/2), where P is a lower bound for the makespan. This method is labelled in the

following as PV.

• In [67], due dates are generated according to (1 + 3 · U [0, 1])
∑

tij . This method is denoted as HR

in the following.

Clearly, these methods produce instances with di�erent values of the indicator v and, in the case of the

PV method, parameter R controls the variability of the due dates among jobs. To analyse the range of

instances generated by each method, three di�erent benchmarks have been built in the following manner:

we consider the data regarding number of jobs, machines, and processing times as in the testbed B3, and

generate three testbeds:

• The �rst testbed is generated using the PV procedure with parameters T = {0.2, 0.4, 0.6} and

R = {0.2, 0.6, 1.0}, and produced 5 replicates for each combination of m, n, T , and R. In total, 540

instances were obtained (see Section 3.2 for a more detailed description of this benchmark).

• The second testbed is generated using the GS procedure. To have the same number of instances

than in the previous testbed, 45 replicates are generated for each combination of m and n.

• The third testbed is generated in an analogous manner to the previous one (with 45 replicates for

each combination of m and n), but using the HR procedure for due date generation.

For each instance in the three benchmarks, the indicator v has been calculated according to expression

(5.2), where the worst makespan, WM has been approximated using a modi�ed version of the NEH to

maximise makespan. The amount of instances for di�erent intervals of v is shown in Figure 5.1 for the

three benchmarks. In the �gure in the left side, the percentage of instances is classi�ed according to the

parameter v whereas the �gure in the right shows the cumulative percentage of instances. As can be seen,

HR and specially GS produce many instances with very low values of v for which the problem is similar

to minimising the total �owtime. For HR, 65% instances have a v lower than 0.15 while with GS all the

instances have v lower than 0.20. Hence, in this Thesis, we focus in the generation of due dates according

to the PV method, which is more likely to generate instances in the range of interest of both scheduling

problems.

Computational Analysis

To further analyse the similarities between the related scheduling problem in the chosen set of instances,

we empirically analyse the relationship between Fm|prmu|
∑

Tj and Fm|prmu|
∑

Cj , for low values of
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Figure 5.1: Distribution of the percentage of instances depending on v for di�erent generation of due
dates (In the left, the percentage of instances of the testbeds in each interval of v is shown, while the right

�gure shows the cumulative percentage of instances).

the parameter v. Thereby, we solve all instances in the testbed with the PV due date generation method

using the NEHedd heuristic and the NEH heuristic for �owtime minimisation (denoted as NEH_FT). In

addition, we obtain the solution given for each instance by the EDD rule in order to test the in�uence of

higher values of v and R. Note that there are only two di�erences between NEHedd and NEH_FT:

1. The starting order of NEHedd is the EDD rule whereas in NEH_FT the starting order is the

ascending order of the sum of the processing times, and

2. When iteratively constructing the solution, NEHedd selects the best partial sequence with lowest

total tardiness, while NEH_FT selects the one with lowest �owtime.

As seen in Section 3.3, the usual indicator of the quality of the solutions with respect to tardiness is the

relative deviation index (RDI). However, to better compare the performance obtained by the di�erent

heuristics that are to be tested in Chapter 8 and those by the NEHedd (which is the reference heuristic for

Fm|prmu|
∑

Tj problem), we build the Compared Relative Deviation Index (CRDI), which is simply the

di�erence between the RDI of the heuristic i and that of the NEHedd when both heuristics are applied

to instance j, i.e.:

RDIih −RDIi,NEHedd = CRDIih =
sumTih − sumTi,NEHedd

Worsti −Besti
· 100 (5.3)

Clearly, CRDI ∈ [−100, 100]. In the subsequent experiments, Worsti and Besti are taken from the

best and worst known total tardiness for the instances recorded in http://soa.iti.es/problem-instances.

The values of CRDIedd and CRDINEH_FT are shown in Figure 5.2 with respect to indicator v for each

instance of the benchmark, while Figure 5.3 groups the results for di�erent values of R. The following

conclusions can be obtained according to those results:
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Figure 5.2: CRDIedd and CRDINEH_FT for di�erent values of v in each instance of benchmark B3.

Figure 5.3: CRDIedd and CRDINEH_FT in each instance of benchmark B3 for di�erent values of param-
eters v and R.
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• As predicted by Property 5.2.4, the performance of NEH_FT and NEHedd procedure is very similar

for low values of v. CRDINEH_FT is on average 0.79 for instances with v < 0.1 and 2.91 for instances

with v < 0.15.

• NEH_FT outperforms NEHedd when the variance of the due dates is low, i.e. R = 0.2, even for

high values of v. The average CRDINEH_FT for R = 0.2 is -2.71. This fact can be explained if

we analyse the objective function when the variance of the due dates is zero (common due dates).

Then, minimising
∑

j max{Cm,j − dj , 0} =
∑

j∈late(Cm,j − dj) =
∑

j∈late Cm,j −
∑

j∈late dj =∑
j∈late Cm,j − L · const, where L is the number of jobs late. The �rst term is directly included in

the minimisation of total �owtime, while the second term decreases when minimising total �owtime.

• In general, the performance of NEH_FT deteriorates as v increases until it reaches medium-high

values (this is particularly clear for the combination of parameters R = 0.6 and R = 1.0), i.e.

NEH_FT procedure only performs better when the problem can be reduced to either a �owtime

minimisation problem (low v) or to a trivial one (high v).

• The performance of the EDD rule improves as v increases.

• For high values of v and a high variance of the due dates (R = 1.0), the EDD rule performs roughly

as good as the NEHedd procedure, i.e. CRDIedd ≃ 0. This could be predicted as a consequence

of Property 5.2.5, since if the variance of the due dates of an instance is high enough to verify the

conditions of Property 5.2.5, then EDD is optimal.

5.3 Processing times

This section �of computational/experimental nature� show that the Fm|prmu|Cmax problem is also em-

pirically hard, in the sense that optimal or quasi-optimal sequences statistically represent a very small

fraction of the space of feasible solutions, and that there are big di�erences among the corresponding

makespan values. In the vast majority of works solving the Fm|prmu|Cmax problem, it has been assumed

that a) processing times are not job- and/or machine-correlated, and b) all machines are initially available.

However, some works (see [206] and [144]) have found that the problem turns to be almost trivial (i.e.

almost every sequence yields an optimal or quasi-optimal solution) if one of these assumptions is dropped.

To the best of our knowledge, no theoretical or experimental explanation has been proposed by this rather

peculiar fact.

Our hypothesis is that, under certain conditions of machine availability, or correlated processing times,

the performance of a given sequence in a �owshop is largely determined by only one stage, thus e�ectively
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transforming the �owshop layout into a single machine. Since the single machine scheduling problem with

makespan objective is a trivial problem where all feasible sequences are optimal, it would follow that,

under these conditions, the equivalent Fm|prmu|Cmax problem is almost trivial. To address this working

hypothesis from a general perspective, we investigate some conditions that allow reducing a permutation

�owshop scheduling problem to a single machine scheduling problem, focusing on the two most common

objectives in the literature, namely makespan and �owtime. Our work is a combination of theoretical

and computational analysis, therefore several properties are derived to prove the conditions for an exact

(theoretical) equivalence, together with an extensive computational evaluation to establish an empirical

equivalence.

The additional notation necessary for this section can be set as follows. Let us itiπk
be the idle time

immediately before job πk on machine i of a PFSP. Clearly,

itiπk
=

 Ciπk
− Ciπk−1

− tiπk
, k ∈ 2 . . . n

Ciπk
− tiπk

, k = 1
(5.4)

or analogously,

itiπk
= max {0, Ci−1,πk

− Ci,πk−1
}, ∀k,Ci0 = C0j = 0 (5.5)

Regarding the single machine scheduling problem, denoted as SMSP, n jobs have to be scheduled in

a shop with a unique machine. The processing times and the completion times of job j in that machine

are denoted by tj and Cj respectively.

Once the PFSP and SMSP decision problems have been formulated, let us introduce some useful

de�nitions. For a given instance of the PFSP, the machine s with the highest sum of processing times is

denoted as saturated machine. More speci�cally:

s = argmax
i

∑
j

tij

The remaining machines i ̸= s are denoted as non saturated machines. Additionally, let us consider

two types of dominance between machines.

• Dominance type I, (see e.g. [11]): a machine a dominates (type I) a machine b if taj ≥ tbj′ , ∀j ̸= j
′
,

where the machine b is consequently denoted as type-I-dominated machine.

• Dominance type II, (see e.g. [73], [25] and [203]): a machine a dominates (type II) a machine b

(denoted as type-II-dominated) if min∀j taj ≥ max∀j tbj′ .
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Additionally, let us de�ne the following dominance case for a �owshop of more than two machines:

• Case ddm: Each machine i dominates (type I) machine i+ 1, ∀i ∈ [1,m− 1].

• Case idm: Each machine i dominates (type I) machine i− 1, ∀i ∈ [2,m].

• Case idm-ddm: In this case, each machine i1 (∀i1 ≤ s) dominates (type I) machine i1 − 1 and each

machine i2 (∀i2 ≥ s) dominates (type I) machine i2 + 1. Obviously, machine s is the saturated

machine.

Finally, let us de�ne the equivalence between PFSP and SMSP as follows: Given an instance I

of a PSFP with processing times tij , and Î an arti�cial instance of a SMSP with t̂j = tsj , we say

that, for instance I, both problems are equivalent regarding objective F if, for any feasible sequence

Π, FI(Π) = FÎ(Π) + constant. In other words, PFPS and SMSP are equivalent for an instance if the

objective function values of all feasible sequences applied to both problems di�er only with respect to a

constant. Obviously, for an instance where both problems are equivalent, the optimal sequences are the

same.

Theoretical analysis

Equipped with the above de�nitions, several properties can be derived to state when some PFSP instances

are equivalent to SMSP for makespan and/or total �owtime minimisation under some (rather restrictive)

assumptions. Since the PFSP with 2 machines has been widely analysed in the literature as an important

particular case of the general m-machines cases, the properties presented in this section also adopt this

division, and are formalised in two separate sections.

PFSP with 2 machines

Let �rst assume that machine s is the most saturated in the PFSP with 2 machines. In order to be able

to show that one instance of the PSFP with two machines is equivalent to the SMSP, we need to state

several properties and corollaries as well as de�ne a condition to be satis�ed for the saturated machine

(the hardest condition needed to prove the properties and corollaries is that tsj ≥ tij′ , ∀j ̸= j
′
, i ̸= s).

First, we study the case where the �rst machine is saturated, i.e. s = 1. Let us de�ne the following

property in order to provide further insight into the understanding of this case:

Property 5.3.1. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with t1πk
≥ t2πk−1

, ∀k ≥ 2. Then,

the completion time of job πk in the second machine equals its completion time on the �rst machine plus

its processing time in the second, i.e. C2πk
= C1πk

+ t2πk
, ∀k.



54 CHAPTER 5. INFLUENCE OF INPUT PARAMETERS

Proof. The property can be recursively proved in view of the de�nition of the completion time of job πk

on the �rst machine:

C1πk
=

 C1πk−1
+ t1πk

, ∀k ≥ 2

t1πk
, k = 1

and in the second one:

C2πk
=

 max {C1,πk
, C2,πk−1

}+ t2πk
, ∀k ≥ 2

t1πk
+ t2πk

, ∀k = 1

Beginning with the second job of the sequence, π2: on the one hand, taken into account t1π2 ≥ t2π1 , the

completion time on the �rst machine is C1π2 = C1π1 + t1π2 = t1π1 + t1π2 ≥ t1π1 + t2π1 = C2π1 −→ C1π2 ≥

C2π1 ; on the other hand, the completion time in the second machine is C2π2 = max {C1,π2 , C2,π1}+ t2π2 =

C1,π2 + t2π2 −→ C2π2 = C1,π2 + t2π2 using the expression of on the �rst machine.

Following with the third job of the sequence, π3: the completion time on the �rst machine is C1π3 =

C1π2 + t1π3 ≥ C1π2 + t2π2 = C2π2 −→ C1π3 ≥ C2π2 ; in the second machine, the completion time is

C2π3 = max {C1,π3 , C2,π2}+ t2π3 = C1,π3 + t2π3 −→ C2π3 = C1,π3 + t2π3 .

Analogously, in a recursive manner, for job in position k, πk: on the �rst machine, the completion

time is C1πk
= C1πk−1

+ t1πk
≥ C1πk−1

+ t2πk−1
= C2πk−1

−→ C1πk
≥ C2πk−1

; then the completion time

in the second machine is C2πk
= max {C1,πk

, C2,πk−1
}+ t2πk

= C1,πk
+ t2πk

−→ C2πk
= C1,πk

+ t2πk
.

This property extends the following result found by [120], which can be seen now as a corollary of the

above property:

Corollary 5.3.1. ([120]: First part of Theorem 3 for m = 2). Let I be an instance of the PFSP where

machine 2 is type-II-dominated by machine 1. Then, the completion time of a job on the second machine

is equal to the completion time of a job on the �rst machine plus its processing time on the second machine.

Proof. The proof of the corollary is obvious in view of Property 5.3.1.

Corollary 5.3.2. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with t1πk
> t2πk−1

,∀k ≥ 2. Then,

the idle time it2πk
is always greater than 0, i.e. it2πk

> 0, ∀k.

Proof. The proof of the corollary is obvious in view of Property 5.3.1 just by taking into account the

de�nition of idle time given in Equation (5.5).

The above property and corollaries establish respectively that the completion time of each job on the

second machine depends only on its completion time on the �rst machine and that there are always idle
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time in the second machine. This occurs if the processing time of each job on the �rst machine is higher

than its previous job on the second machine. Extending this condition to the processing time of each other

job on the second machine, the equivalence between F2|prmu|Cmax with 1||Cmax of the �rst machine is

theoretically established in the Theorem 5.3.1 with the exception of the last job of the sequence.

Theorem 5.3.1. Let I be an instance of the F2|prmu|Cmax where t1j ≥ t2j′ , ∀j ̸= j
′
(i.e. machine 2

is dominated type I), and Î be an instance of the 1||Cmax problem where t̂j = t1j. Let Π be a sequence

of the form Π := {σ, g} := (σ1, · · · , σk, · · · , σn−1, g) where g is the last job of the sequence and σ is an

unknown sequence of n−1 jobs. Let Cmax be the makespan on instance I of Π and Ĉmax be the makespan

on instance Î of Π. Then, for each feasible sequence, Cmax = Ĉmax + t2,g.

Proof. Let us consider the PFSP with two machines to minimise makespan. In view of Property 5.3.1,

Cmax = C2πn = C1πn + t2πn . Then, minimising Cmax in the F2|prmu|Cmax is equivalent to minimise

C1πn + t2πn . Considering that πn is job g, Cmax = C1πn + t2πn = C1πn + t2,g = Ĉmax + t2,g.

Corollary 5.3.3. Under the conditions of Theorem 5.3.1, the optimal solution for I and Î is the same.

Additionally, any sequence of the form Π := {σ, e} is optimal for both instances where e is the job with

the least processing time on the second machine, i.e. t2e = min∀j t2j.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.1 and since each feasible solution is

optimal for the 1||Cmax problem.

Note that the result of this theorem is given in [72] for m = 2 under more restrictive conditions, i.e.

min∀j t1,j ≥ max∀j′ t2,j′ , which can be seen now as a special case of the above result:

Corollary 5.3.4. ([72]: Theorem 2 for m = 2). Let I be an instance of the F2|prmu|Cmax where the

machine 2 is type-II-dominated by the machine 1. Then, any sequence of the form Π := {σ, e} is optimal

where σ is any sequence of n− 1 jobs and e satis�es t2e = min∀j t2j.

Proof. The proof of the theorem is obvious in view of Corollary 5.3.3.

On the other hand, the equivalence between F2|prmu|
∑

Cj and 1||
∑

Cj is theoretically proved by

Theorem 5.3.2 and Corollary 5.3.5.

Theorem 5.3.2. Let I be an instance of the F2|prmu|
∑

Cj where t1j ≥ t2j′ , ∀j ̸= j
′
(i.e. machine 2 is

dominated type I), and Î be an instance of the 1||
∑

Cj problem where t̂j = t1j. Let Π be a sequence of

the form Π := (π1, · · · , πk, · · · , πn). Let S(Π) be the total �owtime on instance I of Π and Ŝ(Π) be the

total �owtime on instance Î of Π. Then, for each feasible sequence, S(Π) = Ŝ(Π) +
∑

∀j t2,j.
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Proof. Let us consider the PFSP with two machines to minimise the total �owtime, i.e.
∑

∀j C2j . In

view of Property 5.3.1,
∑

∀j C2j =
∑

∀j(C1j + t2j) =
∑

∀j C1j +
∑

∀j t2j =
∑

∀j C1j + C where d is a

constant.

Then, the minimisation of total �owtime in the second machine (
∑

∀j C2j), goal of the F2|prmu|
∑

Cj ,

is equivalent to the minimisation of total �owtime on the �rst machine (
∑

∀j C1j) which is the goal of the

1||
∑

Cj problem of the �rst machine.

Corollary 5.3.5. Under the conditions of Theorem 5.3.2, the optimal solution for I and Î is the same

where an optimal solution is obtained ordering the jobs according to the non-decreasing processing times

on the �rst machine.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.2 and since the non-decreasing sum of

the processing times is optimal for the 1||
∑

Cj problem.

For m = 2 and a more restrictive condition of processing times, this result is found by [72]:

Corollary 5.3.6. ([72]: Theorem 4 for m = 2). Let I be an instance of the F2|prmu|
∑

Cj where the

machine 2 is type-II-dominated by the machine 1. Then, an optimal solution can be obtained ordering the

jobs in ascending order of their processing times on the �rst machine.

Proof. The proof of the theorem is obvious in view of Corollary 5.3.5

For the case where the second machine is saturated, the following property is needed to prove the

equivalence between the problems:

Property 5.3.2. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with t2πk−1
≥ t1πk

, ∀k ≥ 2. Then,

the completion time of each job, πk, on the second machine is equal to the its processing time plus the

completion time of the previous job, πk−1, on the second machine machine with the exception of the �rst

job, i.e. C2πk
= C2πk−1

+ t2πk
, ∀k ≥ 2, and C2π1 = t1π1 + t2π1 .

Proof. The proof of the property is obvious using the same reasoning as in Property 5.3.1.

This property extends the results by [72] and [120], but the opposite cannot be asserted.

Corollary 5.3.7. ([120], second part of Theorem 3 for m = 2; and [72], Lemma 1 for m = 2). Let I be an

instance of the PFSP where the machine 1 is type-II-dominated by the machine 2. Then, the completion

time of each job on the second machine is equal to the its processing time plus the completion time of the

previous job (on the second machine machine), with the exception of the �rst job in the sequence which is

equal to the sum of the processing times of this job on both machines.



5.3. PROCESSING TIMES 57

Proof. The proof of the corollary is obvious in view of Property 5.3.2.

Corollary 5.3.8. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with t1πk
≤ t2πk−1

,∀k ≥ 2. Then,

the idle time it2πk
is equal to 0, i.e. it2πk

= 0, ∀k ∈ 2 . . . n.

Proof. The proof of the corollary is obvious in view of Property 5.3.2 just by taking into account the

de�nition of idle time given in Equation (5.5).

Then, when the �rst job of the sequence is known, the equivalence between the F2|prmu|Cmax and

1||Cmax is established in Theorem 5.3.3.

Theorem 5.3.3. Let I be an instance of the F2|prmu|Cmax where machine 1 is dominated type I, and

Î be an instance of the 1||Cmax problem where t̂j = t2j. Let Π be a sequence of the form Π := {f, σ} :=

(f, σ1, · · · , σk, · · · , σn−1) where f is the �rst job of the sequence and σ is an unknown sequence of n − 1

jobs. Let Cmax be the makespan on instance I of Π and Ĉmax be the makespan on instance Î of Π. Then,

for each feasible sequence, Cmax = Ĉmax + t1,f .

Proof. The proof of the theorem is obvious in view of Property 5.3.2 and Corollary 5.3.8, or using the

reversibility property of the Fm|prmu|Cmax problem.

Note that a consequence of this theorem is that the optimal solution of both problems is identical.

Corollary 5.3.9. Under the conditions of Theorem 5.3.3, the optimal solution for I and Î is the same.

Additionally, any sequence of the form Π := {f, σ} is optimal for both instances where f is the job with

the least processing time on the second machine, i.e. t1,f = min∀j t1,j.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.3 and since each feasible solution is

optimal for the 1||Cmax problem.

A similar result is found by [72] for both m = 2 and a more restrictive condition, but the opposite

cannot be asserted.

Corollary 5.3.10. ([72]: Theorem 1 for m = 2). Let I be an instance of the F2|prmu|Cmax where the

machine 1 is type-II-dominated by the machine 2. Then, any sequence of the form Π := {f, σ} is optimal

where σ is any sequence of n− 1 jobs and f satis�es t1f = min∀j t1j.

Proof. The proof of the theorem is obvious in view of Corollary 5.3.9

Additionally, the equivalence between the F2|prmu|
∑

Cj and 1||
∑

Cj is established in Theorem 5.3.4

for the case of a �xed �rst job in the sequence.
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Theorem 5.3.4. Let I be an instance of the F2|prmu|
∑

Cj where machine 1 is dominated type I, and

Î be an instance of the 1||
∑

Cj problem where t̂j = t2j. Let Π be a sequence of the form Π := {f, σ} :=

(f, σ1, · · · , σk, · · · , σn−1) where f is the �rst job of the sequence and σ is an unknown sequence of n − 1

jobs. Let S(Π) be the total �owtime on instance I of Π and Ŝ(Π) be the total �owtime on instance Î of

Π. Then, for each feasible sequence, S(Π) = Ŝ(Π) + n · t1,f .

Proof. The proof of the theorem is obvious in view of Property 5.3.2 and Corollary 5.3.8.

Corollary 5.3.11. Under the conditions of Theorem 5.3.4 and considering f as a �xed job on the �rst

sequence position, an optimal schedule is obtained ordering the remaining jobs (sequence σ) according to

the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Theorem 5.3.4 and since each feasible solution is

optimal for the 1||
∑

Cj problem.

For a more restrictive condition, the same result is found by [72].

Corollary 5.3.12. ([72]: Theorem 3 for m = 2). Let I be an instance of the F2|prmu|Cmax where the

machine 1 is type-II-dominated by the machine 2. Then, an optimal schedule Π := {f, σ}, where f is a

�xed job on the �rst sequence position, is obtained ordering the remaining jobs (sequence σ) according to

the non-decreasing processing times on the second machine.

Proof. The proof of the theorem is obvious in view of Corollary 5.3.11

Note that the conditions to reach the equivalence between the PFSP and the SMSP to minimise

makespan and total �owtime can be reduced when initial availabilities are considered, see Theorem 5.3.5.

In this case, both problems are equivalent regardless the sequence of jobs when the conditions are ful�lled.

Theorem 5.3.5. Let I be an instance of the PFSP where machine 1 is dominated type I, and Î be an

instance of the SMSP problem where t̂j = t2j. Let a2 be the initial availability of the second machine on

both instances. Let δj the di�erence between the processing time of job j on the �rst and second machines

i.e. δj = t1j − t2j. If

a2 ≥
∑

∀δj>0

δj +max
∀j
{t1j} (5.6)

Then, the completion time of each job, πk, ∀k > 1, in the second machine is equal to the its processing

time plus the completion time of the previous job or, analogously, the idle time before job πk is always

equals to 0,
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Proof. According to the de�nition of idle time, Expression (5.5), an idle time equals to 0 implies that

C2,πk−1
≥ C1,πk

, ∀k.

For k = 1 (the �rst job in the sequence), the expression is C2,π0 ≥ C1,π1 −→ a2 ≥ t1,π1 which is

satis�ed attending to Expression 5.6.

For k = 2, C1,π2 = C1,π1 + t1,π2 = t1,π1 + t1,π2 and C2,π1 = a2 + t2,π1 as iti,π1 = 0. Then, C2,π1 ≥

C1,π2 −→ a2 + t2,π1 ≥ t1,π1 + t1,π2 −→ a2 ≥ t1,π1 + t1,π2 − t2,π1 −→ a2 ≥ t1,π2 + δπ1 . This condition is

ful�lled according to Expression 5.6.

Analogously, for a generic k = l, the condition to reach an idle time equals to zero before πl is

a2 ≥ t1,π2 +
∑

j∈[1,l] δπj . Since max∀j{t1j}+
∑

∀δj>0 δj ≥ t1,π2 +
∑

j∈[1,l] δπj and according to Expression

(5.6), the previous condition is always satis�ed.

PFSP with m machines

Similar results of the equivalence between the PFSP and the SMSP can be found for a �owshop factory

with more than two machines. In this section, we detect four possible requirement to be ful�lled by an

instance in order to achieve the equivalence between both problems.

Case ddm

Let us de�ne some properties and corollaries, before beginning analysing the equivalence between the

problems for the ddm dominance case.

Property 5.3.3. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with ti,πk
≥ ti+1,πk−1

, ∀k ≥ 2 and

∀i > 1. Then, the completion time of job πk on the last machine equals its completion time on the �rst

machine plus the sum of the processing times on the rest of machines, i.e.:

Cm,πk
= C1,πk

+
m∑
i=2

ti,πk
, ∀k

or equivalently:

Cm,πk
=

j−1∑
j=1

t1,πj
+

m∑
i=1

ti,πk
, ∀k

Proof. The proof of the property is obvious applying recursively Property 5.3.1.

The same result is also found by e.g. [11] and [203] for a more restrictive condition of dominance:

Corollary 5.3.13. ([11], Corollary 3.3; and [203], Observation 2). Let I be an instance of the PFSP

where each machine i + 1 is type-II-dominated by machine i, ∀i. Then, the completion time of a job on
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the last machine is de�ned by:

Cm,πk
=

j−1∑
j=1

t1,πj +

m∑
i=1

ti,πk
, ∀k

Proof. The proof of the corollary is obvious in view of Property 5.3.3.

Then, for this case of dominance between machines, the equivalence between Fm|prmu|
∑

Cj and

1||
∑

Cj is de�ned in Theorem 5.3.7 as well as the equivalence between the Fm|prmu|Cmax and 1||Cmax,

when the last job of the sequence is �xed, is established in Theorem 5.3.6.

Theorem 5.3.6. Let I be an instance of the Fm|prmu|Cmax where the machines are dominated according

to ddm, and Î be an instance of the 1||Cmax problem where t̂j = t1,j. Let Π be a sequence of the form

Π := {σ, g} := (σ1, · · · , σk, · · · , σn−1, g) where g is the last job of the sequence and σ is an unknown

sequence of n − 1 jobs. Let Cmax be the makespan on instance I of Π and Ĉmax be the makespan on

instance Î of Π. Then, for each feasible sequence, Cmax = Ĉmax +
∑m

i=2 ti,g.

Proof. The proof of the theorem is obvious in view of Property 5.3.3 and Theorem 5.3.1.

Theorem 5.3.7. Let I be an instance of the Fm|prmu|
∑

Cj where the machines are dominated according

to ddm, and Î be an instance of the 1||
∑

Cj problem where t̂j = t1j. Let Π be a sequence of the form

Π := (π1, · · · , πk, · · · , πn). Let S(Π) be the total �owtime on instance I of Π and Ŝ(Π) be the total

�owtime on instance Î of Π. Then, for each feasible sequence, S(Π) = Ŝ(Π) +
∑

∀j,i>1 ti,j.

Proof. The proof of the theorem is obvious in view of Property 5.3.3 and Theorem 5.3.2.

Case idm

For the idm case, the following property establishes the value of the completion time of each job on

the last machine:

Property 5.3.4. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with ti,πk−1
≥ ti−1,πk

,∀k ≥ 2 and

∀i > 1. Then, the completion time of each job, πk, on the last machine is equal to its processing time plus

the completion time of the previous job, πk−1, on the last machine machine, with the exception of the �rst

job, i.e. Cm,πk
= Cmπk−1

+ tm,πk
, ∀k ≥ 2, and Cm,π1 =

∑
∀i ti,π1 . Equivalently,

Cmπk
=

m−1∑
i=1

ti,π1 +
k∑

j=1

tm,πj , ∀k

Proof. The proof of the property is obvious applying recursively Property 5.3.2.

For more restrictive conditions, the same result is found by e.g. [11], [72] and [203].
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Corollary 5.3.14. ([72], Lemma 1; [11], Corollary 3.1; and [203], Observation 1). Let I be an instance

of the PFSP where each machine i is type-II-dominated by machine i + 1. Then, the completion time of

a job on the last machine is de�ned by:

Cm,πk
=

m−1∑
i=1

ti,π1 +
k∑

j=1

tm,πj , ∀k

Proof. The proof of the corollary is obvious in view of Property 5.3.4.

Additionally, the Property 5.3.4 implies that there is no idle time on the last machine after the �st job

of the sequence:

Corollary 5.3.15. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs and I be an instance of the PFSP

where the machines are dominated according to idm. Then, the idle time ITm,πk
is equal to 0, ∀k > 1.

Proof. The proof of the corollary is obvious in view of Property 5.3.4 just by taking into account the

de�nition of idle time given in Equation (5.5).

The equivalence between the Fm|prmu|Cmax(
∑

Cj) and 1||Cmax(
∑

Cj), when the �rst job of the

sequence is �xed, is established in Theorem 5.3.8 (5.3.9).

Theorem 5.3.8. Let I be an instance of the Fm|prmu|Cmax where the machines are dominated according

to idm, and Î be an instance of the 1||Cmax problem where t̂j = tm,j. Let Π be a sequence of the form

Π := {f, σ} := (f, σ1, · · · , σk, · · · , σn−1) where f is the �rst job of the sequence and σ is an unknown

sequence of n − 1 jobs. Let Cmax be the makespan on instance I of Π and Ĉmax be the makespan on

instance Î of Π. Then, for each feasible sequence, Cmax = Ĉmax +
∑m−1

i=1 ti,f .

Proof. The proof of the theorem is obvious in view of Property 5.3.4 and Corollary 5.3.15.

Theorem 5.3.9. Let I be an instance of the Fm|prmu|
∑

Cj where the machines are dominated according

to idm, and Î be an instance of the 1||
∑

Cj problem where t̂j = tm,j. Let Π be a sequence of the form

Π := {f, σ} := (f, σ1, · · · , σk, · · · , σn−1) where f is the �rst job of the sequence and σ is an unknown

sequence of n− 1 jobs. Let S(Π) be the total �owtime on instance I of Π and Ŝ(Π) be the total �owtime

on instance Î of Π. Then, for each feasible sequence, S(Π) = Ŝ(Π) + n ·
∑m−1

i=1 ti,f .

Proof. The proof of the theorem is obvious in view of Property 5.3.4 and Corollary 5.3.15.

Case idm-ddm

Similar to the previous case, the completion time of each job on the last machine is de�ned by the

following property for the idm-ddm case:
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Property 5.3.5. Let Π := (π1, · · · , πk, · · · , πn) be a sequence of jobs with ti1,πk−1
≥ ti1−1,πk

,∀k ≥ 2, s ≥

i1 > 1 and ti2,πk
≥ ti2+1,πk−1

, ∀k ≥ 2, i2 ≥ s, i.e. following a dominance con�guration type idm-ddm

where the saturated machine is s. Then, the completion time of each job, πk, on the last machine is:

Cmπk
=

s−1∑
i1=1

ti1,π1 +
k∑

j=1

ts,πj +
m∑

i2=s+1

ti2,πk
,∀k

Proof. The proof of the property is obvious in view of Properties 5.3.3 and 5.3.4.

For a more restrictive condition, the same result is found by [203].

Corollary 5.3.16. ([203], Observation 4). Let I be an instance of the PFSP where each machine i1 < s

is type-II-dominated by machine i1 + 1 as well as each machine s < i2 ≤ m is type-II-dominated by

machine i2 − 1. Then, the completion time of a job on the last machine is de�ned by:

Cmπk
=

s−1∑
i1=1

ti1,π1 +
k∑

j=1

ts,πj +
m∑

i2=s+1

ti2,πk
,∀k

Proof. The proof of the corollary is obvious in view of Property 5.3.5.

Then, for this case of dominance between machines, the equivalence between Fm|prmu|
∑

Cj and

1||
∑

Cj is de�ned in Theorem 5.3.11 �xing the �rst job of the sequence as well as the equivalence between

the Fm|prmu|Cmax and 1||Cmax, when the �rst and last job of the sequence is �xed, is established in

Theorem 5.3.10.

Theorem 5.3.10. Let I be an instance of the Fm|prmu|Cmax where the machines are dominated accord-

ing to idm-ddm, and Î be an instance of the 1||Cmax problem where t̂j = tsj.Let Π be a sequence of the

form Π := {f, σ, g} := (f, σ1, · · · , σk, · · · , σn−2, g) where f and g are respectively the �rst and the last job

of the sequence and σ is an unknown sequence of n − 2 jobs. Let S(Π) be the total �owtime on instance

I of Π and Ŝ(Π) be the total �owtime on instance Î of Π. Then, for each feasible sequence,

Cmax = Ĉmax +
s−1∑
i1=1

ti1,f +
m∑

i2=s+1

ti2,g

Proof. The proof of the theorem is obvious in view of Property 5.3.5.

Theorem 5.3.11. Let I be an instance of the Fm|prmu|
∑

Cj where the machines are dominated ac-

cording to idm-ddm, and Î be an instance of the 1||
∑

Cj problem where t̂j = tsj.Let Π be a sequence of

the form Π := {f, σ} := (f, σ1, · · · , σk, · · · , σn−1) where f is respectively the �rst job of the sequence and
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σ is an unknown sequence of n− 1 jobs. Let Cmax be the makespan on instance I of Π and Ĉmax be the

makespan on instance Î of Π. Then, for each feasible sequence,

S(Π) = Ŝ(Π) +
∑

∀j,i2>s

ti2,j + n ·
s−1∑
i1=1

ti1,f

Proof. The proof of the theorem is obvious in view of Property 5.3.5.

Generic Case

The assumptions to achieve this equivalence are much harder in the generic case of a factory with

m > 2 machines. In fact, it is necessary that the processing time of each job j on the saturated machine

s is higher than both the sum of the processing times on the machines before s of each job j
′ ̸= j, and

the sum of the processing times on the machines after s of each job j
′ ̸= j. Obviously, this behaviour is

hardly found in real-life environments. It thus represents only a su�cient but not necessary condition to

state the equivalence.

Theorem 5.3.12. Let I be an instance of the Fm|prmu|Cmax with tsj ≥
∑

i<s tij′ and tsj ≥
∑

i>s tij′ ,

∀j ̸= j
′
, and Î be an instance of the 1||Cmax problem where t̂j = tsj. Let f and g be the �xed �rst and

last job of a sequence of jobs Π := (f, σ1, · · · , σk, · · · , σn−2, g) where σ is an unknown sequence of n − 2

jobs. Then, the Fm|prmu|Cmax is equivalent to the 1||Cmax of machine s.

Proof. The proof is obvious using the same reasoning as Properties 5.3.1 and 5.3.2.

Theorem 5.3.13. Let I be an instance of the Fm|prmu|
∑

Cj with tsj ≥
∑

i>s tij′ and tsj ≥
∑

i>s tij′ ,

∀j ̸= j
′
, and Î be an instance of the 1||

∑
Cj problem where t̂j = tsj. Let f and g be the �xed �rst and

last job of a sequence of jobs Π := (f, σ1, · · · , σk, · · · , σn−2, g) where σ is an unknown sequence of n − 2

jobs. Then, the Fm|prmu|
∑

Cj is equivalent to the 1||
∑

Cj of machine s.

Proof. The proof is obvious using the same reasoning as Properties 5.3.1 and 5.3.2.

All the properties presented in Sections 5.3 and in this section analyse the assumptions required to

theoretically prove the equivalence between the PFSP and the SMSP of the most saturated machine, under

the minimisation of makespan and total �owtime. The equivalence between both scheduling problems is

theoretically proved in the Theorems 5.3.1, 5.3.2, 5.3.3, 5.3.4, 5.3.5, 5.3.7, 5.3.7, 5.3.8, 5.3.9, 5.3.10,

5.3.11, 5.3.12 and 5.3.13 for di�erent conditions. Given an instance, the ful�llment of these conditions

then indicates that solving the equivalent SMSP is analogous as solving the original PFSP. However, this

equivalence could be approximately satis�ed under milder conditions. In the next section, we empirically

analyse them by means of an extensive computational experience.
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Computational analysis

In this section we consider the following issues: the procedure to generate the instances; the description

of the implemented heuristics; the results for several values of the parameters of the testbed; and �nally,

the boundary lines between both problems.

Testbed generation

Using the above formulations and de�nitions, existing testbeds for the PFSP can be analysed. As men-

tioned in the previous section, most algorithms for the PFSP problem have been tested on benchmarks

where the processing times follow a uniform distribution. However, in the experiments by [206], a struc-

tured benchmark with job-correlated, machine-correlated and mixed-correlated processing times is em-

ployed. Regarding machine-correlation, processing times are generated using a uniform distribution con-

sidering the following two aspects:

• For each machine, the mean of the processing times is generated from 1 to 100 depending on a

parameter.

• For each machine, the width of the uniform distribution is uniformly generated from 2 to 10.

The goal of this section is to show that the problem can be reduced to a SMSP when there is a

machine saturated in the PFSP. The study of this equivalence between the problems must obviously be

done without the in�uences of another e�ects and therefore, a speci�c benchmark is generated to test the

experiments performed in Section 11.4, where di�erent levels for the saturated machine are considered.

Firstly, the same distribution is considered for each non-saturated machine since it is the worst case.

Additionally, the consideration of di�erent distributions in the non-saturated machines would strongly

hinder the understanding on the cause of the equivalence between the problems. Secondly, the same

width of the uniform distribution (equivalently variance) is considered for all machines (including the

most saturated one) both for clarity and to reduce the parameters of the proposed benchmark.

Taking into account the previous discussion, the processing times for our computational experience

are then generated according to the expression (5.7) for the non-saturated machines and (5.8) for the

saturated machine (denoted as s):

tij → U [ϵ · (1− β), ϵ · (1 + β)], ∀i ̸= s, j ∈ 1, . . . , n (5.7)

tsj → U [ϵ · (1 + γ − β), ϵ · (1 + γ + β)], j ∈ 1, . . . , n (5.8)
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where the following parameters must be de�ned:

• ϵ: Mean of the processing times on non-saturated machines.

• β: Half length of the interval of the uniform distribution of each machine with respect to the mean

processing time ϵ, i.e. ϵβ yields the half width of the interval, and 2 · ϵ · β is the full length of the

interval of the uniform distribution of each machine (including the saturated machine).

• γ: Increase of the mean processing times on the saturated machine s relative to ϵ. In this way,

(1 + γ)ϵ represents the expected processing time on machine s whereas the expected value of the

processing time for the rest of the machines is ϵ.

Regarding the initial availability of the machines, the following parameter must be considered in the

benchmark:

• δ: Number of jobs being processed in the shop �oor to create a �ctitious initial unavailability. More

speci�cally, we generate δ jobs, which are sequenced according to certain heuristic (in this Thesis, we

use the NEH of [127] and [48] for makespan and �owtime minimisation respectively). The processing

of these jobs according to such sequence creates ai, the initial unavailability in each machine i, which

can be computed as follows: ai = Ci,πn − C1,πn .

Implemented heuristics

The following simple 11 algorithms are implemented to analyse the relationship between SMSP and PFSP

problems. More speci�cally, we will design the following procedures:

• PF_B(MK) and PF_B(FT) will be designed to provide good �hopefully best� solutions for the

PFSP problems with makespan and �owtime objective, respectively.

• PF_W(MK) and PF_W(FT) will be designed to obtain bad �hopefully worst� solutions for the

PFSP problems with makespan and �owtime objective, i.e. they seek makespan and �owtime

maximization.

• SM_R(MK) and SM_B(FT) will be designed to provide the best solutions for the equivalent SMSP

problems if only the saturated machine in the PFSP is considered.

• SM_W(FT) will be designed to provide bad �hopefully worst� solutions for the equivalent SMSP

problem if only the saturated machine in the PFSP is considered. Note that the corresponding worst

procedure for makespan would be also SM_R(MK).
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• SM_EB(MK) and SM_EB(FT) will be designed to provide good �hopefully best� solutions for the

equivalent SMSP problems considering the saturated machine in the PFSP and the in�uence of the

last and �rst jobs in this machine.

• M_B(MK) and M_B(FT) will be designed to provide good �hopefully best� solutions for a reduced

PFSP formed by machines i
′ ∈ {s,m} for makespan and �owtime objectives, respectively.

With these procedures we can check the (statistical) equivalence of SMSP and PFSP problems on a set

of instances, since, for the cases where the objective function values found by SM_B(FT), SM_R(MK),

SM_EB(i) and M_B(i) are close to those provided by PF_B(i), and those found by SM_W(FT) and

PF_W(i) are similar, then both problems (PFSP and SMSP) are (approximately) equivalent. In order

to implement these procedures, the following decisions have been taken:

• SM_B(FT): Jobs are sorted in non-decreasing order of their processing times on machine s, which

corresponds to the optimal solution of the equivalent 1||
∑

Cj problem.

• SM_W(FT): Jobs are sorted in non-increasing processing times on machine s, which is expected to

provide a bad solution for the equivalent 1||
∑

Cj problem.

• SM_R(MK): Jobs are sorted according to sequence (1, . . . , n), which is a random solution for the

1||Cmax problem. Since, for this problem, each solution is optimal, this procedure would yield both

the best and worst solutions for the problem.

• SM_EB(MK): Since the idea is to take into account the in�uence of the �rst and last jobs of the

sequence on the non-saturated machines, the procedure reduces the Fm|prmu|Cmax to a problem

similar to the SMSP problem where the �rst and last jobs add the processing times on the machines

before and after the saturated machine s to their processing times, i.e. given a sequence Π of jobs,

the processing times are:

t
′

iπk
=


tiπk

+
∑s−1

i=1 tiπk
, k = 1

tiπk
, ∀k ̸= 1, n

tiπk
+
∑m

i=s tiπk
, k = n

To �nd a good Πf �nal sequence, as in the SM_R(MK), jobs are �rst sorted randomly (let us

denoted ΠR to this sequence). Then, two simple phases are carried out as follows to �nd the �rst

and last job:

� In case of δ = 0, the �rst job of the sequence is the job with minimal sum of processing times

before machine s, i.e. πf
1 is the job F satisfying that

∑s−1
i=1 tiF ≤

∑s−1
i=1 tij∀j. In case of δ > 0,

the �rst job is the same as in the SM_R(MK) heuristic, πf
1 = πR

1 .
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� The last job of the sequence is the job with minimal sum of processing times after machine s

respectively, i.e. πf
n is the job L which satis�es that

∑m
i=s+1 tiL ≤

∑m
i=s+1 tij , ∀j.

• SM_EB(FT): Designed for �owtime, SM_EB(FT) solves the equivalent SMSP problem as the

SM_B(FT). However, in contrast to that heuristic, the SM_EB(FT) considers the in�uence of the

�rst job in the machines before the non-saturated machine, i.e. i < s. Thereby, the processing time

of the �rst job is the sum of the processing times of the machines i ≤ s, i.e. given a sequence Π of

jobs, the processing times are:

t
′

iπk
=

 tiπk
+

∑s−1
i=1 tiπk

, k = 1

tiπk
, ∀k > 1

The procedure of the heuristic consists of two phase: �rst phase is the same heuristic SM_B(FT)

where jobs are ordered according to non-decreasing processing times on machine s; then, the �rst

job of the sequence is the job with minimal sum of processing times until machine s, i.e. πf
1 is the

job F which satis�es that
∑s

i=1 tiF ≤
∑s

i=1 tij∀j.

• PF_B(i) (i ∈ [MK,FT ]): Since the idea is to provide good solutions for Fm|prmu|
∑

Cj and

Fm|prmu|Cmax, we use the NEH heuristic of [127] and [48], respectively.

• PF_W(i) (i ∈ [MK,FT ]): Since the idea is to provide bad solutions for Fm|prmu|
∑

Cj and

Fm|prmu|Cmax, we use the NEH heuristic for makespan and total �owtime maximisation.

• M_B(i) (i ∈ [MK,FT ]): These heuristics use the same NEH heuristics to solve a reduced PFSP

considering only machines i
′ ∈ {s,m}. The operations of the jobs in the other machines are omitted.

Note that the initial availabilities, ai, are calculated from the saturated machine, i.e. ai′ = Ci′ ,πn
−

Cs,πn , ∀i
′ ∈ {s,m}.

Evaluation of the solutions

Traditionally, the related literature has used Relative Percentage Deviation (RPD) and the CPU time to

measure both the quality of the solution and the required computational e�ort of heuristic r in an instance

s. More speci�cally, the average RPD (ARPD) and the average CPU time (ACPU) obtained over a set

of S instances can be de�ned as follows:

ARPDr =

∑
∀s RPDrs

S
(5.9)
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ACPUr =

∑
∀s Trs

S
(5.10)

where

RPDrs =
OFVrs −Bests

Bests
· 100 (5.11)

OFVrs is the objective function value (makespan or total �owtime) obtained by heuristic r in instance

s. Bests is the best solution among the implemented heuristics in that instance, i.e. Bests := minr OFVrs.

Finally, Trs is the CPU time of heuristic r in instance s.

The consideration of initial availability introduces a disruption in the evaluation of the objective

function which must be taken into account. This disruption is illustrated with the following example: Let

us assume a PFSP problem with two machines and two jobs. Processing times of the �rst and second

jobs on the machines are t11 = 10, t21 = 40, and t12 = 10, t22 = 50 respectively. For the two possible

sequences i.e. π1 = (1, 2) and π2 = (2, 1), the total �owtimes are
∑

Cm,π1
j
= 150 and

∑
Cm,π2

j
= 160. In

terms of RPD, RPD(
∑

Cm,π1
j
) = 0 and RPD(

∑
Cm,π2

j
) = 6.67.

Let us now assume that the second machine is not available until time 300. Then, the total �ow-

time of both sequences change to
∑

Cm,π1
j
= 730 and

∑
Cm, π2

j = 740 respectively, while RPD are

RPD(
∑

Cm,π1
j
) = 0 and RPD(

∑
Cm,π2

j
) = 1.37. Although in this case the initial availability of the

second machine clearly does not in�uence the hardness of the problem, its in�uence on the RPDs is very

high.

To avoid this issue, we do not consider the time 0 as reference for the completion times. Instead, we

consider a reference (denoted as B) based on the �rst job of the sequence. Nevertheless, in order not to

have a sequence-dependent reference, we consider as the �rst job of the sequence all jobs and we average

theirs completion times, i.e. B =
∑n

j=1 Cm,π1=j

n . Once B is obtained, the completion time of each job on

the last machine is reduced by B for each heuristic.

Computational results

All algorithms are coded in the same language (C# under Visual Studio 2013) and under an Intel Core

i7-3770 with 3.4 GHz and 16 GB RAM. They are tested in an set of instances following the indications

of Section 5.3, which includes n ∈ {20, 50, 100, 200}, m ∈ {2, 5, 10, 20} and two values of δ ∈ {0, 100}

representing an initially empty and loaded shop respectively. Processing times are generated according to

the expression (5.7) and (5.8) with the following parameters:

• ϵ = 50.
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• β ∈ {0.10, 0.20, 0.40, 0.60, 1.00}.

• γ ∈ {0.00, 0.04, 0.08, . . . , 2.96, 3.00}.

For each combination of parameters (n, m, δ, ϵ, β and γ), 10 instances are generated forming a total

of 121,600 instances.

Values of ARPD of the heuristics with (δ = 100) and without (δ = 0) considering initial availabilities

are shown in Table 5.1 for each value of the parameter n, m and β, and for some values of γ. Clearly, the

heuristics SM_B(FT), SM_R(MK), SM_EB(i) and M_B(i) go closer to PF_B(i) when the parameters β

andm decrease, and γ and n increase. In Figure 5.4 and 5.5 for makespan and total �owtime minimisation

respectively, it can be seen the ARPD of the heuristics for the complete set of values of the parameter γ

and δ as well as the decreasing tend of each curve. Several aspects can be highlighted from the results:
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Figure 5.4: ARPD of the heuristics versus parameter gamma for makespan minimisation. On the left, no
initial availability is considered and on the right an initial δ = 100 is taken into account.

Figure 5.5: ARPD of the heuristics versus parameter gamma for total �owtime minimisation. On the left,
no initial availability is considered and on the right an initial δ = 100 is taken into account.

• Regardless the e�ects of other parameters, for high values of γ, solving the equivalent SMSP problem

or the original PFSP yield a similar solution (i.e. ARPD obtained by SM_B(FT), SM_R(MK),

SM_EB(i) and SM_B(FT) are very close to the ARPD of PF_B(i)).

• Additionally, for high values of γ, the worst solutions found in the Fm|prmu|
∑

Cj problem by

PF_W(FT) are also similar to the solutions found for the equivalent 1||
∑

Cj problem by SM_W(FT).

• The ARPD found by SM_R(MK) for the equivalent 1||Cmax problem is always between the best

and worst ARPD found by heuristics PF_B(MK) and PF_W(MK). The distance between the

three curves heavily decreases with the increase of γ which explains the trivial behaviour of the

Fm|prmu|Cmax for those cases.

• The initial availability (δ) has a strong in�uence over the ARPD of the curves as seen in Figure

5.4 and 5.5. Thereby, e.g. the ARPD of SM_EB(i) goes close to PF_B(i) regardless the other

parameters (m, n or β) from γ around 30%.

Attending to the dominance rules of Section 5.3 and 5.3, the number of machines and the bounds of

the processing times play an essential role in the comparison between the PFSP and the SMSP problems.

This in�uence is also empirically shown in this section. Thereby, the Figure 5.6 shows the evolution of

the ARPD compared with the γ parameter for di�erent number of machines. The ARPD curves clearly
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Figure 5.6: ARPD of the SM_EB(i) heuristic for di�erent values of parameter m

decrease with the decrease of the number of the machine in the shop. Note that for clarity only the

SM_EB(i) heuristics are represented although the behaviour is also similar for the other heuristics. As

the ARPDs for the PF_B(i) heuristics are always approximately zero, then values closes to zero in the

SM_EB(i) heuristics indicate the proximity in the solutions found for the original PFSP problem and for

the equivalent SMSP problem. Thereby, e.g. it can be seen that the ARPD of the SM_EB(MK) heuristic

for δ = 100 is always less than 1, regardless the value of γ.

Regarding the β parameter, its in�uence over the ARPD is shown in Figure 5.7 for the heuristics

SM_EB(i). The curves also present a high decrease in ARPD when the β parameter decrease. In fact,

from γ = 8, the ARPD for the curve β = 10 is always less than 1 regardless the objective or the value of

δ.

Boundary lines between the PFSP and the SMSP

In previous Sections, we have proved the relationship between both scheduling problems and have shown

that the ARPDs of several heuristics (designed for the original PFSP and for reduced scheduling problems)

tend to be similar for high values of γ, δ and n, and for low values ofm and β. In this section, we analyse the

conditions which have to be approximately ful�lled in order that the reduced SMSP is (roughly) equivalent

to the original PFSP. Firstly, let us consider that both problems are similar when the di�erences in the

ARPDs of the heuristics to solve both problems (i.e. PF_B(i) and SM_EB(i)) are lesser than 0.5%.
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Figure 5.7: ARPD of the SM_EB(i) heuristic for di�erent values of parameter beta

The experiments of this Section are carried out under an exhaustive set of 608,000 instances (which contain

some more values of the parameter β in comparison with previous testbed):

• n ∈ {20, 50, 100, 200}.

• m ∈ {2, 5, 10, 20}.

• ϵ = 50.

• β ∈ {0.04, 0.08, . . . , 0.96, 1.00}.

• γ ∈ {0.00, 0.04, 0.08, . . . , 2.96, 3.00}.

• δ ∈ {0, 100}.

In this set, there are 40 instances with di�erent values of n for each combination of m, β, γ and δ.

Let us denote by ARPD
′

m,β,γ,δ the average RPD of those 40 instances for each value of m, β, γ and δ as

well as by γ∗
m,β,δ, the �rst value of γ for which the ARPD

′

m,β,γ,δ < 0.5 for the instances with parameters

m, β and γ. Values of γ∗
m,β,δ are graphically shown in Figure 5.8 and 5.9 for makespan and �owtime

minimisation respectively. On the left sides of both �gures values for δ = 0 are shown while on the right

sides values for δ = 100 are shown. Additionally, for each value of m, a linear trend line is represented.

Thereby, those lines represent approximately the boundary lines (di�erence of ARPD less than 0.5%) of
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Figure 5.8: Boundary lines between the PFSP and the SMSP for makespan minimisation. On the left, no
initial availability is considered and on the right an initial δ = 100 is taken into account.

Table 5.2: Regions where solving PFSP is very similar to the SMSP for makespan minimisation

m δ = 0 δ = 100

2 γ ≥ 0.48 · β − 3.08 · 10−2, (R2 = 0.962) γ ≥ 0.49 · β − 7.12 · 10−2, (R2 = 0.890)
5 γ ≥ 1.53 · β − 12.12 · 10−2, (R2 = 0.960) γ ≥ 1.22 · β − 9.88 · 10−2, (R2 = 0.972)
10 γ ≥ 2.79 · β − 14.64 · 10−2, (R2 = 0.994) γ ≥ 2.26 · β − 20.36 · 10−2, (R2 = 0.984)
20 γ ≥ 4.22 · β − 15.58 · 10−2, (R2 = 0.997) γ ≥ 3.43 · β − 20.26 · 10−2, (R2 = 0.976)

both decision problems for a value of m and δ, i.e. for a given β , m and δ it represents the �rst value

of γ for which the ARPD between the heuristics PF_B(i) and SM_EB(i) is lower than 0.5%. The R2 of

each trend line is mostly close to 0.99. By means of those trend lines, regions with relative similar ARPD

between heuristics to solve the PFSP and the reduced SMSP are shown in Table 5.2 and 5.3 for makespan

and total �owtime minimisation respectively.

Note that these boundary lines are obviously exact over the proposed set of instances but they are

an approximation for other benchmarks or for processing times following di�erent distributions. Thereby,

they can be useful for the decision makers to give an idea of solving their manufacturing layouts, since

variables γ and β can be easily approximated by an sample of the processing times of the shop. Let µ̄1

and µ̄2 be the sample means of the processing times on the saturated machine and non-saturated machine

respectively. Additionally, let σ̄2
s be the unbiased sample variance. Then, using the de�nition of the mean

and the variance for the uniform distribution, the following expressions approximate the variables used in

this study:

• µ̄1 ≃ ϵ −→ ϵ ≃ µ̄1

• µ̄2 ≃ ϵ · (1 + γ) −→ γ ≃ µ̄2

ϵ − 1

• σ̄2
s ≃

(2·ϵ·β+1)2−1
12 −→ β ≃

√
σ̄2
s ·12+1−1

2·ϵ
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Figure 5.9: Boundary lines between the PFSP and the SMSP for �owtime minimisation. On the left, no
initial availability is considered and on the right an initial δ = 100 is taken into account.

Table 5.3: Regions where solving PFSP is very similar to the SMSP for �owtime minimisation

m δ = 0 δ = 100

2 γ ≥ 0.48 · β − 1.48 · 10−2, (R2 = 0.974) γ ≥ 0.49 · β − 1.56 · 10−2, (R2 = 0.989)
5 γ ≥ 1.21 · β − 3.40 · 10−2, (R2 = 0.991) γ ≥ 0.92 · β − 5.08 · 10−2, (R2 = 0.987)
10 γ ≥ 1.86 · β − 6.56 · 10−2, (R2 = 0.989) γ ≥ 1.35 · β − 10.12 · 10−2, (R2 = 0.989)
20 γ ≥ 3.01 · β − 7.92 · 10−2, (R2 = 0.984) γ ≥ 1.79 · β − 10.76 · 10−2, (R2 = 0.982)

5.4 Controllable processing times

Introduction

Properly speaking, resource-dependent processing times have been usually classi�ed depending on the level

of skill of the assigned resources, and/or on the amount of resources. In the former case, an operation is

performed by a resource (typically an employee) with a given level of skill or experience, and the processing

times of that operation is di�erent depending on such level (examples can be found in [87], [36], [33], [70]

and [200]). In the latter case, the processing time of an operation changes with the amount of resources

assigned to the operation. The term �controllable processing times� has traditionally been used in the

literature to re�ect this case. This section focuses on this second type. Regarding the type of resources,

the classical classi�cation of resources proposed by [8] and [184] is adopted here whereas resources are

classi�ed from the viewpoint of renewability and divisibility.

With respect to renewability:

• A resource is denoted as renewable if only its total usage is constrained at every moment, i.e. once

a resource has been used by an operation, it may be assigned to another operation.

• A resource is denoted as non-renewable if its total consumption is constrained i.e. once it is con-

sumed, it cannot be allocated to other operation.

• A resource is denoted as doubly constrained if both previous aspects are considered.
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With respect to the divisibility:

• A resource is called discrete if it can be allocated to the operations in discrete amounts, i.e. we have

a �nite set of resources.

• A resource is denoted continuous if it can be assigned to the operations in a continuous amount

between an interval.

Controllable processing times have been widely analyzed in the scheduling literature (see reviews

in [133] and [182]). Additionally, there are contributions in related decision problems such as resource

allocation or software development size team. Processing times depending on the amount of resources

have been used in many operation research problems e.g. for single-machine/�owshop scheduling, resource

allocation problems, multi-mode resource-constrained project scheduling problem (MRCPSP), etc., and

both for discrete and continuous resources. However, to the best of our knowledge, there is no analysis or

detailed discussion regarding the di�erent types of relations between processing times and the amount of

resources used in controllable-processing-times-based scheduling problems.

Notation

Firstly, it is necessary to clarify the notation to be used here. We have tried to accommodate the terms

while maintaining the original notation as far as possible.

Let us assume a job composed of several operations that have to be performed using an amount of

resources u. Depending on u, p the processing time of the operation may change, i.e. p = p(u). Addition-

ally, let us de�ne the e�ort, e = e(u) as the amount of resource-hours or resource-months (depending on

the unit of p) that an operation needs to be carried out.

Let us now de�ne S as the size of the operation or workload, which indicates the amount of work that

has to be performed to complete the operation. S is measured in the unit of the work. It is an attribute

of each operation that will be assumed constant in this section. Thus, the productivity of the operation,

Pr, can be written as a function of the size of the operation and the e�ort (see e.g. [68], [91] and [113]):

Pr =
S

e(u)
= Pr(u) (5.12)

An increase in the productivity indicates an increase in the operation size if the e�ort is constant, or

a decrease in the e�ort when the size of the operation remains the same. As it can be seen in (5.12),

the productivity only depends on the amount of resources, u. The amount of resources for which the

maximum productivity, max(Pr), is achieved is denoted as u∗ and can be obtained by maximizing the
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productivity or minimizing the e�ort. More speci�cally, we intend to �nd u∗ for which Pr(u∗) ≥ Pr(u),

∀u ̸= u∗. Since S is assumed constant, it is clear that e(u∗) ≤ e(u), ∀u ̸= u∗.

The tuple (u∗, p(u∗)), with maximum productivity is denoted as the productive con�guration or pro-

ductive points of the problem.

Properties

Next, we present two basic properties which must hold. By doing so, two regions are distinguished to

establish the limits of the area where each con�guration (u, p) can take place. Second, a general law for

productive processes is introduced in order to analyze the relations.

Property 5.4.1. Assuming that the same amount of resources is available for each period, the processing

time of the operation must ful�ll: p ≥ constant/u, i.e. the processing time must be over an ideal boundary

which corresponds to an inverse proportional relation between p and u as de�ned in Figure 5.10.

Proof. If the same amount of resources is employed throughout the duration of the operation, the e�ort

can be written as the amount of resources times the processing time of the operation (5.13):

e = p(u) · u (5.13)

Substituting in the expression (5.12):

Pr(u) =
S

p(u) · u
(5.14)

As shown in (5.13), maximizing the productivity is equivalent to minimize the e�ort, therefore:

∂p(u · u)
∂u

= 0 =
∂p(u)

∂u
+ p(u) −→ ∂p(u)

∂u
= −p(u)

u
(5.15)

Thus, solving the di�erential equation, the point(u, p) reaching the maximal productivity is:

p(u) =
k

u
(5.16)

Corollary 5.4.1. Each tuple (u, p) under the ideal boundary, p(u) ≤ k/u, is infeasible (see Figure 5.11)

otherwise, p(u) ≥ k/u, is feasible.

Proof. Trivial in view of Property 5.4.1.
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Figure 5.10: Ideal Boundary.

Figure 5.11: Infeasible Region.

For a tuple (u1, p1) in the ideal boundary, any other tuple (u, p) placed in the region �Dominated

Region� (in Figure 5.12) is dominated by (u1, p1), since the latter achieves less processing times with

less amount of resources. Note that points that are non-dominated by others are labelled as �e�cient�

according to the discussion shown in e.g. [29] and [66]. Hence, any tuple (u, p) candidate to be chosen as

con�guration of the problem must be located outside both the infeasible region and the dominated region,

as we can see in Figure 5.13. In general, at least one tuple with minimal u · p must exist representing

the most productive con�guration to perform the operation, i.e. the productive con�guration (u∗, p(u∗)).

Since the goal pursued by companies is to minimize both the processing times and the amount of resources,

di�erent trade-o�s can be established, which leads to a number of non-dominated solutions forming a

Pareto frontier. Note that the points over this frontier are dominated and cannot be considered as

possible con�gurations for the operation, i.e. non-dominated processing times must be a non-increasing

function of the amount of resources assigned to the operation, dp(u)/du ≤ 0 for each u ∈ [u
	
, ū].

Property 5.4.2. Given some amount of resources u
′
, the ful�llment of the law of diminishing marginal

returns is the same as the ful�llment of d(1/p(u))
du (u2) <

d(1/p(u))
du (u1), ∀u2 > u1 > u

′
.

Proof. The law of diminishing marginal returns establishes that, given some amount of resources denoted

as u
′
, the output of a productive process increases at a decreasing rate when the amount of recourse
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Figure 5.12: Dominated Region.

Figure 5.13: Example for many con�gurations p-u.
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increases (see e.g. [7] and [145]). Considering the output Y = S/(p(u)) as the amount of the operation

size performed in each time period and the input X = u, the law of diminishing marginal returns can be

written as:

Y (X2) > Y (X1) and
dY

dX
(X2) <

dY

dX
(X1), ∀X2 > X1 > X

′
(5.17)

Substituting Y and X in the expression (5.17):

d
(

S
p(u)

)
du

(u2) <
d
(

S
p(u)

)
du

(u1) −→
d
(

1
p(u)

)
du

(u2) <
d
(

1
p(u)

)
du

(u1),∀u2 > u1 > u
′

(5.18)

Corollary 5.4.2. Given some amount of resources u
′
, the processing times of the operation must satisfy

d2( 1
p(u) )

du2 < 0, ∀u′
< u < ū.

Proof. Trivial in view of Property 5.4.2.

This property, together with the previous one, is used in this section to analyze the di�erent relations

used in production management. Although in production management the output must satisfy the law

of diminishing marginal returns, there is no such condition for renewable discrete resource (manpower).

However, there are several results based on the experimentation for manpower in the literature. Among

them, [131] established that the u-productivity graphics must be similar to an inverted U-shaped where

it is assumed that there is only a single productive con�guration with maximum productivity de�ned by

the tuple (u∗, p(u∗)) ([6]). The productivity decreases for u > u∗, this scenario is denoted as EC in the

following,due to the fact that there is too much coordination and communication if more employees are

assigned ([143] and [185]), and that these di�culties in communication increase with the size of the team

([167] and [51]). It is also assumed that there is a decrease in productivity due to lack of specialization,

denoted as LS, in small teams if fewer employees are assigned (i.e. for u < u∗). This fact is con�rmed by

[35], who also cite other di�culties such as making trade-o� decisions, or managing error backlog.

The main relations between processing times and amount of resources are presented and classi�ed in

Table 5.4 where b, d, k, ec, f , g, h and i are constants.

We summarize the main characteristic of each relationship in Table 5.5. Columns 2 and 3 indicate

the environment where each relation has been used, while the type of resource used is shown in column

4. The next two columns indicate the amount of productive points in the expression and their position,

respectively. 7th and 8th columns are related to the ful�llment of the diminishing marginal returns law
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Table 5.4: Main relations between processing times and amount of resources

Relationship Expression
Linear relation p(u) = p̄− b · u with u

	
≤ u ≤ ū

Convex relation p =
(
d
u

)k
Convex relation + Constant p = b+

(
d
u

)k
with u

	
≤ u ≤ ū

Convex + Communication p = d
u + ec · u · (u− 1)

Hyperbola
(

e−h
f

)2

−
(

u−i
g

)2

= 1

Multimode �
Piecewise Linear �

and the inverted U-shaped, respectively. In the last column, the number of constants necessary to ful�ll

each p−u relation has been represented. Note that a higher value of the number of constants means more

di�culty to con�gure the model.
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Figure 5.14: Location of the problem based on the mean and variance of the due dates.

5.5 Conclusions

Due dates

According to the previous analysis in Section 5.2, the Fm|prmu|
∑

Tj on an instance is bounded by three

di�erent problems depending on v and on the variance of the due dates of the jobs, as shown in Figure

5.14. Roughly speaking, high values of the mean and variance of the due dates correspond to a problem

where the EDD rule is optimal (see Region 3 of Figure 5.14). Low values of the mean and variance

determine a problem similar to Fm|prmu|
∑

Cj (see Region 1 of Figure 5.14). Finally, high values of the

mean of the due dates combined with a low variance correspond to a trivial problem where each sequence

is optimal (Region 2). The interesting region to be analysed for the Fm|prmu|
∑

Tj problem is the region

between 1, 2 and 3, since otherwise we would be solving a di�erent decision problem.

Regarding the Fm|prmu|
∑

Ej + Tj , it is bounded by the Fm|prmu|
∑

Cj in case of tight due dates,

and the Fm|prmu| −
∑

Cj problem in case of loose due dates. Typically, the good performance of a

constructive heuristic is due to the fact that the objective computed in the iterations of the algorithm

is similar to the objective function of the problem. Thereby, when minimising e.g. total �owtime in

the PFSP, the choice of a partial sequence ful�lling the minimisation of total �owtime clearly seems to

have a good performance when the sequence is completed. This is a consequence of having a regular

measure as objective. Since this is not the case for the Fm|prmu|
∑

Ej + Tj due to its relationships
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with Fm|prmu|
∑

Cj and Fm|prmu| −
∑

Cj for extreme values of the due dates, the algorithm may

not work well. In fact, Properties 5.2.2 and 5.2.2 con�rm this fact and show how the objective of the

constructive heuristics in their iterations could be distorted: A partial sequence could have loose due dates

but, once completed, these due dates would become tight and thus, the algorithm would solve a completely

di�erent objective during its iterations than the objective function. This fact could also explain the good

performance of composite heuristics as compared to constructive heuristics (as discussed in Chapter 9).

In order to overcome the aforementioned problems, e�cient heuristics for Fm|prmu|
∑

Ej +Tj should be

designed according to the following ideas:

• They should be very fast in order to work as soon as possible with complete sequences. In this

manner, it is easier to identify whether the instance has loose due dates, or tight ones.

• They should incorporate an analysis of both sequenced and non-sequenced jobs in each iteration.

• They should avoid the use of local search procedures operating with non-complete sequences.

Processing times

Regarding conclusions about the processing times of the jobs in the PFSP, on the one hand, theoretical

results prove that both problems (the PFSP and the SMSP) are equivalent under several conditions.

Although those conditions are hardly present in a real manufacturing environment (mostly in shops with

several machines), they are su�cient but not necessary conditions and they only give an idea of the

relationship between both problems. On the other hand, the empirical comparison stresses the high

relationship between both problems. It has been showed that the increase of γ (related to the dispersion

of the processing times) and n and the decrease of β (related to the predominance of the most loaded

machine) and m makes the PFSP to be more similar to a SMSP. In fact, for low values of β and/or m,

procedures for the equivalent SMSP are able to �nd similar or even better solutions than the heuristics to

solve the original PFSP. In order to empirically establish the frontier between both problem, an extensive

set of instances with 608,000 instances has been generated. Then, we have determine several boundary

lines depending on the number of machines in the shop. Given a con�guration in the shop (number of

machines, initial machine availabilities, objective to be solved, length or variation of the processing times

on the machines), these lines show the value of γ causing the di�erence of ARPD between the heuristics

of both problems to be less than 0.5% on the analysed set of instances.

The relation between both scheduling problems remarks the importance of the pre-processing of the

processing times of the problems as well as the importance of the right choice of the scheduling problem to

be solved which do not have to necessary have the original machine environment of the shop. Additionally,
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it explains the behaviour found in the paper of [206] and [144] where the Fm|prmu|Cmax has been found

to be easily solvable for structured instances and for machines with initial availabilities respectively.

Controllable processing times

The following conclusions can be obtained for the controllable processing times regarding the productive

point, the law of diminishing marginal returns and the renewable discrete resources. Beginning with the

productive con�guration, it is found that:

• The productive con�guration obtained by the relations convex relation with k = 0.5, convex relation

with k = 0.5+ constant, convex relation with k = 1+ constant or the convex plus communication

is a unique productive point which is necessarily the left endpoint. Hence, feasible points are only

on the right of that point. Thereby, regarding manpower, only the excess of communication can be

modelled.

• The productive con�guration is placed either in one endpoint or eventually in both endpoints by

the linear relation.

• Convex relation with k = 1 corresponds with the ideal boundary.

• Control over the productive point is only allowed for non-renewable resources by the convex relation

with k = 2+ constant and for renewable resources by hyperbola and multi-mode.

Regarding the law of diminishing marginal returns, the following aspects can be summarized:

• The relations that partially satisfy the law of diminishing marginal returns (only for the decreasing

part of the law) are the convex relation with k < 1, the convex relation with k = 0.5+ constant, the

convex relation with k = 1+ constant since the u
′
must be placed in the left endpoint.

• The convex relation with k = 2+ constant ful�lls the diminishing marginal returns law for any

amount of resources bigger than d/
√
3 · b, i.e. u′

= d/
√
3 · b.

• The linear relation, the convex relation with k = 1 and the piecewise linear relation does not ful�ll

this law.

With respect to renewable discrete resource:

• The convex relation with k = 1 does not re�ect the reality for manpower.

• The inverted U-shaped is only ful�lled by the hyperbola and the convex relation with k = 2 plus a

constant and eventually, by the multimode and the piecewise linear relation.
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• The lack of specialization can be also eventually approximated by the linear relation.
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Chapter 6

PFSP to minimise makespan

6.1 Introdution

In this section, dealing with speci�c objectives SO2, SO3 and SO4, we propose a new tie-breaking mecha-

nism that outperforms existing ones both in the NEH and in the Iterated Greedy, as well as an extensive

computational evaluation of algorithms. The rationale of our proposed tie-breaking mechanism is rel-

atively simple, as it seems intuitive that lower values of the total idle time would mean less delays in

the processing of the jobs, which would eventually lead to a better utilization of the machines and to a

shortest makespan value once all jobs have been positioned. The challenge is to calculate these idle times

in an e�cient manner, particularly taking into account that Taillard's acceleration provides a very fast

mechanism to evaluate the subsequences which is at the core of the excellent performance of NEH and

Iterated Greedy. Our proposal is to use an ersatz of the idle times that can be calculated in parallel to

the evaluation of the makespan of the subsequences and thus not adding computational complexity to the

algorithms.

This chapter is organized as follows: Section 6.2 is devoted to explain the proposed tie-breaking

mechanism. In Section 6.3, our proposal is compared against existing tie-breaking mechanisms when

embedded in the NEH, and in the IG_RSLS and IGRIS algorithms. In Section 6.4 an exhaustive

computational evaluation is performed comparing the proposed mechanisms with the most promising

heuristics and metaheuristics in the literature. Finally, in Section 6.5, the main conclusions are discussed.

89
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6.2 The proposed tie-breaking mechanism

The tie-breaking mechanism presented in this chapter (denoted by TBFF in the following) is related to the

minimisation of total idle times. According to [42], the de�nition of machine idletime is not unambiguous

and at least three di�erent ways have been used:

• The idletime considering front delays (time before �rst job) and back delays (time after the last job

on the machine).

• Excluding front and back delays.

• Including front delays and excluding back delays.

In this chapter, we assume the third de�nition of the idle time. Therefore, iti the idle time of machine i

can be calculated according to the expression iti = Cin−
∑n

j=1 pij and the total idle time by it =
∑m

i=1 iti.

If we denote by ∆ij the idle time in machine i induced between the completion of job in position j and

the beginning of job in position j + 1, then ∆ij can be written in terms of equations (2.2) as follows:

∆ij = (ei,j+1 − pi,j+1)− eij (6.1)

The �rst two terms in the right side of the equation indicate the starting time of job in position j+1,

therefore subtracting the completion time of job in position j yields the idle time between jobs in positions

j and j + 1 in machine i. Clearly, iti =
∑n−1

j=0 ∆ij , and therefore it =
∑m

i=1

∑n−1
j=0 ∆ij

In order to explain the tie-breaking mechanism, let us assume that we have a subsequence of k−1 jobs

(see Figure 6.1). Then, an unscheduled job r is going to be inserted in all positions in the subsequence

in order to select the position yielding the minimum makespan. If ties occur, then the position whose

insertion yields the minimum total idle time is to be selected. Note that, if the unscheduled job is to be

inserted in position l, then gi,l−1 the cumulative idle times on machine i induced by jobs prior to position

l − 1 is:

gi,l−1 =

l−2∑
j=0

∆ij =

l−1∑
j=1

[(eij − pij)− ei,j−1] (6.2)

Analogously, hil the cumulative idle times on machine i induced by jobs after position l is:

hil =
k−2∑
j=l

∆ij =
k−2∑
j=l

[(ei,j+1 − pi,j+1)− eij ] (6.3)
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Figure 6.1: Sequence of jobs before inserting the new job in position l

It is clear that, for each machine i, when an unscheduled job r (with tir its processing time on machine

i) is inserted in position l (see example in Figure 6.2), gi,l−1 remains the same. However, this does not

happen for hil, which would have to be recomputed. Unfortunately, doing so would substantially increase

the computation time since Taillard's acceleration cannot be employed to calculate the new idle times.

As a consequence, we suggest using an estimation of the idle time as tie-breaking indicator, based on the

assumption that the new ∆ij values for jobs in positions l+1 to k are not very di�erent from the old ones.

Therefore, when inserting an unscheduled job, eij , qij and fil are used according to equations (2.2-2.4) in

order to obtain the makespans for each position. Then, the position yielding the minimum makespan is

selected. In case of ties, we calculate an estimation of the new idle time denoted by it
′
(l) for each position

l for which the tie occurs, and selects the position l yielding the minimum makespan for which it
′
(l) is

minimum:

it′(l) =
m∑
i=1

(
gi,l−1 + hil +∆

′

i,l−1 +∆
′

il

)
(6.4)

The �rst term in Equation (6.4) denotes the idle time in machine i caused by the jobs prior to position

l − 1. This value has been already obtained, as it has not been modi�ed by the insertion of the job. The

second term is the idle time in machine i caused by jobs in (old) positions l to k − 1 (now positions l+ 1

to k once the job is inserted). As stated before, after the insertion of job l, this is not anymore the idle

time of the new sequence, but we will assume that they are the same (hence the estimation). Finally, the

insertion of the job in position l induces a new idle time between the job in position l− 1 and the new job

(denoted by ∆
′

i,l−1), and between the new job and the job in the old position l (l+1 after the insertion),

denoted by ∆
′

i,l. Both terms can be easily calculated from the data obtained from Taillard's acceleration:
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∆
′

i,l−1 = (fil − tir)− ei,l−1 (6.5)

and

∆
′

i,l = max{f
′

i−1,l − fil, 0} (6.6)

where f
′

i−1,l is the completion time on machine i of the job which before was in position l (after

inserting the new job, it corresponds to the job placed in position l+ 1) and can be computed as follows:

f
′

il = max{fil, f
′

i−1,l}+ pil, i = 1 . . .m (6.7)

and f
′

0l = 0 being pi,l the processing time of the job that before was in position l.

Note that Equation (6.4) can be simpli�ed by means of the idle time, ∆i,l−1, between the job in

position l − 1 and l:

it′(l) =

m∑
i=1

(
gi,l−1 + hil +∆i,l−1 −∆i,l−1 +∆

′

i,l−1 +∆
′

il

)
(6.8)

it′(l) =
m∑
i=1

(gi,l−1 + hil +∆i,l−1) +
m∑
i=1

(
∆

′

i,l−1 +∆
′

il −∆i,l−1

)
(6.9)

Equation (6.9) can be decomposed into two terms, i.e.:

it′(l) = C + it
′′
(l) (6.10)

where C =
∑m

i=1 (gi,l−1 + hil +∆i,l−1) is a constant that does not depend on the tie-breaking l, and

it
′′
(l) is:

it
′′
(l) =

m∑
i=1

(
∆

′

i,l−1 +∆
′

il −∆i,l−1

)
=

m∑
i=1

(
fil − eil + pil − tir +max{f

′

i−1,l − fil, 0}
)

(6.11)

where it has been used that ∆i,l−1 = (eil−pil)−ei,l−1, see Equation (6.1). Additionally, since
∑m

i=1 tir

is the same regardless the position l where the job is inserted, we can de�ne it
′′′
(l) a more concise indicator

equivalent to it
′′
(l) as follows:
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Figure 6.2: Sequence of jobs after inserting the job in position l

it
′′′
(l) =

m∑
i=1

(fil − eil + pil +max{f
′

i−1,l − fil, 0}) (6.12)

Therefore, the proposal breaks the ties according to the minimisation of it
′′
(l) �or, equivalently, to the

minimisation of it
′′′
(l). The pseudo code of this tie-breaking mechanism for the NEH is shown in Figure

6.3. Note that the idle time it
′′
(l) is forced to be zero for the last job to be inserted, i.e. no tie-breaking

mechanism is considered for the last job to be inserted. It can be easily checked that the insertion of tie-

breaking mechanism does not alter the complexity of the algorithm, i.e. it remains O(n2 ·m). Analogously,

this mechanism can be easily incorporated in the constructive and in the local search phase of IG_RSLS

[174], and in the IGRIS by [138].

6.3 Computational comparison of tie-breaking mechinisms

The tie-breaking mechanisms described in the previous section have been coded in C# and embedded

into the NEH and the two versions of the Iterated Greedy. As for initial ordering in the NEH, the

non-increasing order of the sum of the processing times has been adopted. This is the initial order of the

original NEH and it has been chosen because, on one hand, it is the most widely-employed mechanism and

the results are easier to compare with the rest of the literature. On the other hand, this allows focusing

exclusively on insertion tie-breaking mechanisms and removes the possible in�uence of more elaborated

initial ordering rules such as the ones discussed above. Nevertheless, we also provide the results using

these more advanced initial orderings.

The computational experiments are carried out on an Intel Core i7-930, 2.8GHz, 16GB RAM under

Windows 7. This section is divided into two parts depending on which heuristic (NEH or Iterated Greedy
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π
′ ←− Sort in decreasing order of sum of processing times pij ;

π ←− π
′

1;
for k = 2 to n do

r ←− πk
′;

Determine the values of eij , qij and fil from Taillard's acceleration (see equations 2.2, 2.3, and 2.4);
Determine minimal makespan resulted of testing the job r in all possible positions of π;
bp←−First position where the makespan is minimal;
tb←− Number of positions with minimal makespan (i.e. number of ties);
ptb←− Array (of length tb) with the positions where the makespan is minimal;
itbp is the idletime corresponding to the bp and set to a very large number;
if tb > 1 and k < n then

for l = 1 to tb do

it
′′ ←− 0;

if ptb[l] = k then
for i = 2 to m do

it
′′ ←− it

′′
+ fi,k − ei,k−1 − ti,r;

end

else

f
′

1,ptb[l] ←− f1,ptb[l] + p1,ptb[l];

for i = 2 to m do

it′′ ←− it
′′
+ fi,ptb[l] − ei,ptb[l] + pi,ptb[l] − ti,r +max{0, f ′

i−1,ptb[l] − fi,ptb[l]};
f

′

i,ptb[l] ←− max{f ′

i−1,ptb[l], fi,ptb[l]}+ pi,ptb[l];

end

end

if itbp > it
′′
then

bp←− ptb[l];
itbp ←− it

′′
;

end

end

end
π ←− Array obtained by inserting job r in position bp of π;

end

Figure 6.3: Our Tie-Breaking Method
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Table 6.1: Average relative percentage deviation of NEH implemented with tie-breaking mechanisms

Instance TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 3.300 2.655 2.638 2.729 2.293
20 x 10 4.601 4.661 4.488 4.312 4.152
20 x 20 3.731 3.443 3.683 3.407 3.305
50 x 5 0.727 0.497 0.586 0.588 0.922
50 x 10 5.073 5.082 5.022 4.875 5.150
50 x 20 6.648 6.091 6.274 6.412 6.207
100 x 5 0.527 0.459 0.354 0.397 0.378
100 x 10 2.215 2.065 1.829 1.771 2.182
100 x 20 5.345 5.235 5.417 5.284 5.021
200 x 10 1.258 1.182 1.179 1.166 0.984
200 x 20 4.408 3.901 4.243 4.232 4.037
500 x 20 2.066 1.779 2.080 2.020 1.776
Average 3.325 3.088 3.149 3.099 3.034

Algorithm) the tie breaks are implemented.

Comparison of tie-breaking mechanisms for the NEH

The performance of the NEH with the tie-breaking mechanisms by [35] (denoted as TBD), [83] (labelled

TBKK1), [84] (denoted as TBKK2) and our proposal, as well as with the original tie-breaking mechanism

of the NEH (labelled TBFS in the following) are compared using the benchmark B1. Note that, although

in [86] it was established that Dong's tie-breaking mechanism outperformed the two suggested by Kalczyn-

ski&Kamburowski for the NEH, we nevertheless include them to test them against the proposal and to

make the comparison homogeneous with that of the IG (for which none of the mechanisms' performance

was tested).

For each instance, the RPD2 is computed with respect to the best known solution according to

Expression (3.2), where Oih is the solution obtained for instance i by the NEH algorithm using the j

tie-breaking mechanism while UB is the best known solution or the lowest known upper bound value for

the instance. The Average RPD2 (ARPD2) values are obtained by averaging RPD2 for each instance

size or for the whole testbed. The results in Table 6.1 show that the ARPD2 found by the original NEH

is 3.325 while each other tie break yields better ARPD2, being the value of 3.034 the best one, obtained

by our tie-breaking proposal.

Since we use the same test bed for all tie-breaking mechanisms, being each one a version of the same

algorithm, the random variables (ARPD2) are related and the hypothesis of independence can be rejected.

Therefore, a paired samples t-test (shown in Table 6.2) can be used to compare the results. Note that

paired samples t-test is a usual test to establish the statistical signi�cance of the di�erences in the perfor-
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Table 6.2: Paired samples t-test for NEH using Taillard's benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance
TBFS - TBFF 0.291 0.806 0.146 0.437 3.958 0.000
TBFS - TBD 0.237 0.852 0.084 0.391 3.054 0.003

TBFS - TBKK1 0.176 0.736 0.043 0.308 2.626 0.010
TBFS - TBKK2 0.226 0.711 0.098 0.354 3.490 0.001
TBD - TBFF 0.054 0.770 -0.086 0.193 0.764 0.446

TBKK1 - TBFF 0.115 0.842 -0.037 0.268 1.502 0.136
TBKK2 - TBFF 0.066 0.877 -0.093 0.224 0.819 0.415

Table 6.3: Paired samples t test for NEH using the extended benchmark

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance
TBFS - TBFF 0.226 0.496 0.177 0.274 9.117 0.000
TBFS - TBD 0.169 0.486 0.121 0.216 6.943 0.000

TBFS - TBKK1 0.102 0.466 0.056 0.148 4.375 0.000
TBFS - TBKK2 0.126 0.472 0.080 0.173 5.351 0.000
TBD - TBFF 0.057 0.450 0.013 0.101 2.545 0.011

TBKK1 - TBFF 0.124 0.490 0.076 0.172 5.057 0.000
TBKK2 - TBFF 0.099 0.410 0.059 0.140 4.849 0.000

mance of algorithms for �owshop scheduling problems in Taillard's testbed (see e.g. [60, 191, 34]). In view

of the values of the signi�cance levels, it can be stated that each tie-breaking mechanism is statistically

signi�cant with respect to TBFS . However, no statistical signi�cance among the rest of the tie-breaking

mechanisms can be found due to the small size of the benchmark, a fact also noted by [84] when proposing

their tie-breaking mechanisms. Therefore, in line with these authors, an extended test-bed of 400 instances

with n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}, and m ∈ {5, 10, 15, 20}, with 10 replications for

each combinations of n and m is generated with the processing times uniformly distributed in the interval

[1, 99]. A paired-samples t-test (shown in Table 6.3) was performed, indicating that our proposal is statisti-

cally signi�cant with respect to the other tie-breaking mechanisms, being 0.01 the maximum p-value found.

Results of the NEH algorithm with the proposed tie-breaking mechanism using di�erent initial orders

are shown in Table 6.4 for the Taillard's testbed. As explained above, three di�erent initial orders

outperforming the original non-ascending order of the sum of their processing times have been proposed

in the literature by [84] (denoted as KK1 − Init), by [35] (denoted as AvgDev − Init); and by [85]

(denoted as KK2 − Init). All three were implemented in order to obtain the best initial order for the

NEH using our tie-breaking mechanism. The ARPD2 using the initial order AvgDev was 2.897 being

the best initial order for Taillard's testbed, a result in line with those obtained by [86].
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Table 6.4: Average relative percentage deviation of NEH implemented with our tie-breaking mechanisms
and di�erent initial order

Instance KK1− Init KK2− Init AvgDev − Init Original
20 x 5 2.484 2.372 2.559 2.293
20 x 10 4.919 4.453 3.543 4.152
20 x 20 3.265 3.509 3.331 3.305
50 x 5 0.555 0.791 0.749 0.922
50 x 10 4.865 4.861 4.905 5.150
50 x 20 6.139 7.026 5.812 6.207
100 x 5 0.379 0.321 0.412 0.378
100 x 10 1.961 2.057 1.719 2.182
100 x 20 5.284 5.114 5.147 5.021
200 x 10 1.030 0.899 0.987 0.984
200 x 20 3.712 3.895 3.885 4.037
500 x 20 1.726 1.650 1.713 1.776
Average 3.027 3.079 2.897 3.034

Comparison of the tie-breaking mechanisms in the iterated greedy

As explained before, the iterated greedy has two parameters (T, d) to be set. [174] conducted a full

factorial design to determine both parameters, resulting d = 4 and T = 0.4 as the best combination.

Therefore, these values are used in our implementation. Two versions of the iterated greedy are analysed:

IG_RSLS as in [174] and IGRIS as proposed by [138]. The tie-breaking mechanism analysed in Section

6.2 was integrated in these Iterated Greedy Algorithms, together with our proposal. In order to compare

them, the same test bed as in [174] was employed, i.e. Taillard's benchmark using 5 replicates for each

instance to increase the power of the analysis.

The termination criterion considered for both versions of the Iterated Greedy is the CPU time. In

line with most papers, this time t depends on the amount of jobs and machines, i.e. t = n · (m/2) · 30,

t = n · (m/2) · 60 and t = n · (m/2) · 90 milliseconds (see e.g. [174], or [195]). ARPD2 results for

each version of the iterated greedy algorithm and for each tie-breaking mechanism are shown in Tables

6.5, 6.6 and 6.7 for each stopping time, respectively. The results show that the ARPD2 for IG_RSLS

with our tie-breaking mechanism is the best for every stopping time, being the average results 0.461,

0.376 and 0.350 respectively. Kalczynski & Kamburowski's tie-breaking mechanism II also yields good

ARPD2 results: 0.518, 0.446 and 0.418 respectively. Both mechanisms performs better than the original

iterated greedy algorithm. Nevertheless, it is to note that Dong's tie-breaking mechanism and Kalczynski

& Kamburowski's tie-breaking mechanism I give worse results when included in IG_RSLS .

Furthermore, a paired-samples t- test was carried out in order to analyse the di�erent mechanisms

(see Table 6.8). Our tie-breaking mechanism was found to be statistically signi�cant with respect to every
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Table 6.5: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n · (m/2) · 30 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.045 0.066 0.076 0.049 0.076 0.037 0.041 0.076 0.053 0.041
20 x 10 0.055 0.052 0.087 0.080 0.104 0.080 0.096 0.099 0.064 0.057
20 x 20 0.092 0.095 0.085 0.066 0.114 0.081 0.093 0.098 0.090 0.092
50 x 5 0.007 0.039 0.021 0.003 0.017 0.006 0.020 0.024 0.007 0.006
50 x 10 0.724 0.754 0.842 0.707 0.566 0.683 0.651 0.787 0.666 0.621
50 x 20 1.199 1.188 1.228 1.191 1.134 1.160 1.066 1.195 1.149 1.173
100 x 5 0.005 0.066 0.030 0.013 0.014 0.005 0.067 0.018 0.013 0.013
100 x 10 0.274 0.383 0.415 0.215 0.226 0.258 0.301 0.336 0.202 0.219
100 x 20 1.624 1.446 1.789 1.624 1.346 1.547 1.365 1.770 1.542 1.387
200 x 10 0.317 0.477 0.284 0.140 0.155 0.267 0.361 0.263 0.161 0.148
200 x 20 1.656 1.401 1.925 1.466 1.239 1.549 1.287 1.898 1.478 1.248
500 x 20 0.767 0.724 1.033 0.668 0.542 0.728 0.621 0.987 0.626 0.530

Average 0.564 0.558 0.651 0.518 0.461 0.534 0.497 0.629 0.504 0.461

Table 6.6: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n · (m/2) · 60 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.024 0.039 0.041 0.041 0.032 0.032 0.041 0.041 0.032 0.041
20 x 10 0.043 0.031 0.049 0.057 0.059 0.038 0.042 0.064 0.032 0.046
20 x 20 0.067 0.042 0.047 0.049 0.057 0.052 0.070 0.066 0.060 0.071
50 x 5 0.004 0.009 0.016 0.003 0.007 0.000 0.026 0.010 0.004 0.001
50 x 10 0.529 0.615 0.692 0.595 0.441 0.549 0.524 0.626 0.584 0.478
50 x 20 1.044 1.005 1.047 0.978 1.048 1.011 0.940 1.060 1.008 1.012
100 x 5 0.008 0.056 0.011 0.006 0.006 0.006 0.028 0.006 0.006 0.009
100 x 10 0.218 0.228 0.310 0.170 0.149 0.173 0.214 0.223 0.184 0.111
100 x 20 1.423 1.317 1.643 1.449 1.118 1.394 1.145 1.589 1.402 1.245
200 x 10 0.250 0.397 0.217 0.092 0.093 0.174 0.271 0.188 0.113 0.101
200 x 20 1.407 1.217 1.819 1.313 1.049 1.407 1.125 1.754 1.401 1.036
500 x 20 0.720 0.627 0.992 0.602 0.453 0.650 0.519 0.958 0.573 0.473

Average 0.478 0.465 0.573 0.446 0.376 0.457 0.412 0.549 0.450 0.385
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Table 6.7: Average relative percentage deviation of iterated greedy algorithms implemented with tie breaks
and n · (m/2) · 90 milliseconds as stopping criterion

IG_RSLS IGRIS

Instance TBFS TBD TBKK1 TBKK2 TBFF TBFS TBD TBKK1 TBKK2 TBFF

20 x 5 0.015 0.024 0.041 0.041 0.041 0.041 0.041 0.039 0.041 0.041
20 x 10 0.035 0.022 0.072 0.026 0.024 0.025 0.040 0.048 0.057 0.024
20 x 20 0.038 0.030 0.049 0.048 0.035 0.028 0.054 0.028 0.041 0.051
50 x 5 0.000 0.007 0.007 0.002 0.004 0.003 0.007 0.011 0.001 0.003
50 x 10 0.517 0.567 0.649 0.532 0.438 0.493 0.526 0.583 0.555 0.453
50 x 20 0.918 0.953 0.978 0.874 0.858 0.902 0.837 0.912 0.925 0.935
100 x 5 0.006 0.053 0.008 0.008 0.001 0.006 0.037 0.008 0.004 0.003
100 x 10 0.213 0.253 0.293 0.183 0.169 0.199 0.187 0.239 0.139 0.155
100 x 20 1.261 1.193 1.485 1.388 1.096 1.274 1.048 1.516 1.350 1.106
200 x 10 0.169 0.388 0.180 0.080 0.078 0.155 0.241 0.171 0.069 0.061
200 x 20 1.337 1.184 1.706 1.276 1.026 1.278 1.049 1.704 1.344 0.987
500 x 20 0.674 0.611 0.933 0.558 0.428 0.605 0.488 0.920 0.543 0.412

Average 0.432 0.441 0.533 0.418 0.350 0.417 0.380 0.515 0.422 0.353

other tie-breaking mechanism for every value of t considered, being 0.017 the highest p-value. Regarding

the rest of the tie-breaking mechanisms, Kalczynski & Kamburowski's tie-breaking mechanism II was

found to be statistically signi�cant with respect to the original IG_RSLS for t = n · (m/2) · 30 and

t = n · (m/2) · 60 but not for t = n · (m/2) · 90, being 0.118 the p-value for this case. On the other

hand, Kalczynski & Kamburowski's tie-breaking mechanism I was found statistically worse, with p-value

of 0.000. Finally, no statistically signi�cance was found for any t between Dong's tie-breaking mechanism

and the original IG_RSLS . Regarding IGRIS , very similar results were found (results are shown in Tables

6.5, 6.6 and 6.7 for the di�erent values of t). On the one hand, the proposed tie-breaking mechanism

yields again the best ARPD2, being 0.461 for t = n · (m/2) · 30 milliseconds, 0.385 for t = n · (m/2) · 60

milliseconds, and 0.353 t = n · (m/2) · 90 milliseconds. On the other hand, Kalczynski & Kamburowski's

tie-breaking mechanism I is again the one with the worst results.

It is worth to highlight that the proposed tie-breaking mechanism performs better than existing mech-

anisms when embedded in the iterated greedy than when integrated in the NEH. Note that the fact that a

tie-breaking mechanism performs e�ciently for the NEH does not imply the same for the iterated greedy.

This is due to the fact that, in the NEH, the insertion is performed in all steps (i.e. from an one-job

sequence until the n jobs have been scheduled), while the construction phase of the iterated greedy is

performed only for the last d steps (beginning with a sequence of N − d jobs). Therefore, a tie-breaking

mechanism should have a good performance in the last steps of the insertion phase in order to be e�cient

when embedded in the iterated greedy algorithm.
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Table 6.8: Paired samples t test for IG_RSLS using the benchmark of Taillard

CPU time Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

n · (m/2) · 30

TBFS - TBFF 0.103 0.277 0.080 0.125 9.078 0.000
TBD - TBFF 0.097 0.283 0.074 0.119 8.361 0.000
TBKK1 - TBFF 0.190 0.335 0.163 0.217 13.889 0.000
TBKK2- TBFF 0.057 0.235 0.038 0.076 5.961 0.000
TBFS - TBD 0.006 0.286 -0.017 0.029 0.522 0.602
TBFS - TBKK1 -0.087 0.259 -0.108 -0.067 -8.266 0.000
TBFS - TBKK2 0.045 0.222 0.028 0.063 5.002 0.000

n · (m/2) · 60

TBFS - TBFF 0.102 0.266 0.081 0.124 9.402 0.000
TBD - TBFF 0.089 0.272 0.067 0.111 8.034 0.000
TBKK1 - TBFF 0.197 0.361 0.169 0.226 13.397 0.000
TBKK2- TBFF 0.070 0.250 0.050 0.090 6.880 0.000
TBFS - TBD 0.013 0.263 -0.008 0.034 1.205 0.229
TBFS - TBKK1 -0.095 0.267 -0.117 -0.074 -8.746 0.000
TBFS - TBKK2 0.032 0.251 0.012 0.052 3.132 0.002

n · (m/2) · 90

TBFS - TBFF 0.082 0.243 0.063 0.102 8.280 0.000
TBD - TBFF 0.091 0.254 0.070 0.111 8.753 0.000
TBKK1 - TBFF 0.184 0.311 0.159 0.209 14.455 0.000
TBKK2- TBFF 0.068 0.221 0.050 0.086 7.554 0.000
TBFS - TBD -0.009 0.252 -0.029 0.012 -0.846 0.398
TBFS - TBKK1 -0.102 0.249 -0.121 -0.082 -10.006 0.000
TBFS - TBKK2 0.014 0.219 -0.004 0.031 1.564 0.118

6.4 An extensive computational evaluation

In this section, we perform a comprehensive comparison between the proposed mechanisms and the most

promising algorithms in the literature. To the best of our knowledge, the last computational evaluation

for the Fm|prmu|Cmax was presented by [172], who carried out an exhaustive computational evaluation

of the heuristics and metaheuristics published until 2004 for the PFSP to minimize makespan. A total

of 18 heuristics and 7 metaheuristics were implemented and tested under the same conditions. Among

them, two of these methods turned out to be the most e�cient ones: The NEH heuristic [127] was clearly

the most e�cient among the constructive heuristics for the problem, and the Iterated Local Search [187]

presented itself as the most e�cient metaheuristic for the problem.

All experiments have been carried out on a computational cluster formed by 30 blade servers. Each

server contains two Intel XEON E5420 processors running at 2.5 GHz and 16 Gbytes of RAM memory.

However, the speci�c tests are performed on virtual machines running on this cluster. Each virtual machine

runs Microsoft Windows 7 64 bit operating system and has one virtual processor and 2 GBytes of RAM.

Several benchmarks have been used (see e.g. [190, 10, 158, 206, 30, 71]) in the literature to perform

comparisons between algorithms. Among them, the most extended one is the benchmark from [190], i.e.

B1. More recently, [198] proposed a more exhaustive orthogonal benchmark, B2. This benchmark was

shown to have more discriminant power than that of [190]. In this section, both benchmarks are used to
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compare the algorithms.

In this computational evaluation, we use the ARPD2 indicator to measure the quality of the solutions

and both ARPT2 and ACPU indicators to measure the computational e�ort of the algorithms. Note

that, despite the problems when using the ACPU indicator to compare algorithms, it is included in

the evaluation in order for one to be able to reproduce the original comparisons of the authors since all

reviewed and implemented heuristics consider the ACPU indicator. By means of these two indicators, let

us denote a method as e�cient in terms of ARPT2 (ACPU) when there is no other method with both

less ARPD2 and less ARPT2 (ACPU).

Regarding the algorithms implemented in the computational evaluation, numerous algorithms have

been proposed in the literature since the last computational evaluation of [172]. As a matter of fact,

the number of metaheuristics is staggering and new proposals do not cease to appear. Therefore, only a

selected number of them have been implemented with a cuto� date of December 2014.

Among the heuristics of Section 4.2, the FRB1 heuristic has been statistically improved by several

heuristics (e.g. FRB46, FRB48) in the same paper. Additionally, the tie-breaking mechanisms of [35],

[83], [84] as well as the original one of [127] are statistically outperformed by the tie-breaking mechanism

proposed in Chapter 6 and therefore, heuristics NEHD, NEH1, NEHKK1 and NEH are removed from the

analysis. A total of 19 remaining heuristics, are reimplemented here under the same conditions. They are:

RAER, RAER-di, KKER, KKER-di, NEHR, NEHR-di, NEMR, NEMR-di, NEH-di, NEH1-di, NEHKK1-

di, NEHKK2, NEHD-di, NEHFF, CLWTS, FRB2, FRB3, FRB4k (k ∈ {2, 4, 6, 8, 10, 12}) and FRB5 (these

implemented heuristics are indicated in bold in Table 4.1). Note that, although the recent heuristic NEHI

was initially discarded due to the fact that it was available online after December 2014, it also seems to

be clearly ine�cient according to the ARPD2 and average computational times (around 25 times bigger

than the original NEH) shown in that paper (as compared to FRB410 or FRB412 for example). Note that

there are two possible interpretations of RCT , the idle-time- based tie-breaking mechanism proposed by

[162]. The authors state that this mechanism can be implemented in O(n2m2). However, as explained in

Section 6.3, it can be implemented in O(n3m) if the idle time between jobs is calculated only for the ties.

Thereby, the complexity is O(E ·n2m) due to the need to evaluate a complete sequence for each iteration

E times. Clearly, since the maximum number of tie-breaks is the number of jobs in the partial sequence,

the complexity of this interpretation is O(n3m). In this Thesis, this latter interpretation is employed as

it yields a lower computational e�ort for the benchmark B1, i.e. the constant a�ecting the complexity of

the original interpretation is higher than that of the second one for each instance of the testbed.

Regarding metaheuristics, the decision about which ones to select is not trivial due to the large

amount of existing methods. More precisely, only algorithms ful�lling the two following requirements are
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considered:

• ARPD < 0.4 (on T1 or T2, see Table 4.2) or

• ARPD < 0.6 and t parameter ≤ 90 (on T1).

In other words, we are demanding that for a metaheuristic to be selected it either has to have a

good solution quality (ARPD < 0.4), or a reasonable solution quality in short-medium computational

times (ARPD < 0.6 and t parameter ≤ 90). 11 metaheuristics ful�l these requirements: EXTS by [186];

HGA_RMA by [173]; MSSA by [132]; IG_RSLS by [174]; IGRIS by [138]; DDERLS by [138]; 3XTS by

[37]; EDAACS by [195]; PSO by [218]; IG_RSLS(TBFF) in Chapter 6; IGRIS(TBFF) by in Chapter 6.

Among them, EXTS and HGA_RMA, are discarded since they are outperformed in statistically and/or

sound comparisons by [37] and [174] respectively. Additionally, the H-CPSO algorithm by [77] has been

implemented due to its promising results despite being outperformed by [138] under di�erent stopping

criteria and conditions. Furthermore, we have tried to implement the MSSA metaheuristic proposed by

[132] without success, and after several unsuccessful attempts to make contact with the authors, we have

removed this algorithm from the computational evaluation. Finally, metaheuristic HCS by [99] has also

been included in the comparison since the ARPD is very close to 0.4 and has not been shown to be

outperformed by any other metaheuristic. Hence, a total of 10 metaheuristics have been chosen (these

metaheuristics are indicated in bold in Tables 4.2 and 4.3).

When reimplementing the algorithms, doubts relating to the implementation were transmitted to the

corresponding authors of the papers. All questions were successfully answered by the authors with the

exception of [218], where no answer was received after several tries. Other speci�cs considered in order to

carry out a fair comparison of the algorithms (apart from these of Section 3.4) are the following:

• The order of the instances was randomly chosen in the experiments to avoid systematic errors in

the tests.

• The algorithms to be run in each instance are similarly randomized.

• For each instance, ten independent runs were performed for each heuristic to better �t the required

CPU time (the average CPU time is kept).

• For each instance, �ve independent runs were carried out for each metaheuristic keeping the average

values.

The results of these experiments �that have required a total CPU time e�ort of 348.74 days� are

presented in the next two sections.
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Constructive and improvement heuristics

The 19 heuristics implemented in this evaluation are �rst compared under the classic benchmark set

of Taillard with 120 instances. The overall results are summarised in Table 6.10. The second, third

and fourth columns represent the ARPD2, ACPU and ARPT2 values for each algorithm in the set of

instances of Taillard. ARPD2 values range from 3.89 (RAER heuristic) to 1.48 (FRB5 improvement

heuristic) while ARPT2 values range from 0.02 to 7.23. Results are graphically shown in Figures 6.4

and 6.5 where the y-axis represents the ARPD2 for each heuristic and x-axis, respectively, represents

ACPU and ARPT2 in logarithmic scale. Although results obtained for the di�erent time indicators are,

in general, similar, there are also di�erences in the performance of the heuristics. Therefore, considering

ACPU as a measure of the computational e�ort as compared to ARPT2, FRB42 is faster than KKER-di,

NEHR-di and RAER-di in addition to the CLWTS being slower than the FRB2 heuristic. According

to indicators ARPD2 and ARPT2, the e�cient heuristics are NEHKK2, NEHFF, NEHR-di (this last

one would not be e�cient considering ARPD2 and ACPU), FRB42, FRB44, FRB46, FRB410, FRB412,

FRB3 and FRB5 (shown with a black circle in Figure 6.5). To be able to compare heuristics with di�erent

stopping criteria, they are grouped into clusters as a function of similar ARPT2 values (see Figure 6.5).

Then, the heuristics of each cluster are compared with the best heuristic in terms of ARPD2 of that

cluster, i.e. NEHFF, FRB42, FRB44, FRB46 and FRB412, respectively, for clusters 1, 2, 3, 4 and 5. The

hypotheses to statistically check the e�ciency of the heuristics are shown in Table 6.9, ordered by these

clusters of heuristics. Since each heuristic is based on the original NEH algorithm and the same set of

instances is used, the hypotheses of independence of the random variables (RDI) can be rejected (see

third and fourth columns in Table 6.9). We use Holm's procedure [73] where p-values are calculated using

the non-parametric Wilcoxon signed-rank test (see [138] for similar tests). Holm's procedure orders the

p-values of the hypotheses in non-decreasing order (let us denote by i the position of the heuristic in that

order) where the hypotheses are rejected if the p-value is lower than α/(k − i+ 1) (with k the number of

hypotheses). Results are shown in Table 6.9. Considering a level of con�dence of 0.05, several hypotheses

of the NEHFF heuristic (cluster 1) have not been rejected (see e.g. NEHFF vs NEHR or NEHFF vs

NEH-di). Additionally, there is no statistical signi�cance to state that FRB46 and FRB412 outperform

FRB48 and FRB2 respectively.

A similar Pareto set is found when the heuristics are compared under the new set of instances B2.

Average results are shown in Table 6.10. The last three columns represent the ARPD2, ACPU and

ARPT2 of each heuristic in that set of instances. Clearly, heuristics of complexity O(n3m) (CLWTS ,

FRB2, FRB3 and FRB5) need proportionally more computational e�ort since this set of instances consid-



104 CHAPTER 6. PFSP TO MINIMISE MAKESPAN

Table 6.9: Hypotheses, analysis of dependence and Holm's procedure on B1

Clusters
Comparison

Analysis of Dependence Wilcoxon Holm's Procedure
Correlation Sig. Sig. Reject? i α/(k − i + 1) Reject?

Cluster 1 (green)

NEHFF vs NEHKK2 0.891 0.000 0.015 R 11 0.0083
NEHFF vs NEH-di 0.923 0.000 0.054 14 0.0167

NEHFF vs NEHKK1-di 0.895 0.000 0.001 R 8 0.0056 R
NEHFF vs NEHR 0.893 0.000 0.055 15 0.0250
NEHFF vs NEH1-di 0.910 0.000 0.021 R 12 0.0100 R
NEHFF vs KKER 0.884 0.000 0.010 R 10 0.0071
NEHFF vs NEMR 0.869 0.000 0.006 R 9 0.0063 R
NEHFF vs RAER 0.830 0.000 0.000 R 1 0.0031 R

Cluster 2 (blue)

FRB42 vs RAER-di 0.842 0.000 0.000 R 2 0.0033 R
FRB42 vs NEHR-di 0.880 0.000 0.000 R 3 0.0036 R
FRB42 vs KKER-di 0.877 0.000 0.000 R 4 0.0038 R
FRB42 vs NEHD-di 0.860 0.000 0.000 R 5 0.0042 R
FRB42 vs NEMR-di 0.864 0.000 0.000 R 6 0.0045 R

Cluster 3 (orange) FRB44 vs CLWTS 0.868 0.000 0.000 R 7 0.0050 R
Cluster 4 (red) FRB46 vs FRB48 0.937 0.000 0.937 16 0.0500

Cluster 5 (yellow) FRB412 vs FRB2 0.927 0.000 0.041 R 13 0.0125

Table 6.10: Summary of heuristics

Algorithm
B1 B1

ARPD2 ACPU ARPT2 ARPD2 ACPU ARPT2

NEHKK2 3.09 0.02 0.12 3.21 0.47 0.02
NEHFF 2.90 0.02 0.13 2.95 0.46 0.02
NEH-di 3.03 0.04 0.20 3.18 0.91 0.04
NEH1-di 3.11 0.04 0.20 3.15 0.91 0.04

NEHKK1-di 3.15 0.04 0.20 3.19 0.93 0.04
RAER 3.89 0.06 0.20 3.46 0.88 0.04
NEHR 3.05 0.06 0.21 3.16 0.93 0.04
KKER 3.15 0.06 0.21 3.15 0.93 0.04
NEMR 3.16 0.10 0.31 3.22 1.64 0.07
RAER-di 3.53 0.13 0.40 3.33 1.71 0.07
NEHR-di 2.85 0.13 0.40 3.02 1.82 0.07
KKER-di 2.86 0.12 0.42 3.00 1.79 0.07
NEHD-di 2.84 0.16 0.48 2.86 2.06 0.08
FRB42 2.33 0.11 0.48 2.57 2.81 0.13

NEMR-di 2.97 0.18 0.52 3.05 2.53 0.10
FRB44 2.13 0.18 0.68 2.31 4.65 0.20
CLWTS 3.02 0.86 0.73 3.11 26.63 0.68
FRB46 1.91 0.25 0.89 2.17 6.42 0.28
FRB48 1.95 0.31 1.06 2.07 8.09 0.35
FRB410 1.87 0.37 1.20 1.97 9.87 0.43
FRB412 1.79 0.42 1.34 1.94 11.42 0.49
FRB2 1.93 0.64 1.68 1.74 37.97 1.40
FRB3 1.61 5.08 3.61 1.32 198.31 4.34
FRB5 1.48 14.59 7.23 1.04 753.56 14.36
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Figure 6.4: ARPD2 versus ACPU of heuristics in logarithmic scale on B1.

Figure 6.5: ARPD2 versus ARPT2 of heuristics in logarithmic scale on B1.
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Table 6.11: Hypotheses, analysis of dependence and Holm's procedure on B2

Comparison
Analysis of Dependence Wilcoxon Holm's Procedure
Correlation Sig. Sig. Reject? i α/(k − i + 1) Reject?

Cluster 1 (green)

NEHFF vs NEHKK2 0.950 0.000 0.000 R 1 0.0036 R
NEHFF vs NEH-di 0.954 0.000 0.000 R 2 0.0038 R

NEHFF vs NEHKK1-di 0.952 0.000 0.000 R 3 0.0042 R
NEHFF vs NEHR 0.946 0.000 0.000 R 4 0.0045 R
NEHFF vs NEH1-di 0.939 0.000 0.000 R 5 0.0050 R
NEHFF vs KKER 0.952 0.000 0.000 R 6 0.0056 R
NEHFF vs RAER 0.945 0.000 0.000 R 7 0.0063 R

Cluster 2 (blue)

FRB42 vs NEMR 0.943 0.000 0.000 R 8 0.0071 R
FRB42 vs RAER-di 0.946 0.000 0.000 R 9 0.0083 R
FRB42 vs NEHR-di 0.958 0.000 0.000 R 10 0.0100 R
FRB42 vs KKER-di 0.953 0.000 0.000 R 11 0.0125 R
FRB42 vs NEHD-di 0.948 0.000 0.000 R 12 0.0167 R
FRB42 vs NEMR-di 0.952 0.000 0.000 R 13 0.0250 R

Cluster 3 (orange) FRB412 vs CLWTS 0.942 0.000 0.000 R 14 0.0500 R

ers higher values of n and m than on B1. This increase in computational e�ort also results in a decrease

in the ARPD2 of the heuristics with the exception of CLWTS . Results are graphically shown in Figure

6.6 comparing ARPD2 versus ACPU and in Figure 6.7 comparing ARPD2 versus ARPT2. In terms of

ARPD2 and ARPT2, e�cient heuristics are shown with a black circle in Figure 6.7. Note that regard-

ing the NEH-based heuristics of [162] with direct and inverse approach, the best ARPD2 is now found

by the NEHD-di heuristic instead of the NEHR-di. In order to compare the heuristics, we group them

according to their ARPT2 (see Figure 6.7) and perform the same Holm's procedure [73] (hypotheses of

independence can be rejected again). Note that heuristics FRB4k are not compared together since all are

the same heuristics with a di�erent input parameter. Results are shown in Table 6.11. Each p-value is

0.000 and all hypotheses are rejected using Holm's procedure. Thus, according to ARPD2 and ARPT2,

statistically there is no reason to a�rm that the NEHFF, FRB4k, FRB2, FRB3, FRB5 heuristics are not

e�cient heuristics within each cluster.

Metaheuristics

In Section 4.2, 10 metaheuristics were de�ned as the most promising according to the results shown in

their papers. In this section, these metaheuristics are compared under the set of instances B1 and B2.

Each metaheuristic is stopped using the same stopping criterion based on CPU time. More speci�cally,

three di�erent stopping criteria are applied, t ·n ·m/2 milliseconds with t ∈ [30, 60, 90], which depends on

the number of jobs and machines. Results are shown in Table 6.12. For both sets of instances, the best

metaheuristics are those based on the Iterated Greedy (IG_RSLS) proposed by [174], see the results found

by IG_RSLS, IGRIS, IG_RSLS(TBFF) and IGRIS(TBFF) for example. These results are also con�rmed

by the DDERLS, a discrete di�erential evolution algorithm which uses similar phases. Regarding B1, the

ARPD2s of Iterated Greedy metaheuristics for t = 90 is between 0.28 and 0.38 which clearly outperforms
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Figure 6.6: ARPD2 versus ACPU of heuristics in logarithmic scale on B2.

Figure 6.7: ARPD2 vs ARPT2 of heuristics in logarithmic scale on B2.
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non IG-based metaheuristics (the ARPD2s of 3XTS, H-CPSO, HCS and PSO are, respectively, 1.24,

0.70, 1.35 and 0.84 for t = 90). The best ARPD2 value is obtained by IG_RSLS(TBFF), with 0.37, 0.32

and 0.37 for t = 30, t = 60 and t = 90 on Taillard's instances respectively. Let us highlight the fast

convergence behaviour of the IG_RSLS(TBFF) where the ARPD2 obtained for t = 30 is lower than or

equal to every other metaheuristic for t = 90. Metaheuristics are compared with IG_RSLS(TBFF) using

the non-parametric Mann-Whitney test (see Table 6.13). With the exception of the IG-based algorithms

IG_RSLS, IGRIS and IGRIS(TBFF), each p-value on B1 is less than or equal to 0.032 regardless the value

of t.

Regarding the benchmark B2, the superiority of the IG-based algorithms is more clear, as B2 include a

wider range of values of n and m. Thereby, the di�erences between the ARPD2 values of the metaheuris-

tics greatly increase with respect to the IG_RSLS(TBFF) metaheuristic (see the di�erence of ARPD2

between 3XTS and IG_RSLS(TBFF) is 0.96 on B1 and 2.10 on B2 for t = 90 for example). Statistical

signi�cance has been found for all metaheuristics with the exception of IG_RSLS(TBFF) 0.000 being the

maximum p-value (see Table 6.13). In view of the results, although there are many papers proposing meta-

heuristics, no metaheuristic statistically outperforms the original Iterated Greedy Algorithm (IG_RSLS)

of [174] on B1, while only the Iterated Greedy variants proposed here statistically outperform IG_RSLS

on B2.

We have already discussed that many metaheuristics have been published since the last computational

evaluation and review proposed by [172] (see Tables 4.2 and 4.3) and since the original Iterated Greedy

algorithm proposed by [174]. On one hand, in view of Tables 4.2 and 4.3 only 11 metaheuristics have

promising results in terms of quality of solutions and computational e�ort. On the other hand, in view

of the results in this section, only the original IG_RSLS and the IG_RSLS(TBFF) algorithms are state-

of-the-art methods. It follows that many metaheuristics were not state-of-the-art even at the time on

their publication, a fact that strongly highlights the need for a review and framework for computational

evaluation such as the one proposed here.

Comparison of heuristics with metaheuristics

Traditionally, researchers have focused either on �nding e�cient heuristics, or on obtaining the best meta-

heuristic for the problem. The former are implemented to �nd a good fast solution and/or a good initial

seed sequence for the problem, while the latter are typically implemented to �nd better solutions using

longer CPU times. As a consequence, typically both heuristics and metaheuristics have been separately

evaluated and compared. In this section, we analyse both heuristics and metaheuristics together, as there



6.4. AN EXTENSIVE COMPUTATIONAL EVALUATION 109

Table 6.12: Summary of ARPD2s of the metaheuristics

Metaheuristic Ref.
B1 B2

t=30 t=60 t=90 t=30 t=60 t=90
IG_RSLS [174] 0.47 0.40 0.37 0.96 0.77 0.67
IGRIS [138] 0.49 0.42 0.38 0.85 0.67 0.56

DDERLS [138] 0.52 0.47 0.43 0.92 0.77 0.69
3XTS [37] 1.64 1.34 1.24 2.89 2.65 2.47

H-CPSO [77] 0.84 0.75 0.70 1.65 1.41 1.28
EDAACS [195] 0.60 0.51 0.47 1.43 1.25 1.16
HCS [99] 1.55 1.42 1.35 2.54 2.35 2.27
PSO [218] 1.09 0.95 0.84 2.51 2.14 1.93

IG_RSLS(TBFF) Our proposal 0.37 0.32 0.28 0.60 0.46 0.37
IGRIS(TBFF) Our proposal 0.42 0.34 0.31 0.61 0.47 0.38

Table 6.13: Comparison of metaheuristics using Mann-Whitney tests

Comparison
B1 (Sig.) B2 (Sig.)

t=30 t=60 t=90 t=30 t=60 t=90
IGRIS vs IG_RSLS(TBFF) 0.114 0.130 0.132 0.000 0.000 0.000

IG_RSLS vs IG_RSLS(TBFF) 0.371 0.331 0.297 0.000 0.000 0.000
DDERLS vs IG_RSLS(TBFF) 0.011 0.007 0.013 0.000 0.000 0.000
3XTS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

H-CPSO vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
EDAACS vs IG_RSLS(TBFF) 0.018 0.023 0.032 0.000 0.000 0.000
HCS vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000
PSO vs IG_RSLS(TBFF) 0.000 0.000 0.000 0.000 0.000 0.000

IGRIS(TBFF) vs IG_RSLS(TBFF) 0.533 0.526 0.556 0.638 0.816 0.711
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are several heuristics requiring long CPU times and vice versa. Therefore, each heuristic is compared

with one of the best metaheuristics, i.e. the iterated greedy IG_RSLS(TBFF). In order to have a fair

comparison, the metaheuristic is stopped at the CPU time used by each heuristic. These comparisons are

performed using the set of instances B1 and B2. A summary of the results is shown in Table 6.14 as well

as in Figures 6.8 and 6.9 for these benchmarks, respectively, where the dotted lines represent logarithmic

trend lines for the heuristics and the red squares represent all values obtained by the IG_RSLS(TBFF)

metaheuristic. Note that the IG_RSLS(TBFF) metaheuristic starts with the sequence obtained by the

NEHFF heuristic and therefore, the NEHKK2 and NEHFF heuristics are not included in the comparison

as they need shorter CPU times. For all other heuristics, the metaheuristic outperforms them in terms

of ARPD2. All compared heuristics are outperformed by the IG_RSLS(TBFF) metaheuristic, especially

when compared on B2. The statistical signi�cance of these comparisons is established by means of the

non-parametric Mann-Whitney test since the normality and homoscedasticity assumptions are not ful-

�lled. Although no statistical signi�cance is found for many of the comparisons on the Taillard instances

(see heuristics by [150] which have ARPD2 values similar to or even better than those obtained by the

IG_RSLS(TBFF) metaheuristic for several problem sizes for example), on B2 each hypothesis is rejected,

0.001 being the highest p value. This Section highlights the exceptional performance of IG-based algo-

rithms for short periods of time and also serves to classify IG_RSLS(TBFF) as a state-of-the-art method

for constructive and improvement heuristics.
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Figure 6.8: Heuristics versus IG_RSLS(TBFF) on the set of instances B1. X-axis (variable ARPT2) is
shown in logarithmic scale.

6.5 Conclusions

In this chapter, we have presented a new tie-breaking mechanism based on an estimation of the idle

times of the di�erent subsequences in order to pick the one with the lowest value of the estimation.

This tie-breaking mechanism can be incorporated into the most e�cient approximate procedures for the

�owshop scheduling problem with makespan objective, resulting in statistically signi�cant better results

than existing tie-breaking mechanisms.

The proposed tie-breaking mechanism has been compared with the most promising tie-breaking mech-

anisms and algorithms in the literature. Since the last reviews in 2005, a large number of heuristics

and metaheuristics have been proposed for the permutation �owshop scheduling problem to minimize

makespan. Most of them are compared with other non-e�cient algorithms and/or under uncomparable

conditions. Thus, it was not clear which algorithms were state-of-the-art. In this chapter, an exhaustive

evaluation of algorithms for the permutation �owshop is proposed, with special attention being paid to

conducting a fair comparison of algorithms. The most promising ones, i.e. a total of 29 algorithms (19

constructive heuristics and 10 metaheuristics), have been implemented and compared under the same

conditions. The comparisons have been done using the benchmarks B1 and B2. On one hand, the

metaheuristics are compared under three di�erent stopping criteria to analyse the evolution of the each

algorithm with the computational e�ort. On the other hand, the comparison of (constructive and im-
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Figure 6.9: Heuristics versus IG_RSLS(TBFF) on the set of instances B2. X-axis (variable ARPT2) is
shown in logarithmic scale.

provement) heuristics has been performed using two relative indicators to measure the quality of the

solution and the computational e�ort in order to identify the e�cient ones. Statistical analyses of the

quality of the solutions have been carried out to study the e�ciency of the heuristics as well as to compare

the metaheuristics. Additionally, each heuristic has been compared with the best metaheuristic under the

stopping criterion of the heuristic to analyze tentative best seed sequences for the metaheuristics. There-

fore, we believe that this contribution may represent a starting point for future researchers who attempt

to propose new algorithms for the permutation �owshop scheduling problem with makespan objective.

Among all coded metaheuristics, IG-based algorithms have been clearly identi�ed as the most e�cient

metaheuristics for the problem. This fact is further con�rmed since other well-performing metaheuristics

also incorporate some part of the IG algorithm (see metaheuristics EDA_ACS or DDE_RLS for example).

In particular, the proposed iterated greedy with the proposed tie-breaking mechanisms is the most e�cient

one. Additionally, the di�erence in solution quality between IG-based algorithms and other methods is

even greater in the new set of instances B2 which also consider a higher number of jobs and machines, a

fact which explains why some metaheuristics tested on just a subset of the instances B1 were found to be

e�cient ones at their time.

Regarding heuristics, most have been identi�ed and classi�ed as variations of the NEH algorithm.

Among the 19 coded algorithms, only 5 heuristics (NEHFF, FRB4k, FRB2, FRB3 and FRB5) could

be classi�ed as e�cient. Nevertheless, when they are compared with the best metaheuristic under the

stopping criteria of the heuristic, all e�cient heuristics have been outperformed by the metaheuristic, with
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the exception of NEHFF since that heuristic is the initial solution of the metaheuristic. Hence, this fact

clearly indicates a way of proceeding when future new heuristics are proposed in the literature. From now,

constructive and improvement heuristics should be directly compared either with the best metaheuristic

under the same stopping criterion or with NEHFF with at least the same computational e�ort, as it might

turn out that a few iterations of a good metaheuristic already give better results.



Chapter 7

PFSP to minimise total �owtime

7.1 Introduction

In this chapter, we propose a new heuristic that improves the results with respect to that by [108] both in

terms of quality of the solutions and in CPU time (Objective SO5). Starting with this heuristic, we also

propose an advance population-based constructive heuristic. With these new two heuristics, a completely

new e�cient Pareto set is obtained. The heuristics are tested on an extensive computational evaluation,

comparing them against the set of 14 e�cient heuristics (see Section 4.3).

The rest of the chapter is organised as follows: Section 7.2 analyses some issues related with the

performance evaluation of the di�erent heuristics for the problem. In Section 7.3 and 7.4, two new set of

heuristics are presented for the problem. The computational evaluations are carried out in Section 7.5.

Finally, conclusions are discussed in Section 7.6.

7.2 Implemented heuristics

As mentioned in the previous chapter, a great number of heuristics have been proposed for the problem.

For a detailed presentation and evaluation of all these heuristics, we refer the interested reader to 4.3, and

we will describe here only a sub-set which are found to be state-of-the-art and consequently are the ones

used in this chapter for comparison.

From the conclusion of Section 4.5, it can be seen that LR is a key heuristic of complexity O(n3 ·m),

playing a role similar to that of the NEH for makespan minimisation. For this latter problem, Taillard's

accelerations (Section 2.2) showed that the complexity of the NEH can be reduced from O(n3m) to

O(n2m) by using an acceleration mechanism, but unfortunately, such mechanism cannot be used to

115
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Algorithm LR NEH iRZ FPE VNS Complexity

Raj X O(n3 ·m)
RZ X O(n3 ·m)

LR(x) X O(x · n3 ·m)
RZ-LW X O(k · n3 ·m)

LR-NEH(x) X X O(x · n3 ·m)
LR(n/m)-FPE(n) X X O(n4)

IC1 X X O(k · n3 ·m)
IC2 X X X O(k · n3 ·m)
IC3 X X X (r) O(k · n3 ·m)

PR1(x) X X X O(x · k · n3 ·m)
PR2(x) X X X O(x · k · n3 ·m)
PR3(x) X X X O(x · k · n3 ·m)
PR4(x) X X X O(x · k · n3 ·m)

Table 7.1: E�cient heuristics [137] as variation/adaptation of primary procedures.

minimize �owtime. The only acceleration proposed is due to [96], who reported savings in the CPU time

around 30-50%. Nevertheless, the complexity of the NEH remains the same and thus a way to reduce

the complexity of e�cient approximate algorithms for �owtime to O(n2m) has remained elusive.

We can employ the data from [137] to calculate the corresponding values of ARPT1 for each heuristic.

The results are shown in Table 7.2, and are represented in two axis in Figure 7.1. The set of e�cient

heuristics according to the proposed approach is: Raj, LR(1), RZ, RZ − LW , LR − NEH(5), LR −

NEH(10), LR− FPE, IC1, IC2, IC3, PR1(5), PR1(10) and PR1(15).

It can be checked in Table 7.2 that the alternative representation of e�ciency is more complete in the

sense that ten heuristics of the thirteen heuristics considered e�cient using ARPT1 are indeed e�cient

for six or more problem sizes, whereas only three heuristics with less than six e�cient sizes are included.

Furthermore, the data in [137] expressed the CPU time with two decimals, therefore for some heuristics

the CPU time is 0.00 in some problem sizes, and in this case it is not possible to establish a realistic

trade-o� between CPU time and ARPD1. More speci�cally, heuristics RZ and RZ − LW should have

several more e�cient sizes due to the fact that their CPU time is 0.00 for the �rst 3-5 instance sizes

(this may also happen with as IC1 or IC2, among others). It is worth noting that, using CPU time, six

heuristics globally e�cient are e�cient for six or more problem sizes while there are eight heuristics which

have less than six sizes for which they are e�cient. The average number of e�cient sizes for the fourteen

e�cient heuristics using CPU time is only 4.00, as compared to an average of 6.08 using ARPT1.

Furthermore, in order to re-assure that no heuristic is excluded by using the proposed indicator, we

conduct a series of experiments to extend the comparison between heuristics PR1 and PR2. Note that,

according to the results, PR1 seems to outperform PR2, but the latter is extremely e�cient for the biggest

instances (i.e. 100 × 10, 200 × 20, and 500 × 20). In addition, the improvement phase of V NS used in
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Algorithm ARPD1 ARPT1
#E�cient Size #E�cient Size

ACPU ARPT1

Raj 5.02 -1.00 7 7

LIT 8.26 -0.96 0 0
SPD1 17.37 -0.97 0 0
SPD2 16.56 -0.97 1 1
RZ 2.65 -0.97 3 3

WY 2.83 -0.67 0 0
LR(1) 3.13 -0.99 7 7

LR(n/m) 2.29 -0.89 2 2
LR(n) 2.09 0.27 0 0
NEH 4.03 -0.99 1 1
FL 1.99 -0.41 0 0

RZ-LW 1.29 -0.82 4 4

FL-LS 1.22 0.11 0 0
LR-NEH(5) 1.84 -0.94 8 8

LR-NEH(10) 1.75 -0.90 6 6

LR-NEH(15) 1.72 -0.78 3 3
LR-FPE 1.14 -0.81 7 7

LR-BPE 1.23 -0.80 5 5
IH7 1.43 -0.25 0 0

IH7-FL 1.30 -0.22 0 0
C1-FL 1.72 -0.35 0 0
C2-FL 0.95 0.26 1 1
IC1 0.81 -0.75 6 6

IC2 0.66 -0.62 8 8

IC3 0.62 -0.26 6 6

PR1(5) 0.50 -0.15 7 7

PR1(10) 0.39 0.79 4 4

PR1(15) 0.33 1.43 6 6

PR2(5) 0.51 0.54 3 3
PR2(10) 0.41 1.90 3 3
PR2(15) 0.36 2.93 1 1
PR3(5) 0.51 0.04 4 4
PR3(10) 0.46 0.91 2 2
PR3(15) 0.45 1.64 1 1
PR4(5) 0.54 0.69 1 1
PR4(10) 0.45 2.00 0 0
PR4(15) 0.41 2.98 0 0

Table 7.2: Summary of average results of the heuristics implemented in [137] using ARPT1. Last two
columns show the number of problem sizes where each heuristic is e�cient using both ACPU and ARPT1.
In bold it is indicated when the heuristic is e�cient when averaged for the 120-instances using either CPU

time or ARPT1.
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Figure 7.1: Pareto set using the ARPT1

[137] (which includes pairwise interchanges and insertion movements in an single position) is used as the

�rst neighborhood. This may a�ect the performance of the PR2 heuristic, as more exhaustive insertion

movements (such as iRZ) could be also considered as the �rst neighborhood so the performance of this

so-obtained heuristic (labelled PR2A in the following) is improved. Note however, that PR2A would be

much slower than PR1 and PR2.

Thus, these three heuristics (PR1, PR2 and PR2A) are further compared using Taillard's testbed. To

obtain more points in the Pareto approximation, we extend the initial range of the stopping criteria and

that of parameter x for the fastest heuristics (i.e. PR1 and PR2). More speci�cally, we test the following

stopping criteria: 0.01 · n ·m, 0.05 · n ·m, and 0.1 · n ·m for all three heuristics, and also 0.2 · n ·m for

PR1. Regarding the values of x, x ∈ {5, 10, 15, 20, 25} is used for PR1(x) , x ∈ {5, 10, 15, 20} is employed

for PR2(x), whereas x ∈ {5, 10, 15} is used for PR2A(x). A clear dominance of PR1(x) over PR2(x)

and PR2A(x) is obtained from these results (summarised in Figure 7.2, where the dotted lines represent

quadratic polynomial trend lines for the heuristics). As a result, in the computational experiments in the

following sections, PR2(x) and PR2A(x) will be excluded.

In view of the discussion and the results in this section, it seems clear that the evaluation of the

performance of heuristics for the problem is not trivial, and that both the quality of the solutions and
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Figure 7.2: Comparison heuristics PR1, PR2 and PR2A

the computational e�ort should be taken into account. Building upon the work by [137], an indicator

for measuring the computational e�ort has been proposed. This indicator, although not perfect, presents

more consistency between the disaggregated (i.e. at instance size level) and aggregated (overall) results.

Nevertheless, since the state-of-art evaluation of heuristics for �owtime (that of [137]) was done using

CPU time as indicator, we report the subsequent results in this chapter using also their scheme.

7.3 A simple constructive heuristic

The proposed heuristic �denoted in the following as FF (x)� uses the idea present in LR of decreasing

number of the evaluations of solutions, beginning with n − 1 evaluations and �nishing with 0. Thereby,

the heuristic is composed of n− 1 step with a maximum of n− 1 evaluations. However, in contrast to the

LR, we focus in the evaluation of each solution trying to reduce the complexity of the algorithm. When

introducing a new job at the end of the sequence, there are three elements to be considered:

• Idle time induced by the newly inserted job. This idle time in�uences the next jobs to be inserted.

Clearly, this in�uence decreases with each step (being 0 in the last step). Its calculation has a

complexity O(m) since only the completion time of the preceding job in each machine is required.

For a given iteration k, this data is known from the previous iteration (or zero if it is the �rst job).

• Completion time in machine m of the newly inserted job. Its in�uence on the total �owtime is clear

since the completion time of each job in machine m is included in the objective function. This data

can be calculated within O(m) using the completion time on each machine of the preceding job.



120 CHAPTER 7. PFSP TO MINIMISE TOTAL FLOWTIME

• Completion time in machine m of the arti�cial job. It seems that it in�uences the objective function

in an indirect manner, as it is an indicator of the completion time in machinem of the yet unscheduled

jobs. It is thus convenient to ensure that the unscheduled jobs will not have a very large completion

time in machine m. However, the calculation of this completion time has a complexity of n ·m.

As in the LR heuristic, we intend that, once a job is scheduled in a position, it stays in this position,

then choosing the adequate position of a job is critical. The problem thus lies in weighting the in�uence

of the aforementioned elements. To do so, we use two parameters (a and b), to balance the �rst two

elements, i.e. idle time and completion time of the newly inserted job. In contrast, we leave aside the

third element (completion time of the arti�cial job), since its in�uence on the objective function is not as

direct as the other two elements, and its consideration would increase the complexity of the algorithm to

n3 ·m.

More speci�cally, the proposed heuristic is as follows:

1. Sort the jobs according to a non descending order of indicator ξ
′

j0 (see equation 7.1), breaking ties

in favor of jobs with lower IT
′

j,0 (see equation 7.2). Let us denote by I the so-obtained vector

2. Obtain x partial sequences πi (i = 1, . . . , x) of length 1, where the �rst (and only) job of sequence

πi is the job in position i in I. Store in U i the jobs not scheduled in πi.

3. For k = 1 to n− 1:

(a) For each partial sequence πi, remove from U i the job for which the minimum value of ξ
′

j,k (see

equation 7.1) is found and place it in the last position of πi.

4. Return the (�nal) sequence πi yielding the lowest completion time.

Therefore, the proposed procedure begins with x sequences (πi with i ∈ [1, x]) with only one job. The

�rst job of each sequence πi is the job in position i of a vector sorted in non descending order of indicator

ξ
′

j0 (equation 7.1) breaking ties in favor of jobs with higher IT
′

j,0 (equation 7.2) and each �nal sequence

πi is obtained adding one by one jobs to the last position of the vector.

Let us denote by k the size of the vector in each step until the vector reaches the n jobs. To insert

a new job j (j ∈ U i) in each sequence πi, one of the unscheduled jobs of each sequence, U i, is removed

according to an ascending index of a complexity m, ξ
′

j,k. This index is based on IT
′

j,k the weighted idle

time between the job in position k and the new job j to be inserted, and on the makespan of the sequence

when inserting job j, Cm,j . For each job j ∈ U i, ξ
′

j,k is calculated as follows:

ξ
′

j,k =
(n− k − 2)

a
· IT

′

j,k +AT
′

j,k (7.1)
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Notation using LR Notation using FF

LR(1) FF(1)
LR-NEH(5) FF-NEH(5)
LR-NEH(10) FF-NEH(10)

LR(n/m)-FPE(n) FF(n/m)-FPE(n)
IC1 FF-IC1
IC2 FF-IC2
IC3 FF-IC3

PR1(5) FF-PR1(5)
PR1(10) FF-PR1(10)
PR1(15) FF-PR1(15)

Table 7.3: Notation for the heuristics using the proposed heuristic FF

where AT
′

j,k and IT
′

j,k are de�ned as follows:

IT
′

j,k =
m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i− b+ k · (m− i+ b)/(n− 2)

(7.2)

AT
′

j,k = Cm,j (7.3)

being a and b the aforementioned parameters to balance the in�uence of idle times and completion time

of the newly inserted job. Note that by avoiding the calculation of the completion time of the arti�cial

job p (Cmp), the complexity of the algorithm decreases from n3 ·m to n2 ·m, a complexity n times lower

than the fastest heuristics in the e�cient set by [137].

As explained in Section 7.2, 10 of the 13 e�cient heuristics using ARPT1 are based on LR. All of

these 10 heuristics can be reimplemented using FF instead of LR. The notation for this set of heuristics

is shown in Table 7.3. Additionally, due to the decrease in complexity, FF (x) can be implemented for

larger values of x. Note that LR(n/m) − FPE(n) has a greater complexity than LR(n/m), i.e. O(n4).

Once LR is replaced by FF , FF (n/m) − FPE(n) has a lower complexity and it can be interesting to

perform the heuristic FF (x)− FPE(y) for more values of both x and y since e.g. now FF (1)− FPE(1)

is also O(n2 ·m).

Prior to conducting these experiments, the best values for parameters a and b have to be found.

To do so we carry out some computational experiments where di�erent values are tried. After a �rst

screening where di�erent ranges of values were discarded, a multi-factor Analysis of Variance (ANOVA)

was performed for a ∈ {1, 2, 3, 4}, b ∈ {0, 0.5, 1} on calibration benchmark BC1. The results in Table

7.4 show that all parameters n, m, a and b are statistically signi�cant. To determine the best level for

each parameter, a Least Signi�cant Di�erence (LSD) interval for each one is carried out (see Figure 7.3).

Although from this �gure it may seem that there is a monotonic trend for both a and b, further tests with
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Source Sum of Squares Df Mean Square F-Ratio p-Value

Main E�ects
n 52.169 4 13.042 20.755 0.000
m 26.724 2 13.362 21.264 0.000
a 7.711 3 2.570 4.090 0.007
b 10.763 2 5.381 8.564 0.000

Interaction
a ∗ b 0.114 6 0.019 0.030 1.000
m ∗ a 6.087 6 1.015 1.614 0.139
n ∗ a 6.063 12 0.505 0.801 0.647
m ∗ b 5.548 4 1.387 2.207 0.066
n ∗ b 13.679 8 1.710 2.721 0.006
n ∗m 110.808 8 13.851 22.042 0.000

Residual 1095.905 1744
Total (corrected) 1335.571 1799

Table 7.4: ANOVA for the parameters n,m, a, b

Figure 7.3: LSD intervals of the RPD1 for each level of the parameters a and b.

a > 4 and b > 1 did not produce better results. Therefore, a = 4 and b = 1 were used for the new set of

heuristics FF, FF − FPE,FF −NEH,FF − ICx, FF − PR1(x) in the next section.

7.4 A population-based constructive heuristic

In this section, we propose a Population-based Constructive Heuristic �denoted PCH�, for the PFSP to

minimise total �owtime. PCH works with several individuals in parallel in each iteration. The number

of individuals is controlled by the parameter x. The heuristic operates performing n − 1 iterations. At

iteration k, each individual l (l ∈ {1, . . . , x}) is formed by a set, Sl
k, of k scheduled jobs (sljk denotes the

job placed in position j of individual l in iteration k). Consequently, for each individual l in iteration k

there is a set U l
k of n− k unscheduled jobs. Let us denote ul

jk the jth unscheduled job of individual l in
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iteration k.

For each iteration k ∈ {1, . . . , n−1}, |U l
k| candidates can be obtained from each individual l by inserting

each one of the jobs in U l
k in position k + 1 of Sl

k. In total, (n − k) · x candidates can be obtained. The

idea is to retain the best x candidates as the next iteration individuals. However, comparing candidates

may be or may be not straightforward depending on the speci�c situation:

• If the candidates to be compared have been obtained by appending di�erent jobs in U l
k to a same

individual Sl
k, then their corresponding partial sequences are identical with the exception of the last

job. Therefore, they can be compared in terms of the completion time of the added job, or of the

new idle time induced by the added job.

• If the candidates to be compared have been obtained from di�erent individuals �e.g. one candidate

is the subsequence (1, 2), and other candidate is subsequence (2, 3)�, both the scheduled and the

unscheduled jobs are di�erent for each candidate. In such case, it is useless to perform a straight-

forward comparison among candidates taking into account either the job to be inserted, or just the

scheduled jobs.

Clearly, the key to select the best x candidates is to be able to compare partial sequences composed

of di�erent jobs. Since in iteration k, a candidate partial sequence is formed by individual Sl
k plus a job

inserted in position k + 1, both the individual and the inserted job would contribute to the value of the

�owtime of a �nal sequence obtained from this candidate.

Regarding the contribution of the inserted job, there are two elements that largely in�uence the value

of the sum of completion times in the complete sequence (see Section 7.3), i.e.: the weighted idle time

induced by the new job ul
jk inserted, and the completion time of the new job ul

jk. Note that the evaluation

of these elements can be done in O(m).

Regarding the contribution of individual l in iteration k to the �owtime of the �nal sequence �denoted

Fkl or forecast index in the following�, it is clear that such contribution is related to both scheduled

and unscheduled jobs. On one hand, the contribution due to the scheduled jobs can be evaluated by

means of a function of the idle times and completion times of the previous jobs. On the other hand, an

�arti�cial� completion time, denoted as CTλkl, can be used to identify the contribution of the unscheduled

jobs. Therefore, the forecast index will be used as an indicator to take into account the scheduled and

unscheduled jobs of each individual. Note that this type of indicator is di�erent that the traditional �tness

function employed in the iterated population-based algorithms, since the latter always work with complete

sequences, and thus di�erent individuals contains the same jobs in di�erent order. The calculation of Fkl

is developed in Section 7.4.
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Hence, steps of the constructive heuristic can be summarised as follows:

• Obtain initial individuals

• During n iterations:

� Generate candidates

� Evaluate candidates

� Select the best x candidates

� Update forecast index

These steps are elaborated in the next subsections.

Generation of initial individuals

Jobs are initially sorted in non descending order of indicator ξ
′

j,0 (see Section 7.3) breaking ties in favor

of jobs with lower IT
′

j,0 as in FF heuristic. Let us denoted by αi (αi := α1, α2, ..., αn) the component

i of that sorted list. Hence, to obtain the �rst x individuals (consisting of one job), job in position l of

the sorted list is placed in the �rst position of the partial sequence sl1,1 of the l individual (sl1,1 = αl).

The rest of the jobs form the unscheduled jobs of the individual, ul
j,1 with j ∈ {1, . . . , n − 1} for each

individual l.

Candidates generation

New candidates are formed by adding an unscheduled job at the end of the partial sequence of each

individual. More speci�cally, from each individual l ∈ {1, . . . , x}, n − k candidates are obtained at

iteration k where each candidate j is obtained from individual l by adding the jobs in U l
k at the end of

the scheduled jobs.

Candidates evaluation

Once candidates are formed, they are evaluated. This evaluation is performed taking into account two

factors:

• In�uence from the individual: As already discussed, the in�uence of individual l in iteration k is

measured by means of the forecast index Fkl which is explained further in Section 7.4.
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• In�uence from the inserted job: This in�uence is due to the new job inserted at the end of the

scheduled jobs. This in�uence is measured by CTjkl the completion time of the unscheduled job j,

which is the additional completion time incurred when inserting job j in the individual, i.e.:

CTjkl = Cmj

and by ITjkl the weighted idle time induced by the insertion of job j (see 7.2).

Hence, in iteration k, given an individual l, the insertion of unscheduled job j is evaluated according

to the following index:

Bjkl = Fkl + c · CTjkl + ITjkl · (n− k − 2) (7.4)

Note that parameter c has been introduced in the expression in order to balance the completion time

and the idle time of the new introduced job (in Section 7.4, the calibration of this parameter is addressed).

Additionally, the idle time is weighted by (n−k−2) to decrease its importance as indicator as the sequence

contains more jobs.

Candidates selection

The procedure to select the candidates that would constitute the individuals of the next iteration is very

simple. We adopt an elitist selection procedure where the x candidates with the lowest values of B are

selected, i.e. in iteration k we look for the combination of j and l achieving the lowest values of Bjkl as

de�ned in 7.4. The rest of candidates are removed from the population, and the chosen candidates are

denoted as the individuals for the next iteration. Let us denote by branch[l
′
] and job[l

′
] the value of l

and j respectively of the l
′
th best Bjkl in iteration k.

Forecasting phase

The Forecast Index, F , is used to be able to compare candidates with di�erent un- and sequenced jobs.

It considers:

1. the idle time of each scheduled job in the individual,

2. the completion time of each scheduled job in the individual, and

3. the completion time of the unscheduled jobs in the individual.
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The in�uence of 1) and 2) changes across the iteration of the algorithm. Recall that the in�uence of

the idle time allows us to compare individuals with di�erent jobs. In the �rst iterations there are few

sequenced jobs, and these sequenced jobs may be quite di�erent. Therefore, the idle time between jobs

is expected to have a larger in�uence in the comparison between individuals, as compared to the sum of

completion times (which is strongly schedule-dependent). In contrast, in the last iterations the individuals

are almost complete sequences, so they are very similar in terms of scheduled jobs and therefore, a direct

evaluation of the completion times of the jobs to compare individuals would be more related to the �nal

objective. Thereby, in the expression of the forecast index, the cumulated idle time, denoted as SIT

(11.10) would be reduced with the number of scheduled jobs (it is multiplied by n − k − 2), while the

cumulated completion time, so-called SCT (11.12), would remain the same in the formation of the �nal

individual. More speci�cally:

SITk,l′ =
n− b

n
·
[
SITk−1,branch[l′ ] + ITjob[l′ ],k,branch[l′ ] · (n− k − 2)

]
, ∀k = {1, . . . , n− 1}, l

′
= {1, . . . , x}

(7.5)

SCTk,l′ = SCTk−1,branch[l′ ] + CTjob[l′ ],k,branch[l′ ] + CTλk,branch[l′ ], ∀k = {1, . . . , n− 1}, l
′
= {1, . . . , x}

(7.6)

where SIT0,l′ = SCT0,l′ = 0, ∀l′ = {1, . . . , x} and CTλk,l is the completion time of the individual l

in the iteration k of an arti�cial job placed at the end of the sequence with processing times equal to the

average processing times of the unscheduled jobs (ul
j,k ∀j).

Taking these indicators into account, the forecast index can be then de�ned as follows:

Fk,l′ = a · SCTk,l′ + SITk,l′ , ∀k = {1, . . . , n− 1}, l
′
= {1, . . . , x}

where a, and b are parameters designed to better balance the components of the forecast index.

Parameter a balances the in�uence of SIT and SCT . Parameter b is introduced in fraction (n− b)/n of

SIT in order to diminish the weight of idle time with the increase of iterations, given that 1) the idle

time of the last jobs is less important than that of the �rst ones given the �owtime objective, and 2)

the importance of the cumulated idle time as indicator also decreases as the number of scheduled jobs is

higher.

The calibration of a and b is discussed in Section 7.4.

An example of the algorithm is presented in Figure 7.4. We use the third instance of the benchmark

B1 but removing last 16 jobs and considering only the �rst 4 ones. Individuals are shown in lilac while
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Figure 7.4: Example of PCH

Source Signi�cance

Parameter a 0.000
Parameter b 1.000
Parameter c 0.007

Table 7.5: Kruskal-Wallis for the parameters d, L and T

candidates are shown in orange.

The pseudo-code of the algorithm is shown in Figure 7.5.

Experimental parameter tuning

Parameters a, b and c have been included to better adjust the performance of the proposed heuristic.

In this subsection, a full factorial design of experiments is performed to set up proper values for these

parameters. For each of them, the following levels are tested

• a ∈ {1, 3, 5, 7, 9, 11, 13}

• b ∈ {0, 1, 2, 3, 4, 5, 6}

• c ∈ {1, 3, 5, 7, 9, 11, 13}

representing 343 combinations of values. Each combination is tested on calibration benchmark BC1. A

non-parametric Kruskal-Wallis analysis is performed since normality and homoscedasticity assumptions

required for ANOVA were not ful�lled. In the experiments, x = n/10 in order to avoid excessive CPU time

requirements in the parameter tuning. Results are shown in Table 7.5, indicating that there are signi�cant

di�erences between the levels of parameters a and c, but not for parameter b. The best combination is

obtained for a = 9, b = 3 and c = 7. These values are used for the PCH heuristic in the next section

regardless the value of x.
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Procedure PCH(x)
//Initial Order
Determination of IT

′

j,0, CT
′

j,0 and ξ
′

j0;

ITj,0,l = IT
′

j,0 and CTj,0,l = CT
′

j,0 ∀l;
α := Jobs ordered according to non-decreasing ξ

′

j,0 breaking ties in favor of jobs with lower IT
′

j,0;
Update Sl

1 (s
l
1,1 = αl) ∀l and U l

1 with the remaining jobs.
Determination of CTλ0,l ∀l. Note that the processing times of the arti�cial job for individual l is
equal to the average processing times of all jobs with the exception of sl1,1;
for l = 1 to x do

SIT1,l =
n−b
n ·

(
ITalpha[l],0,l · (n− 0− 2)

)
;

SCT1,l = CTalpha[l],0,l + CTλ,0,l;
F1,l := a · SCT1,l + SIT1,l;

end
for k = 1 to n− 1 do

//Candidates Creation
Determination of ITjkl, CTjkl;
//Candidates Evaluation
Bjkl := Fkl + c · CTjkl + ITjkl, ∀l ∈ [1, x] and ∀j ∈ [1, n− x];
//Candidates Selection
for l

′
= 1 to x do

Determination of the l
′
-th best candidate according to non-decreasing Bjkl in iteration k.

Denote by branch[l
′
] the value of the index l of that candidate and by job[l

′
] the value of j;

end
//Forecasting Phase. Update of the Forecast Index
for l

′
= 1 to x do

Update Sl′

k+1 and U l′

k+1 by removing job u
branch[l′]
job[l′],k from U

branch[l′]
k and including in S

branch[l′]
k .

Determination of CTλk,branch[l′] for new individual l
′
formed by the old individual branch[l

′
]

with job job[l
′
]. Note that the processing times of the arti�cial job is equal to the average

processing times of all unscheduled jobs (U l′

k+1);

SITk+1,l′ =
n−b
n ·

(
SITk,branch[l′ ] + ITjob[l′ ],k,branch[l′ ] · (n− k − 2)

)
;

SCTk+1,l′ = SCTk,branch[l′ ] + CTjob[l′ ],k,branch[l′ ] + CTλk,branch[l′ ];
Fk+1,l′ = a · SCTk+1,l′ + SITk+1,l′ ;

end

end
//Final evaluation
Evaluate the �owtime of the sequenced jobs of each individual and return the least one.

end

Figure 7.5: PCH
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7.5 Computational experience

Computational experience for the FF heuristic

In order to compare the performance of the FF heuristic, the e�cient heuristics described in Section 7.2

are implemented and their results on the benchmark B1 are collected. Note that all experiments carry

out in this chapter are run on an Intel Core i7-3770 PC with 3.4 GHz and 16GB RAM. As mentioned

before, [96] showed that heuristics for the Fm|prmu|
∑

Cj with insertion and pair-wise exchanges (i.e.

all e�cient heuristic but LR) can be implemented reducing around 30-50% computational times. Thus,

in order to conduct a fair comparison, this acceleration has been implemented in our codi�cation of each

insertion method of all heuristics.

Comparing the CPU time required by each heuristic with those in the chapter by [137], we found that

the former were larger by a factor of 3.38 times on average. This can be explained due to the di�erent

programming languages used to implement the heuristics, to the di�erent ways of coding the routines and

to the di�erent computer employed for the implementation. However, since the stopping criterion of some

heuristics in [137] was set to 0.01 · n · m seconds, applying the same criterion in our slower procedures

would penalise the performance of these heuristics, as they now require more time per iteration and thus

will perform less iterations. Therefore, in order to conduct a fair comparison, we change the stopping

criterion to 0.0338 · n ·m so to have a similar number of iterations to that of [137].

The overall results of the experiments are summarised in Table 7.6, where the average results of each

heuristic over all 120 instances are shown. The e�ect of replacing LR by FF is speci�cally highlighted in

Table 7.7, showing the e�ciency of the proposed heuristics. For instance, the average computational time

of FF (1) is just 0.02s while the average computational time for LR(1) is 0.76s. Not only the complexity

of the algorithm has been reduced from n3 · m to n2 · m, but the ARPD1 of FF (1) is also lower as

compared to the ARPD1 of LR(1).

Regarding the detailed results, those obtained by the heuristics Raj, LR(1), RZ, RZ − LW , LR −

NEH(5), LR−NEH(10), LR− FPE, IC1, IC2 and IC3 are shown in Table 7.8 while the CPU times

are shown in Table 7.11.
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Heuristic ARPD1 ARPT1 ACPU

LR(1) 3.01 -0.98 0.76
LR(n/m)-FPE(n) 1.02 -0.47 33.07

IC1 0.64 -0.29 41.93
IC2 0.54 -0.08 55.33
IC3 0.53 1.26 330.92

LR-NEH(5) 1.52 -0.75 6.69
LR-NEH(10) 1.44 -0.52 13.37

Raj 4.86 -0.99 0.29
RZ 2.32 -0.90 2.97

RZ-LW 1.13 -0.42 32.69
PR1(5) 0.37 1.93 58.87
PR1(10) 0.26 4.60 67.38
PR1(15) 0.21 7.06 68.54
FF(1) 2.76 -1.00 0.02
FF(2) 2.34 -0.99 0.05

FF(n/10) 1.95 -0.98 0.99
FF(n/m) 2.05 -0.98 0.54
FF(n) 1.83 -0.69 10.12

FF(1)-FPE(1) 2.36 -0.99 0.15
FF(1)-FPE(n/10) 1.81 -0.94 2.89
FF(1)-FPE(n) 1.23 -0.64 21.39
FF(2)-FPE(1) 1.97 -0.97 0.17

FF(2)-FPE(n/10) 1.55 -0.94 3.05
FF(2)-FPE(n) 1.07 -0.63 19.78
FF(15)-FPE(1) 1.58 -0.88 0.44

FF(15)-FPE(n/10) 1.29 -0.86 2.90
FF(15)-FPE(n) 0.96 -0.62 16.89
FF(n/10)-FPE(1) 1.63 -0.96 1.12

FF(n/10)-FPE(n/10) 1.33 -0.92 3.51
FF(n/10)-FPE(n) 0.94 -0.63 18.79
FF(n/m)-FPE(1) 1.70 -0.96 0.64

FF(n/m)-FPE(n/10) 1.37 -0.92 3.11
FF(n/m)-FPE(n) 1.01 -0.64 18.05
FF(n)-FPE(1) 1.53 -0.65 10.27

FF(n)-FPE(n/10) 1.25 -0.62 12.68
FF(n)-FPE(n) 0.94 -0.35 28.00

FF-IC1 0.62 -0.48 25.33
FF-IC2 0.56 -0.26 36.47
FF-IC3 0.55 1.13 300.93

FF-NEH(5) 1.40 -0.86 3.18
FF-NEH(10) 1.34 -0.72 6.33
FF-PR1(5) 0.34 1.37 48.60
FF-PR1(10) 0.24 3.68 58.48
FF-PR1(15) 0.19 5.45 63.03

Table 7.6: Summary of results of heuristics
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Heuristic ARPD1 Avg. Time ARPT1 Heuristic ARPD1 Avg. Time ARPT1

LR(1) 3.01 0.76 -0.98 → FF(1) 2.76 0.02 -1.00
LR(n/m)-FPE(n) 1.02 33.07 -0.47 → FF(n/m)-FPE(n) 1.01 18.05 -0.64

IC1 0.64 41.93 -0.29 → FF-IC1 0.62 25.33 -0.48
IC2 0.54 55.33 -0.08 → FF-IC2 0.56 36.47 -0.26
IC3 0.53 330.92 1.26 → FF-IC3 0.55 300.93 1.13

LR-NEH(5) 1.52 6.69 -0.75 → FF-NEH(5) 1.40 3.18 -0.86
LR-NEH(10) 1.44 13.37 -0.52 → FF-NEH(10) 1.34 6.33 -0.72

Raj 4.86 0.29 -0.99 � � � �
RZ 2.32 2.97 -0.90 � � � �

RZ-LW 1.13 32.69 -0.42 � � � �
PR1(5) 0.37 58.87 1.93 → FF-PR1(5) 0.34 48.60 1.37
PR1(10) 0.26 67.38 4.60 → FF-PR1(10) 0.24 58.48 3.68
PR1(15) 0.21 68.54 7.06 → FF-PR1(15) 0.19 63.03 5.45

Table 7.7: Comparisons between composite heuristics which include LR and FF heuristics
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Figure 7.6: ARPD1 versus average computational times. X-axis (Average computational time) is shown
in logarithmic scale. Noted that only the e�cient heuristics of the new set of heuristics are named.

Di�erent values of parameters x and y of the heuristic FF (x)−FPE(y) have been analysed according

to the literature (see e.g. [108, 137]). More speci�cally, x ∈ {1, 2, 15, n/10, n/m, n} and y ∈ {1, n/10, n}

have been employed. Regarding the parameters of the heuristics FF −NEH(x) and PR1(a), the same

values than in [137] (i.e. x ∈ {5, 10} and a ∈ {5, 10, 15}) are chosen since the analysis of these parameters

was already performed by these authors. Detailed ARPD1 results are shown in Tables 7.8, 7.9 and 7.10,

while computational results are shown in Tables 7.11, 7.12 and 7.13.

Graphically, the new e�cient set of heuristics using the average computational time is shown in Figure

7.6 while new e�cient heuristics using ARPT1 as time reference are shown in Figure 7.7. For the former,

the Pareto set is formed by the following heuristics: FF (1), FF (2), FF (2)−FPE(1), FF (15)−FPE(1),

FF (15)−FPE(n/10), FF (15)−FPE(n), FF (n/10)−FPE(n), FF (n)−FPE(n), FF−IC1, FF−IC2,

FF −PR1(5), FF −PR1(10) and FF −PR1(15). For the latter, the e�cient frontier is: FF (1), FF (2),

FF (n/10), FF (n/m), FF (2)− FPE(n/10), FF (15)− FPE(n/10), FF (n/10)− FPE(1), FF (n/10)−

FPE(n/10), FF (n/10)−FPE(n), FF (n/m)−FPE(n), FF −IC1, FF −IC2, IC2, IC3, FF −PR1(5),

FF −PR1(10) and FF −PR1(15). It represent a total of 17 heuristics in the new Pareto set. 15 of these

heuristics correspond to the new set of heuristics presented in this chapter.

Seven paired samples t-test were carried out in order to compare the new set of e�cient heuristic to
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Figure 7.7: ARPD1 versus ARPT1.

Heuristics Mean SEM IC - Lower IC - Upper t Signi�cance

Raj vs FF(1) 2.096 1.798 1.770 2.421 12.767 0.000
LR(1) vs FF(2) 0.668 1.507 0.396 0.941 4.857 0.000

LR(n/m)-FPE(n) vs FF-IC1 0.404 0.667 0.283 0.524 6.628 0.000
LR-NEH(5) vs FF(15)-FPE(n/10) 0.233 0.709 0.105 0.361 3.598 0.000

RZ vs FF(n/10)-FPE(n/10) 0.989 1.156 0.780 1.198 9.374 0.000
RZ-LW vs FF-IC1 0.510 0.830 0.360 0.660 6.738 0.000

LR-NEH(10) vs FF(n/10)-FPE(n) 0.500 0.711 0.371 0.628 7.699 0.000

Table 7.14: Paired samples t-test using Taillard's benchmark.

the old one. Comparisons were always performed between algorithms with higher ARPT1, i.e.: Raj vs

FF (1), LR(1) vs FF (2); LR(n/m) − FPE(n) vs FF − IC1; LR −NEH(5) vs FF (15) − FPE(n/10);

RZ vs FF (n/10)− FPE(n/10); RZ − LW vs FF − IC1 and LR−NEH(10) vs FF (n/10)− FPE(n).

The results of the analysis are shown in Table 7.14. Statistically signi�cant di�erences were found for

each comparison being 0.000 the maximum p-value found in the analysis. The Least Signi�cant Di�erence

(LSD) intervals for each heuristics are shown in Figure 7.8.

Computational experience for the PCH heuristic

The proposed heuristic is compared with the current set of e�cient heuristics formed by FF (1), FF (2),

FF (n/10), FF (n/m), FF (2)− FPE(n/10), FF (15)− FPE(n/10), FF (n/10)− FPE(1), FF (n/10)−
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Figure 7.8: LSD intervals of the RPD1 for each analysed heuristics.

FPE(n/10), FF (n/10)− FPE(n), FF (n/m)− FPE(n), FF − IC1, FF − IC2, FF − IC3, IC2, IC3,

FF − PR1(5), FF − PR1(10) and FF − PR1(15).

Experiments have been performed for the 120 instances of the benchmark B1. Additionally, parameter

x of the proposed heuristic must be set. As shown in Section 7.4, x indicates the number of individuals

in each iteration and therefore, it is directly proportional to the CPU time required by the heuristic. For

x > n, additional indications in the �rst iteration of the algorithm would have to be provided (i.e. at

least it should be indicated which is the �rst job of the last x − n individuals after the �rst iteration),

so here we restrict to x ∈ {1, n}. More speci�cally, we use the values of x also used in the literature for

the LR heuristic, i.e. x ∈ {2, 5, 10, 15, n/10, n/m, n} (see e.g. [108] and [137]). Note that x = 1 has been

removed of the analysis since PCH(1) is equal to FF (1) (with a di�erent combination of parameters), so

it is already included in the computational evaluation.

The comparison of heuristics is performed in terms of quality of the solutions and computational e�ort.

On the one hand, the former is commonly evaluated by means of the Relative Percentage Deviation RPD1.

On the other hand, the most common indicator for the computational e�ort is the average CPU time,

ACPU . However, in Section 7.2 detected that this indicator presents several problems when used to

evaluate heuristics with di�erent stopping criteria, and proposed the (Relative Percentage Time) RPT

indicator to overcome these problems.

The RPD1 values obtained for each algorithm are shown in Tables 7.15 and 7.16. The last �le indicates
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the average value, i.e. the ARPD1 for each algorithm. As it can be seen, the ARPD1s of the actual

set of e�cient heuristics ranges from 3.84 to 1.22, where the best one (1.22) is found by FF-PR1(15).

Regarding PCH, the worst ARPD1 is 2.51 while the best one is 0.19. In order to be able to perform a

fair comparison between the heuristics, CPU times (in seconds) are summarised in Tables 7.17 and 7.18

(the last two �les represent the average CPU time and the ARPT1 respectively). The average values

are indicated in Table 7.19 and graphically shown in Figure 7.10 using the ARPT as measure of the

computational e�ort, as well as in Figure 7.9 using the average CPU time.

Using ARPT1 as a measure of the computational e�ort, the actual set of e�cient heuristics is updated

by including a complete new set of heuristics, all of them including PCH for di�erent values of x. As

it can be seen, our proposal PCH outperforms existing e�cient heuristics, according to the following

conclusions:

• PCH(2) (with ARPD1 = 2.51) improves heuristics FF (n/m), FF (n/10) and FF (n/10)−FPE(1)

with ARPD1s equal to 3.11, 3.02 and 2.70 respectively, while using less ARPT1.

• PCH(n/m), PCH(5) and PCH(n/10) with ARPD1 1.46, 1.35 and 1.21 respectively outperform

FF (2)− FPE(n/10) and FF (n/10)− FPE(n/10) using less ARPT1.

• PCH(10), with ARPD1 and ARPT1 equal to 0.88 and −0.87, clearly outperforms FF (15) −

FPE(n/10), which has an ARPD1 of 2.35 and an ARPT1 of −0.83.

• PCH(15) (ARPD1 = 0.64) outperforms with less computational e�ort FF (n/10) − FPE(n),

FF (n/m)− FPE(n), FF − IC1 and FF − IC2 which have a minimal ARPD1 of 1.61.

• The best heuristic, PCH(n), with ARPD1 = 0.19 clearly outperforms heuristics IC2, FF − IC3,

IC3, FF − PR1(5), FF − PR1(10) and FF − PR1(15).

In order to establish the statistical signi�cance of these results, Holm's procedure [73] is used where each

hypothesis is analysed using a non-parametric Mann-Whitney test (see e.g. [138]). In Holm's procedure,

the hypotheses are sorted in non-descending order of the p-values found in the Mann-Whitney test. The

hypothesis i is rejected if its p-value is lower than α/(k− i+1) where k is the total number of hypotheses.

The results of the Holm's procedure are shown in Table 7.20, where the fourth and sixth columns indicate

if the hypothesis is rejected (denoted as R in such case) by Mann-Whitney and/or Holm's procedure. As

can be seen hypothesis PCH(2) = FF (n/10)−FPE(1) is the only one that cannot be rejected by Holm's

procedure, but it has to be noted that the computational e�ort required by FF (n/10)−FPE(1) is much

higher to that by PCH(2). In summary, it can be concluded that PCH(n/10), PCH(10), PCH(15)
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and PCH(n) are statistically e�cient and that PCH(2) is not ine�cient. Note that PCH(2) would

be statistically e�cient when considering the Pareto frontier using the average CPU time instead of the

ARPT1.

A �nal series of experiments have been conducted to compare the PCH(n) heuristic with an iterated

local search (denoted as MRSILS) and an iterated greedy algorithm (denoted as IGRIS). These two

are among the best metaheuristics for the problem (see [34] and [138]). In order to analyse the impact of

PCH(n), we separately run both metaheuristics until the stopping criterion 60 ·n ·m/2 milliseconds. For

each instance, �ve runs are considered and the average �owtime values are recorded. Both metaheuristics

have been again implemented under the same conditions and the comparison has been performed for all

instances of the benchmark. Results in terms of ARPD2 and ACPU are shown in Table 7.21. Note that,

last column indicates the ratio between the time needed by metaheuristics and the PCH(n) heuristic for

each size of instance. The UB is the best known upper bound for the instance i taken from [136].

As it can be seen, both ARPD2 and ACPU values of the metaheuristics are clearly improved by the

proposed constructive heuristic. One the one hand, the best ARPD2 value of the metaheuristics is 0.76

while the ARPD2 value of the PCH(n) heuristic is 0.40 (there are statistical di�erences between the

algorithms when a non-parametric Mann-Whitney test is used as p-value equals to 0.004). Additionally,

35 new best upper bounds have been found in the instances (see Table 7.22). This fact clearly highlights

the excellent performance of the proposed heuristic since e.g. only 12 upper bounds were updated when

[136] ran the several metaheuristics until a stopping criterion of 400 ·m · n milliseconds (i.e. an average

CPU time of 731.7 seconds). On the other hand, big di�erences are found when analysing the average

CPU time between the algorithms, which are 19.4 seconds for the PCH(n) heuristic and 54.88 seconds

for the metaheuristics. Although the di�erences in average CPU time are not so relevant, it is due to

the use of an instance-size dependent indicator to compare algorithms with di�erent stopping criteria (see

Section 7.2 and Chapter 3.3 for a more detailed explanation). In fact, regarding the ratio of the CPU time

between the metaheuristics and the proposed heuristic, the computational e�ort for the metaheuristics is

767.23 times bigger than for the proposed heuristic. This also serves to explain the good performance of

the metaheuristics in the 60 smallest instances as compared with the proposed constructive heuristic since

a huge computational e�ort is used for the former (e.g. approximately 3,500 times higher in instances

Ta21-Ta-30). In contrast, the CPU time of the proposed heuristic is always less than 1 second, and

its average CPU times for the �rst 90 instances is 0.17 seconds against 19.83 seconds required by the

metaheuristics.
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Heuristic ARPD1 ARPT1 Avg. Time

FF (1) 3.84 -0.99 0.01
FF (2) 3.42 -0.99 0.01

FF (n/10) 3.02 -0.98 0.26
FF (n/m) 3.11 -0.97 0.14

FF (2)− FPE(n/10) 2.62 -0.94 0.83
FF (15)− FPE(n/10) 2.35 -0.83 0.86
FF (n/10)− FPE(1) 2.70 -0.96 0.29

FF (n/10)− FPE(n/10) 2.39 -0.92 0.96
FF (n/10)− FPE(n) 2.00 -0.66 5.25
FF (n/m)− FPE(n) 2.07 -0.66 5.09

FF − IC1 1.68 -0.42 7.51
FF − IC2 1.61 -0.15 11.10
FF − IC3 1.60 1.04 94.14

IC2 1.58 0.14 15.72
IC3 1.54 1.26 94.43

FF − PR1(5) 1.37 1.82 34.71
FF − PR1(10) 1.28 4.57 38.74
FF − PR1(15) 1.22 7.12 41.93

PCH(2) 2.51 -0.98 0.02
PCH(5) 1.35 -0.95 0.05
PCH(10) 0.88 -0.87 0.11
PCH(15) 0.64 -0.80 0.18

PCH(n/10) 1.21 -0.95 0.66
PCH(n/m) 1.46 -0.95 0.27
PCH(n) 0.19 0.02 19.40

Table 7.19: Summary of results of the heuristics.

7.6 Conclusions

In this chapter, we have presented two new constructive heuristics denoted by FF (x) and PCH(x) for

the permutation �owshop scheduling problem to minimise �owtime. On the one hand, the �rst heuristic

constructs the �nal sequence adding jobs, one by one, at the end of the sequence based in the machine

idle times and in the makespan of the inserted job. The complexity of the proposed algorithm is x ·n2 ·m

being lower than the complexity of the heuristics in the actual Pareto set. Since most e�cient heuristics

use the algorithm LR in some of their phases, the latter can be replaced by the new algorithm FF in each

of these heuristics. On the other hand, the population-based constructive heuristic, PCH, constructs

sequences and, at the same time, combines them and selects the best x ones. Since the individuals are

formed by partial sequences, a forecast index is introduced in order to be able to compare individuals

with di�erent un- and scheduled jobs.

The proposed heuristics have been compared on an extensive computational evaluation with the state-

of-the-art algorithms. The results obtained by FF and PCH are much better than those obtained by

other constructive heuristics in the literature for the problem (e.g. the ARPD1 and ARPT1 of the

PCH(n) heuristic is 0.19 and 0.02 respectively which are much less than those obtained by the most
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Figure 7.9: ARPD1 versus ACPU . Average computational time (X-axis) is shown in logarithmic scale.

Figure 7.10: ARPD1 versus ARPT1 + 1. X-axis is shown in logarithmic scale
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i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure

1 PCH(2)=FF (n/m) 0.000 R 0.0031 R
2 PCH(n/10)=FF (2)− FPE(n/10) 0.000 R 0.0033 R
3 PCH(n/10)=FF (n/10)− FPE(n/10) 0.000 R 0.0036 R
4 PCH(10)=FF (15)− FPE(n/10) 0.000 R 0.0038 R
5 PCH(15)= FF (n/10)− FPE(n) 0.000 R 0.0042 R
6 PCH(15)=FF (n/m)− FPE(n) 0.000 R 0.0045 R
7 PCH(15)=FF − IC1 0.000 R 0.0050 R
8 PCH(15)=FF − IC2 0.000 R 0.0056 R
9 PCH(n)=IC2 0.000 R 0.0063 R
10 PCH(n)=FF − IC3 0.000 R 0.0071 R
11 PCH(n)=IC3 0.000 R 0.0083 R
12 PCH(n)=FF − PR1(5) 0.000 R 0.0100 R
13 PCH(n)=FF − PR1(10) 0.000 R 0.0125 R
14 PCH(n)=FF − PR1(15) 0.000 R 0.0167 R
15 PCH(2)=FF (n/10) 0.001 R 0.0250 R
16 PCH(2)=FF (n/10)− FPE(1) 0.163 0.0500

Table 7.20: Holm's procedure.

ARPD2 Avg. time

Instance MRSILS IGRIS PCH(n) MRSILS, IGRIS PCH(n) MRSILS,IGRIS
PCH(n)

20 x 5 0.01 0.05 1.25 3.00 0.00 1704.55
20 x 10 0.00 0.08 0.75 6.00 0.00 2500.00
20 x 20 0.00 0.01 0.75 12.00 0.00 3508.77
50 x 5 0.57 0.69 0.75 7.50 0.03 291.60
50 x 10 0.70 0.90 1.04 15.00 0.03 438.34
50 x 20 0.69 0.99 1.48 30.00 0.06 529.10
100 x 5 1.11 1.17 0.30 15.00 0.31 48.49
100 x 10 1.44 1.60 0.57 30.00 0.40 74.63
100 x 20 1.50 1.89 1.14 60.00 0.68 87.60
200 x 10 1.10 1.35 -0.61 60.00 7.25 8.28
200 x 20 1.24 1.46 -0.76 120.00 8.57 14.01
500 x 20 0.79 0.85 -1.87 300.00 215.44 1.39

Average 0.76 0.92 0.40 54.88 19.40 767.23

Table 7.21: ARPD2 and average CPU time, for each instance size, required by the PCH(n) heuristic
and the metaheuristics MRSILS and IGRIS .
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Instance Best Bound Instance Best Bound Instance Best Bound Instance Best Bound

TA1 14033 TA31 64802 TA61 253232 TA91 1042494

TA2 15151 TA32 68051 TA62 242093 TA92 1028957

TA3 13301 TA33 63162 TA63 237832 TA93 1043467

TA4 15447 TA34 68226 TA64 227738 TA94 1029244

TA5 13529 TA35 69351 TA65 240301 TA95 1029384

TA6 13123 TA36 66841 TA66 232342 TA96 999241

TA7 13548 TA37 66253 TA67 240366 TA97 1042663

TA8 13948 TA38 64332 TA68 230945 TA98 1035981

TA9 14295 TA39 62981 TA69 247677 TA99 1015389

TA10 12943 TA40 68770 TA70 242933 TA100 1022277

TA11 20911 TA41 87114 TA71 298385 TA101 1223860

TA12 22440 TA42 82820 TA72 273826 TA102 1234081

TA13 19833 TA43 79931 TA73 288114 TA103 1259866

TA14 18710 TA44 86446 TA74 301044 TA104 1228060

TA15 18641 TA45 86377 TA75 284279 TA105 1219886

TA16 19245 TA46 86587 TA76 269686 TA106 1219432

TA17 18363 TA47 88750 TA77 279463 TA107 1234366

TA18 20241 TA48 86727 TA78 290908 TA108 1240627

TA19 20330 TA49 85441 TA79 301970 TA109 1220873

TA20 21320 TA50 87998 TA80 291283 TA110 1235462

TA21 33623 TA51 125831 TA81 365463 TA111 6558547

TA22 31587 TA52 119247 TA82 372449 TA112 6679507

TA23 33920 TA53 116459 TA83 370027 TA113 6624893

TA24 31661 TA54 120261 TA84 372393 TA114 6649855

TA25 34557 TA55 118184 TA85 368915 TA115 6590021

TA26 32564 TA56 120586 TA86 370908 TA116 6603691

TA27 32922 TA57 122880 TA87 373408 TA117 6576201

TA28 32412 TA58 122489 TA88 384525 TA118 6629393

TA29 33600 TA59 121872 TA89 374423 TA119 6589205

TA30 32262 TA60 123954 TA90 379296 TA120 6626342

Table 7.22: New best bounds (in bold) found by the proposed algorithm.
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e�cient heuristic so far, FF − PR1(15) with 1.22 and 7.13). When comparing PCH(x) with the so-far

most e�cient heuristics in the literature, there are statistical di�erences for each new e�cient heuristic

with the only exception of PCH(2). Thereby, the set of e�cient heuristics for the problem has been

reduced from 14 heuristics to seven heuristics of only two types of heuristics, the FF for parameters 1 and

2 which is e�cient for the smallest CPU times, and the PCH with x ∈ {2, n/10, 10, 15, n}. The excellent

performance of the proposed heuristic PCH is also shown by means of its comparison against two of the

best metaheuristics for the problem. Our proposal statistically outperforms both metaheuristics (ARPD2

of PCH(n) is 0.40 against 0.76 of the best metaheuristic) using much less computational e�ort for each

instance of the benchmark. Additionally, the proposed heuristic found new best upper bounds for 35 of

the 120 instances in Taillard's benchmark.

Additionally, certain issues have been identi�ed in the evaluation of e�cient heuristics in the literature.

When analysing the trade-o� between the quality of the solutions and the time required by the heuristics

to obtain them, an dimensionless (and relative) variable (ARPD1) was used to represent the former while

a dimensional and absolute variable (average computational time of the heuristic) was used to represent

the latter. As discussed earlier in this chapter, some heuristics are deemed as e�cient whereas they are

not e�cient for many problem sizes.

The intended contribution of the chapter can be summarised as follows. FF and PCH, two e�cient

heuristics, has been presented. These heuristics achieve better results in terms of both CPU time and

ARPD1 than those obtained by the fastest e�cient heuristic (with complexity O(n3 · m)) so far. By

means of these heuristics, a new set of e�cient heuristics for the problem has been identi�ed, all of them

formed by the proposed heuristics.



Chapter 8

PFSP to minimise total tardiness

8.1 Introduction

In this chapter, we will show that an analysis reveals the importance of adequately addressing the high

number of ties appearing in the constructive phase of the NEHedd. In order to handle these ties in

an e�cient way, we propose several tie-breaking mechanisms for the problem and conduct an extensive

computational experiment to test their performance (Objection SO8). The results show that one of these

mechanisms (based on machine idle time) improves the original results obtained by NEHedd by roughly

25% while requiring the same CPU time. Another one (based on Taillard's acceleration for makespan)

outperforms the NEHedd by 15% while employing less CPU time. Furthermore, when using the idle time-

based version of the NEHedd as starting solution for the metaheuristic by [197] (which is the state-of-the-

art metaheuristic for the problem), the metaheuristic improves its result for di�erent stopping criteria.

The remainder of the section is organized as follows: in Section 8.2, eight tie-breaking mechanisms are

proposed. An extensive comparison among them and with the original NEHedd procedure are performed

in Section 8.3. Finally, conclusions are discussed in Section 8.4.

8.2 New tie-breaking mechanisms

The analysis carried out in Section 5.2 also serves to explain the excellent performance of the NEHedd

procedure and to identify possible improvements. The NEHedd heuristic performs well in the three regions

since it minimises also �owtime in Region 1, and, since it includes the EDD rule as a sorting order, it

guarantees good performance in Region 3. However, it can be seen that its performance decreases for

medium/high values v as compared to that for low/medium values of v. An explanation of this rather

147
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Figure 8.1: Average number of ties in each instance grouped by the parameter v.

surprising fact could lie in the high number of ties that would have to broken when, for each iteration of

the NEHedd procedure, several partial sequences may have the same total tardiness. This situation could

be rather common, as in the �rst iterations of the algorithm the total tardiness of the partial sequence is

zero, thus leading to a high number of ties. In addition, since these ties appear in the �rst iterations, the

mechanism chosen to solve them can greatly in�uence the �nal sequence obtained.

To con�rm this fact, the number of ties on the well-known benchmark of instances proposed by [199],

B3, has been studied. Results are shown in Figure 8.1 for di�erent values of v, and yield an average of 10.1

ties per iteration, where 210 is the maximum number of ties found in an iteration. The number of ties

increases with v and is close to zero for low values of v, which is consistent with the fact that the problem

is similar to that of �owtime minimisation. The analysis also shows that, for some instances with a high

value of v, an average of around a 40% of the positions where the job is to be inserted has the same total

tardiness in each iteration, which represents a huge amount of ties.

In view of the results of the experiments, it can be concluded that the existence of a mechanism to break

ties is extremely important for the NEHedd procedure in the Fm|prmu|
∑

Tj problem. However, a tie-

breaking mechanism is not considered either in the NEHedd procedure, or in the original NEH algorithm

for makespan minimisation. In the next section, we propose di�erent tie-breaking mechanisms so the

performance of NEHedd procedure can be improved in the most interesting region of the Fm|prmu|
∑

Tj .

As mentioned in the previous section, no speci�c tie-breaking mechanism is mentioned in the original

NEH heuristic for makespan minimisation. Indeed, it is cited [127] that �... Next, the job with the third

highest total process time is selected and the three partial sequences are tested in which this job is placed

at the beginning, middle and end of the partial sequence...�, which seems to indicate that the �rst position

where a tie is found is selected. In the following, we will denote this tie-breaking mechanism as FT (First-
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Procedure NEHedd(TBX)
α := Jobs ordered by non-decreasing due dates where α = {α1, ..., αi, ..., αn};
π := {α1};
for k = 2 to n do

Test job αk in any possible position of π.
π := permutation obtained by inserting αk in the position of π with less total tardiness breaking
ties according to an speci�c mechanism;

end

end

Figure 8.2: NEHedd with di�erent tie-breaking mechanisms

Tie). Later, in the race for improving the NEH heuristic, [83] established the importance of breaking ties

in the NEH heuristic and proposed a tie-breaking mechanism to improve the results obtained by the NEH

heuristic. Since then, this aspect has been extensively analysed in the literature and several tie-breaking

mechanisms have been proposed for the PFSP to minimise makespan (see [84], [35], [85], [162], [86], or

the proposed in Chapter 6).

To the best of our knowledge, there are no tie-breaking mechanisms proposed for the NEHedd proce-

dure, which adopts the �rst-tie mechanism as in the original NEH heuristic. However, it has to be noted

that, since the EDD rule sorts the jobs according to non-decreasing due dates, in case of ties in the �rst

iterations of NEHedd, the jobs would be �nally ordered according to non-increasing due dates, which

would probably lead to a worse �nal sequence than using a di�erent mechanism.

In this section, several tie-breaking mechanisms are proposed to improve the traditional tie-breaking

mechanism of the NEHedd procedure. The pseudo-code for the NEHedd algorithm including a generic

tie-breaking mechanism is shown in Figure 8.2.

The proposed tie-breaking mechanisms involve using a secondary indicator related to the performance

of the partial sequence. The goal is to pick, among those slots with the same tardiness, the slot yielding

the best value of the secondary indicator for the unscheduled jobs. Thereby, total idle time (IT1 or

IT2, see below), total �owtime (CT )), total earliness (ET ) and makespan (MS) are chosen as potential

secondary indicators. Note that, since these indicators have to be computed for every slot where the job

is to be inserted in each iteration of the algorithm, they have to be carefully chosen so that the additional

computational e�ort pays o�.

More speci�cally, the tie-breaking mechanisms analysed in this chapter are:

• First tie, NEHedd(TBFT ). Original tie-breaking mechanism of the NEHedd algorithm proposed

in [127] where, in case of ties, the �rst tie is chosen.

• Last tie, NEHedd(TBLT ). This tie-breaking mechanism simply consists in selecting the last tie

as reference for the next iteration. This tie-breaking mechanism tries to solve the problem of TBFT
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where jobs are sorted according to the reverse EDD rule.

• Total idle time, NEHedd(TBIT1) and NEHedd(TBIT2). Denoting front delay of a machine as

the time until it starts processing the �rst job, and back delay of a machine as the time between

completing the processing of the last job and the completion of all jobs in any machine, machine

idle time can be ambiguously de�ned by means of at least three di�erent ways ([42]), i.e.: idle time

including front delays and excluding back delays (denoted as IT1); idle time excluding front and

back delays (denoted as IT2); and idle time considering front delays and back delays.

If we adopt the �rst de�nition of idle time, then the idle time of machine i can be calculated as

IT1i = Cin−
∑n

j=1 pij . Consequently, the total idle time is IT1 =
∑m

i=1 IT1i. Minimising IT1 looks

for a more compacted schedule of the inserted jobs and it is equivalent to the minimisation of the

sum of the completion times of each job in each machine. On the other hand, the second de�nition of

idle time (excluding both delays) can be calculated as IT2 =
∑n

j=2

∑m
i=2 max{Ci−1,j − Ci,j−1, 0}.

The heuristics resulting from the use of these tie-breaking mechanisms in NEHedd are denoted

as NEHedd(TBIT1) and NEHedd(TBIT2) respectively. Finally, note that the minimisation of

the third de�nition of idle time is analogous to the minimisation of makespan and, therefore, it is

considered below when discussing breaking ties according to the makespan.

• Total completion time, NEHedd(TBCT ). Total completion time can be de�ned as follows:

ct =
∑j

j=1 Cm,j . As with idle time, this tie-breaking mechanism tries to balance the use of resources,

and the resulting NEHedd heuristic is denoted by NEHedd(TBCT ).

• Total earliness, NEHedd(TBET ). If a job �nishes before its due date, its earliness indicates the

time between the due date and the completion time of the job. Given several sequences with the

same total tardiness, sequences with a high value of the total earliness indicate that, on average,

the completion times of the jobs are far from their due dates. Thus, breaking ties by maximising

earliness looks for sequences with a greater bu�er against the due date of each job, which tries to

improve the objective function when the following jobs are inserted in any position of the sequence.

NEHedd(TBET ) is denoted when earliness maximisation is used in the NEHedd algorithm to break

ties.

• Makespan, NEHedd(TBMS). Similarly to the �rst two tie-breaking mechanisms, the minimisation

of the makespan tries to compress the sequence for the subsequent iterations. The NEHedd heuristic

using the minimisation of the makespan as tie-breaking mechanism is denoted as NEHedd(TBMS).

• Makespan using Taillard's acceleration, NEHedd(TBMS−Taillard,IT1). As explained above,
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Procedure NEHedd(TBMS−Taillard,IT )
α := Jobs ordered by non-decreasing due dates where α = {α1, ..., αi, ..., αn};
π := {α1};
flag := true;
for k = 2 to n do

if flag then
π1 := π;
Test job αk in any possible position of π1 (using Taillard's acceleration).
π1 := permutation obtained by inserting αk in the position of π1 with less makespan;
TT := total tardiness of the sequence π1;
if TT > 0 then

flag := false;
else

π := π1;
end

end
if flag ̸= true then

Insert job αk in the position of π which minimises the total tardiness breaking ties according
to the total idle time IT1 of the sequence.

end

end

end

Figure 8.3: NEHedd(TBMS−Taillard,IT )

Taillard's acceleration represents a huge reduction of the computation time of the NEH algorithm

and it is one of the main reasons for its e�ciency. However, it cannot be applied to total tardiness

minimisation since the completion time of each job in the last machine is needed. To reduce the

computation time of the NEHedd algorithm for the tardiness goal, this tie-breaking mechanism

applies the NEH algorithm to minimise the makespan, using Taillard's acceleration as long as the

tardiness of the (partial) sequence is zero, i.e. in the �rst iterations of the algorithm when applied.

Once the (partial) tardiness is greater than zero, the proposed algorithmminimises the total tardiness

(without Taillard's acceleration) breaking ties according to the total idle time, IT1. The pseudo

code of this method is shown in Figure 8.3.

• Random, NEHedd(TBrand). A random tie-breaking mechanism is proposed as a baseline for

comparisons with the other mechanisms.

8.3 Computational experience

Each proposed tie-breaking mechanism has been compared under the same conditions (see Section 3.4).

Algorithms were tested using the set of instances of the benchmark B3. The di�erent tie-breaking mech-

anisms were compared by means of the RDI as an indicator of the quality of the solution.
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Instance TBFT TBLT TBrand TBIT1 TBIT2 TBCT TBMK TBET TBMS−Taillard,IT1

50x10 17.46 17.46 17.25 13.72 15.22 15.21 14.47 15.21 14.53
50x30 19.79 20.31 19.55 18.61 18.69 18.80 18.74 18.80 18.68
50x50 18.17 17.94 17.88 17.57 18.12 17.88 17.98 17.88 17.97
150x10 13.80 13.60 14.45 9.91 10.91 11.11 10.61 11.11 10.69
150x30 20.70 20.35 20.68 15.81 16.47 18.32 17.83 18.32 17.02
150x50 22.04 21.26 21.70 18.57 19.64 19.96 20.14 19.96 19.64
250x10 10.06 9.46 10.02 6.70 7.31 7.45 7.47 7.45 7.26
250x30 17.81 17.03 17.93 11.62 12.19 14.58 13.82 14.58 13.29
250x50 20.21 19.52 20.13 13.96 14.73 17.49 16.87 17.49 15.90
350x10 9.01 8.59 8.86 6.14 6.30 6.47 6.63 6.47 6.65
350x30 15.74 15.43 15.95 9.84 10.41 12.21 11.88 12.21 11.40
350x50 17.38 16.87 17.11 11.10 11.63 14.01 13.74 14.01 13.11

Average 16.85 16.48 16.79 12.80 13.47 14.46 14.18 14.46 13.84

Table 8.1: Relative deviation index (RDI) for the NEHedd heuristic using di�erent tie-breaking mecha-
nisms

Instance TBFT TBLT TBrand TBIT1 TBIT2 TBCT TBMK TBET TBMS−Taillard,IT1

50x10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
50x30 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
50x50 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
150x10 0.43 0.42 0.43 0.42 0.42 0.44 0.42 0.43 0.40
150x30 1.29 1.29 1.29 1.30 1.30 1.30 1.29 1.30 1.27
150x50 2.16 2.16 2.16 2.18 2.18 2.17 2.15 2.16 2.15
250x10 1.92 1.90 1.91 1.89 1.89 1.96 1.90 1.95 1.77
250x30 5.86 5.84 5.86 5.85 5.84 5.94 5.85 5.92 5.67
250x50 9.92 9.91 9.95 9.96 9.97 9.99 9.89 9.94 9.78
350x10 5.15 5.14 5.15 5.08 5.07 5.26 5.12 5.24 4.73
350x30 15.86 15.85 15.89 15.80 15.76 16.10 15.85 16.03 15.23
350x50 26.99 26.98 27.06 27.01 27.01 27.26 27.05 27.18 26.35

Average 5.81 5.80 5.82 5.80 5.80 5.88 5.81 5.86 5.63

Table 8.2: ACPU for the NEHedd heuristic with di�erent tie-breaking mechanisms

The results of the heuristics are shown in Table 8.1 in terms of their values of RDI. The best

overall results are found using IT1 as tie-breaking mechanism with an average RDI (denoted as ARDI)

of 12.80, roughly about a 25% less than in the original FT . Note that each tie-breaking mechanism

(also including the random mechanism) outperforms on average the original mechanism of the NEHedd

algorithm, NEHedd(TBFT ), which has an ARDI of 16.85. Although the di�erence between this original

tie-breaking mechanism and theNEHedd(TBLT ) or theNEHedd(TBrand) is less than 0.37, for the rest of

tie-breaking mechanisms the ARDI is at least a 2.39 lower than that obtained by NEHedd(TBFT ), which

represents an increase in the quality of the solution without increasing the complexity of the algorithm.

The CPU times of each algorithm for each combination of n and m are shown in Table 8.2. The di�erences

between CPU times are negligible with the exception of the NEHedd(TBMS−Taillard,IT1), which requires

a bit less computational e�ort and has an ARDI of 5.63, 3.22 lower than that ofFT .

Given that each tie-breaking mechanism is a version of the original NEHedd algorithm and that the
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Comparison N Correlation Sig.

NEHedd(TBFT ) vs NEHedd(TBIT1) 540 0.707 0.000
NEHedd(TBFT ) vs NEHedd(TBIT2) 540 0.760 0.000

NEHedd(TBFT ) vs NEHedd(TBMS−Taillard,IT1) 540 0.816 0.000
NEHedd(TBFT ) vs NEHedd(TBCT ) 540 0.876 0.000
NEHedd(TBFT ) vs NEHedd(TBMK) 540 0.826 0.000
NEHedd(TBFT ) vs NEHedd(TBET ) 540 0.876 0.000
NEHedd(TBFT ) vs NEHedd(TBLT ) 540 0.949 0.000
NEHedd(TBFT ) vs NEHedd(TBrand) 540 0.962 0.000

Table 8.3: Analysis of dependence of samples

Comparison
Wilcoxon signed-rank test Sign test

Z Sig. Z Sig.

NEHedd(TBFT ) vs NEHedd(TBIT1) -14.498 0.000 -12.363 0.000
NEHedd(TBFT ) vs NEHedd(TBIT2) -13.665 0.000 -11.446 0.000

NEHedd(TBFT ) vs NEHedd(TBMS−Taillard,IT1) -13.829 0.000 -12.020 0.000
NEHedd(TBFT ) vs NEHedd(TBCT ) -13.616 0.000 -13.207 0.000
NEHedd(TBFT ) vs NEHedd(TBMK) -13.246 0.000 -11.810 0.000
NEHedd(TBFT ) vs NEHedd(TBET ) -13.616 0.000 -13.207 0.000
NEHedd(TBFT ) vs NEHedd(TBLT ) -3.865 0.000 -2.904 0.004
NEHedd(TBFT ) vs NEHedd(TBrand) -0.262 0.794 -0.349 0.727

Table 8.4: Wilcoxon signed-rank test and sign test

same test bed for all tie-breaking mechanisms is used, it is clear that the random variables (RDI) are

related and the hypothesis of independence can be rejected (see Table 8.3 for each comparison). However,

the hypothesis of normality is not ful�lled, so a paired samples t-test cannot be used. Two non-parametric

statistical hypothesis tests (Wilcoxon signed-rank test and sign test) are carried out then with a con�dence

level of 99% to compare the statistical signi�cance between the mean and the median of the samples,

respectively. Results of the tests are shown in Table 8.4. For both tests, each tie-breaking mechanism

statistically outperforms the original one with the exception of the random tie-breaking mechanism, for

which no statistical di�erence was found (p-values of 0.794 and 0.727 for the Wilcoxon signed-rank test and

sign test respectively). Regarding the signi�cance of the di�erent tie-breaking mechanisms, the highest p-

value found was 0.004 when comparing TBLT and TBFT , which indicates the relatively bad performance

of the original tie-breaking mechanism of the NEHedd procedure. The rest of the p-values are 0.000.

ARDI is shown in Table 8.5 grouped by the values of the di�erent parameters in the testbed: The �rst

and second columns correspond to the value of each parameter in each row according to the values of T , R,

n and m of the testbed. The third and fourth columns represent the average number of ties per iteration

and the maximum number of ties in an iteration, respectively. The rest of the columns show the ARDI

values for each tie-breaking mechanism. ARDI values for each tie-breaking mechanism are always lower

than the ARDI of TBFT regardless of the value of the parameters, with the exception of TBrand and
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Figure 8.4: CRDINEH_TB(IT1) in each instance of benchmark B3.

TBLT . Although NEHedd(TBLT ) statistically outperforms NEHedd(TBFT ) in the whole testbed, this

does not happen when grouping by parameters. The minimum di�erence between the original tie-breaking

mechanism and the rest is found for T = 0.6 and R = 1.0, which corresponds to tighter due dates with

high variance. Obviously, the performance of the tie-breaking mechanism is related to the average number

of ties. Thereby, note that the average and maximum number of ties decreases as m, T , or R increase, or

as n decreases, reaching the maximum value of ties for the following combination of parameters: T = 0.2,

R = 0.2, n = 350 and m = 10. Regarding the behaviour with respect to indicator v, CRDINEH_TB(IT1)

the di�erence between the best tie-breaking mechanism TBIT1 as compared to the original one is shown

in Figure 8.4. Most points are below zero in the y-axis, which highlights the improvement achieved by

the heuristic when using IT1 as a tie-breaking mechanism, especially for v > 0.15 where the problem is

far from being of the type Fm|prmu|
∑

Cj .

In�uence on iterative improvement algorithms

In this section, we evaluate the in�uence of the proposed NEH-based heuristics when they are incorporated

as seed sequences in iterative improvement algorithms. For this comparison, we use the genetic algorithm,

GAPR, proposed by [197]. Three types of genetic algorithms were proposed. Each one was shown to be

statistically more e�cient than other iterative improvement algorithms in the literature for three di�erent

stopping criteria. The GAPR algorithm uses a fast selection mechanism denoted as n-tournament as well

as the path relinking as crossover mechanism. As initial solution, the algorithm uses 28 random sequences

and two individuals provided by the original NEHedd algorithm and by the EDD despatching rule. To

analyse the in�uence of the chosen tie-breaking mechanism, we substitute the NEHedd seed sequence by
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Parameter Ties Tie-breaking mechanisms
Mean Max. FT LT rand IT1 IT2 CT MK ET MS-Taillard, IT1

T 0.2 22.5 210 14.57 13.91 14.47 7.18 8.27 10.45 9.71 10.45 8.90
T 0.4 6.5 144 18.14 17.92 18.08 14.15 14.95 15.84 15.67 15.84 15.45
T 0.6 1.1 81 17.83 17.62 17.83 17.06 17.18 17.09 17.17 17.09 17.19
R 0.2 17.1 210 20.86 19.72 20.49 13.14 14.27 15.65 15.02 15.65 14.96
R 0.6 8.3 146 16.83 16.70 16.84 12.88 13.60 15.00 14.84 15.00 14.07
R 1 4.7 112 12.86 12.98 12.95 12.41 12.51 12.69 12.77 12.69 12.57
n 50 0.5 23 18.25 18.28 17.85 16.81 17.32 17.18 17.20 17.18 17.15
n 150 3.8 81 18.85 18.40 18.94 14.76 15.67 16.47 16.19 16.47 15.78
n 250 8.9 153 16.03 15.33 16.02 10.76 11.41 13.17 12.72 13.17 12.15
n 350 14.9 210 14.11 13.70 14.04 9.13 9.55 10.98 10.84 10.98 10.47
m 10 16.0 210 12.37 12.02 12.32 9.13 9.80 9.90 9.82 9.90 9.75
m 30 8.7 182 18.25 18.06 18.38 13.82 14.26 15.79 15.43 15.79 14.97
m 50 5.4 162 19.30 18.78 19.04 15.16 15.86 17.20 17.05 17.20 16.52

Table 8.5: Average number of ties for iteration, maximum number of ties in an iteration and ARDI for
each tie-breaking mechanism.

Stopping Criterion
ARDI-GAPR Wilcoxon signed-rank test Sign test

NEHedd(TBFT ) NEHedd(TBIT1) p-value p-value

t = 0.5 14.66 11.01 0.000 0.000
t = 1 12.65 9.72 0.000 0.000
t = 2 10.61 8.42 0.000 0.000
t = 5 7.57 6.65 0.000 0.000
t = 10 6.25 5.63 0.000 0.000
t = 20 5.09 4.71 0.000 0.000

Table 8.6: ARDI, Wilcoxon signed-rank test and sign test for the GAPR algorithm when it is initialized
with NEHedd(TBIT1) and NEHedd(TBFT )

the best proposed NEHedd-based constructive heuristic, i.e. NEHedd(TBIT1), and we compare them

using the same benchmark as in the previous Section. Average computational results in terms of ARDI

are shown in Table 8.6 and in Figure 8.5 for six di�erent stopping criteria to observe the evolution of the

performance for di�erent CPU times, t · n · (m/2) with t ∈ [0.5, 1, 2, 5, 10, 20] expressed in milliseconds.

Obviously, one might expect that the in�uence of the initial solution on a well-designed metaheuristic

such as the GAPR would decrease with the CPU time. Still, for the range of CPU times employed

(which represents around 3 minutes of CPU times per instance for the biggest sizes), the results show

that our proposal positively impacts on the quality of the solution. In fact, the positive contribution of

the tie-breaking mechanism is found to be statistically signi�cant for every stopping criteria, for both

non-parametric statistical hypothesis tests (Wilcoxon signed-rank test and sign test). The highest found

p-value was 0.000 (see Table 8.6).
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Figure 8.5: Evolution of the GAPR algorithm with di�erent initial solutions for six di�erent stopping
criteria.

8.4 Conclusions

In this chapter, several tie-breaking mechanisms for the NEH heuristics have been proposed to solve the

Fm|prmu|
∑

Tj problem. It is clear that, depending on the due dates, the decision problem to be solved

is di�erent. Extremely tight due dates induce to a Fm|prmu|
∑

Cj problem, whereas very loose due

dates lead to a trivial problem. Thereby, the problem has been �rst analysed in detail, depicting the

limits between the tardiness problem and other problems. As a conclusion, it was obtained that several

testbeds generate instances for a problem more similar to Fm|prmu|
∑

Cj . Additionally, it has been

found that the number of ties in each iteration of the NEHedd heuristic is very high outside these limits

(i.e. the most interesting setting regarding tardiness minimisation), and that the original tie-breaking

mechanism of NEHedd would result in worse sequences as it orders the jobs in non-increasing due dates in

the very likely case of ties in the �rst iterations. To address this problem and to enhance the performance

of the NEHedd procedure, a set of eight tie-breaking mechanism have been proposed. These are tested

against the original one in an extensive computational evaluation, and the results show that some of these

mechanisms improve the performance of the NEHedd procedure by more than 25% while requiring similar

computation time. Additionally, when embedding this mechanism as seed sequence in a state-of-the-art

iterative improvement algorithm, the performance of the resulting algorithm signi�cantly improves that

of the original one.



Chapter 9

PFSP to minimise total earliness and

tardiness

9.1 Introduction

In this chapter, four new e�cient heuristics (one constructive heuristic and three composite heuristics) are

proposed (see Objective SO9). These heuristics incorporate several properties and a speed up procedure

in order to reduce and accelerate the search space of the heuristics. The subsequent computational

experience shows that the proposed heuristics outperform the best-so-far heuristics for the problem, as

well as adaptations of other state-of-the-art heuristics for related problems. Note that, for this problem,

insertion of idle time is not allowed, which represents a common assumption in the literature due to its

undesirable e�ects in certain production environments (see e.g. [81] and [179]).

The rest of the chapter is organised as follows. A speed up procedure for the insertion phase of the

heuristics as well as a complete comparison among the implemented heuristics is performed in Section

9.3. Additionally, the in�uence of using the heuristics as seed sequences in the best so-far metaheuristic

(ILS) is discussed. Finally, in Section 11.5, conclusions are presented.

9.2 Proposed algorithms

Following the recommendations in Section 5.2 regarding very fast heuristics and complete local search

methods, four heuristics are proposed for the Fm|prmu|
∑

Ej +
∑

Tj problem:

• an adaptive constructive heuristic (see Section 9.2), denoted as ACH1,

157
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• a composite heuristic (see Section 9.2), denoted as ACH2, composed by ACH1 plus a bounded local

search procedure labelled BLS,

• a composite heuristic (see Section 9.2), denoted as ACH3, formed by ACH1 plus an iterative bounded

relative local search method, iBRLS,

• a composite heuristic (see Section 9.2), denoted as ACH4, formed by ACH1 and an iterative local

search method, iLS.

Additionally, a speed-up procedure is described in Section 9.2 to accelerate the insertion phases of all

implemented algorithms.

Proposed constructive heuristic

ACH1 tries to �nd a good solution using very short computational times so it can embedded in more

sophisticated constructive and composite heuristics such as the ones proposed in the next subsections.

The procedure of this heuristic is relatively simple: Beginning with a partial sequence with a single job,

the procedure constructs a �nal sequence appending one by one jobs at the end of the partial sequence

according to an index ξujk
(Π). Let us denote by Πk := (π1, ..., πk) the partial sequence in iteration k and

by Uk the set of unsequenced jobs of that sequence (ujk the jth unsequenced job with j ∈ [1, n − k]).

Additionally, let NTk be the number of tardy jobs in iteration k according to sequence Πk. The algorithm

chooses the job from Uk with the lowest value of ξujk
(Πk) and places it at the end of sequence Πk, i.e.

in position k + 1, forming the sequence Πk+1 of the next iteration. This procedure has been shown to

be very e�cient for other decision problems, being the appropriate choice of the index the critical issue

for the e�ciency of the algorithm (see e.g. Chapter 7). This di�culty increases in our case due to the

strong dependence of the best solutions on the due dates of the jobs. The index must be adapted to solve

di�erent problems depending on the due dates (loose due dates, tight ones, or neither of them). In Section

5.2, three di�erent situations have been identi�ed: tight due dates (Fm|prmu|
∑

Cj decision problem),

loose due dates (Fm|prmu| −
∑

Cj decision problem) and normal due dates (Fm|prmu|
∑

Ej +
∑

Tj).

Therefore, at each iteration, the algorithm would check whether the sequence is within one of these cases:

• Case 1: Tight due dates (i.e., the problem is similar to the Fm|prmu|
∑

Cj). There are hundred of

heuristics solving the Fm|prmu|
∑

Cj in the literature. Particularly, in Section 7.3 we have designed

an e�cient constructive heuristic following a similar procedure of insertion in last position of the

partial sequence. There, jobs are chosen according to the ξ1ujk
(Πk) index, Equation (9.1), which

considers the minimization of the completion time and the weighted idle time of the candidates jobs



9.2. PROPOSED ALGORITHMS 159

(i.e. uik with j ∈ [1, n − k]) to be inserted (see Section 7.3 and Equations 7.2 and 7.1 for more

detailed explainations):

ξujk
(Πk) = ξ1ujk

(Πk) =
(n− k − 2)

4
· ITujk

(Πk) + Cm,ujk
(Πk) (9.1)

where ITj(Π
k) are:

ITujk
(Πk) =

m∑
i=2

m ·max{Ci−1,ujk
(Πk)− Ci,πk

(Πk), 0}
i− 1 + k · (m− i+ 1)/(n− 2)

(9.2)

In this chapter, this index is directly incorporated into the ACH1 heuristic when due dates of jobs are

tight, assuming that this is the case if, in iteration k, the fraction of tardy jobs in the partial sequence

is equal to or greater than a. More speci�cally, the index is used if a · 100% (NTk/(n− k) ≥ a) and

there are at least four tardy jobs. Note that a is a parameter of the algorithm which is introduced

in order to determine when the algorithm is adapted to solve Fm|prmu|
∑

Cj . The suitable values

for a are discussed later.

• Case 2: Loose due dates (the problem is similar to Fm|prmu| −
∑

Cj). We divided this case in two

cases depending on how loose the due dates are. The idea behind these two subcases is to separate

the case where all due dates are extremely high (the earliness can be omitted and the problem is

similar to the Fm|prmu|−
∑

Cj) and where only some of the due dates are extremely high (earliness

should be also considered). To the best of our knowledge, there are no algorithms for the PFSP to

maximise total �owtime as it is not a common objective to be followed by companies. Therefore, we

consider the inverse index for the �rst subcase, ξujk
(Πk) = −ξ1ujk

(Πk). The conditions to apply this

index are ful�lled when there are at least four candidates (n− k > 3), all candidates in iteration k

are in earliness (i.e. Cm,ujk
(Πk) < dujk

∀j), and NEk = n − k where NEk is the number of jobs

whose earliness is lower than (n− k) · c. On the other hand, when due dates are not so loose (this

fact is measured by the condition b · (n− k) ≤ NEk < n− k) we consider the index ξ2 which adds

the earliness of job Eujk
(Πk) to the index −ξ1:

ξujk
(Πk) = ξ2ujk

(Πk) = − (n− k − 2)

4
· ITujk

(Πk)− Cm,ujk
(Πk) + Eujk

(Πk) (9.3)

Note that b and c are parameters of the proposed algorithm.

• Case 3: Intermediate due dates, i.e. the instance is a pure Fm|prmu|
∑

Ej +
∑

Tj problem. When

a job is inserted at the end of the sequence, the algorithm should focus in the minimization of total
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Case Condition ξujk
(Πk) index

Tight due dates
NTk/(n − k) ≥ a ξ1ujk

(Πk)
NTk > 3

Loose due dates (Subcase 1)
Cm,ujk

(Πk) < dujk
, ∀j

−ξ1ujk
(Πk)n − k > 3

NEk = n − k

Loose due dates (Subcase 2)
Cm,ujk

(Πk) < dujk
, ∀j

ξ2ujk
(Πk)n − k > 3

b · (n − k) ≤ NEk < n − k

Intermediate due dates Otherwise ξ3ujk
(Πk)

Table 9.1: Summary of cases in the ACH

earliness and tardiness. Then, we try to place each candidate at the end of the partial sequence

and, in order to select the job to be inserted, we focus on the minimisation of earliness by using the

index in Equation (9.4):

ξujk
(Πk) = ξ3ujk

(Πk) = Eujk
(Πk) (9.4)

Note that the minimisation of earliness implicitly takes into account also tardy jobs as their earliness

is equal to zero and then, they would be the �rst to be chosen.

The di�erent values adopted by ξujk
(Πk) are summarized in Table 9.1 together with the corresponding

conditions. Once the index has been identi�ed, we choose the job with the lowest value and place it at the

end of the current partial sequence. Ties are broken according to the weighted idle time of the candidate

jobs (ITujk
(Πk)) for all cases.

Finally, note that, when inserting a job at the end of the sequence, the completion time of previous

last job remains the same and hence, only the completion times of the inserted job on each machine has

to be computed, which can be easily done in O(m). Analogously, earliness time and/or weighted idle time

of each candidate job can be computed with complexity m. Thereby, the proposed ACH1 constructive

heuristic has the same number of complexity than the NEH. However, the heuristic heavily decreases the

CPU time due to the complexity of each evaluation, which is simply m. Therefore, the complexity of the

proposed heuristic is (n+1)·n
2 ·m ∼ O(n2 ·m).

The pseudo code of the ACH1 heuristic is shown in Figure 9.1.

Proposed composite heuristics

Once a sequence has been obtained by the fast ACH1 constructive heuristic, it can be improved by three

di�erent insertion-based local search methods, leading to composite heuristics. The �rst two local search

methods try to reduce the computational e�ort required in each iteration by avoiding the insertion of a
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Procedure ACH1
Determination of each ITj,0, CTj,0 and Ej,0

π1 := Job with least value of Ej,0 breaking ties in favor of the job with the lowest ITj,0;
Π1 = (π1)
for k = 1 to n− 1 do

Determination of each ITujk
(Πk), Cm,ujk

(Πk), NTk, NEk, and Eujk
(Πk), ∀j ∈ [1, n− k];

if NTk/(n− k) ≥ a & NTk > 3 then
for j = 1 to k − n do

ξujk
(Πk) = ξ1ujk

(Πk) = (n−k−2)
4 · ITujk

(Πk) + Cm,ujk
(Πk)

end

else if AllEarliness & n− k > 3 & NEk = n− k then
for j = 1 to k − n do

ξujk
(Πk) = −ξ1ujk

(Πk) = − (n−k−2)
4 · ITujk

(Πk)− Cm,ujk
(Πk)

end

end
else if AllEarliness & n− k > 3 & b · (n− k) ≤ NEk < n− k then

for j = 1 to k − n do

ξujk
(Πk) = ξ2ujk

(Πk) = − (n−k−2)
4 · ITujk

(Πk)− Cm,ujk
(Πk) + Eujk

(Πk)

end

end
else

for j = 1 to k − n do
ξujk

(Πk) = ξ3ujk
(Πk) = Eujk

(Πk)

end

end

α:= Job with the lowest value of ξujk
(Πk) in iteration k, breaking ties in favor of the job with the

lowest ITujk
(Πk).

Πk+1:= Permutation obtained by inserting job α at the end of sequence Πk.
end

end

Figure 9.1: ACH1



162 CHAPTER 9. PFSP TO MINIMISE TOTAL EARLINESS AND TARDINESS

Procedure ACH2()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = BLS(Π,
∑

Ej +
∑

Tj);
end

Figure 9.2: ACH2

Procedure BLS(Π, OF )
OFb = OF
for j = 1 to n do

Π0 := remove job πj from Π;
Calculate P1 and P2;
Test job πj between the positions P1 and P2 of Π0;
Π := permutation obtained by inserting πj in the position j ∈ [P1, P2] of Π0 with less total
earliness and tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

Πb := Π;
end

end

return Πb and OFb;
end

Figure 9.3: Bounded Local Search, BLS

job far from its optimal position in order to accelerate the intensi�cation of the procedures. The idea is

to bound the positions where the jobs are inserted between P1 and P2, which are de�ned in Equations

(9.5) and (9.6).

P1 = min{PAS , Pedd} (9.5)

P2 = max{PAS , Pedd} (9.6)

where Pedd is the position in the EDD rule of πj , and PAS is the position that should have that πj in

the actual sequence in order to get a minimum value of Eπj and Tπj .

Recently, bounded local search methods have been successfully applied to scheduling problems. The

key of this success comes from the reduction of the search space in each iteration of the local search methods

in order to avoid sequences that are far from the optimum, therefore decreasing the computational e�ort

of the algorithms. More speci�cally, the proposed composite heuristics are:

• ACH2. It performs a bounded local search (denoted BLS) after the ACH1 heuristic. The BLS tries

to insert each πj in each position between P1 and P2. Pseudo code of both ACH2 and BLS methods

are shown in Figures 9.2 and 9.3 respectively.
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Procedure ACH3()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = iBRLS(Π,
∑

Ej +
∑

Tj);
end

Figure 9.4: ACH3

Procedure iBRLS(Π, OF )
OFb = OF
h = 1;
i = 1;
Πb := Π;
while i <= n do

j := h mod n;
Π0 := remove job πj from Π;
Calculate P1 and P2;
Test job πj between the positions P1 and P2 of Π0;
Π := permutation obtained by inserting πj in the position j ∈ [P1, P2] of Π0 with less total
earliness and tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

i = 1;
Πb := Π;

else
i++;

end
h++;

end

return Πb and OFb;
end

Figure 9.5: Iterative Bounded Relative Local Search, iBRLS

• ACH3. It performs an iterative bounded local search method, denoted as iBRLS after the ACH1

heuristic. Similarly to the BLS method, the iBRLS tries to iteratively insert each job πj between

P1 and P2 until there is no improvement after trying n consecutive jobs. Pseudo code of ACH3

and iBRLS are detailed in Figure 9.4 and 9.5 respectively.

• ACH4. This heuristic carries out a iterative local search method (iLS) after the ACH1 heuristic. This

local search method simply tries to place each job πj in the rest of positions of the current sequence

and has been extensively used in the literature (see e.g. [174], [97] and [139]). The procedure is

repeated until there are no more improvements. Pseudo codes for ACH4 and iLS methods are shown

in Figures 9.6 and 9.7.
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Procedure ACH4()
(Π,

∑
Ej +

∑
Tj) = ACH1();

(Π,
∑

Ej +
∑

Tj) = iLS(Π,
∑

Ej +
∑

Tj);
end

Figure 9.6: ACH4

Procedure iLS(Π, OF )
OFb = OF
flag := false;
while flag = false do

flag := false;
for j = 1 to n do

Π0 := remove job πj from Π;
Test job πj in each position of Π0;
Π := permutation obtained by inserting πj in the position j of Π0 with less total earliness and
tardiness, OF

′
;

if OF
′
< OFb then

OFb = OF
′
;

Πb := Π;
flag := true;

end

end

end

return Πb and OFb;
end

Figure 9.7: Iterative Local Search, iLS
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Speed up procedure

In this section, a simple speed-up procedure to accelerate the insertion phases of the algorithms for the

Fm|prmu|
∑

Ej +
∑

Tj problem is described. Let Πk be a partial sequence with k jobs and l the job

which is to be inserted in position j ∈ [1, k + 1]. Similarly to the speed up methods proposed by [96]

and [197], this method stores the completion time of each job on each machine of the partial sequence

Πk. When the job l is inserted in each position j of the partial sequence, the completion times of the

jobs prior to this position j are already known and do not have to be recomputed. According to several

studies, this procedure reduces the CPU times between 30% and 50% and is therefore introduced in each

insertion phase of all algorithms implemented in this chapter.

9.3 Computational experience

In this section, the proposed algorithms are compared against the most e�cient heuristics in the literature.

The procedure adopted to evaluate the algorithms is the following: First, we introduce the set of instances

used for both the experimental parameter tuning and the comparison among heuristics. In Section 9.3,

a full factorial design of experiments is carried out to �nd the best values of the parameters of the

algorithms proposed. The algorithms under comparison are listed in Section 9.3. Constructive and

composite heuristics are compared in Section 9.3, leading to the identi�cation of the set of e�cient

heuristics for the problem. Finally, in Section 9.3, the e�cient heuristics are compared as seed sequences

of one of the best metaheuristic for the problem.

Experimental parameter tuning

The proposed heuristic ACH1 uses three parameters: a, b and c. In this section, a full factorial design

of experiments is carried out to determine their best values on the set of instances BC3. The following

values are chosen for the experiments:

• a = {0.8, 0.85, 0.9, 0.95, 1},

• b = {0.4, 0.45, 0.5, 0.55, 0.6},

• c = {25, 30, 35, 40, 45, 50, 55}

In each instance, the ACH1 heuristic is evaluated according to Equation (9.7):

RPD3 =
OF −Base

Base
· 100 (9.7)
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where OF and Base are the solutions obtained by the ACH1 heuristic and a reference algorithm (NEHedd)

respectively.

Since normality and homoscedasticity assumptions are not ful�lled, a non-parametric Kruskal-Wallis

test is carried out. The p-values are 0.267, 0.865 and 0.000 for parameters a, b and c respectively. Results

show that there is statistically signi�cant di�erences only between the levels of parameter c. Additionally,

among the 175 combinations of a, b and c, the best results are found for a = 0.90, b = 0.55 and c = 30.

These values are subsequently used in each heuristic which incorporates the ACH1, i.e. ACH2, ACH3 and

ACH4.

Implemented algorithms

The performance of the proposed heuristics is tested against the most e�cient heuristics for the problem,

as well as for some of the most e�cient heuristics for similar scheduling problems. More speci�cally, due

to their excellent performance (see computational evaluations by [137] and [150]), the following heuristics

are considered:

• NEHeddor: NEHeddor is the NEHedd heuristic proposed by [88]) for Fm|prmu|
∑

Tj . The speed

up procedure described in Section 9.2 is not applied to maintain its original version.

• NEHeddet: Heuristic NEHeddor using the speed up procedure in Section 9.2. Additionally, the

evaluation of total tardiness in each iteration is replaced by the evaluation of the sum of total

earliness and tardiness.

• Raj: Adaptation of the Raj heuristic by [151], originally proposed for the Fm|prmu|
∑

Cj problem.

To adapt the heuristic to our problem, the speed up procedure in Section 9.2 is applied, and the

original evaluation of total �owtime is replaced by the evaluation of total earliness and tardiness.

Additionally, the original initial order is replaced by the EDD rule.

• RZ: Adaptation of the RZ heuristic by [152] proposed for the Fm|prmu|
∑

Cj problem, with the

initial order replaced by the EDD rule. The speed up procedure is applied, and the evaluation of

total �owtime is replaced by the evaluation of total earliness and tardiness.

• RZ_LW: Adaptation of the RZ_LW heuristic by [152], originally proposed for the Fm|prmu|
∑

Cj

problem. The speed up procedure is applied and the evaluation of total �owtime is replaced by the

evaluation of total earliness and tardiness. Furthermore, the EDD rule is used as initial order.

• FRB4k: Adaptation of the FRB4k heuristic by [150], originally proposed for the Fm|prmu|Cmax

problem. The evaluation of the makespan is replaced by the evaluation of the total earliness and



9.3. COMPUTATIONAL EXPERIENCE 167

tardiness, and the speed up procedure by [189] is replaced by the proposed one. As in the NEHeddet,

the original order is replaced by the EDD rule.

All heuristics are fully recoded for the Fm|prmu|
∑

Ej +
∑

Tj problem under the same conditions

(see Section 3.4) using an Intel Core i7-3770 with 3.4 GHz and 16 GB RAM).

E�cient set of heuristics

In this section, all implemented heuristics are compared using benchmark B3. Average results in terms

of ARPD1 are shown in Table 9.2 for each combination of n and m, and in Table 9.4 for each value of

the parameters. The CPU time required by each heuristic is shown in Table 9.3 for each n and m. The

last two rows show the ACPU and the ARPT2 of each heuristic. A summary of the results is graphically

shown in Figure 9.8 using ACPU to evaluate the computational e�ort, while ARPT2 is used as indicator

in Figure 9.9. In view of the results, the NEHeddet heuristic clearly outperforms the NEHeddor in terms

of quality of the solution and computational e�ort. The best ARPD1s are clearly found by the proposed

heuristic ACH4 (1.19), and by the RZ_LW heuristic (2.40). Regarding heuristics adapted from other

problems, the best results are found by Raj, RZ and RZ_LW, which are either very fast heuristics, or

local search methods (using dispatching rules as seed sequences). The good performance achieved by the

composite heuristics RZ, RZ_LW, ACH2, ACH3, and ACH4 con�rms the conclusions obtained after the

analysis of the problem in Section 5.2 which advocated for fast heuristics employing as soon as possible

local search methods of full sequences. This fact is also con�rmed by the performance of the family

of heuristics FRB4k. Each of these heuristics is outperformed in terms of quality of the solutions and

computational e�ort by RZ and ACH3. According to Figure 9.9, the e�cient heuristics (set A) are:

ACH1, Raj, NEHeddet, ACH2, RZ, ACH3 and ACH4. To statistically justify this statement, we perform

a Holm's procedure [73] with the following hypotheses:

• H1: ACH2 = NEHeddor.

• H2: RZ = FRB42.

• H3: RZ = FRB44.

• H4: RZ = FRB46.

• H5: ACH3 = FRB48.

• H6: ACH3 = FRB410.

• H7: ACH3 = FRB412.
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• H8: ACH4 = RZ_LW.

Results are shown in Table 9.5, where the p-values have been calculated using a non-parametric Mann-

Whitney test since the normality and homoscedasticity assumptions were not con�rmed (see e.g. [138]).

Assuming a con�dence of 0.95, only two hypotheses (H2 and H3) are not rejected and the proposed

heuristics (ACH2, ACH3 and ACH4) can be therefore considered as statistically e�cient. The heuristics

of the sets A are shown in Figure 9.9.
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Figure 9.8: ARPD1 vs ACPU of implemented heuristics. X-axis (ACPU in seconds) is shown logarithmic
scale.

Comparison among e�cient heuristics

As there is a trade-o� between quality of the solution and computational e�ort, heuristics in set A cannot

be directly compared in terms of ARPD1 due to their di�erent computational e�orts. In this section, they

are included as initial solution for one of the best metaheuristic for this problem, i.e. the ILS by [117],

replacing the original seed sequence of the metaheuristic (EDD rule). Thus, the metaheuristic is run using

eight di�erent initial sequences (EDD rule and each heuristic in set A) where the EDD rule is included in

the comparison as it is the original seed sequence of the metaheuristic. Each variation of the metaheuristic

is run under the same computational conditions described in Section 9.3 using benchmark B3. In this

case, �ve runs are performed per instance and the average values are recorded. The variations of the

ILS are stopped depending on the size of the problem according to expression n ·m · t/2 (milliseconds)

i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure

1 ACH2 = NEHeddor 0.000 R 0.0063 R
2 ACH3 = FRB48 0.000 R 0.0071 R
3 ACH3 = FRB410 0.000 R 0.0083 R
4 ACH3 = FRB412 0.000 R 0.0100 R
5 ACH4 = RZ_LW 0.000 R 0.0125 R
6 RZ = FRB42 0.001 R 0.0167 R
7 RZ = FRB44 0.069 0.0250
8 RZ = FRB46 0.690 0.0500

Table 9.5: Holm's procedure.
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Figure 9.9: ARPD1 vs ARPT2 of implemented heuristics. X-axis (ACPU in seconds) is shown logarith-
mic scale.

where t = 5, 10, 15, 20, 25, 30 (see e.g. [174] for a similar stopping criterion). Obviously, the CPU time

required by each heuristic is included in the CPU time of the metaheuristic, i.e. the clock starts before

applying the heuristic. Results of the ILS metaheuristic using di�erent heuristics as initial solution are

shown in terms of ARPD1 in Table 9.7. Note that using the original seed sequence (EDD rule) in the

metaheuristic outperforms several other initial sequences (Raj, NEHeddet and RZ). However, the best

ARPD1s are found when embedding the proposed heuristics (ACH1, ACH2, ACH3 and ACH4) in the

ILS metaheuristic being e.g. 1.87, 1.94, 1.56 and 1.32 respectively the ARPD1 of these heuristics for

t = 10, as compared to 2.20 obtained by the EDD rule. The best value is found using ACH4 as initial

solution regardless the stopping criteria, being 1.08 the lowest ARPD1 found for t = 30. Additionally,

in order to con�rm the excellent results found by the ILS using the ACH4 heuristic as seed sequence, a

Holm's procedure is carried out comparing the ILS both with the ACH4 heuristic and with the EDD rule.

More speci�cally, the hypotheses tested are:

• H1: For t = 5, ILS(ACH4) = ILS(EDD rule).

• H2: For t = 10, ILS(ACH4) = ILS(EDD rule).

• H3: For t = 15, ILS(ACH4) = ILS(EDD rule).

• H4: For t = 20, ILS(ACH4) = ILS(EDD rule).
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i Hi p-value Mann-Whitney α/(k − i + 1) Holm's Procedure
1 ILS(ACH4) = ILS(EDD rule) (for t = 5) 0.000 R 0.0083 R
2 ILS(ACH4) = ILS(EDD rule) (for t = 10) 0.000 R 0.0100 R
3 ILS(ACH4) = ILS(EDD rule) (for t = 15) 0.000 R 0.0125 R
4 ILS(ACH4) = ILS(EDD rule) (for t = 20) 0.000 R 0.0167 R
5 ILS(ACH4) = ILS(EDD rule) (for t = 25) 0.000 R 0.0250 R
6 ILS(ACH4) = ILS(EDD rule) (for t = 30) 0.000 R 0.0500 R

Table 9.6: Holm's procedure for comparisons with metaheuristics.

Parameter t EDD rule Raj NEHeddet RZ ACH1 ACH2 ACH3 ACH4
5 3.26 4.58 4.77 3.60 2.97 2.72 1.90 1.39
10 2.20 2.91 3.09 2.43 1.87 1.94 1.56 1.32
15 2.11 2.80 2.96 2.33 1.82 1.85 1.46 1.22
20 2.03 2.69 2.84 2.24 1.76 1.75 1.41 1.16
25 1.95 2.60 2.75 2.17 1.70 1.69 1.34 1.11
30 1.94 2.58 2.71 2.14 1.67 1.67 1.31 1.08

Table 9.7: Average relative deviation index (ARDI) of the metaheuristic ILS using di�erent heuristics
as initial solution

• H5: For t = 25, ILS(ACH4) = ILS(EDD rule).

• H6: For t = 30, ILS(ACH4) = ILS(EDD rule).

Results of the Holm's procedure are shown in Table 9.6. Each p-value is equal to 0.000 and therefore,

each hypothesis is rejected statistically, con�rming the previous results.

9.4 Conclusions

In this chapter, we have addressed the PFSP with a just-in-time objective. By incorporating this knowl-

edge, we propose four di�erent heuristics. Firstly, a fast constructive heuristic, ACH1, inserts the jobs

one by one at the end of the partial sequence based on an dynamic index. This index is automatically

calculated in each iteration depending on the idle times, completion times, earliness and tardiness of the

jobs. Then, three composite heuristics ACH2, ACH3 and ACH4 are proposed by incorporating three

di�erent local search procedures after ACH1.

The proposed heuristics have been compared under a complete set of instances with the best heuristic

for the problem as well as with adaptations of e�cient heuristics for similar scheduling problems. The

computational results show the excellent performance of the proposed algorithms. In fact, the heuristics

ACH1, Raj, NEHeddet, ACH2, RZ, ACH3 and ACH4 are established as e�cient, being the ACH4 the

heuristic with the lowest ARPD1 (1.19).

Finally, the impact of the e�cient heuristics is evaluated including them as seed sequences for one

of the best metaheuristic for the problem, and for six di�erent stopping criteria. As a result, the four

proposed heuristics statistically outperform every other heuristic, thus establishing a new state-of-the-art
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of approximate solutions for the problem.
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Chapter 10

PFSP to minimise makespan subject to

total tardiness

Among the criteria established to measure the performance of the di�erent schedules shown in Section

2.1, the maximum completion time of a sequence or makespan is related to resource usage, while tardiness

refers to the delay of the completion time of a job with respect to its committed due date. Since these are

key aspects in manufacturing companies' competitiveness, it seems appropriate to consider both objectives

together. Regarding tardiness minimisation, customer due dates may be regarded as �hard� constraints

(i.e. deadlines) in some manufacturing scenarios, while in others some �exibility is allowed by the customer

as long as the deviation from the completion times of the jobs is limited. In contrast, makespan is an

intra-company criteria that is related to maximising machine utilisation, which in turns minimises �xed

unit costs. Therefore, one option to balance both objectives is to seek the minimisation of the makespan

while allowing only a given deviation from the committed due dates, expressed as the maximum tardiness

allowed. Note that this problem includes the special case where no deviation from the jobs' due dates is

allowed, thus forcing the ful�lment of the committed due dates.

The problem described in the previous paragraph can be denoted as Fm|prmu|ϵ(Cmax/Tmax) (see

[193])). This problem belongs to the class of ϵ-constrained multi-criteria scheduling problems, and it has

been the subject of several research contributions in the last decades. Since the minimisation of any of

the individual criteria (either makespan or maximum tardiness) in a �ow shop is NP-hard, the research

e�ort has focused on approximate procedures providing good �but not necessarily optimal� solutions in

a relative short period of time. In this regard, the works by [27], [12], [45], and [171] develop di�erent

heuristics either for the problem, or for general cases of the problem. In this chapter, we propose a

177
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constructive heuristic and a metaheuristic that exploits the speci�c structure of solutions of the problem

to reduce the search space and to accelerate the evaluation of solutions. Both algorithms improve existing

ones by a larger degree and constitute therefore the new state-of-art approximate solution procedures for

the problem.

The remainder of the chapter is structured as follows: the state of the art for the problem is shown in

Section 10.1. In Section 10.2, some de�nitions and properties of the problem are de�ned. Sections 10.3

and 10.4 are devoted to propose two algorithms (a constructive heuristic and a metaheuristic) which use

the properties discussed previously. The algorithms are compared with the (up to now) state-of-the-art

algorithms in Section 10.5 and, �nally, conclusions are discussed in Section 10.6.

10.1 Literature review

[27] were the �rst in proposing a constructive heuristic for the Fm|prmu|ϵ(Cmax/Tmax) problem. In

their heuristic, assuming a partial sequence Π formed by already scheduled jobs, a (partial) sequence is

constructed for each non-scheduled job uk by placing it as the �rst job, and then scheduling the jobs in

Π after uk according to the NEH algorithm. Out of these so-obtained sequences, the one with the lowest

makespan is chosen for the next iterations (consequently, uk is removed from the non-scheduled jobs set

for the next iteration).

[12] propose a simulated annealing algorithm to solve the Fm|prmu|ϵ(Z/Tmax) where Z = λ ·Cmax +

(1 − λ) · Tmax, λ ∈ [0, 1]. Clearly, our problem is a special case of their problem when λ = 1. Their

algorithm begins with the best sequence among the solutions found by the NEH heuristic, the earliest

due date rule and the least slack rule (jobs ordered according to ascending order of dj −
∑m

i=1 tij). The

procedure iteratively samples neighbour solutions (using an adjacent pairwise interchange neighbourhood)

until the stopping criterion is ful�lled.

[45] propose a constructive heuristic, denoted in the following as FL, based on the NEH algorithm

to solve the Fm|prmu|ϵ(Cmax/Tmax) problem. The heuristic tries to improve the makespan without

worsening the tardiness by using a property of the problem. The heuristic is compared with those of [27]

and [12] for small and big instances. The results show that the FL outperforms the other ones in terms

of both the quality of the solutions and the number of the feasible solutions obtained.

Finally, [171] propose an iterated optimization algorithm to solve the Fm|prmu|ϵ(Z/Tmax) problem.

More speci�cally, they proposed a high-performance Genetic Algorithm (GA in the following) where

the selection procedure is based on n-tournament (see [170]). The �tness values of the individuals are

calculated depending on whether all individuals are feasible; feasible and infeasible; or only infeasible.
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The algorithm outperforms the FL for the Fm|prmu|ϵ(Z/Tmax) problem in an extended benchmark.

Nevertheless, GA and FL were not compared for the speci�c Fm|prmu|ϵ(Cmax/Tmax) problem.

To summarise the state of the art regarding the Fm|prmu|ϵ(Cmax/Tmax) problem, there are some

e�cient heuristics for the problem, but their performance is not completely clear, as the comparison

between the most e�cient contributions (i.e. GA and FL) has been only partially conducted. In addition,

both mechanisms made extensive use of insertion neighbourhoods, so it could be extremely interesting to

devise a mechanism similar to that by Taillard to reduce the computational burden. Finally, it is also

to note that all existing procedures make little use (or no use at all) of the knowledge on the problem

domain.

10.2 Problem properties

As mentioned in Section 10.1, Taillard's acceleration does not compute the completion times of each job

and therefore, it cannot be used to compute the maximum tardiness of the sequence. Indeed, our problem

is complicated by the fact that, when inserting a new job σ in position r of an existing partial sequence,

an infeasible solution can be obtained due to either the increase in the completion times of the jobs after

σ, or due to the completion time of job σ itself. In order to further classify these two possibilities, let us

introduce the following de�nitions:

De�nition 10.2.1 (First Feasible Position). Given a feasible (partial) sequence Π := (π1, . . . , πk), and

a non scheduled job σ, let Π
′

r := (π1, . . . , πr−1, σ, πr, . . . , πk) be the (partial) sequence obtained by the

insertion of σ in position r of Π. Then, the First Feasible Position (FFP ) is de�ned as follows:

FFP (Π, σ) := argmin
1≤r≤k+1

{Tπj (Π
′

r) ≤ ϵ ∀j = r, . . . , k}

As it can be seen from the de�nition, FFP is the lowest position where a new job can be inserted in an

existing sequence without causing infeasible due dates in any of the jobs resulting in positions later than

the insertion point. It is clear that, in a given instance of the problem and a partial sequence Π, it is not

possible to obtain feasible schedules by inserting a non scheduled job σ into a position j < FFP (Π, σ).

Note also that obtaining FFP for a tuple Π and σ does not guarantee that Π
′

j is feasible for j ≥ FFP ,

since the computation of FFP does not take into account the potential infeasibility caused by job σ.

De�nition 10.2.2 (Last Feasible Position). Given a feasible (partial) sequence Π := (π1, . . . , πk), and

a non scheduled job σ, let Π
′

r := (π1, . . . , πr−1, σ, πr, . . . , πk) be the (partial) sequence obtained by the

insertion of σ in position r of Π. Then, the Last Feasible Position (LFP ) is de�ned as follows:
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LFP (Π, σ) := argmax
1≤r≤k+1

{Tσ(Π
′

r) ≤ ϵ}

In this manner LFP is the highest position r where job πr can be inserted without making its com-

pletion time infeasible. Note that the feasibility of the jobs in positions r + 1, r + 2, . . . is not considered

when computing LFP .

The calculation of both limits is of interest due to some straightforward observations which follow from

both de�nitions:

1. If FFP (Π, σ) > LFP (Π, σ) for a given tuple Π and σ, then no feasible sequence can be obtained

by inserting σ into Π.

2. If FFP (Π, σ) ≤ LFP (Π, σ) for a given tuple Π and σ, then the sequence obtained by inserting σ

in position FFP of Π is feasible.

3. If FFP (Π, σ) ≤ LFP (Π, σ) for a given tuple Π and σ, then at least one feasible sequence can be

obtained by inserting σ in positions between FFP and LFP , inclusive.

4. For a given tuple Π and σ with FFP (Π, σ) ≤ LFP (Π, σ), the set of feasible sequences obtained

by inserting σ in positions between FFP and LFP represent all feasible sequences that can be

obtained by inserting σ into Π.

Once FFP and LFP are obtained, the sequence with the lowest makespan can be computed by using

Taillard's acceleration between both bounds, i.e.:

Cmax = min
j

(Cj
max) j = FFP, . . . , LFP (10.1)

where Cj
max is obtained using the Taillard's accelerations. Note that the so-found sequence is not

necessarily feasible. The advantage of this mechanism lies in speeding up the computations.

In view of the above expressions, the challenge now is to compute both FFP and LFP in an e�cient

manner. To do so, we introduce the following properties:

Property 10.2.1. Given an instance of the Fm|prmu|ϵ(Cmax/Tmax) problem, and given a tuple Π and

σ of a partial sequence and a non-scheduled job respectively, then

FFP (Π, σ) := 1 + argmax
j
{Cmπj + min

1≤i≤m
tiσ − dπj > ϵ}

is a lower bound for FFP (Π, σ). Furthermore, FFP can be computed in O(n ·m)
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Proof. Recall that the completion times of the jobs in Π placed after the insertion of a job σ must

increase at least mini (ti,σ) , i ∈ [1, · · · ,m] (see the Property 12.2.1 in the Chapter 12). Therefore, Cmπj +

min1≤i≤m tiσ is a lower bound of completion time of job in position j after the insertion of σ in position

r < j. As a consequence, if Cmπj + min1≤i≤m tiσ − dπj > ϵ, then the due date of job in position j is

always infeasible, so FFP is a lower bound of FFP .

FFP can be computed in two steps: First M = min1≤i≤m tiσ is computed in O(m). Next, the

expression Ej = Cm,πj
+M − dπj

is computed in O(n ·m) for j = 1, 2, . . . until it veri�es that Ej > ϵ. It

is thus clear that the computation of FFP is O(n ·m).

Property 10.2.2. Given an instance of the Fm|prmu|ϵ(Cmax/Tmax) problem, and given a tuple Π and

σ of a partial sequence and a non-scheduled job respectively, then LFP can be computed in O(n ·m).

Proof. First ei,πj the earliest completion times of the jobs before σ are computed in O(n ·m) (see Section

2.2). Then, for a position k where σ can be inserted, the completion time of σ is computed in O(m)

by adding the processing times of σ to ei,πj , and the result is compared to ϵ. Since this comparison is

performed for all positions prior to the candidate position where the new jobs is to be inserted, it is clear

that LFP can be computed in O(n ·m). The detailed pseudo code is presented in Figure 10.2.

Equipped with these problem properties, we propose e�cient approximate procedures based on the

insertion of jobs into existing partial schedules. More speci�cally, in Section 10.3 we present a constructive

heuristic for the problem whereas in Section 10.4 we present a non-population based metaheuristic.

10.3 Bounded-insertion-based constructive heuristic, BICH

In this section, we present a constructive heuristic based on a so-called bounded insertion (BICH) using

some properties of the problem, that also repairs infeasibility by means of a tabu local search in each

iteration (see pseudo code in Figure 10.1).

More speci�cally, the algorithm obtains a sequence Π := (π1, . . . , πn) in the following manner: Initially,

jobs are sorted in non ascending order of the sum of their processing times, so a sorted sequence α :=

(α1, . . . , αn) is obtained. The �rst job in the sorted sequence is also the �rst job in Π, i.e. π1 = α1. Then,

the remaining jobs in α are inserted in Π one by one in the following manner: in iteration k (k ∈ [2, n]),

job αk is removed from α and the following steps are carried out:

• Compute eiπj , qiπj and fiπj . In this step, the variables required to apply Taillard's acceleration

are calculated here according to the expressions described in Section 2.2. These computations can

be implemented in O(n ·m).
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• Compute FFP . In this step, FFP (Π, αk) is obtained according to Property 10.2.1.

• Compute LFP . In this step, LFP (Π, αk) is obtained according to Property 10.2.2.

• Obtaining the best makespan between FFP and LFP inclusive. If FFP ≤ LFP , a set of

schedules can be obtained when inserting αk between these two indices. To select the position of

insertion in Π, Taillard's acceleration is employed as described in Section 10.2. If FFP > LFP , αk

is inserted in position LFP . Note that this does not necessarily mean that the so-obtained partial

sequence is infeasible, as FFP is a lower bound for FFP .

• Repairing infeasible solutions. If the resulting partial sequence Π is infeasible, a Feasible Tabu

Search (FTS) procedure is performed to try to get to a feasible solution. The FTS is an iterative

procedure which maintains the idea of insertion between FFP and LFP . First, for each iteration,

infeasible jobs are removed from the partial sequence Π and are randomly ordered. Then, they are

successively inserted one by one between the FFP and LFP indices (inclusive), but in this case

the feasibility of each so-obtained sequence is checked, so Taillard's acceleration cannot be used.

Furthermore, a simple tabu procedure is introduced to avoid cycles: Each job has a tabu list of

positions previously chosen. Once an infeasible job is inserted in a position, this position is added

to the tabu list of such job. Thereby, when a job is to be inserted in the actual sequence, only

positions that are not in its tabu list can be chosen. The tabu lists of all jobs are set to zero if

the infeasible jobs of the current iteration are di�erent from the previous infeasible jobs. Only in

this case jobs from the tabu list can be removed from the lists. The procedure �nishes when either

there are no more infeasible jobs, or when more than x iterations have been run and the number of

infeasible jobs has not decreased during the last iteration. The length of the tabu list is su�ciently

long to allow storing each possible position (here the maximum number of iterations of the search

method i.e. x). Furthermore, when the output sequence of this procedure is infeasible, the FTS is

not further implemented in the rest of iterations of the BICH heuristic.

The pseudo code of the FTS procedure is shown in Figure 10.3.

10.4 Advanced non-population-based algorithm, ANPA

In this section, an Advanced Non-Population-based Algorithm (ANPA) is proposed as an extension of

the ideas presented in the constructive heuristic BICH. The algorithm tries to improve the solution by

iteratively performing greedy methods and local search methods. The global procedure of the algorithm

is shown in Figure 10.4.



10.4. ADVANCED NON-POPULATION-BASED ALGORITHM, ANPA 183

Procedure BICH(x)
α := Jobs ordered by descending sums of processing times where α = {α1, α2, . . . , αn};
Π := {α1};
flag := true;
for k = 2 to n do

Calculate eiπj1
, qiπj1

and fiπj2
for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;

for j = 1 to k do
if em,πj +mini=1...m(tiαk

)− dπj>ε then
FFP = j + 1;

end

end
LFP := CalculateExactlyLFP (Π, αk, k, {eiπj1

});
Test job αk between the positions FFP and LFP of Π;
Π := permutation obtained by inserting αk in the position j ∈ [FFP ,LFP ] of Π with lowest
makespan using Taillard's Acceleration (note that infeasible permutations are allowed here as
feasibility is not checked);
if flag = true then

Π := FeasibleTabuSearch(Π, x);
if Π is infeasible then

flag := false;
end

end

end

end

Figure 10.1: BICH

Function CalculateExactlyLFP(π,NewJob, k, {eiπj})
flag := false;
LFP := 0;
C0 := 0;
for i = 1 to m do

C0 = C0 + ti,NewJob;
end
if C0 − dNewJob > ε then

flag := true;
end
j := 1
while j < k and flag = false do

Cj := 0;
for i = 1 to m do

Cj = max
(
Cj , ei,πj

)
+ ti,NewJob

end
if Cj − dNewJob > ε then

flag := true;
else

LFP ++
end
j ++;

end
return LFP ;

end

Figure 10.2: Procedure CalculateExactlyLFP
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Procedure FeasibleTabuSearch(π, x)
γ := Infeasible jobs of Π;
nγ := Number of infeasible jobs in Π, |γ|;
nold
γ := nγ + 1

#Iterations = 1;
while nγ !=0 and (nγ < nold

γ or #Iterations <= x) do
Π := Extract jobs γ of Π;
γ := Randomly order infeasible jobs γ;
if Infeasible jobs are di�erent from last iteration then

Empty tabu list;
end
for k = nγ to 1 do

for j = 1 to k do
if eM,πj +mini(tiγk

)− dπj>ε then
FFP = j + 1;

end

end
LFP := CalculateExactlyLFP (Π, γk, k, eiΠj );
Test job γk in the feasible and non-tabu positions between FFP and LFP of Π and denote bj
the position with the lowest makespan;
Π := permutation obtained by inserting γk in bj;
Add position bj to the tabu list of job γk;

end

nold
γ := nγ

γ := Infeasible jobs of Π;
nγ = |γ|;
#Iterations++;

end

end

Figure 10.3: Procedure FeasibleTabuSearch
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Procedure ANPA(d, x, T )
(Π, Cmax) = BICH(x);
Π = BRLS(Π, Cmax);
while stopping criterion is not reach do

Π1 = Π;
Π1 := randomly remove d jobs from Π1 and insert it in ΠD;
(Π2, Cmax) := ConstructionPhase(ΠD,Π1);
Π2 := BRLS(Π2, Cmax);
Π2 := FeasibleTabuSearch(Π2, x);
Π := SimulatedAnnealingCriterion(Π2, T );

end

end

Figure 10.4: ANPA

Procedure ConstructionPhase(ΠD,Π)
for k = n− d+ 1 to n do

Calculate eiπj1
, qiπj1

and fiπj2
for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;

for j = 1 to k do
if em,πj +mini(tiπD[k−(n−d)])− dπj>ε then

FFP = j + 1;
end

end

LFP := CalculateExactlyLFP (π, πD
k−(n−d), k, {eiπj1

});
Test job πD

k−(n−d) between the positions FFP and LFP of Π;

Π := permutation obtained by inserting πD
k−(n−d) in the position j ∈ [FFP ,LFP ] of Π with the

lowest makespan using Taillard's Acceleration (note that infeasible permutations are allowed here
as feasibility is not checked);

end

end

Figure 10.5: ConstructionPhase

ANPA starts with the sequence obtained by the heuristic BICH and tries to improve it by means of

a bounded relative local search (denoted as BRLS) explained below in more detail. Then, the following

phases are repeated until the stopping criterion is reached:

• Jobs Determination Phase. In this phase, d jobs are randomly chosen to be removed from the

sequence. The set of removed jobs is denoted ΠD.

• Construction Phase. Jobs in ΠD are re-inserted one by one in the sequence following a similar

procedure as in the BICH heuristic, but without applying the FTS procedure after each insertion.

This phase is explained in detail in Figure 10.5.

• Bounded RLS (BRLS). The solution of the previous phase is improved by a relative local search

method. One by one, jobs are removed from the sequence, tried to be inserted in each position

j ∈ [1, n] and �nally, placed in the position with the lowest makespan using Taillard's acceleration
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Procedure BRLS(Π, Cmax)
h = 1;
i = 1;
Πb := Π;
while i <= n do

k := h mod n;
Π0 := remove job πk from Π;
Calculate eiπj1

, qiπj1
and fiπj2

for i = 1 . . .m, j1 = 1 . . . k and j2 = 1 . . . k + 1;
for j = 1 to k do

if em,πj +mini(tiπk
)− dπj>ε then

FFP = j + 1;
end

end
LFP := CalculateExactlyLFP (Π0, πk, n− 1, {eiπj1

});
Test job πk between the positions FFP and LFP of Π0;
Π := permutation obtained by inserting πk in the position j ∈ [FFP ,LFP ] of Π with lowest
makespan, C

′

max, using Taillard's Acceleration (note that infeasible permutations are allowed here
as feasibility is not checked);
if C

′

max < Cmax then

Cmax = C
′

max;
i = 1;
Πb := Π;

else
i++;

end
h++;

end

return Πb;
end

Figure 10.6: Bounded Relative Local Search, BRLS

between FFP and LFP inclusive. This procedure �nishes when n jobs are tried without improving

the current best makespan. The pseudo code of this local search method is shown in Figure 10.6.

• Feasible Tabu Search. After the ConstructionPhase and the BRLS procedures, FTS is imple-

mented in order to try to reach feasibility when the solution is infeasible.

• Simulated Annealing-like Acceptance Criterion. To add diversi�cation to the algorithm,

solutions are kept according to a simple simulated annealing procedure. When a solution, Π2, is

worse than the local search optimum, Π, it is maintained only if:

random ≤ exp

{
−(Cmax(Π

2)− Cmax(Π))

Temperature

}

where random is a random number between 0 and 1 and the Temperature is a function that depends

on parameter T :

Temperature = T ·
∑

∀i
∑

∀j ti,j

n ·m · 10
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The temperature parameter has been generated following the suggestions by [135] (see e.g. [138]

and [174] for similar approaches).

10.5 Computational results

In this section, the performance of the proposed algorithms BICH and ANPA is compared with the

best algorithms so far for the problem, i.e. the GA by [171] and the constructive heuristic FL by [45].

Additionally, two e�cient heuristics for makespan minimisation (i.e. the NEH heuristic, and the iterated

greedy algorithm, IGRS_LS) are included in the comparison as they are two of the most e�cient con-

structive heuristic and iterative improvement algorithm, respectively. The adaptations of these heuristic

to our problem are denoted A_NEH and A_IGA, respectively. When adapting both methods to the

proposed problem, the following assumptions are adopted:

• The objective function remains the original of these algorithms, i.e. the minimisation of makespan.

• In the insertion phases of the algorithms, only feasible sequences are considered, i.e. the jobs to be

inserted are placed in the feasible position with the lowest makespan.

• Taillard's acceleration is removed from both algorithms since the calculation of the tardiness for

each job does not allow its use.

To be able to determine the most e�cient algorithms for the problem, all methods have been coded

under the same conditions (see Section 3.4), and using an Intel Core i7-3770 with 3.4 GHz and 16GB

RAM. The algorithms are tested using the set of instances B3. Furthermore, in order to increase the

accuracy of the iterated improvement algorithms, �ve runs have been performed per instance and the

average values are recorded for the makespan and for the CPU times.

The same stopping criteria as in [171] are applied for the iterative improvement algorithms. These

stopping criteria depend on the size of the instance (i.e. the number of jobs and machines) following the

expression t · n ·m · /2 milliseconds where the values 2, 5, 20 and 60 are tested for the parameter t. The

FL and BICH constructive heuristics stop naturally when their �nal sequences are constructed.

Due to the fact that the problem under consideration is subject to maximum tardiness, the evaluation

of the quality of both constructive and iterative algorithms is not trivial. Usually, the decision maker

would �rst look for the feasibility of the solutions (i.e. tardiness of each job lower than the maximum

tardiness) and, once it is achieved, he/she would look for a low value in the makespan. Finally, the

quality of the sequences obtained by each algorithm has to be balanced against the time interval required
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to obtain the sequences, as the high CPU time requirements posed by some of the algorithms may not

be acceptable for some scenarios. Therefore, there is a trade-o� among these goals that increases the

di�culty of a direct comparison of the algorithms. To make an exhaustive analysis of all these aspects,

three indicators have been chosen to determine the quality of the solutions obtained by the algorithms,

as well as the CPU time required to obtain the solutions. The indicators are:

• Number of feasible solutions obtained by each procedure.

• Makespan value of the solution (in terms of Average Relative Percentage Deviation) obtained by

each procedure.

• Number of instances with the best solution obtained by each procedure.

Regarding the computational time requirements, note we use the average CPU time (ACPU), which

is both instance- and instance-size- dependent indicator (see Section 3.3). However, similar results are

also found when using a dimensionless time indicator. Particularly, the average relative percentage com-

putation time described in 3.3 has been tested with similar results. In order not to excessively increase

the extension of the chapter, these �ndings are not detailed.

Experimental parameter tuning

The proposed algorithms use three parameters: T , d, and x. Therefore, it is interesting to investigate the

values of these parameters for which the algorithms reach the best performance. Parameter x is used in

both BICH and ANPA, while the other two parameters are included only in ANPA. In order to simplify

the experimentation, the three parameters have been tested only for ANPA, and the value obtained for

parameter x was also chosen for the constructive heuristic BICH. The level of parameters tested are:

• T ∈ [0.1, 0.2, 0.3, 0.4]

• d ∈ [4, 5, 6, 7]

• x ∈ [10, 20, 30]

ANPA is tested following the same calibration test as in [197] by means of benchmark BC3. The

stopping criterion adopted is to halt the procedure when the CPU time in milliseconds reaches the value n·

(m/2)·20. To establish statistically signi�cant di�erences between parameters T, d and x, a non-parametric

Kruskal-Wallis test is performed, since the normality and homoscedasticity assumptions required for an

analysis of variance were not satis�ed. As a result of the test, statistically signi�cant di�erences between
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Table 10.1: Values of the three quality indicators and the average CPU time of each algorithm

Algorithm #Feasible Solutions # Best Instances ARPD Average CPU Time (s.)
A_NEH 277 9 2.83 1.27
BICH 490 14 3.24 0.43
FL 448 1 6.96 15.22

ANPA(t = 2) 491 69 0.76 6
A_IGA(t = 2) 303 26 1.32 6

GA(t = 2) 435 18 2.73 6
ANPA(t = 5) 491 80 0.52 15
A_IGA(t = 5) 314 28 1.13 15

GA(t = 5) 439 26 2.23 15
ANPA(t = 20) 491 112 0.20 60
A_IGA(t = 20) 333 43 0.80 60

GA(t = 20) 446 39 1.63 60
ANPA(t = 60) 492 491 0.00 180
A_IGA(t = 60) 342 68 0.56 180

GA(t = 60) 457 47 1.37 180

the levels of the parameters x and T were found, but not for d since the signi�cance values were 0.011,

0.000 and 0.870 respectively. The best combination of parameters was found for d = 5, T = 0.4 and

x = 30, so these were used in the computational experience carried out in the next section.

Number of feasible solutions

The average number of feasible solutions obtained by the implemented algorithms are shown in Table 10.1.

For 494 instances out of the 540 instances in the benchmark it was possible to �nd a feasible solution

by one/several algorithms. Among them, 492 feasible solutions were found by ANPA for the stopping

criterion t = 60, being the best algorithm in terms of the number of feasible solutions obtained. Next

is the ANPA heuristic with 491 feasible for the stopping criteria t = 2, t = 5 and t = 20, 490 for the

BICH heuristic. 457 feasible solutions were found by GA with t = 60 followed by the FL heuristic with

448 feasible solutions. The worst results were obtained for A_NEH and A_IGA algorithms.

It is worth to note that both BICH and ANPA found more feasible solutions within lesser CPU time

than the rest of the procedures, a remarkable result specially as BICH had very small CPU requirements.

As it can be seen in the Table 10.1 and in Figure 10.7, the e�cient algorithms following this criterion

would be: BICH, ANPA(t = 2) and ANPA(t = 60).

Average relative percentage deviation

The makespan of the solutions obtained by each algorithm can be evaluated by means of the ARPD1,

see Expression (3.1). It has to be noted that RPD1 is computed only if a feasible solution is found by
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Figure 10.7: Number of feasible solutions vs ACPU for each algorithm. X-Axis is shown in logarithmic
scale.
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Figure 10.8: ARPD1 vs ACPU for each algorithm. X-Axis is shown in logarithmic scale.

the algorithm, otherwise the results would be greatly biased.

The ARPD1 is shown in Table 10.1. Since certain algorithms do not �nd feasible solutions for some

instances for which others do, the ARPD1 is calculated with di�erent sample sizes depending on the

algorithm, e.g. 333 instances for A_IGA(t = 20) and instances 491 by ANPA(t = 20). This fact might

cause that algorithms with lesser feasible solutions than other ones could have less ARPD1, as it is the

case with A_IGA(t = 20) and A_IGA(t = 60) as compared to GA(t = 60). Nevertheless, we also include

it in the analysis since it is the usual way in which this analysis is carried out (see e.g. [45, 171]). As it

can be seen in Figure 10.8, the e�cient heuristics with ARPD1 as indicator would be A_NEH, BICH,

ANPA(t = 2), ANPA(t = 5), ANPA(t = 20) and ANPA(t = 60). In order to statistically justify this

statement, we use Holm's procedure [73] with the following hypotheses:

• H1: ANPA(t = 2) = GA(t = 2)

• H2: ANPA(t = 2) = A_IGA(t = 2)
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Table 10.2: Holm's procedure for multiple hypotheses. R indicate that hypothesis is reject by Mann-
Whitney and/or Holm's procedure

i Hi p-value Mann-Whitney α/(k − i+ 1) Holm's Procedure
1 ANPA(t = 2) = GA(t = 2) 0.000 R 0.0056 R
2 ANPA(t = 2) = A_IGA(t = 2) 0.000 R 0.0063 R
3 ANPA(t = 5) = GA(t = 5) 0.000 R 0.0071 R
4 ANPA(t = 5) = A_IGA(t = 5) 0.000 R 0.0083 R
5 ANPA(t = 5) = FL 0.000 R 0.0100 R
6 ANPA(t = 20) = GA(t = 20) 0.000 R 0.0125 R
7 ANPA(t = 20) = A_IGA(t = 20) 0.000 R 0.0167 R
8 ANPA(t = 60) = GA(t = 60) 0.000 R 0.0250 R
9 ANPA(t = 60) = A_IGA(t = 60) 0.000 R 0.0500 R

• H3: ANPA(t = 5) = GA(t = 5)

• H4: ANPA(t = 5) = A_IGA(t = 5)

• H5: ANPA(t = 5) = FL

• H6: ANPA(t = 20) = GA(t = 20)

• H7: ANPA(t = 20) = A_IGA(t = 20)

• H8: ANPA(t = 60) = GA(t = 60)

• H9: ANPA(t = 60) = A_IGA(t = 60)

The p-value of each hypothesis is calculated using a non-parametric Mann-Whitney test (see [138]).

Then, Holm's procedure orders the hypotheses according to these p-values in non-decreasing order. The

procedure rejects hypothesis i if its p-value is lower than α/(k−i+1) where k is the number of hypotheses.

The results of this statistical analysis are shown in Table 10.2. As the p-values are always lower than

α/(k − i + 1), each hypothesis is rejected justifying the statement regarding the e�cient algorithms in

terms of their ARPD1. In fact, each p-value of the non-parametric Mann-Whitney analysis is 0.000.

Number of instances with the best makespan

The third indicator used in this section is the number of instances where each algorithm �nds the best

solution. This indicator is related to both the feasibility and the makespan in each instance of the

algorithm. Results are shown in Table 10.1 for each algorithm. On the one hand, regarding the constructive

heuristics, the BICH algorithm �nds the best solution in 14 instances as compared to the 9 and 1 of the

A_NEH and FL heuristics respectively. On the other hand, the ANPA algorithm is clearly the best

with 69, 80, 112 and 491 instances for the stopping criteria t = 2, 5, 20 and 60 respectively. Regarding
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Figure 10.9: Amount of best solutions vs ACPU for each algorithm. X-Axis and Y-Axis are shown in
logarithmic scale.

the other two iterative improvement algorithms (A_IGA and GA), A_IGA slightly improves GA for

each stopping criterion. Taking into account this indicator, the e�cient algorithms would be BICH,

ANPA(t = 2), ANPA(t = 5), ANPA(t = 20) and ANPA(t = 60), as shown in Figure 10.9.

Di�erent distributions for the processing times

The above analyses have been performed with processing times following a uniform distribution, as it

is usual in the literature for the PFSP (see e.g. the benchmarks of [190] and [30]). In this section,

three additional benchmarks have been generated using di�erent distributions for the processing times in

order to evaluate the robustness of the results. The procedure to generate the three benchmarks is the

same as in B3, with the exception of the distribution of the processing times, which follow Exponential

(positive and negative) and Normal distributions, respectively. Hence a total of 540 instances are generated
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Table 10.3: Values of the three quality indicators and the average CPU time of each algorithm considering
di�erent distributions of the processing times. The exponential distribution (positive and negative) are

denoted by EP and EN respectively, as well as the normal distribution is denoted by N.

Algorithm
#Feasible Solutions # Best Instances ARPD1 Average CPU Time (s.)
EP EN N EP EN N EP EN N EP EN N

A_NEH 354 253 316 3 17 8 2.63 2.90 2.82 1.34 1.34 1.23
BICH 537 458 495 3 15 9 2.73 3.57 3.10 0.58 0.75 0.36
FL 490 420 443 0 3 2 6.19 9.47 6.96 14.18 17.53 13.90

ANPA(t = 2) 537 458 495 34 84 55 0.63 0.88 0.73 6 6 6
A_IGA(t = 2) 392 270 343 8 27 25 1.24 1.48 1.38 6 6 6

GA(t = 2) 511 416 433 5 19 18 2.10 3.54 2.57 6 6 6
ANPA(t = 5) 538 459 495 47 96 69 0.43 0.59 0.49 15 15 15
A_IGA(t = 5) 403 281 352 9 38 28 1.07 1.26 1.17 15 15 15

GA(t = 5) 515 426 445 8 36 21 1.74 2.88 2.13 15 15 15
ANPA(t = 20) 538 459 495 77 122 98 0.17 0.23 0.19 60 60 60
A_IGA(t = 20) 421 292 364 19 55 40 0.77 0.90 0.84 60 60 60

GA(t = 20) 522 442 454 20 51 34 1.26 2.08 1.53 60 60 60
ANPA(t = 60) 538 459 495 535 455 490 0.00 0.01 0.00 180 180 180
A_IGA(t = 60) 432 304 370 35 84 57 0.55 0.63 0.59 180 180 180

GA(t = 60) 526 444 457 29 65 43 1.04 1.69 1.26 180 180 180

per benchmark representing a total of 1620 instances. In order to have homogeneous results, the same

mean (i.e. 50.5) is chosen for those distribution. In the case of the normal distribution, the standard

deviation is chosen to achieve a moderate variation of the processing times which means, according to

[74], a coe�cient of variation between 0.75 and 1.33. Therefore, a value of 1 is used for the coe�cient

of variation. Additionally, the distributions are truncated and the lower bound and upper bounds are

set to 1 and 100, the same as in the uniform distribution. A summary of the results is shown in Table

10.3 for the aforementioned three indicators. The results are very similar to that found using the uniform

distribution (see Table 10.1). Additionally, the excellent behaviour and the e�ciency of the two proposed

algorithms (for the three indicators) are also con�rmed in these benchmarks being e.g. the ARPD1 of

the ANPA(t = 60) algorithms less than 0.01.

10.6 Conclusions

This chapter addresses the permutation �ow-shop scheduling problem to minimise the makespan subject

to that the tardiness of jobs does not exceed a given maximum tardiness. After analysing the problem and

deriving some properties, a constructive heuristic BICH and a non-population based algorithm ANPA

are proposed. The performance of both algorithms has been evaluated against the FL and GA algorithms

which are the (up to now) state-of-the-art algorithms for the problem under study on an extensive bench-

mark of 540 instances. Additionally, two of the most e�cient algorithms for the Fm|prmu|Cmax problem

are also included in the comparison.

The e�ciency of the two algorithms proposed has been shown according to three di�erent measures
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of the quality of the solutions: number of feasible solutions, average relative percentage deviation, and

number of instances with the best solution. Although the determination of the best algorithms for the

problem under study is not trivial due to the existence of infeasible solutions, the proposed algorithms

BICH and ANPA have been found to be the most e�cient algorithms for each one of the three indicators

analysed. Among the 494 feasible instances found in the benchmark, ANPA(t = 60) �nds the best solution

for 491 instances with an ARPD1 equal to 0.00. The performance of BICH is also noteworthy, as it

improves several iterative improvement algorithms using much lesser CPU time. These results are also

con�rmed in other three di�erent benchmarks (of 540 instances each one) generated using three di�erent

distributions for the processing times of the jobs. With respect to the rest of the algorithms, it is not

clear whether A_IGA outperforms GA or vice versa, since the latter A_IGA is better for the last two

indicators, but �nds less feasible solutions. The same happens when comparing FL and A_NEH.
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Chapter 11

Blocking �owshop scheduling problem

In the classical permutation �owshop scheduling problem studied above, unlimited bu�ers capacity be-

tween two consecutive machines are considered. However, zero-bu�er �owshops are very common in

several industrial sectors, such as iron and steel industry, chemical and pharmaceutical industries, just-

in-time production lines and in-line robotic cells (see e.g. [159], [181], [59] and [57]). This problem is

usually denoted as blocking �owshop scheduling problem (BFSP) since a job blocks a machine until the

next machine is available. Therefore, interest in this problem is increasing over the past years ([161]),

although there are not many algorithms as compared to the number of heuristics and metaheuristics for

the traditional permutation �owshop scheduling problem �denoted as PFSP� (see e.g. [172] and [137]),

which is one of the most studied problems in Operations Research.

The problem to minimise total �owtime (makespan) is denoted as Fm|block|
∑

Cj (Fm|block|Cmax)

according to the notation by [58]. Note that as there are zero-capacity bu�ers between two consecutive

machines, several jobs cannot wait at the same time before the machine and the job sequence must

therefore be the same on every machine. As a conclusion, n! schedules have to be considered, i.e. the

number of solutions is the permutation of n jobs.

In this chapter, we propose an e�cient constructive heuristic for the BFSP with �owtime objective

based on beam search which can easily be adapted to makespan minimisation. The proposed algorithm

outperforms existing heuristics for the Fm|block|
∑

Cj and Fm|block|Cmax. Additionally, we test adapta-

tions of the most e�cient algorithms for the PFSP to minimise makespan and total �owtime (respectively

denoted as Fm|prmu|Cmax and Fm|prmu|
∑

Cj according to [58]). We include them in the comparison

since algorithms originally implemented for the PFSP have turned to be e�cient algorithms for several

decision problems (see e.g. the iterated greedy proposed by [174] or the NEH heuristic by [127]). The

resulting computational evaluation is composed of a total of 36 heuristics which are fully recoded and

197
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exhaustively compared under the same conditions. Additionally, we introduce a speed-up method to

accelerate the insertion phases of all algorithms.

The rest of the chapter is organised as follows. The state of the art is analysed in Section 11.1. In

Section 11.2, the problem and the notation is described. The beam-search-based constructive heuristic is

proposed in Section 11.3. In Section 11.4, a complete comparison of heuristics is performed. Finally, the

conclusions are discussed in Section 11.5.

11.1 Literature review

In this section, a review of the literature on the problem under consideration is presented. Since there

are heuristics for related scheduling problems that can be adapted to our problem, we also review these

contributions. More speci�cally, we review:

• Heuristics for the (classical) permutation �owshop scheduling problem to minimise makespan.

• Heuristics for the permutation �owshop scheduling problem to minimise total �owtime.

• Heuristics for the blocking �owshop scheduling problem, both with makespan and �owtime objec-

tives.

• Speed-up procedures developed for related �owshop scheduling problems.

Regarding heuristics for the Fm|prmu|Cmax problem, we focus on the most promising ones and refer

the reader to [43], [160] and [172] for more extensive reviews. Among the available heuristics, the NEH

heuristic [127] is, without doubt, the most e�cient heuristic for the problem. Its excellent performance

�established by [172]� probably lies in the low computational cost of carrying out the insertion phases

due to the speed-up by [189] (see Section 2.2). Therefore, several papers have focused on improving some

of the phases of the NEH, or on proposing NEH-based heuristics. More speci�cally, improvements in the

initial order of the NEH are proposed by e.g. [42] and [201]. Regarding improvements in the insertion

phase of the NEH, [150] propose several heuristics (denoted as FRB1, FRB2, FRB3, FRB4_k and FRB5)

where a partial insertion local search method after the insertion of a job is employed. In a similar way,

[211] employ another partial local search based on the interchange of jobs. Several works address the

problem of breaking the ties of the partial makespans when inserting a job, wuch as e.g. [162], [83], [84]

and [85], [35].

Regarding the Fm|prmu|
∑

Cj problem, the evaluation carried out in Chapter 7 shows that, in terms

of average relative percentage deviation and average relative percentage computation time, the set of
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e�cient heuristics is formed by the Raj heuristic by [151]; the LR heuristic proposed by [108]; the RZ

heuristic by [152]; the RZ-LW proposed by [97]; the LR-NEH heuristic proposed by [137]; the IC1, IC2

and IC3 improvement heuristics by [96]; and �nally, the PR1 heuristic proposed by [137]. As most of

these heuristics include the LR heuristic as initial or main procedure, [41] propose an improvement of

this method, denoted as FF, which heavily decreases the required CPU time. This procedure has been

incorporated in each heuristic that the LR procedure obtaining excellent results for the heuristics: FF,

FF-FPE (replacing LR by FF in the LR-FPE heuristic by [108]), FF-ICi (ICi heuristics by [96] with FF

instead of LR) and FF-PR1 (PR1 heuristic by [137] using the FF procedure).

Regarding BFSP, several algorithms have been proposed for makespan minimisation. [116] implement

a constructive heuristic, denoted as PF, to minimise cycle time, which constructs a sequence inserting

progressively an unsequenced job with minimal sum of idle and blocking time. [169] propose three con-

structive heuristics (denoted as MM, MME and PFE) to solve the Fm|block|Cmax. MME and PFE are

variations of the original NEH heuristic where the initial order is replaced by the MM and PF heuristics

respectively. In [163], several NEH-based heuristics are proposed using di�erent mechanisms to break ties

in the �rst and second phase of the NEH heuristic. The heuristics are compared with the MME and PFE

heuristics. [139] propose eight heuristics (the wPF and PW constructive heuristics and the PF-NEH,

wPF-NEH, PW-NEH, PF-NEHLS, wPF-NEHLS and PW-NEHLS improvement heuristics) based on NEH

and LR. The heuristics clearly outperform MME and PFE in terms of quality of the solution and com-

putational e�ort. In [164], these improvement heuristics have been improved by evaluating the sequences

before and after the insertion phase as well as using the reversibility property.

Regarding the minimisation of total �owtime in the BFSP, [204] introduce an adaptation of the NEH

algorithm using the non-decreasing sum of processing times as initial order. Note that this order outper-

forms the original one for the Fm|prmu|
∑

Cj problem. This heuristic is used as initial sequence for the

metaheuristics proposed by [5] and [31]. [63] and [62] adapt the MME heuristic to minimise total �owtime

as well as proposed two new NEH-based heuristics modifying the initial order (denoted as MME-A and

MME-B). Finally, [161] propose 6 new heuristics for the problem. Firstly, they adapt the PF heuristic

([116]) to the problem and propose two new constructive heuristics denoted as HPF1 and HPF2 modifying

the index to choose a job. Then, they propose three NEH-based heuristics (NPF, NHPF1 and NHPF2)

using the previous heuristics as initial sequences of the NEH.

Finally, regarding speed up methods to accelerate algorithms, they have been successfully applied for

several problems related to �owshop scheduling: the PFSP to minimise total �owtime (see e.g. [96]); the

PFSP to minimise total tardiness (see e.g. [197]); the PFSP to minimise makespan subject to maximum

tardiness (see e.g. [45]); and the distributed PFSP to minimise makespan (see e.g. [124]). However, to
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the best of our knowledge, they have not been applied to the BFSP so far.

11.2 Problem statement

The problem under study can be stated as follows: a set N of n jobs have to be scheduled in a �ow shop

consisting on a setM of m machines without intermediate bu�ers. Each machine is always available and

can process at most one job at the same time. Following the notation established in Section 11.2. Each

job j ∈ N has a non preemptive processing time tij on each machine i ∈ M. Set up times are sequence-

independent and non-anticipatory (see [47]) and thus can be included in the processing times of each job.

Let cij (eij) represent the departure (start) time of job j from (on) machine i. Note that the departure

time of a job must not necessarily be equal to its completion time, as the next machine can block this

job after its completion. Similarly, ci[k] represents the departure time of job in position k from machine

i. Thereby, when a new job j is placed in the last position of a partial sequence Πk := (π1, . . . , πk),

the departure and the start times of job j can be computed according to Expressions (11.1) and (11.2),

respectively. Additionally, let itj and bj be the total idle and the total blocking time induced by job j,

respectively (see Expressions 11.3 and 11.4).

cij =


ci[k] + tij , i = 1

max{ci−1,j + tij , ci+1,[k]}, ∀ i = {2, . . . ,m− 1}

ci−1,j + tij , i = m

(11.1)

eij =

 ci[k], i = 1

ci−1,j , ∀ i = {2, . . . ,m}
(11.2)

itj =
m∑
i=2

max{ei−1,j + ti−1,j − ci[k], 0} (11.3)

bj =
m∑
i=2

max{ci[k] − (ei−1,j + ti−1,j), 0} (11.4)

As the algorithm proposed in Section is composed of a set of (partial) sequences in each iteration,

let us extend the notation and denote by ckijl and ekijl the departure and start times of job j on machine

i of the lth sequence in iteration k, respectively. Analogously, itkjl and bkjl represent the total idle and

total blocking times of job j on machine i of the lth sequence in iteration k, respectively. Finally, let ckjl

represent the departure time of job j from the last machine m, i.e. ckjl := ckmjl.
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Figure 11.1: Example of the proposed algorithm.

11.3 Proposed heuristic

In this section, a beam-search-based constructive heuristic, BS, is proposed to solve the Fm|block|
∑

Cij

which successfully combines the diversi�cation of population-based metaheuristics with the speed of con-

structive heuristics. The algorithm simultaneously constructs several partial sequences in each iteration

(denoted as candidate nodes) by appending jobs one by one and keeping the best ones (denoted as selected

nodes) over all candidates. A simple example of the algorithm with four jobs is shown in Figure 11.1.

More speci�cally, the algorithm is composed of the following phases:

• Obtain the initial selected nodes

• For n iterations:

� Construct candidate nodes

� Evaluate candidates nodes

� Select the best candidates nodes (selected nodes)

Let us denote by x (beam width) the number of selected nodes in each iteration. At iteration k

(k = 1, . . . , n), selected node l (l = 1, . . . , x) is composed of k sequenced jobs (partial sequence) denoted

as Sk
l := (sk1l, . . . , s

k
kl), and a set of n− k unsequenced jobs denoted as Uk

l := {uk
1l, . . . , u

k
n−k,l}.

First, the algorithm sorts all jobs according to non-decreasing order of indicator ξj (see Expression

11.5). Let α := (α1, . . . , αl, . . . , αn) denote this order.

ξj :=
(n− 2)

4
· wj +

m∑
i=1

tij , ∀ j ∈ [1, n] (11.5)

where wj is the weighted idle time de�ned by Expression (11.6) (see [108]):
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wj :=

m∑
i=2

m ·
∑i−1

i′=1
ti′ j

i− 1
, ∀ j ∈ [1, n] (11.6)

The nodes selected in the �rst iteration are constructed according to the indicator as follows: the

partial sequence S1
l = (s11l) with l ∈ {1, . . . , x}, is formed by the job in position l of the initial order, i.e.

s11l = αl; the U1
l set of unsequenced jobs contains all jobs with the exception of the job in S1

l .

Once the initial selected nodes are obtained, in each iteration k, each selected node l forms n − k

candidate nodes for the next generation. Each candidate node v ∈ {1, . . . , n − x} is constructed from

selected node l, appending each job in set Uk
l at the end of Sk

l . Let Ŝ
k
vl := (ŝk1vl, . . . , ŝ

k
k+1,v,l) and Ûk

vl be

the corresponding partial sequence and set of unsequenced jobs, respectively. Then, the partial sequence

of this candidate node and its set of unsequenced jobs are de�ned by Expression (11.7).

Ŝk
vl = (ŝk1vl, . . . , ŝ

k
k+1,v,l) = (Sk

l , u
k
vl) = (sk1l, . . . , s

k
kl, u

k
vl)

Ûk
vl = {ûk

1vl, . . . , û
k
k+1,v,l} = Uk

l − uk
vl

(11.7)

Consequently, in iteration k, a total of x · (n− k) candidate nodes are formed. Among these candidate

nodes, the best x are selected for the next iteration. Note that, as each new selected node l
′
in iteration

k + 1 (composed of partial sequence Sk+1
l′

, ∀l′ ∈ {1, . . . , x}) is formed by adding job uk
vl to selected node

l (composed of partial sequence Sk
l ), node l

′
selected in iteration k+ 1 does not have necessarily to come

from the partial sequence Sk
l′
(i.e. l

′
may be di�erent from l). Therefore, it may happen that one node l is

selected in iteration k, but its partial sequence is not selected for the next iteration (k+1). Let branch[l
′
]

and job[l
′
] denote the values of l and v respectively for the selected node l and job uk

vl which form selected

node l
′
in iteration k+1. In order to select the candidate nodes for the next iteration (k+1), three issues

have to be considered to evaluate the candidate node which are typically di�erent for each one:

• In�uence of the chosen job, uk
vl, i.e. the last job in the partial sequence Ŝk

vl (ŝ
k
k+1,v,l). Obviously,

the departure time of this job on the last machine, ck
uk
vll
, has a direct in�uence on the �nal objective

function. Additionally, the job may incur idle and blocking times which may largely in�uence the

completion times of the subsequent jobs to be inserted. This in�uence is higher at the beginning

of the algorithm when the partial sequence is relative empty and lower in the last iterations where

the sequence is almost complete as it a�ects to a smaller number of jobs (in fact, it does not a�ect

to any job in the last iteration). The index Lk
vl (see Expression 11.8), which balances these three

objectives, is used to measure the in�uence of inserting job uk
vl.



11.3. PROPOSED HEURISTIC 203

Lk
vl = ck

uk
vll

+ a · n−k−2
n · (itk

uk
vll

+ bk
uk
vll
),

∀k = {1, . . . , n− 1}, v = {1, . . . , n− k}, l = {1, . . . , x}
(11.8)

where a is a parameter to balance the in�uence of the completion time against that of blocking

and idle time. itk
uk
vll

and bk
uk
vll

are the sum of idle and blocking times between position k (job ŝkkvl)

and k + 1 (job ŝkk+1,v,l = uk
vl) over all machines, respectively. Note that vk

uk
vll
, itk

uk
vll

and bk
uk
vll

can

be calculated by means of the start time, ek
iuk

vll
, of job uk

vl (placed in the last position of the Sk
l

sequence) on machine i and the departure time, cki[k]l, of the previous job (i.e. the job in position k,

ŝkkvl or equivalently skkl) which was already computed in the previous iteration of the algorithm (this

fact leads to a high reduction of computational e�ort since the calculation of the departure times of

the complete sequence is avoided).

• In�uence of sequenced (previous) jobs, i.e. Sk
l (or equivalently ŝkjvl, ∀j ≤ k). Due to the process

employed to construct the candidate nodes, the �rst k sequenced jobs of candidate node v may be

di�erent to the �rst jobs of other candidate nodes (e.g. �rst candidate node is formed by jobs 1

and 2, and second candidate node is formed by jobs 3 and 4). The comparison of these partial

sequences is not trivial. Obviously, when the sequences are complete, the algorithm has to look for

the minimisation of the total �owtime. However, in case of partial sequence composed of di�erent

jobs, several other aspects may have a higher in�uence. On the one hand, although the goal is the

minimisation of total �owtime, a comparison of the partial sequences based only on this measure

would obviously be in�uenced by the characteristics of the jobs of each partial sequence. It would

prioritise jobs with low processing times regardless their idle or blocking times. On the other hand,

the exclusive consideration of idle and/or blocking times would miss the relation with the objective

of the scheduling problem: the minimisation of total �owtime. To cover both aspects, the proposed

algorithm uses index F k
l (see Expression 11.9) to measure the in�uence of the sequenced jobs of

candidate node v in iteration k. Note that this index is identical for all candidate nodes coming

from selected node l since it does not consider the contribution of the last job of the sequence

(ŝkk+1,v,l). Furthermore, the contribution of idle and blocking times decrease with the number of

iterations, thus avoiding their high in�uence in the last iterations.

F k
l′
= ∆ck

l′
+ a · (∆itk

l′
+ ·∆bk

l′
), ∀ k = {2, . . . , n− 1}, l

′
= {1, . . . , x} (11.9)

where ∆t, ∆b and ∆c are the accumulated idle, blocking and departure time, respectively, de�ned

by the following expressions:
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∆itk+1
l′

= ∆itk
branch[l′ ]

+ itk
branch[l′ ],job[l′ ]

· n− k − 2

n
, ∀ k = {1, . . . , n− 2}, l

′
= {1, . . . , x} (11.10)

∆bk+1
l′

= ∆bk
branch[l′ ]

+ bk
branch[l′ ],job[l′ ]

· n− k − 2

n
, ∀ k = {1, . . . , n− 2}, l

′
= {1, . . . , x} (11.11)

∆ck+1
l′

= ∆ck
branch[l′ ]

+ ck
branch[l′ ],job[l′ ]

+ ck
λ,branch[l′ ]

, ∀ k = {1, . . . , n− 2}, l
′
= {1, . . . , x} (11.12)

where ∆it1
l′
= ∆c1

l′
= F 1

l′
= 0, ∀ l′ = {1, . . . , x}. ckλl is the departure time of an arti�cial job placed

at the end of the sequence as an estimation of the unscheduled jobs (see the following item).

• In�uence of the unsequenced jobs. These are the next jobs to be sequenced in the selected nodes and

hence, they also in�uence the evaluation of the candidate node. However, their impact on the �nal

total �owtime is di�used since they are not scheduled yet. As a measure of its in�uence, we use an

arti�cial departure time denoted as ckλl, which is the departure time of an arti�cial job λ tested in

the last position (position k+2) of the sequence (after the last job, uk
vl or ŝ

k
k+1,v,l). The processing

times of this job are equal to the average processing times of all unscheduled jobs of selected node

l (i.e. Uk
l ). Note that the chosen job uk

vl is also considered to have an arti�cial departure time.

The main reason is that the calculation of this term can be then globally done for all candidate

nodes of selected node l, thus decreasing the complexity of the procedure, which is one of the main

advantages of the proposed algorithm (see 7 for a more detailed explanation).

Thus, each candidate node v is evaluated using index Gk
vl, (see Expression 11.13) where the best x values

are the nodes selected for the next iteration. The pseudo code of the algorithm is shown in Figure 11.2.

The complexity of the algorithm is bounded by the creation and selection of the candidate nodes, which

have a complexity of x · n2 ·m and x2 · n2 respectively. Then the global complexity of the algorithm is

max{x · n2 ·m,x2 · n2}.

Gk
vl = F k

l + Lk
vl, ∀k = {1, . . . , n− 2}, c = {1, . . . , n− k}, l = {1, . . . , x} (11.13)

Speed up procedure

In this section, we introduce a simple speed up procedure to accelerate the insertion phases of the al-

gorithms. This procedure is based on the speed up methods proposed by [96] and [197]. Basically, the

proposed procedure stores the completion times, Cij , of each job j on each machine i before testing a job
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Procedure BS(x)
//Initial Order
Determination of wj and ξj , ∀j ∈ [1, n];
α := Jobs ordered according to non-decreasing ξj breaking ties in favor of jobs with lower wj ;
Update S1

l (s11l = αl) ∀l and U1
l with the remaining jobs.

∆it1l ,∆c1l , F
1
l = 0, ∀l ∈ [1, x];

for k = 1 to n− 2 do
//Candidate Nodes Creation
Determination of itk

uk
vll
, bk

uk
vll
, ck

iuk
vll

(ck
uk
vll

= ck
muk

vll
), ∀v ∈ [1, n− k], l ∈ [1, x]

//Candidate Nodes Evaluation
Gk

vl := F k
l + ck

uk
vll

+ a · (itk
uk
vll

+ bk
uk
vll
), ∀v ∈ [1, n− k], l ∈ [1, x]

//Candidate Nodes Selection
Determination of the l

′
-th best candidate node according to non-decreasing Gk

vl in iteration k.
Denote by branch[l

′
] the value of the index l of that candidate node and by job[l

′
] the value of v,

∀l′ ∈ [1, x];
ck+1
i,[k+1],l′

←− ck,branch[l′],i,job[l′]

//Forecasting Phase. Update of the Forecast Index
for l

′
= 1 to x do

Update Sk+1
l′

and Uk+1
l′

by removing job uk
job[l′],branch[l′] from U

k+1
l′

and including in Sk
l′
.

Determination of ck+1
λ,branch[l′] for new selected node l

′
formed by the old selected node branch[l

′
]

with job job[l
′
]. Note that the processing times of the arti�cial job are equal to the average

processing times of all unscheduled jobs (Uk+1
l′

);

∆itk+1
l′

= ∆itk
branch[l′ ]

+ itk
job[l′ ],branch[l′ ]

· n−k−2
n ;

∆bk+1
l′

= ∆bk
branch[l′ ]

+ bk
job[l′ ],branch[l′ ]

· n−k−2
n ;

∆ck+1
l′

= ∆ck
branch[l′ ]

+ ck
job[l′ ],branch[l′ ]

+ ck
λ,branch[l′ ]

;

F k+1
l′

= ∆ck+1
l′

+ a · (∆itk+1
l′

+∆bk+1
l′

);
end

end
//Final evaluation
Evaluate the �owtime of the x selected nodes and return the best one.

end

Figure 11.2: BS
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in each position. Then, when the job is tested in each position j1, all completion times Cij with j < j1

stay the same and are not calculated again. Although the complexity of the insertion phase remains

the same using this procedure, a strong CPU reduction of about 30%-50% has been achieved for similar

procedures in the literature (see e.g. [96]). Note that the procedures proposed by e.g. [189] and [124]

cannot be adapted since they are based only on the calculation of the makespan and cannot be applied

for the calculation of each completion time on last machine. The proposed speed up procedure has been

incorporated in each insertion phase of all implemented heuristics.

11.4 Computational experiments

In this section, a computational evaluation of heuristics is carried out. To perform the comparison we

follow the following procedure: a design of experiments is carried out in Section 11.4. In Section 11.4,

the implemented heuristics are enumerated. Finally, the computational results of heuristics are shown in

Section 11.4.

Experimental parameter tuning

In this section, we perform an experimental tuning of parameter a in the proposed heuristic on set

BC2. Regarding the values for the parameter x, we consider x ∈ {2, 5, 15, n/10, n} (see e.g. [108] for

similar values of the parameters in other constructive heuristics working with a pool of partial sequences),

since this parameter is directly proportional to the CPU time and complexity of the algorithm. The

computational experiments for the parameter a are carried out for the proposed BS(x = 5) and the same

value is used for each other value of x. We use the following values for parameter a ∈ {1, 2, 3, ..., 23, 24, 25}.

The relationship between the levels of the parameters is evaluated by means of a non-parametric

Kruskal-Wallis test since normality and homoscedasticity assumptions are not ful�lled. Note that, the

Relative Percentage Deviation RPD3 �Expression (9.7)� is used to measure the quality of the solution of

the heuristic for each instance.

As a result of the experiments, it turns out that there are statistically signi�cant di�erences between

the levels of the three parameters, since the p-values obtained for the parameters n, m and a are 0.000.

The best value found for parameter a is 14, which is used in Section 11.4 in BS(x) ∀x ∈ {2, 5, 15, n/10, n}.

Implemented heuristics

In this section, the heuristics included in the computational evaluation are listed. According to the

literature review in Section 11.1, 11 heuristics have been published so far for this problem. Additionally,
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we adapt 8 and 18 heuristics for the Fm|block|Cmax and for the classical PFSP problem, respectively,

given their excellent performance. Finally, the proposed beam-search-based constructive heuristic is added

to the comparison. In summary, the heuristics implemented are:

• Heuristics of the Fm|block|
∑

Ci:

� Heuristic NEH_WPT: [204].

� Heuristic MME: [61] (adapted from [169] for Fm|block|Cmax).

� Heuristic MME-A: [62].

� Heuristic MME-B: [62] (adapted from [63] for Fm|block|Cmax).

� Heuristic NEH-MK: [122].

� Heuristic PF: [161] (adapted from [169] for Fm|block|Cmax).

� Heuristics HPF1 and HPF2: [161].

� Heuristics NPF, NHPF1 and NHPF2: [161].

� Heuristics BS(x), ∀x ∈ {2, 5, 15, n/10, n}: Proposed heuristic.

• Heuristics adapted from the Fm|block|Cmax:

� Heuristics wPF and PW: [139]. These heuristics are implemented as the original ones. For the

�nal sequence, the total �owtime is calculated.

� Heuristics PF-NEH(x), wPF-NEH(x) and PW-NEH(x), ∀x ∈ {1, 2, 5}: [139]. In the NEH-

based phase of the algorithms, each evaluation of makespan is replaced by the evaluation of

total �owtime. Note that these heuristics include the evaluation of the objective function before

applying the NEH-based phase (proposed by [164]). The other improvement proposed by [164]

(reversibility property) cannot be applied for total �owtime minimisation.

� Heuristics PF-NEHLS(x), wPF-NEHLS(x) and PW-NEHLS(x), ∀x ∈ {1, 2, 5}: [139]. In both

the NEH-based and the local search phases of the algorithms, each evaluation of makespan is

replaced by the evaluation of total �owtime.

• Heuristics adapted from the traditional PFSP to minimize total �owtime (Fm|prmu|
∑

Ci). To

adapt the heuristics, each evaluation of the total �owtime of a partial sequence is replaced by the

evaluation of the total �owtime with blocking. Note that the indexes of initial sequences and FF

and LR-based heuristics are not changed since the objective is the same.

� Heuristic LR(1): [108].
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� Heuristic FF(x), ∀x ∈ {1, 2, n/10, n/m}: Section 7.5.

� Heuristic FF-FPE(x, y), ∀(x, y) ∈ {(2, n/10), (15, n/10), (n/10, 1), (n/10, 1), (n/10, n/10),

(n/10, n), (n/m, n), (n, n)}: [108] with FF(x) instead of LR(x) heuristic.

� Heuristics FF-ICH1, FF-ICH2 and FF-ICH3: [96] with FF(x) instead of LR(x) heuristic.

� Heuristic FF-NEH(x) for x = 5, 10: [137] with FF(x) instead of LR(x) heuristic.

� Heuristic Raj: [151].

� Heuristic RZ: [152].

� Heuristic RZ_LW: [97].

� Heuristic FF-PR1(x) for x = [5, 10, 15]: [137] with FF(x) instead of LR(x) heuristic.

• Heuristics adapted from the traditional PFSP to minimize makespan (Fm|prmu|Cmax). Given a

partial sequence, each evaluation of the makespan of this sequence is replaced by the evaluation of

total �owtime with blocking:

� Heuristic NEH proposed by [127].

� Heuristics FRB2, FRB3, FRB4k (with k = [2, 4, 6, 8, 10, 12]) and FRB5: [150]. Due to the

good results found by the NEH_WPT as compared to the original NEH, these heuristics are

initialized in a non-decreasing sum of processing times.

Hence, a total of 36 heuristics are compared in this section. Some of them have been executed for

di�erent values of the parameters yielding a total of 70 heuristics which are tested. All heuristics are

tested under an Intel Core i7-3770 with 3.4 GHz and 16 GB RAM.

Heuristics are evaluated and compared according to the quality of their solutions and their compu-

tational e�orts. Traditionally, the former is measured by the Average Relative Percentage Deviation,

ARPD1h for heuristic h, while the Average CPU time, ACPUh for heuristic h, is the indicator used to

measure the latter.

Computational evaluation of heuristics

Each implemented heuristic is tested on benchmark B1. This benchmark is the most common benchmark

for the studied problems (see e.g. [204], [61], [63], [62], [165]. Computational results are shown in Table

11.1 in terms of ARPD1 (second and �fth columns) and ACPU (third and sixth columns). The best

ARPD1s are found by the proposed heuristic BS(x) (∀x ∈ {5, 15, n/10, n}) being 1.239, 0.687, 1.029
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Figure 11.3: ARPD1 against ACPU. X-axis (ACPU) is shown in logarithmic scale

and 0.333 respectively. Note the huge distance among the best heuristic (BS(n)) and the best non-

proposed heuristics which is 1.682 found by the PF-NEHLS(5) heuristic. Furthermore, the BS(n) needs in

average 42.73% lesser CPU time than the PF-NEHLS(5), i.e. the ACPUBS(n) is 13.148 seconds while the

ACPUPF-NEHLS(5) is 22.959 seconds. Graphically, the heuristics are shown in Figure 11.3. More detailed

results of ARPD1 and ACPU for each size for the problem are shown in Table 11.2 and 11.3 respectively.

The proposed heuristic BS(x) (∀x ∈ {2, 5, 15, n}) IS e�cient as there is no other heuristic with lower

ACPU and ARPD1. The excellent performance of the proposed heuristic is also highlighted by the 33

the new upper bounds found for the problem.

Regarding heuristics adapted from related decision problems, some of them yield an excellent per-

formance as compared to heuristics speci�cally implemented for the problem under study. Thereby, e.g.

the heuristics PF-NEH(2), FF-FPE(n/10,1) and PF-NEH(5) (with an ARPD1 of 3.22, 3.27 and 2.67 re-

spectively) clearly outperform NEH_WPT, MME_A, MME, MME_B and NPF (ARPD1s of 4.82, 4.55,

4.58, 4.80 and 3.56 respectively) using less ACPU. The PF-NEH(5) heuristic even slightly outperforms

NHPF1 and NHPF2 with 3.08, and 2.92 of ARPD1 respectively. In fact, the best ARPD1 among the

non-proposed heuristics is found by PF-NEHLS(5), which was originally proposed for the Fm|block|Cmax

problem.

In order to statistically justify the e�ciency of the proposed heuristic, we compare it with the best

heuristics requiring higher ACPU. We use a Holm's procedure ([73]) to contrast the following hypotheses:

• H1: BS(5) = PF-NEH(2)

• H2: BS(15) = FF-ICH2
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Table 11.1: ARPD1s and ACPUs of the implemented heuristics (ordered by increasing ACPU). In bold
it is indicated the proposed set of heuristics.

Heuristic ARPD1 ACPU Heuristic ARPD1 ACPU
PF 4.529 0.004 FF-NEH(5) 3.340 0.813

HPF2 3.349 0.005 FF-FPE(n/10,n/10) 2.945 0.890
HPF1 3.813 0.005 PW-NEH(5) 3.828 1.091
FF(1) 4.028 0.006 FRB42 3.452 1.509
wPF 6.423 0.007 FF-NEH(10) 3.286 1.623
FF(2) 3.750 0.012 FRB44 3.025 2.386
BS(2) 2.614 0.019 FRB48 2.807 3.205
BS(5) 1.239 0.043 FRB48 2.684 3.946

wPF-NEH(1) 4.915 0.044 FF-ICH1 2.313 4.271
PF-NEH(1) 3.670 0.051 PF-NEHLS(1) 2.462 4.548

Raj 6.184 0.063 FRB410 2.584 4.723
wPF-NEH(2) 4.304 0.087 FF-FPE(n/10,n) 2.258 4.776
PF-NEH(2) 3.221 0.101 PW-NEHLS(1) 3.560 4.847
FF(n/m) 3.573 0.117 FF-FPE(n/m,n) 2.250 5.058
BS(15) 0.687 0.127 wPF-NEHLS(1) 3.508 5.225
PW 5.926 0.182 FRB412 2.558 5.372
LR(1) 4.039 0.184 FF-FPE(n,n) 2.209 6.943

wPF-NEH(5) 3.732 0.216 PF-NEHLS(2) 2.120 9.504
PW-NEH(1) 4.885 0.219 RZ_LW 3.891 9.651
FF(n/10) 3.548 0.224 PW-NEHLS(2) 3.197 10.164

FF-FPE(n/10,1) 3.266 0.234 FF-ICH2 1.896 10.745
PF-NEH(5) 2.669 0.250 wPF-NEHLS(2) 3.056 11.037

NEH 9.043 0.262 BS(n) 0.333 13.148
NEH_WPT 4.816 0.264 FRB2 3.814 13.749
MME_A 4.553 0.266 PF-NEHLS(5) 1.682 22.959
MME 4.576 0.267 FF-PR1(5) 1.978 26.477

MME_B 4.797 0.268 PW-NEHLS(5) 2.647 28.197
NHPF1 3.080 0.277 wPF-NEHLS(5) 2.516 29.102
NHPF2 2.921 0.277 FF-ICH3 1.902 29.157
NPF 3.563 0.277 FF-PR1(10) 1.801 34.279

BS(n/10) 1.029 0.403 FF-PR1(15) 1.720 35.965
PW-NEH(2) 4.375 0.439 FRB3 2.321 96.546

FF-FPE(15,n/10) 2.879 0.732 NEH-MK 2.229 96.771
RZ 6.066 0.792 FRB5 2.269 176.403

FF-FPE(2,n/10) 3.057 0.801
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Table 11.2: Detailed values of ARPD1 for each size of the problem. The proposed set of heuristics is
indicated in bold.

Heuristic
Size of the problem (n x m)

ARPD1
20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20

NEH_WPT 2.92 2.84 3.39 5.03 4.31 3.56 6.70 5.31 4.39 6.97 5.36 7.00 4.816
MME 2.88 2.74 2.17 5.16 3.81 3.31 5.94 5.27 3.81 7.08 5.67 7.06 4.576

MME_A 2.76 2.69 2.20 5.02 3.88 3.21 5.90 5.26 4.30 7.03 5.35 7.05 4.553
MME_B 3.39 3.26 3.34 4.89 4.15 3.35 6.40 5.41 4.84 6.69 5.17 6.69 4.797
NEH-MK 1.13 0.92 0.69 2.42 1.51 0.93 3.50 2.42 1.84 4.22 2.82 4.35 2.229

PF 4.78 4.63 4.23 5.26 3.90 4.81 7.80 4.47 3.96 4.16 3.39 2.94 4.529
HPF1 4.04 4.74 3.87 3.12 4.12 4.64 2.92 3.59 4.48 3.26 3.86 3.11 3.813
HPF2 3.71 3.02 3.80 2.99 2.50 3.96 2.73 2.94 4.72 2.94 3.64 3.25 3.349
NPF 2.62 2.49 2.65 4.15 2.94 3.34 6.41 4.18 3.49 4.16 3.39 2.94 3.563

NHPF1 2.60 2.58 2.67 2.89 2.99 3.26 2.86 3.42 3.69 3.15 3.74 3.11 3.080
NHPF2 2.73 2.21 2.58 2.71 2.50 3.14 2.74 2.94 3.80 2.83 3.63 3.25 2.921
BS(2) 1.64 1.90 2.34 2.65 2.25 2.99 2.65 2.51 3.04 2.73 3.50 3.18 2.614
BS(5) 0.50 1.04 1.72 1.17 0.71 1.44 1.25 1.09 1.60 1.33 1.46 1.56 1.239
BS(15) 0.17 1.13 1.64 0.33 0.41 0.94 0.68 0.49 0.41 0.67 0.54 0.84 0.687

BS(n/10) 1.64 1.90 2.34 1.17 0.71 1.44 0.71 0.48 0.74 0.44 0.39 0.39 1.029
BS(n) 0.21 1.09 1.56 0.11 0.12 0.58 0.12 0.03 0.07 0.00 0.09 0.00 0.333
wPF 6.11 4.77 3.58 8.64 7.08 4.06 10.47 7.10 4.18 9.29 5.73 6.07 6.423
PW 7.22 2.73 2.62 9.58 6.11 2.46 10.57 6.60 3.63 8.67 5.14 5.77 5.926

PF-NEH(1) 2.87 2.49 2.73 4.35 2.90 3.87 7.10 4.02 3.75 4.17 2.98 2.81 3.670
PF-NEH(2) 2.45 2.08 2.13 4.29 2.15 2.88 6.55 3.45 3.03 4.02 2.89 2.72 3.221
PF-NEH(5) 1.96 1.45 1.63 3.52 1.97 2.26 5.57 2.43 2.67 3.51 2.62 2.43 2.669
wPF-NEH(1) 2.87 2.22 2.40 6.16 4.98 3.04 8.75 5.40 3.60 8.73 5.18 5.64 4.915
wPF-NEH(2) 2.61 1.92 1.88 5.50 3.58 2.44 8.00 5.26 3.11 7.47 4.53 5.35 4.304
wPF-NEH(5) 1.81 1.74 1.47 4.68 3.06 1.73 7.25 4.86 2.51 6.69 3.86 5.14 3.732
PW-NEH(1) 2.84 2.58 2.86 6.78 4.44 1.89 9.52 5.85 3.29 8.15 4.82 5.61 4.885
PW-NEH(2) 2.62 2.39 1.63 5.61 3.88 1.77 9.25 5.32 2.80 7.68 4.23 5.34 4.375
PW-NEH(5) 1.96 1.73 1.44 5.26 3.09 1.50 7.54 4.97 2.60 6.74 3.90 5.21 3.828
PF-NEHLS(1) 1.52 1.08 1.04 3.30 2.04 1.21 5.41 3.17 2.30 3.70 2.37 2.39 2.462
PF-NEHLS(2) 1.03 0.89 0.71 3.10 1.30 1.01 4.92 2.58 1.85 3.54 2.22 2.27 2.120
PF-NEHLS(5) 0.65 0.47 0.33 2.48 0.97 0.71 4.03 1.88 1.48 3.12 1.95 2.10 1.682
wPF-NEHLS(1) 1.78 1.21 0.98 4.59 3.13 1.47 5.52 4.32 2.87 6.53 4.45 5.25 3.508
wPF-NEHLS(2) 1.09 1.01 0.66 3.88 2.38 1.22 4.87 4.13 2.38 6.15 4.00 4.93 3.056
wPF-NEHLS(5) 0.62 0.49 0.30 3.16 1.97 0.65 4.22 3.64 1.92 5.23 3.31 4.69 2.516
PW-NEHLS(1) 1.91 0.81 0.77 5.12 3.29 1.31 6.20 4.34 2.74 6.67 4.24 5.33 3.560
PW-NEHLS(2) 1.37 0.68 0.63 4.40 2.63 1.20 6.16 3.98 2.33 6.06 3.82 5.10 3.197
PW-NEHLS(5) 0.94 0.48 0.37 3.60 1.93 0.78 4.72 3.40 1.97 5.25 3.49 4.82 2.647

LR(1) 4.30 2.99 2.25 6.00 3.50 2.25 7.13 5.11 2.60 5.59 2.94 3.81 4.039
FF(1) 3.99 2.74 2.34 6.21 3.36 2.38 6.74 5.68 2.63 5.28 3.21 3.77 4.028
FF(2) 3.64 2.63 1.96 5.65 3.30 2.28 6.33 5.23 2.35 4.92 3.10 3.61 3.750

FF(n/10) 3.64 2.63 1.96 5.21 3.14 2.21 6.17 4.43 2.10 4.74 2.95 3.38 3.548
FF(n/m) 3.47 2.63 2.34 5.15 3.14 2.28 6.10 4.43 2.18 4.74 2.97 3.43 3.573

FF-FPE(2,n/10) 2.54 2.04 1.53 4.82 2.91 1.71 5.19 3.83 2.03 4.13 2.78 3.18 3.057
FF-FPE(15,n/10) 2.46 2.04 1.51 4.30 2.72 1.55 4.91 3.46 1.83 3.99 2.70 3.07 2.879
FF-FPE(n/10,1) 3.07 2.19 1.54 4.92 2.98 1.95 5.88 4.05 1.97 4.52 2.86 3.26 3.266

FF-FPE(n/10,n/10) 2.54 2.04 1.53 4.57 2.95 1.56 5.10 3.60 1.83 3.99 2.71 2.93 2.945
FF-FPE(n/10,n) 1.53 1.43 1.10 3.22 1.99 1.28 3.30 2.93 1.65 3.41 2.53 2.73 2.258
FF-FPE(n/m,n) 1.57 1.43 1.12 3.07 1.99 1.27 3.17 2.93 1.70 3.41 2.50 2.84 2.250
FF-FPE(n,n) 1.57 1.43 1.11 3.07 1.91 1.14 3.17 2.88 1.65 3.36 2.51 2.72 2.209
FF-ICH1 1.74 0.96 0.78 3.19 2.03 1.12 4.28 2.85 1.64 3.72 2.51 2.93 2.313
FF-ICH2 1.46 0.76 0.72 2.38 1.64 0.92 2.94 2.39 1.51 2.99 2.27 2.78 1.896
FF-ICH3 1.55 0.76 0.77 2.41 1.74 0.84 2.93 2.21 1.48 3.08 2.29 2.76 1.902
FF-NEH(5) 2.60 2.01 1.60 5.09 2.89 1.93 5.98 4.53 2.16 4.75 2.96 3.57 3.340
FF-NEH(10) 2.60 2.01 1.59 5.02 2.89 1.92 5.93 4.23 2.06 4.69 2.96 3.54 3.286

Raj 4.42 3.20 3.54 6.22 4.91 4.96 9.43 6.62 6.21 9.28 6.52 8.89 6.184
RZ 3.68 2.29 2.01 6.52 5.11 3.46 9.07 7.48 5.40 10.33 7.62 9.83 6.066

RZ_LW 1.48 1.81 0.92 4.12 3.39 2.51 5.67 4.77 3.65 6.35 5.06 6.96 3.891
FF-PR1(5) 0.59 0.65 0.29 2.37 1.35 0.60 4.02 2.98 1.55 3.78 2.36 3.19 1.978
FF-PR1(10) 0.43 0.39 0.22 2.05 1.31 0.42 3.85 2.60 1.38 3.53 2.26 3.17 1.801
FF-PR1(15) 0.37 0.36 0.21 2.05 1.09 0.41 3.57 2.38 1.31 3.51 2.22 3.17 1.720

NEH 6.26 5.27 3.69 11.27 8.53 6.51 12.93 10.74 8.09 13.83 9.87 11.55 9.043
FRB2 1.48 1.75 0.62 4.07 3.07 1.52 6.24 5.06 3.05 7.19 4.92 6.81 3.814
FRB3 1.30 0.88 0.71 2.73 1.58 1.15 3.82 2.57 1.87 4.05 2.88 4.31 2.321
FRB42 1.95 1.67 1.65 3.40 2.92 1.71 5.27 3.58 3.02 6.13 4.17 5.95 3.452
FRB44 1.62 1.16 1.13 3.10 2.43 1.73 4.65 3.62 2.47 5.24 3.69 5.46 3.025
FRB48 1.49 1.23 0.75 2.96 2.37 1.52 4.23 3.07 2.52 4.87 3.46 5.21 2.807
FRB48 1.31 1.02 0.86 2.90 1.84 1.41 4.32 3.01 2.28 4.84 3.49 4.93 2.684
FRB410 1.30 0.96 0.77 2.93 1.75 1.40 4.22 2.81 2.08 4.49 3.28 5.01 2.584
FRB412 1.30 0.96 0.81 2.74 1.69 1.40 4.13 2.72 2.36 4.44 3.21 4.93 2.558
FRB5 1.25 0.94 0.69 2.58 1.63 0.79 3.87 2.56 1.76 4.13 2.86 4.16 2.269
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Table 11.3: Detailed values of CPU times for each size of the problem. The proposed set of heuristics is
indicated in bold.

Heuristic
Size of the problem (n x m)

ACPU
20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20

NEH_WPT 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.89 0.264
MME 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.91 0.267

MME_A 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.90 0.266
MME_B 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.92 0.268
NEH-MK 0.00 0.00 0.01 0.03 0.06 0.11 0.39 0.72 1.53 10.39 24.24 1123.77 96.771

PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.004
HPF1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.005
HPF2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.005
NPF 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277

NHPF1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277
NHPF2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277
BS(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.019
BS(5) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.07 0.33 0.043
BS(15) 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.12 0.18 1.04 0.127

BS(n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.16 0.25 4.33 0.403
BS(n) 0.00 0.00 0.00 0.04 0.05 0.06 0.28 0.33 0.45 4.10 5.03 147.44 13.148
wPF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.007
PW 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.14 1.92 0.182

PF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.07 0.48 0.051
PF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.13 0.96 0.101
PF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.07 0.13 0.32 2.39 0.250
wPF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.06 0.41 0.044
wPF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.11 0.82 0.087
wPF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.06 0.12 0.28 2.05 0.216
PW-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.09 0.19 2.27 0.219
PW-NEH(2) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.18 0.37 4.58 0.439
PW-NEH(5) 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.15 0.44 0.91 11.41 1.091
PF-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.04 0.06 0.11 0.23 1.00 2.37 50.74 4.548
PF-NEHLS(2) 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.23 0.48 1.84 5.07 106.19 9.504
PF-NEHLS(5) 0.00 0.01 0.01 0.03 0.07 0.17 0.28 0.50 1.30 4.50 12.51 256.12 22.959
wPF-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.11 0.25 1.25 2.25 58.69 5.225
wPF-NEHLS(2) 0.00 0.00 0.01 0.02 0.03 0.07 0.13 0.21 0.47 2.27 5.03 124.21 11.037
wPF-NEHLS(5) 0.00 0.01 0.01 0.04 0.08 0.16 0.34 0.55 1.28 5.75 13.88 327.12 29.102
PW-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.03 0.08 0.13 0.29 1.25 3.12 53.22 4.847
PW-NEHLS(2) 0.00 0.00 0.01 0.02 0.04 0.07 0.15 0.24 0.58 2.72 6.28 111.86 10.164
PW-NEHLS(5) 0.00 0.01 0.01 0.04 0.08 0.16 0.37 0.59 1.43 6.35 14.57 314.74 28.197

LR(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.14 1.95 0.184
FF(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.006
FF(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.10 0.012

FF(n/10) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 0.16 2.40 0.224
FF(n/m) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.08 0.08 1.20 0.117

FF-FPE(2,n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.38 9.01 0.801
FF-FPE(15,n/10) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.20 0.45 7.99 0.732
FF-FPE(n/10,1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.09 0.17 2.49 0.234

FF-FPE(n/10,n/10) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.22 0.49 9.86 0.890
FF-FPE(n/10,n) 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.11 0.23 1.04 2.41 53.40 4.776
FF-FPE(n/m,n) 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.11 0.22 1.04 2.33 56.86 5.058
FF-FPE(n,n) 0.00 0.00 0.00 0.02 0.03 0.05 0.11 0.20 0.40 1.73 3.76 77.00 6.943
FF-ICH1 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.25 0.90 1.97 47.88 4.271
FF-ICH2 0.00 0.00 0.01 0.02 0.03 0.06 0.14 0.23 0.46 2.42 5.90 119.68 10.745
FF-ICH3 0.00 0.00 0.01 0.03 0.04 0.08 0.34 0.50 0.82 6.42 10.97 330.67 29.157
FF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.07 0.22 0.50 8.88 0.813
FF-NEH(10) 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.13 0.43 1.00 17.76 1.623

Raj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.67 0.063
RZ 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.20 0.47 8.71 0.792

RZ_LW 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.14 0.41 1.60 4.42 109.08 9.651
FF-PR1(5) 0.00 0.01 0.01 0.04 0.07 0.15 0.26 0.55 1.20 4.97 12.14 298.32 26.477
FF-PR1(10) 0.01 0.01 0.02 0.08 0.14 0.31 0.54 1.13 2.44 10.20 23.93 372.53 34.279
FF-PR1(15) 0.01 0.02 0.03 0.11 0.21 0.47 0.83 1.68 3.81 15.22 36.66 372.54 35.965

NEH 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.87 0.262
FRB2 0.00 0.00 0.01 0.01 0.03 0.14 0.06 0.23 0.97 1.67 8.19 153.68 13.749
FRB3 0.00 0.00 0.01 0.03 0.06 0.11 0.38 0.70 1.49 10.25 23.88 1121.64 96.546
FRB42 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.11 0.38 0.89 16.60 1.509
FRB44 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.08 0.17 0.59 1.41 26.29 2.386
FRB48 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.11 0.23 0.77 1.86 35.38 3.205
FRB48 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.28 0.95 2.29 43.56 3.946
FRB410 0.00 0.00 0.01 0.01 0.02 0.04 0.08 0.15 0.32 1.12 2.69 52.23 4.723
FRB412 0.00 0.00 0.01 0.02 0.03 0.05 0.09 0.17 0.37 1.28 3.06 59.39 5.372
FRB5 0.00 0.00 0.01 0.04 0.08 0.17 0.62 1.11 2.61 17.50 41.14 2053.54 176.403
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i Hi p-value Mann-Whitney α/(k − i + 1) Holm's Procedure
1 BS(5) = PF-NEH(2) 0.000 R 0.0167 R
2 BS(15) = FF-ICH2 0.000 R 0.0250 R
3 BS(n) = PF-NEHLS(5) 0.000 R 0.0500 R

Table 11.4: Holm's procedure.

Hypothesis p-value Mann-Whitney
HPF2 = HFP1 0.043 R
HPF2 = FF(2) 0.129

Table 11.5: Comparison of HPF2 against HPF1 and FF(2) using a Mann-Whitney non-parametric test.

• H3: BS(n) = PF-NEHLS(5)

We use a non-parametric Mann-Whitney test assuming a 0.95 con�dence level (i.e. α = 0.05) to estab-

lish the p-value of each hypothesis (see e.g. [138] for similar statistical approach). In Holm's procedure, a

hypothesis i among a total of k (ordered in ascending order of p-values) is rejected if its p-value is lower

than α/(k − i + 1). The results of the procedure are shown in Table 11.4. Each p-value is 0.000 and

therefore, each hypothesis can be rejected.

Regarding the fastest heuristics, i.e. HPF1, HPF2, PF, wPF, FF(1) and FF(2), the best ARPD1 is

found by HPF2. We perform again a Mann-Whitney test to establish the e�ciency of HPF1 using the

same con�dence. We compare it with both HPF2 and FF(2). Results are shown in Table 11.5. There is

no statistical signi�cant di�erence between HPF2 and FF(2).

11.5 Conclusions

In this chapter, an e�cient beam-search-based constructive heuristic is proposed. The heuristic constructs

a pool of partial sequences in each iteration appending jobs at the end of the most promising sequences. An

index based on the idle, blocking and completion times of the jobs is introduced to determine the selected

jobs in each iteration. Thereby, the heuristic adopts a beam-search-based strategy which successfully

combines the diversi�cation of population-based algorithms and the speed of constructive heuristics.

The proposed heuristic is compared with the best known constructive and improvement heuristics

both for the problem under consideration and for related scheduling problems. A total of 36 heuristics are

tested in an exhaustive computational evaluation using the set of instances B1, where each heuristic has

been reimplemented in C# to perform a fair comparison. Additionally, a speed up procedure has been

introduced to accelerate the insertion phases of each heuristic. This procedure has been included in each

insertion phase if applicable.

Among the implemented heuristics, the best ARPD1 are found by the proposed heuristic BS(x)
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(∀x ∈ {5, 15, n/10, n}). 33 new upper bounds for the well-known Taillard benchmark are found by

these heuristics (which means that new best-so-far solutions have been found for more than 27% of

these instances). The computational experience also highlights the good performance of several heuristics

adapted from related scheduling problems, particularly from the Fm|block|Cmax problem. This fact may

speak for certain correlation between both problems and opens some avenues for further research.



Chapter 12

Parallel PFSP

Although the majority of scheduling problems in the literature assumes that the jobs have to be scheduled

in a single factory, the number of companies using this environment is decreasing ([121, 124, 205]). Instead,

a multi-factory environment is becoming more and more important, since it reduces production costs

and risks while increases the product quality (see e.g. [82]). As a consequence, distributed production

scheduling problems dealing with both the allocation of jobs to di�erent factories and their subsequent

scheduling has been receiving an increasing attention in the literature (e.g. [79, 78, 13, 14, 26]). Among

this type of decision problems, [124] recently presented the so-called distributed permutation �owshop

scheduling problem, or DPFSP in the following. In this problem, a set of n jobs has to be processed in

one of F identical factories, each one consisting of m machines that all jobs must visit in the same order.

The decisions involved in this problem are to simultaneously decide in which factory the jobs have to be

processed and which is the sequence of the jobs for each factory. If the objective sought for this problem

is the minimisation of the global makespan (i.e. the maximum makespan across the F factories), then the

problem can be denoted as DF |prmu|Cmax (see [124]) following the well-known notation of [58].

The problem under consideration can be seen as a generalization of the well-known Permutation

Flowshop Scheduling Problem since, once a set of jobs has been assigned to a factory, the remaining

decision problem is a PFSP. Since the latter problem is known to be NP-hard for more than two machines

[55], DF |prmu|Cmax is also NP-hard for m > 2. Therefore, researchers have focused on �nding methods

able to �nd good �but not necessarily optimal� solutions within a reasonable computational e�ort. Among

them, the works by [124, 53, 54, 205, 105] have provided increasingly better heuristics for the problem.

In this chapter, a new e�cient approximate algorithm is proposed for the DPFSP. This algorithm is

based on one of the most e�cient methods for the PFSP (i.e. the iterated greedy algorithm) and exploits

the speci�c structure of solutions of the problem, thus allowing an up-to 30% reduction of the search

215
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space. Furthermore, two new e�cient local search methods are embedded in our proposal to improve the

so-found solutions. The results prove that the proposed algorithm is very e�ective, being the best one for

each size of the problems in the testbed of [124]. Indeed, new upper bounds are found for 27.6% of the

instances in this testbed.

The remainder of the chapter is organized as follows: in Section 12.1 the problem under consideration

is described along with its state-of-the-art; in Section 12.2 the proposed algorithm is detailed; in Section

12.3 the algorithm is compared with the rest of existing heuristics in the literature; and, �nally, in Section

12.4 the main conclusions are presented.

12.1 Problem statement and state-of-the-art

The problem under consideration can be stated as follows: n jobs have to be scheduled in one of the F

�owshop-factories consisting of m machines. Each factory is identical with the same set of m machines

and is able to process all jobs. Once a job is assigned to a factory, it has to be processed there without

being transferred to another factory. On each machine i, each job j has a processing time denoted as tij

regardless the factory f where the job is processed. The problem determines the sequence πf , formed

by nf jobs, to be scheduled in each factory f . Therefore, a solution π is formed by the sequence in each

factory (π =
[
π1, . . . , πf , . . . , πF

]
). Let us Cf

i,j be the completion time of job j in machine i when assigned

to factory f , and Cf
max = Cmax(π

f ) the makespan of factory f . Then Cmax = Cmax(π) denotes the global

makespan. i.e. the completion time of the last job to be processed in any factory. Additionally, πf [i]

is employed to denote the element of factory f in position i. By using fmax to denote the factory with

maximum makespan, the global makespan can be also written as Cfmax
max .

On one hand, the DPFSP can be seen as a special case of the distributed assembly permutation

�owshop scheduling problem (DAPFSP), see [69]. When each factory is formed by exactly two machines,

the problem has also been studied in the literature under the name of Parallel Flowline [196] or Parallel

Flowshops [9]. In this special case, the problem turns to be a pure assignment problem, since Johnson's

rule [80] can be applied to �nd the optimal sequence for each shop (examples of heuristics can be found

in [219, 3]). On the other hand, it has been already mentioned that it is a generalization of the PFSP,

which is one of the main combinatorial optimization problems [220] and in consequence one of the most

studied scheduling problems [138]. As mentioned before, the PFSP was proved to be NP-complete for

more than three machines. In order to provide e�cient approximate methods for this problem, numerous

contributions have been presented in the literature (see Chapter 4.2).

The �rst heuristics to solve the DPFSP were proposed by [124]. They suggested four constructive
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heuristics, denoted NEH1, NEH2, VND(a) and VND(b), following the ideas taken from the PFSP and

employing Taillard's acceleration. More speci�cally, NEH1 and NEH2 are adaptations to the problem of

the original NEH by means of using two assignment rules to choose the factory where a job has to be

introduced were tried, i.e.:

1. To allocate the job to the factory with the lowest current makespan (included in the NEH1 heuristic).

2. To allocate the job to the factory that can process it at the earliest time (used in NEH2 algorithm).

On the other hand, VND(a) and VND(b) are composed of a �rst step in which the NEH2 heuristic is

performed, and then its solution is improved by means of a simple variable neighborhood descent consisting

of two di�erent neighborhoods and two di�erent acceptance criteria, one for VND(a) and another for

VND(b).

Using NEH2 and VND(a) as initial solutions, [53] were the �rst authors who proposed an iterated

optimization algorithm for the problem. More speci�cally, they presented a genetic algorithm with a

local search phase including mechanisms of exchange and insertion of jobs. Their proposal was later

outperformed by the tabu search algorithm (TS) by [54], in which partial sequences of two di�erent

factories were iteratively exchanged and improved by means of several enhanced local search based also

on methods of exchange and insertion of jobs. Next, [205] implemented an Estimation of Distribution

Algorithm (EDA), although their proposal was not compared with the tabu search algorithm from [54],

arguing that no results were listed for direct comparisons. Finally, [105] proposed for the problem a

variation of the iterated greedy, denoted MIG, in which the size of the destruction was randomly chosen

between two bounds and the temperature of a simulated annealing-like acceptance criterion decreased

with the iterations. However, they do not include any local search phase in their algorithm to improve

the solution. Their algorithm was compared with algorithms implemented in [53, 54] concluding that the

MIG is the most e�cient. However, the CPU times for each instance of the testbed were di�erent for each

heuristic under comparison so there is up-to-now no comparison of the state-of-the-art algorithms under

the same exact conditions.

To summarise the state-of-the-art in the DPFSP problem, there are two types of algorithms available:

1. Very fast heuristics, i.e. NEH1, NEH2, VND(a) and VND(b). They are simple or composite

heuristics (see notation of [49]) where the computational time is non controllable by the decision-

maker and the solutions can be quickly found even for large size of the problem.

2. Iterative improvement algorithms, i.e. TS, EDA, and MIG. The improvement phase of these algo-

rithms is performed iteratively improving the solutions �usually based on any of the aforementioned
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very fast heuristics� at the expense of substantially increasing the computation times. To the best

of our knowledge, there are no direct comparison among these algorithms under the same conditions

in the literature.

In this chapter, we focus in the second type of algorithms. Thereby, we �rst implement these algorithms

(MIG, TS and EDA) using the same computer and programming language and reporting the results in

Section 12.3. By doing so, a direct comparison among these algorithms is provided. Additionally, in

Section 12.2, we propose a new heuristic for the DPFSP that uses the speci�c structure of solutions of

the problem to reduce the search space and that improves the results obtained by existing algorithms, as

we show in a subsequent computational experience in Section 12.3.

12.2 The proposed bounded-search iterated greedy algorithm

In this chapter we propose an algorithm labeled Bounded-Search Iterated Greedy (BSIG) which can be

seen as a special case of the Iterated Greedy (IG) algorithm [174]. The IG starts with an initial solution

and then iteratively applies four steps. First, a number of jobs are taken out of the sequence. Then these

jobs are again inserted in the sequence, one by one, following a greedy procedure until no more job has to

be inserted. After that, a local search mechanism is performed in order to improve the solution. Finally, a

simulated annealing procedure decides if the actual sequence is kept as iteration sequence. IG is one of the

best algorithms for the PFSP (see e.g. [138]) and it has been successfully applied to a variety of scheduling

problem, such as the sequence dependent setup times problem [175], �owshop scheduling problem with

blocking [163], unrelated parallel machine scheduling [39], or the no-wait �owshop scheduling problem

[140].

BSIG also iteratively constructs and destructs a solution trying to improve it in each iteration by

means of three local search phases. In order to reduce the search space, two properties are derived in

Subsection 12.2. In Subsection 12.2, the main procedure of BSIG is described. Its construction phase is

detailed in Subsection 12.2, while in Subsections 12.2 and 12.2, two new local search phases are described.

Finally, in Section 12.2 a full factorial design of experiment is carried out in order to obtain the best

values of the parameters of the algorithm.

Problem properties

It is clear that, when a job is assigned to a speci�c factory in the DPFSP, the makespan of this factory is

increased by a certain value. The following properties serve us to de�ne lower and upper bounds for this

makespan:
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Property 12.2.1. (Lower bound on makespan): The makespan of a factory with m machines must

increase at least mini (ti,l) ∀ti,l > 0 with i ∈ [1, · · · ,m] when a new job l is assigned to this factory,

regardless its speci�c position in the schedule of this factory.

Proof. The proof of this property is obvious: Before assigning job l in position k of the sequence, there

was a set H of machines (with |H| ≥ 1 being at least one in the �rst machine) where there was no idle

time between positions k-1 and k (worst case). Hence, the new completion times of the jobs placed after

position k are increased at least the processing time th,l in each machine h ∈ H and at least minh∈H (th,l)

in the rest of machines, with minh∈H (th,l) ≥ mini∈[1,··· ,m] (ti,l). This fact proves that the makespan of

the factory after introducing the job increases at least the minimum processing time of the job l.

Property 12.2.2. (Upper bound of makespan): The makespan of a factory with n− 1 jobs and with

m machines must increase at most
∑m

i=1 ti,l with i ∈ [1, · · · ,m] when a new job l is assigned to this

factory, regardless its speci�c position in the schedule of the factory.

Proof. The proof of the property is obvious using the same reasoning as in Property 12.2.1.

Both properties can be useful for the DPFSP and have been taken into account in the design of BSIG.

Since BSIG includes iterations where a job has to be assigned to one of the f factories, there are f possible

options. The idea is to discard the options where its lower bound (according to Property 12.2.1) is higher

than the current best value of the objective function. The e�ect in the reduction of the search space of

Property 12.2.1 will be explained in detail in Section 12.3. However, Property 12.2.2 was not found to be

signi�cant for the algorithm and it has not been incorporated in the BSIG. Note that more sophisticated

(and tighter) lower bounds for the makespan of each factory have been tested, however they have not

resulted in a signi�cant improvement of the objective function due to the increase in the CPU time when

the lower bound is calculated. In contrast, the simple lower bound of Property 12.2.1 can be calculated

without increasing the complexity of the algorithm, since the minimum processing time of each job is

obtained at the beginning of the algorithm.

Main procedure

The main procedure of the proposed algorithm is summarised in Figure 12.1. It starts with the imple-

mentation of the fast constructive heuristic NEH2 of [124]. Once an initial solution is so-obtained, it

is improved by using three di�erent local search methods (LS1, RLS1 and RLS2) before entering in the

iterated procedure. The local search method LS1 was presented in [124] and is a simple iterative improve-

ment algorithm for each factory using a �rst-improvement type pivoting rule. This local search method
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has been successfully applied in numerous algorithms for PFSP to minimize makespan and total �owtime

(see e.g. [174, 96]). In Figure 12.2 the pseudo code of this method is shown.

When the solution cannot be further improved, the algorithm begins an iterative procedure composed

of the following four phases, which are repeated until the stopping criteria is reached:

• Destruction phase: This phase tries to perturb the solution and �together with the simulated anneal-

ing phase� its objective is to provide diversi�cation of solutions. In this phase, d jobs are randomly

chosen to be removed of the sequence without repetition forming a new sequence denoted π1.

• Construction phase: Each one of the aforementioned d jobs is inserted, one by one, in the sequence

following a greedy procedure (ConstructionFunction, see subsection 12.2) using Taillard's accel-

eration and Property 12.2.1 , i.e. when a job is to be inserted, there are f factories where the job

can be assigned. Property 12.2.1 is used to discard factories in which the insertion of the job does

not improve the current makespan.

• Improvement phase: It serves to implement the intensi�cation of the algorithm. The sequence

constructed in the last phase is improved using three di�erent local search methods: LS1, RLS1

and RLS2. The complexity of these local search methods are n2 ·m/F , n2 ·m/F and n3 ·m/F 2

respectively being the RLS2 the procedure with highest complexity. This fact may cause a non-

e�cient behaviour of the heuristic when n is very high in comparison with F since it could lead to

a low diversi�cation. Therefore, RLS2 is used only when n/F is lower or equal than a parameter L.

By doing so, we get a total complexity of n2 ·m/F for the local search phase of the algorithm.

• Simulated annealing phase: A simple simulated annealing criterion is introduced in the algorithm

with a constant Temperature which is a function of a parameter T of the algorithm:

Temperature = T ·
∑

∀i
∑

∀j ti,j

n ·m · 10

ConstructionFunction

As Taillard's acceleration allows performing the insertion phase with low complexity, πd (the destructed

jobs) are inserted in the sequence using a similar procedure as in NEH2 (see ConstructionFunction in

Figure 12.3). The d destructed jobs are introduced, one by one, in the position of sequence π1 which

minimises the makespan. If we denote by Cref
max the reference makespan or best-known makespan, then

it is clear that it makes sense to assign the job to a factory only if its lower bound (calculated according
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π := NEH2(decreasing sum of processing times) ;
for f = 1 to F do

πf := LS1(πf ) ;
end
flag := true;
while flag do

π := RLS1(π) ;
if solution improved then

flag := false;
end

end
if n/F ≤ L then

flag := true;
while flag do

π := RLS2(π) ;
if solution improved then

flag := false;
end

end

end
πb := π;
while stopping criterion is not reach do

π1 := π;
for i = 1 to d do

π1 := randomly remove a job from π1 and insert it in πD;
end
π2 := ConstructionFunction(π1, πD)
for f = 1 to F do

πf
2 := LS1(πf

2 ) ;
end
π3 := RLS1(π2) ;
if n/F ≤ L then

π3 := RLS2(π3) ;
end
if Cmax(π3) < Cmax(π) then

π := π3

if Cmax(π3) < Cmax(πb) then
πb := π3

end

else if random ≤ exp{−(Cmax(π3)− Cmax(π))/Temperature} then
π := π3

end

end
return πb

Figure 12.1: Main Procedure of the BSIG
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flag := true;
while flag do

flag := false;
for f = 1 to F do

Cref
max = Cmax(π

f );
Remove job πf [i] placed in position i of the factory f .
Test job πf [i] in any possible position of πf (using Taillard's accelerations) and place it in the
position with the lowest makespan
if Cmax(π

f ) < Cref
max then

flag := true;
break;

end

end

end

Figure 12.2: Local Search LS1

to Property 12.2.1) is lower than the reference makespan. This mechanism serves to decrease the number

of factories where the jobs are tried (bounded search mechanism). The procedure of this bounded search

in each iteration is relative simple: First the job πd is tried to be placed in the �rst factory and the

best makespan is kept as Cref
max. Secondly, the job is tried to be assigned to factories f which satisfy

Cf
max +mini (ti,πd

) < Cref
max. C

ref
max is then updated when the new makespan (due to the insertion of job

πd in factory f) improves the actual Cref
max.

Simple relative local search, RLS1

The relative local search RLS1 searches for better solutions by inserting jobs from one factory to another.

More speci�cally, each job of the factory with maximum makespan is tried to be scheduled in all positions

of each factory verifying Property 12.2.1. If the global makespan improves, then the job is scheduled in

the factory that minimises the makespan. The procedure then restarts �rst by looking for the new factory

with maximum makespan until each job assigned to the factory with maximum makespan is tried without

solution improvement. The pseudo code of RSL1 is shown in Figure 12.4.

Relative local search based in exchange, RLS2

The relative local search RLS2 exchanges jobs between factories. Thereby, each job of the factory with the

maximum makespan is tried to be exchanged with each job of the rest of the factories. In order to apply

Taillard's acceleration, each of both jobs is removed of the sequences of the factories and inserted in the

other factory looking for the best position there. This procedure is repeated for each pair of jobs of both

factories choosing the pair of jobs and positions minimizing the makespan of the chosen factories. If the

new maximum makespan of both factories is lower than in the last iteration, the procedure begins again
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Function ConstructionFunction(π, πD)
for d = 1 to D do

Test job πD[d] in any possible position of πf=1 (using Taillard's accelerations) and denote Cref
max

the best makespan.
tmin := minimum processing time of job πD[d] in any machine i;
for f = 2 to F do

Cf
max := makespan of the factory f ;

if Cf
max + tmin < Cref

max then
Test job πD[d] in any possible position of the factory f (using Taillard's accelerations) and
denote C0

max the best makespan.
if C0

max < Cref
max then

Cref
max = C0

max;
end

end

end
π := permutation obtained by inserting πD[d] in the factory and in the position with less makespan;

end
return π;

end

Figure 12.3: Procedure ConstructionFunction

Procedure RLS1(π)
h(f) = 1, for f = 1 · · ·F ;
i(f) = 1, for f = 1 · · ·F ;
πb := π being π =

[
π1, · · · , πf , · · · , πF

]
;

Determine the factory fmax with maximum makespan (C
′

max)
while i(fmax) < nfmax do

j := h(fmax) mod nfmax ;
π0 := remove job πfmax [j] from πfmax ;
Cfmax

max := makespan of the sequence π0;
tmin := minimum processing time of job πfmax [j] in any machine i;
for f = 1 to F do

Cf
max := makespan in the factory f ;

if Cf
max + tmin < C

′

max then
Test job πfmax [j] in each position of the factory f (using Taillard's accelerations)

end

end

π := permutation obtained by inserting πfmax [j] in the factory and in the position with less
makespan;
Determine the factory fmax with maximum makespan (Cmax)
if Cmax < C

′

max then

C
′

max = Cmax;
i(fmax) = 1;
πb := π;

else
i(fmax) + +;

end
h(fmax) + +;

end
return πb;

end

Figure 12.4: Relative Local Search RLS1
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Source Df Chi-Square Sig.

Parameter d 4 43.453 0.000
Parameter T 4 4.353 0.360
Parameter L 3 5.717 0.126

Table 12.1: Kruskal-Wallis for the parameters d, L and T

by the factory with maximum makespan. The procedure stops when each job of the factory of maximum

makespan is tested without improving the solution. The pseudo code of this relative local search is shown

in Figure 12.5.

Experimental parameter tuning

The proposed algorithm is composed of three parameters T, d, L. In order to �nd the best values of the

parameters, a full factorial design of experiment is performed for the BSIG with the following level of the

parameters:

• T ∈ [0.1, 0.2, 0.3, 0.4, 0.5]

• d ∈ [3, 4, 5, 6, 7]

• L ∈ [15, 20, 25, 30]

The BSIG is evaluated by means of RPD3, see Expression (9.7), where Base is the solution obtained

by an alternative algorithm (VNDa).

Each combination of parameters has been tested for 96 combination of n,m and F , i.e. n ∈ [20, 50, 100, 200],

m ∈ [5, 10, 15, 20] and F ∈ [2, 3, 4, 5, 6, 7] using 5 instances for each one representing a total of 480 in-

stances where the processing times of each job in each machine was uniformly distributed between 1 and

99. Note that we perform 5 runs of each instance due to the randomness of the algorithm. Each replicate

is stopped when the CPU time reaches a limit of n · m · F · 1.5 milliseconds. Since the normality and

homoscedasticity assumptions were not con�rmed, a non-parametric Kruskal-Wallis analysis is used to

determine statistically di�erence between the parameters. A summary of the results is shown in Table

12.1. It can be observed that there are statistically signi�cant di�erences only between the levels of pa-

rameter d, being the level of all other parameters non-statistically signi�cant. Additionally, the analysis

reveals that the best values for the parameters were found for d = 5, L = 20 and T = 0.4, so these are

the values used in the subsequent computational experience.
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Procedure RLS2(π)
h(f) = 1, for f = 1 · · ·F ;
i(f) = 1, for f = 1 · · ·F ;
πb := π being π =

[
π1, · · · , πf , · · · , πF

]
;

Determine the factory fmax with maximum makespan (C
′
max)

while i(fmax) < nfmax do

Caux
max = C

′
max;

flag := false;
j := h(fmax) mod nfmax ;
for f = 1 to F do

for g = 1 to nf do

if f ̸= fmax then

π0 := remove job πfmax [j] from πfmax ;
π1 := remove job πf [g] from πf ;
Best makespan C1

max due to testing job πfmax [j] in each position of π1 denoting Posf the
chosen position (using Taillard's acceleration).
Best makespan C0

max due to testing job πf [g] in each position of π0 denoting Posfmax the
chosen position (using Taillard's acceleration).
if C1

max < Caux
max&C0

max < Caux
max then

flag := true;
BestPosfmax := Posfmax ;
BestPosf := Posf ;
choseng := g;
chosenf := f ;
Caux

max = max
(
C0

max, C
1
max

)
;

end

end

end

end

if flag then

πfmax := permutation obtained by inserting πchosenf [choseng] in the factory fmax and in the position
BestPosfmax ;
πchosenf := permutation obtained by inserting πfmax [j] in the factory chosenf and in the position
BestPosf ;
Update π with πfmax and πchosenf ;
Determine the factory fmax with maximum makespan (Cmax)

end

if Cmax < C
′
max then

C
′
max = Cmax;

i(fmax) = 1;
πb := π;

else

i(fmax) + +;
end

h(fmax) + +;
end

return πb;
end

Figure 12.5: Relative Local Search with interchange RLS2
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12.3 Computational evaluation

The proposed BSIG is compared with the best available algorithms for the DPFSP: MIG, EDA and TS.

In order to de�ne the most e�cient algorithm, the same computer conditions have to be used using a PC

with 2.80 GHz Intel Core i7-930 processor and 16 GBytes of RAM memory. The algorithms are evaluated

for all instances presented by [124] which are available in http://soa.iti.es. A total of 720 instances are

included in this testbed varying the number of jobs, machines and factories according to the following

values n ∈ [20, 50, 100, 200, 500], m ∈ [5, 10, 15, 20] and F ∈ [2, 3, 4, 5, 6, 7] and using 10 instances for each

combination of parameters. In order to increase the power of the analysis, 5 runs have been performed per

instance for each algorithm. Regarding the stopping criteria, we have used three di�erent stopping criteria

based on computation time for the heuristics: n ·m · F · 0.5, n ·m · F · 1 and n ·m · F · 2 milliseconds (see

e.g. [174, 105] for similar stopping criteria in the literature). Thereby, each heuristic has been stopped

when the computation time reaches these values.

The performance of the algorithms is again evaluated by means of ARPD2, where UB is the best

known solution taken from http://soa.iti.es.

The ARPD2 values are shown in Table 12.2 and 12.3 for the stopping criterion n·m·F ·0.5milliseconds,

in Tables 12.4 and 12.5 for the stopping criterion n · m · F · 1 and, �nally, in Tables 12.6 and 12.7 for

for n ·m · F · 2 milliseconds yielding e.g 1.43 for the BSIG heuristic, 3.11 for TS algorithm, 6.95 for the

EDA and 2.09 for the MIG heuristic according to the �rst stopping criterion. The results show that the

BSIG heuristic outperforms the rest of the heuristics for all stopping criteria. In fact, BSIG outperforms

MIG, TS and EDA for each size of the problem regardless the stopping criterion. Additionally, the BSIG

algorithm �nds the best solution for 93.0% instances, while MIG, TS and EDA found the best solution for

1.9%, 3.0% and 12.6%, respectively. Comparing the results with the best known solution for the largest

CPU time, in 263 of the 720 instances (36.53%) new best solutions are found by BSIG. In contrast, only

0 new best solutions were found for TS, 38 instances for MIG and 0 for EDA.

Additionally, a paired samples t-test is carried out in order to compare the heuristics for each stopping

criterion. These tests can be applied since the random variables (ARPD2) are related (the same test bed

is used for each algorithm) and the hypothesis of independence can be rejected. The results of the tests

(see Tables 12.8, 12.9 and 12.10) show that BSIG statistically improves each other algorithm being the

maximum p-value 0.000.
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n x m BSIG TS EDA MIG

20 x 5 4.94 8.75 5.99 5.34
20 x 10 4.28 7.14 5.17 4.44
20 x 20 3.69 5.78 4.28 3.80
50 x 5 0.50 2.63 4.77 1.64
50 x 10 0.92 3.46 5.48 1.73
50 x 20 0.85 3.01 4.59 1.32
100 x 5 0.14 0.90 5.81 1.02
100 x 10 0.40 1.59 7.76 1.41
100 x 20 0.62 1.66 7.22 1.37
200 x 10 0.23 0.69 9.58 0.93
200 x 20 0.44 0.97 10.27 1.18
500 x 20 0.19 0.70 12.44 0.92

Average 1.43 3.11 6.95 2.09

Table 12.2: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n ·m · F · 0.5 milliseconds

f BSIG TS EDA MIG

2 1.45 2.35 6.27 1.78
3 1.22 2.52 6.57 1.80
4 1.12 2.84 6.71 1.82
5 1.12 3.07 6.86 1.85
6 1.47 3.49 7.26 2.27
7 2.25 4.36 8.01 3.03

Average 1.43 3.11 6.95 2.09

Table 12.3: ARPD2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n ·m · F · 0.5 milliseconds.

n x m BSIG TS EDA MIG

20 x 5 4.80 8.67 5.66 5.08
20 x 10 4.18 7.20 4.93 4.29
20 x 20 3.60 5.81 4.19 3.69
50 x 5 0.21 2.64 3.70 0.97
50 x 10 0.55 3.53 4.72 1.10
50 x 20 0.55 3.06 3.96 0.89
100 x 5 -0.01 0.93 4.84 0.46
100 x 10 0.11 1.56 6.83 0.72
100 x 20 0.32 1.69 6.55 0.71
200 x 10 -0.02 0.62 8.69 0.33
200 x 20 0.14 0.89 9.48 0.43
500 x 20 -0.09 0.54 11.95 0.23

Average 1.20 3.10 6.29 1.58

Table 12.4: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n ·m · F · 1 milliseconds
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f BSIG TS EDA MIG

2 1.16 2.34 5.63 1.45
3 0.95 2.50 5.83 1.34
4 0.88 2.79 6.00 1.28
5 0.87 3.04 6.23 1.31
6 1.27 3.50 6.64 1.67
7 2.05 4.40 7.43 2.41

Average 1.20 3.10 6.29 1.58

Table 12.5: ARPD2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of n·m·F ·1
milliseconds.

n x m BSIG TS EDA MIG

20 x 5 4.72 8.74 5.55 4.92
20 x 10 4.11 7.16 4.88 4.19
20 x 20 3.57 5.76 4.19 3.64
50 x 5 0.00 2.65 2.99 0.43
50 x 10 0.26 3.50 4.01 0.70
50 x 20 0.31 3.03 3.45 0.60
100 x 5 -0.18 0.89 3.92 0.10
100 x 10 -0.14 1.61 6.04 0.20
100 x 20 0.01 1.66 5.99 0.24
200 x 10 -0.22 0.66 7.81 -0.01
200 x 20 -0.12 0.88 8.86 -0.02
500 x 20 -0.34 0.43 11.44 -0.13

Average 1.00 3.08 5.76 1.24

Table 12.6: ARPD2 (by n and m) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of
n ·m · F · 2 milliseconds

f BSIG TS EDA MIG

2 0.96 2.30 4.96 1.15
3 0.74 2.50 5.26 0.98
4 0.65 2.74 5.46 0.94
5 0.67 3.05 5.72 0.94
6 1.06 3.52 6.18 1.32
7 1.89 4.39 6.99 2.09

Average 1.00 3.08 5.76 1.24

Table 12.7: ARPD2 (by f) of the heuristics BSIG, TS, MIG and EDA for the stopping criteria of n·m·F ·2
milliseconds.

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 1.672 1.525 1.561 1.784 29.452 0.000
EDA vs BSIG 5.511 3.715 5.240 5.783 39.839 0.000
MIG vs BSIG 0.656 0.457 0.623 0.690 38.548 0.000

Table 12.8: Paired samples t-test for stopping criterion of n ·m · F · 0.5 milliseconds.

Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 1.899 1.522 1.788 2.011 33.504 0.000
EDA vs BSIG 5.096 3.607 4.832 5.359 37.930 0.000
MIG vs BSIG 0.379 0.315 0.356 0.402 32.329 0.000

Table 12.9: Paired samples t-test for stopping criterion of n ·m · F · 1 milliseconds.
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Algorithm Mean SEM IC - Lower IC - Upper t Signi�cance

TS vs BSIG 2.084 1.500 1.974 2.194 37.306 0.000
EDA vs BSIG 4.763 3.497 4.507 5.019 36.572 0.000
MIG vs BSIG 0.239 0.247 0.221 0.258 26.077 0.000

Table 12.10: Paired samples t-test for stopping criterion of n ·m · F · 2 milliseconds.

f Average Discarded Factories (%) Decrease in the number of iterations (%)

2 30.71% 14.74%
3 33.05% 12.71%
4 32.99% 13.93%
5 32.48% 9.01%
6 32.31% 9.85%
7 32.33% 9.86%

Average 32.31% 11.68%

Table 12.11: Impact of the bounded search mechanism with the number of factories.

Impact of reduction of the search space

The proposed BSIG includes a mechanism (using Property 12.2.1) to reduce the number of solutions to be

evaluated. In this section, the impact of this mechanism on the e�ectiveness of the heuristic is analysed by

comparing the performance of the proposed algorithm with and without the bounded search mechanism

for each stopping criterion. The results are shown in Table 12.11 and in Table 12.12 aggregated by the

number of factories, and by n and m, respectively. In both tables, the second column indicates the

average percentage of branches (factories) discarded in the functions that use this mechanism, whereas

the third column shows the average reduction in the number of iterations in the BSIG when employing

this mechanism. Additionally, the results have been calculated averaging for the three stopping criteria.

Summarizing, it was obtained that a 32.31% of the branches (factories) are discarded in the construction

phase and in the RLS1 of the proposed iterated algorithm. Note that there is a substantial decrease of the

discarded factories with the increase in the number of machines of the problem for the same number of

jobs. This is due to the fact that the chosen lower bound is mini (ti,l) with i ∈ [1, · · · ,m] and it therefore

less tight as m increases. Furthermore, the number of iterations of the proposed BSIG for each analysed

stopping criterion is increased an 11.7% in average. The di�erence between this value for large and small

size instances is due to RLS2, which does not include the bounded search and needs large computational

time when used. Both the number of discarded factories and the decrease in the number of iterations

stress the importance of the bounded search mechanism in the algorithm.
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n x m Average Discarded Factories (%) Decrease in number of iteration (%)

20 x 5 40.42% 8.50%
20 x 10 25.73% 5.07%
20 x 20 19.54% 4.04%
50 x 5 45.79% 6.13%
50 x 10 30.94% 4.79%
50 x 20 19.30% 3.16%
100 x 5 51.90% 21.11%
100 x 10 35.80% 12.65%
100 x 20 21.64% 8.58%
200 x 10 40.27% 27.47%
200 x 20 25.18% 14.86%
500 x 20 31.22% 23.84%

Average 32.31% 11.68%

Table 12.12: Impact of the bounded search mechanism order with the problem size n and m.

12.4 Conclusions

The Distributed Permutation Flowshop Scheduling Problem (DPFSP) consists of two interrelated decision

problems: First, jobs are assigned to be processed in one of the f identical factories of the company.

Secondly, the sequence of jobs in each factory is determined taking into account that each job has the

same manufacturing �ow through each one of the m machines. To solve the problem, we have presented a

new algorithm (BSIG) consisting of an iterative destruction and greedy construction of the solution with

three local search phases. BSIG employs a property of the problem to estimate the makespan of a factory

when a new job is inserted, so the search space can be reduced. The evaluation of the performance of

BSIG was compared with that of the existing algorithms TS, EDA and MIG using the instances presented

by [124] for three di�erent stopping criteria. Each algorithm was implemented under the same conditions.

Furthermore, paired samples t-tests were carried out to determine statistically di�erences between the

heuristics. The comparison shows that the proposed BSIG outperforms existing heuristics, thus being the

most e�cient iterative improvement algorithm for the problem (with a p value of 0.000). On the one hand,

comparing the four heuristics, the best solution of the four heuristics was found by BSIG 2008 times out

of a total of 2160 instances (summarising results of the three stopping criteria). On the other hand, using

the proposed heuristic, a new best known solution was found in 263 of the 720 instances (36.5%) using

the stopping criterion of n ·m ·F ·2 milliseconds. Additionally, the e�ect of the bounded search method in

the algorithm was analysed reporting a decrease in the computational times of 32.31% whenever applied.
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Chapter 13

Conclusions, results and future research

lines

13.1 Conclusions

In this Thesis, we have addressed the permutation �owshop scheduling problem, which is one of the most

studied scheduling problem in the literature due to its direct application to real manufacturing layouts,

and deals with establishing the sequence of jobs in the shop according to a speci�c objective function.

Due to the high complexity of this type of scheduling problems, most of the research has traditionally be

focused in proposing approximate algorithms to solve the problem. The goal of this Thesis is therefore to

provide a further insight into this important problem, both deeply analysing the in�uence of the di�erent

input parameters and developing new e�cient techniques to solve it. In order to deal with this goal,

several general research objectives were identi�ed in Section 1.1, which have been addressed along the �ve

parts of this Thesis as follows:

GO1. To review the PFSP for the most common objectives, i.e. makespan, total completion

time and due-date-based objectives (total tardiness, and total earliness and tardiness).

The PFSP for makespan minimisation was considered in Section 4.2. For this problem, many heuristic

and metaheuristic methods have been published, including several review papers. This chapter covers the

last 10 years of highly e�ective procedures for the problem. Firstly, heuristics implemented for the problem

were reviewed. Most of them are variants of the traditional NEH. In addition, we proposed a classi�cation

to identify these variants, which depends on three �elds: initial order; tie-breaking mechanism; and

233
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reversibility property. Regarding the metaheuristics, several �elds were identi�ed for each contribution

(e.g. the set of instances used, the average relative percentage deviations and the average CPU times of

the proposed heuristics,...). However, it was pointed out that frequently new methods are not properly

compared with the existing state-of-the-art solutions and misleading conclusions might be obtained.

Regarding the PFSP to minimise total �owtime and due-date related objectives, they were addressed

in Sections 4.3 and 4.4, respectively. On the one hand, for total �owtime, the 14 e�cient heuristics were

extensively reviewed and described. On the other hand, regarding due-date related objectives, we focused

in the Fm|prmu|
∑

Tj and Fm|prmu|
∑

Ej + Tj problems, where the most relevant heuristics for these

problems are reviewed.

GO2. To analyse the in�uence of the processing times and due dates of the jobs on the

PFSP.

In Chapter 5, we analysed in detail the problem depending on the processing times and due dates of the

jobs. Several properties, theorems and dominance rules were proposed to better understand the structures

of the problem under consideration. Firstly, several properties were presented for the Fm|prmu|
∑

Tj and

Fm|prmu|
∑

Ej +
∑

Tj , as well as the generations of due dates are analysed. It was shown that under

several conditions of the due dates of the jobs, the Fm|prmu|
∑

Tj can be reduced to the Fm|prmu|
∑

Cj ,

to a problem where the EDD rule is optimal or even, to a trivial problem where each sequence is optimal.

Analogously, the Fm|prmu|
∑

Ej +
∑

Tj can be reduce to the Fm|prmu| −
∑

Cj (Fm|prmu|
∑

Cj) in

case of extremely loose (tight) due dates.

Additionally, in Section 5.3, we addressed the boundary lines between the PFSP and the SMSP. It

was shown that the Fm|prmu|
∑

Cj (Fm|prmu|Cmax) problem is equivalent to the 1||
∑

Cj (1||Cmax)

when several conditions of the processing times of the most loaded machine are ful�lled. Additionally,

several approximate boundary lines were presented to de�ne when the PFSP tends to turn to a SMSP,

given an instance of a problem. These lines give an idea to the decision makers to better identify their

manufacturing layouts.

Finally, we identi�ed the advantages and disadvantages of di�erent functions to measure the relation-

ship between the processing time of an operation and the amount of resources assigned to that operation.

GO3. To provide the schedulers with fasters and more e�cient heuristics and metaheuris-

tics to solve the PFSP for the makespan, total completion time, total tardiness, and

total earliness and tardiness minimisation.

We developed several heuristics and metaheuristics in order to minimise the above objectives. The

algorithms were compared under the same conditions with the best algorithms in the literature for each
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decision problem. Each proposed algorithm was shown to be e�cient for the problem in which is proposed.

The main proposed approximate procedures are summarised as follows:

• In Chapter 6, a new tie-breaking mechanism was proposed for the Fm|prmu|Cmax problem. The

mechanism is included in the NEH and IG algorithms, which results in a signi�cant improvement

in the quality of the solutions. The proposed algorithm was compared with the best 26 algorithms

found for the problem in the literature.

• Two new constructive heuristics were proposed for the Fm|prmu|
∑

Cj problem in Chapter 7. The

heuristics were compared with the so-far-e�cient heuristics of the problem. As a result, the proposed

algorithms clearly statistically outperformed each constructive heuristic for the problem.

• In Chapter 8, several tie-breaking mechanisms were proposed for the Fm|prmu|
∑

Tj problem which

improved the most e�cient constructive heuristic without increasing the computational e�ort. These

mechanisms also resulted in a signi�cant improvement when they were included in one of the best

metaheuristic for the problem.

• In Chapter 9, several e�cient constructive and improvement heuristics were proposed for the

Fm|prmu|
∑

Ej +
∑

Tj problem taking advantage of the special properties, proposed for the prob-

lem.

GO4. To demonstrated the e�ciency and good performance of the solution procedures de-

veloped in GO3.

In this Thesis, each proposed approximate procedure was always compared with the state-of-the-art

algorithms for that problem. To address it, in Chapter 3, a new indicator to measure the computational

e�ort required by the procedures was proposed, as well as the conditions to carry out a fair comparison

were explained in detail (such as recoding of all algorithms in C#, the use of the same computer, among

others). Nevertheless, for some scheduling problems, either the state-of-the-art algorithms cannot been

well de�ned or there are many algorithms among the e�cient ones. As a consequence, several extensive

computational evaluations were also carried out to validate the e�ciency of the proposed algorithms.

More speci�cally:

• A computational evaluation of heuristics and metaheuristic for the Fm|prmu|Cmax (see Section 6.4).

The proposed tie-breaking mechanism was compared in a computational evaluation which include

a total of 25 approximate algorithms.
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• A computational evaluation of heuristics for the Fm|prmu|
∑

Cj (see Section 7.5). The two proposed

heuristics for that problem were compared with the set of 14 e�cient heuristics. After that, the

resulting e�cient heuristics was compared against the best metaheuristic for the problem.

• A computational evaluation of heuristics for the Fm|prmu|
∑

Ej + Tj . The proposed heuristics for

that problem were compared against the e�cient heuristics implemented for the Fm|prmu|
∑

Ej+Tj

and adaptations of related scheduling problems. As a result, 10 algorithms were compared under

the same conditions.

• A computational evaluation of heuristics for the Fm|block|
∑

Cj . This computational evaluation

was composed of all heuristics implemented for the problem so far, as well as e�cient algorithms

of related scheduling problem. As a consequence, a total of 36 heuristics was fully recoded and

exhaustively compared under the same conditions.

GO5. To extend the proposals to constrained PFSP, based on real manufacturing environ-

ments.

This objective was extensively addressed in Part IV which can be summarised as follows:

• A non-population metaheuristic was proposed for the Fm|prmu|ϵ(Cmax/Tmax) problem in Chapter

10. The algorithm includes an adaptation of the known Taillard's accelerations, originally proposed

for the Fm|prmu|Cmax problem. As a result, the proposed metaheuristic clearly outperformed each

other metaheuristic proposed for the problem.

• A beam-search-based constructive heuristic for the Fm|block|
∑

Cj problem as well as a speed-up

procedure were proposed in Chapter 11. The heuristic was compared in an extensive computational

evaluation as established above. Results showed the excellent performance of the proposed algorithm

in terms of quality of the solution and computational e�ort. In fact, the proposed algorithm improved

the so-far best metaheuristic for the problem as well as new upper bounds are found for 27.6% of

the instances.

• A variation of the iterated greedy algorithm was proposed for the parallel PFSP in Chapter 12, which

exploits the speci�c structure of solutions by means of two dominance rules. The use of these prop-

erties reported a decrease in the computational times of 32.31% whenever applied. Computational

results showed that the proposed metaheuristic obtained the best result among the implemented

heuristics for the 93% of the instances.
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13.2 Results

SCI indexed journals

Parts of this Thesis have been published in SCI indexed journals. The following publications are directly

derived from this Thesis.

1. Fernandez-Viagas, V., Framinan, J.M., (2015). E�cient non-population-based algorithms for the

permutation �owshop scheduling problem with makespan minimisation subject to a maximum tar-

diness. Computers & Operations Research, 64, 86 - 96 (2014 Impact Factor: 1.861, Q1, T1).

2. Fernandez-Viagas, V., Framinan, J.M., (2015). NEH-based heuristics for the permutation �owshop

scheduling problem to minimise total tardiness. Computers & Operations Research, 60, 27 - 36 (2014

Impact Factor: 1.861, Q1, T1).

3. Fernandez-Viagas, V., Framinan, J.M., (2015). A new set of high-performing heuristics to minimize

�owtime in permutation �owshops. Computers & Operations Research, 53, 68 - 80 (2014 Impact

Factor: 1.861, Q1, T1).

4. Fernandez-Viagas, V., Framinan, J.M., (2015). A bounded-search iterated greedy algorithm for

the distributed permutation �owshop scheduling problem. International Journal of Production Re-

search, 53, 1111 - 1123 (2014 Impact Factor: 1.477, Q2, T1).

5. Fernandez-Viagas, V., Framinan, J.M., (2015). Controllable Processing Times in Project and Pro-

duction Management: Analysing the Trade-O� between Processing Times and the Amount of Re-

sources. Mathematical Problems in Engineering, 1 - 19 (2014 Impact Factor: 0.762, Q3, T2).

6. Fernandez-Viagas, V., Framinan, J.M., (2014). On insertion tie-breaking rules in heuristics for the

permutation �owshop scheduling problem. Computers & Operations Research, 45, 60 - 67 (2014

Impact Factor: 1.861, Q1, T1).

7. Fernandez-Viagas, V., Leisten, R., Framinan, J.M. A computational evaluation of constructive and

improvement heuristics for the blocking �ow shop to minimise total �owtime. Under review in

Expert Systems with Applications.

8. Fernandez-Viagas, V., Ruiz, R., Framinan, J.M. A new vision of approximate methods for the

permutation �owshop to minimise makespan: state-of-the-art and computational evaluation. Under

review in European Journal of Operational Research.
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9. Fernandez-Viagas, V., Framinan, J.M. Reduction of Permutation Flowshop Problems to Single

Machine Problems. Under review in Computers & Operations Research.

10. Fernandez-Viagas, V., Framinan, J.M. E�cient constructive and composite heuristics for the Permu-

tation Flowshop to minimise total earliness and tardiness. Under review in Computers & Operations

Research.

11. Fernandez-Viagas, V., Framinan, J.M. A beam-search-based constructive heuristic for the PFSP to

minimise total �owtime. Under review in International Journal of Production Economics.

Additionally, during the development of this Thesis, the following papers on related scheduling prob-

lems have been published in SCI indexed journals:

12. Dios, M., Molina-Pariente J.M., Fernandez-Viagas, V., Andrade-Pineda J.L., Framinan, J.M.,

(2015). A decision support system for operating room scheduling. Computers and Industrial Engi-

neering. Computers & Industrial Engineering, 88, 430-443 (2014 Impact Factor: 1.783, Q2, T1).

13. Molina-Pariente, J. M., Fernandez-Viagas, V., Framinan, J.M., (2015). Integrated operating room

planning and scheduling problem with assistant surgeon dependent surgery durations. Computers

& Industrial Engineering, 82, 8-20 (2014 Impact Factor: 1.783, Q2, T1).

14. Fernandez-Viagas, V., Framinan, J.M., (2014). Integrated Project Scheduling and Sta� Assignment

with Controllable Processing Times. Scienti�c World Journal, 1 - 16 (2013 Impact Factor: 1.219,

Q2, T1).

Papers in conference proceedings

Regarding contributions in international conferences, we below mention the most related ones:

1. Fernandez-Viagas, V., Framinan, J.M. A constructive heuristic for the permutation �owshop to

minimise total earliness and tardiness. 15th International Conference on Project Management and

Scheduling (PMS 2016). Valencia (Spain), April 19 - 22, 2016.

2. Fernandez-Viagas, V., Framinan, J.M. Boundary lines between permutation �owshop problems and

single machine problems. Proceedings of 2015 International Conference on Industrial Engineering

and Systems Management (IESM 2015). Seville (Spain), October 21-23, 2015.

3. Perez-Gonzalez P., Dios M., Fernandez-Viagas, V., Framinan, J.M. Heuristic Methods for Single Ma-

chine Scheduling with Periodic Maintenance. Multidisciplinary International Scheduling Conference

(Mista 2015). Prague (Czech Republic), August 25-28, 2015.
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4. Fernandez-Viagas, V., Dios M., Perez-Gonzalez P., Framinan, J.M. A framework of constructive

heuristics for permutation-type scheduling problems. Multidisciplinary International Scheduling

Conference (Mista 2015). Prague (Czech Republic), August 25-28, 2015.

5. Dios M., Fernandez-Viagas, V., Perez-Gonzalez P., Framinan, J.M. Manufacturing Scheduling Sys-

tems: What are they made of?. Multidisciplinary International Scheduling Conference (Mista 2015).

Prague (Czech Republic), August 25-28, 2015.

6. Fernandez-Viagas, V., Framinan, J.M. A new fast heuristic to minimize �owtime in permutation

�owshops. 14th International Conference on Project Management and Scheduling (PMS 2014).

Munich (Germany), March 30 - April 2, 2014.

7. Fernandez-Viagas, V., Framinan, J.M. Approximate algorithms for simultaneous project scheduling

and resource allocation with controllable processing times. 25th European Conference on Opera-

tional Research. Vilnius (Lithuania), July 8-11, 2012.

Research projects

Finally, this Thesis has been carried out carried out under grant �Predoctoral Research Fellow (FPU12/01935)�

funded by the Ministry of Education, Culture and Sport, and has been developed within the framework

of several manufacturing scheduling research projects:

• ADDRESS - �Advanced design of dynamic robust extended scheduling systems� funded by the

Spanish The Ministry of Economy and Competitiveness (reference DPI-2013-44461-P).

• �e-Fábrica� funded by the Technological Corporation of Andalusia (reference PI-1366/2014).

• SEAMAR funded by the Industrial Technology Development Center (reference PI-1031/2012).

• SCORE � Scheduling and Control for Customer Responsive Production funded by the Interminis-

terial Commission for Science and Technology, CICYT, (reference DPI2010- 15573).

• SCOPE funded by Regional Government of Andalusia (reference P08-TEP-03630).

• PUVENSA funded by IMP Consultores (reference P08-TEP-03630).

13.3 Future research lines

In this section, the main future research lines of this Thesis are discussed.
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In this Thesis, the mechanism for due date generation proposed by [147] has been chosen to build

the testbed. However, some de�ciencies were found in the generation of due dates, since some range of

values of indicator v (loose due dates) are not included, as well as most of instances are generated for

v ∈ [0.15, 0.35]. As a consequence, further analysis could be conducted to develop more extensive testbeds,

including bigger and more uniform intervals for indicator v.

Regarding the analysis of the processing times in the PFSP, although the presented Thesis represents

an important point in the study of the relationship between both the PFSP and the SMSP problem, the

boundary lines between them are not yet completely de�ned. Further enhancements may focus on the

following issues:

• The variance of the processing times on the saturated machine probably plays an important role in

the relationship between both problems.

• The presented study has used an uniform distribution for the processing times. Further analyses

can use of several di�erent distributions, extending the boundary lines between the problems.

• The presented analysis may probably be extended to other scheduling layouts.

• The PFSP has been compared with the SMSP of the most saturated machine. Further analysis may

compare the PFSP with a SMSP combining the processing times of di�erent machines.

Additionally, new relations may be considered for discrete resources since there are almost no papers

using them. To the best of our knowledge, only the hyperbola has been used to represent the inverted

U-shaped of the productivity in project management. Due to the di�culties to determine the constants

of this relation, new relations may be considered in order to represent the excess of communication and

the lack of specialization together.

Regarding the approximate procedures proposed in this Thesis, we have found that for the PFSP to

minimise makespan, the best metaheuristics and heuristics include special characteristics of the problem

as Taillard's accelerations and tie-breaking mechanisms. In our opinion, these facts highlight that future

advances in this �eld will come from a better understanding of the problem and its properties, which

should also be extended to other objective functions.

Finally, several of the proposed approximate procedures can easily be adapted to both other manu-

facturing scheduling problems and related scheduling problems outside production management, such as

[40], [32] and [119], which were also developed during this Thesis as explained in Section 13.2.
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