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Abstract

An important mechanism that takes place in the nuclear collisions is the dissociation of the projectile
into two or more fragments. In many experiments, with both stable and radioactive nuclei, only one of
the fragments is detected giving rise to the so-called inclusive breakup. For the two-body dissociation,
this corresponds to reactions of the form a(b + x) + A → b + anything. The theoretical interpretation
of these reactions is complicated due to the fact that many processes (compound nucleus, transfer, direct
breakup ...) can contribute to the production of the b fragment. The inclusive breakup is usually separated
into two contributions, namely, the elastic breakup (EBU) and the nonelastic breakup (NEB). The former
corresponds to processes in which the fragment b and x survive after the collisions and the target remains
in its ground state. By contrast, nonelastic breakup corresponds to those breakup processes accompanied
by the absorption of the unobserved fragment or by target excitation.

The problem was addressed in the 1980s by several groups, who proposed closed-form formulae for
the calculation of these observables. In this dissertation, we revisit the theory proposed by these groups,
in particular, the theory of Ichimura, Austern, and Vincent (IAV) [Phys. Rev. C 32, 431 (1985)] and show
applications to several reactions induced by weakly-bound projectiles, such as deuterons, 6,7Li, 7Be, 8B
and 11Be, comparing with available data.

In addition, we study the dependence of the EBU and NEB contributions with the incident energy and
the separation energy of the projectile. We also investigate the reaction modes and reaction cross section
of the 6Li + 209Bi reaction.

We address the problem of the post-prior equivalence in inclusive breakup reactions. The problem
is studied within the distorted-wave Born approximation (DWBA) version of IAV model. The post and
prior formulas obtained in this model are briefly recalled and applied to several breakup reactions induced
by deuterons and 6Li projectiles, to test their actual numerical equivalence. The different contributions
of the prior-form formula are also discussed. A critical comparison with the prior-form DWBAmodel of
Udagawa and Tamura [Phys. Rev. C 24, 1348 (1981)] is also provided.

We also discuss the possibility of applying the IAV theory to the evaluation of incomplete fusion
(ICF). For that, we propose a simple model and apply it to the 6Li+209Bi reaction. We also investigate the
application of this model to the study of surrogate reactions, and illustrate it for the 238U(d, pf) reaction,
comparing with recently measured data.
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In the beginning there was nothing, which exploded.

Terry Pratchett

1
Introduction

1.1 Background

The breakup of a nucleus into two or more fragments is an important mechanism occurring in nuclear

collisions, particularly when one of the colliding nuclei is weakly bound. The analysis of this kind of

processes has provided useful information on the structure of the broken nucleus, such as binding energies,

spectroscopic factors and angular momentum (e.g.103,104), and has contributed to the understanding of the

dynamics of the reactions among composite systems.

In the simplest scenario, in which the projectile is broken up into two fragments, these processes can be

schematically represented as a+A → b+x+A, where a = b+x. From the theoretical point of view, this

problem is difficult to treat because one has to deal with three-body final states. When the state of the three

outgoing fragments (b, x and A) is fully determined, the reaction is said to be exclusive. If, in addition, the

three particles are emitted in their ground state, the corresponding cross section is referred to as elastic

breakup (EBU). In this case, the reaction can be treated as an effective three-body problem interacting via

some effective two-body interactions. Although the rigorous formal solution of this problem is given by

the Faddeev formalism48,53, the difficulty of solving these equations has led to the development of sim-

1



pler approaches, such as the distorted-wave Born approximation (DWBA)10, the continuum-discretized

coupled-channels (CDCC) method4 and a variety of semiclassical approaches132,45,85,25.

A more complicated situation occurs when the final state of one or more fragments is not specified. In

this case, the reaction is said to be inclusive with respect to this unobserved particle(s). This is the case

of reactions of the form a + A → b + B∗, where B∗ is any possible configuration of the x + A system.

The inclusive cross section for the detection of b particles will be therefore the sum of the cross sections

for all processes leading to ”b” particles. In general, the main contributions will be the following:

(i) The elastic breakup process (EBU), in which the three outgoing particles are emitted in their ground

state, i.e., a+ A → b+ x+ Ags.

(ii) Inelastic breakup (INBU), in which the breakup is accompanied by the excitation of some of the

fragments. For example, if the target is excited, a + A → b + x + A∗, whereas if the core particle

is excited, a+ A → b∗ + x+ Ags.

(iii) Particle transfer, leading to bound states of the A+ x system, i.e. a+ A → b+ B (B ≡ A+ x).

(iv) Incomplete fusion (ICF), in which the fragment x is absorbed by the target, forming a compound

nucleus C, which will eventually decay by particle or gamma-ray emission: a+ A → b+ C.

(v) Complete fusion (CF) followed by evaporation. If b is among the evaporation products, it will

contribute also to the inclusive b yield. We include also in this category the preequilibrium (PE)

processes.

In Fig. 1.1 these processes are schematically depicted for a d+ A reaction.

The EBU cross sections [process (i)], can be accurately obtained with the three-body models cited

above, either quantum-mechanical (DWBA, CDCC, AGS/Faddeev) or semiclassical.

The calculation of INBU, process (ii), has been less explored in the literature. In the case of target

excitation, this was done by the Kyushu group in the early days of the CDCC method143 for the case of

deuteron scattering, with the aim of comparing the relative importance and mutual influence of target-

excitation and deuteron breakup in elastic and inelastic scattering of deuterons. Since then, this problem

has receive little attention in the literature. In addition, if b is a composite nucleus, it can be excited too.

This problem has been recently addressed by several groups using an extended version of the CDCC

method126,33.
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Figure 1.1: Reactionmodes for the d+ A reaction.

Process (iii), i.e., transfer of x to bound states of A, has been traditionally treated within the DWBA

method119. For weakly-bound projectiles, the coupling to the breakup channels becomes important, and

this effect is known to affect the transfer cross sections. This effect can be incorporated using the adiabatic

distorted wave approximation (ADWA) of Johnson and Soper77 and more elaborate versions of it (e.g.,

Ref.76). A recent review of these theories can be found in Ref.20.

The process (iv), ICF, is very challenging from the theoretical point of view to the extent that, at

present, no fully-quantum mechanical theory exists to calculate ICF cross sections. For this reason,

alternative methods, based on semiclassical ideas, have been proposed in the literature96,39,37. Moreover,

from the experimental point of view, the identification of this process is not without its difficulties since,

many times, the products coincide with those produced in the transfer reactions.

Processes (ii)-(iv) will be henceforth referred to as non-elastic breakup (NEB). The theoretical evalu-

ation of NEB cross sections is the main topic of this work.

Process (v) is qualitatively different from the previous ones, because it takes place via the formation

of a compound nucleus, rather than via a direct process. The calculation of detailed cross sections, as a

function of the angle/energy of the outgoing particles, requires the use of statistical models, first proposed

by Bohr12, and whose modern formulation can be found in many textbooks129.
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Figure 1.2: A typical two dimensional spectrum ofΔE versusEtotal for
6Li+209Bi measured by a telescope at θlab = 118o

andEbeam = 32MeV, which taken fromRef. 118 .

The estimation of inclusive breakup cross sections is required inmany situations. For example, Fig. 1.2

shows a typical bidimensional spectrum measured by a detector system at θlab = 118o and Ebeam = 32

MeV for 6Li+209Bi118. It can be seen that the inclusive α yield is much larger than that corresponding

to other reaction products. It is a challenging task to understand the reaction mechanisms responsible

for such a large cross section of inclusive α. The calculation of inclusive breakup observables is more

involved than that for the exclusive ones because they require the inclusion of all the possible processes

through which the unobserved particle(s) x can interact with the target A. Given the large number of

accessible states, this procedure is unpractical in most cases. As an alternative to this approach, one

may try to replace the physical final states by a set of representative states (also named doorway states).

These can be taken, for example, as the eigenstates of the x + A Hamiltonian in a mean-field potential.

As long as the basis used to describe these final states is complete, one may argue that the sum over

these representative states should provide results close to those obtained if the sum were done over the

true physical states. This procedure, referred to in some works as transfer to the continuum method, has

been used recently with rather success to describe some inclusive breakup reactions of weakly-bound
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projectiles at Coulomb barrier energies, such as 208Pb(8Li,7Li)100, 208Pb(6He,α)47, and 120Sn(6He,α)34.

However, despite this relative success, this method is based on a heuristic approach rather than on a

rigorous formal theory. Lacking this formal justification, it is not clear how these doorway states should

be chosen and how the final calculated cross sections depend on this choice. Another drawback of this

approach is that it does not allow to separate the contributions coming from EBU and NEB.

At intermediate energies (above ∼100 MeV/u), the problem can be greatly simplified using the adi-

abatic (fast collision) and eikonal (forward scattering) approximations, which allows to obtain closed

formulas of calculating the inclusive cross sections in terms of the absorption and survival probabilities

of the unobserved particle as a function of the impact parameter. This approach has been used extensively

in the analysis of nucleon removal (knockout) experiments at intermediate energies, in which typically

the removed particle is not observed and only the momentum distributions of the residual core is mea-

sured (see, e.g. Refs.130,59 and references therein). These models, however, cannot be applied to low

incident energies (a few MeV/u) and when the energy/momentum transfer is large.

The evaluation of NEB cross sections are needed, for example, in the calculation of total fusion cross

sections in reactions induced byweakly-bound projectiles (e.g. 6Li, 7Li, 9Be). A significant fraction of the

total fusion cross section comes from incomplete fusion (ICF), in which only part of the projectile fuses

with the target, the other fragment surviving after the collision31. Although many theoretical efforts

have been made to develop suitable models to calculated ICF cross sections23,68,60, the unambiguous

calculation of CF and ICF within a fully quantummechanical model remains a challenging problem13,127.

Because the ICF is part of the inclusive breakup, the study of inclusive breakup reactions may lead in

turn to a better understanding of ICF.

A related problem is that of the indirect determination of neutron-induced cross sections on short-

lived nuclei, from a surrogate reaction which gives rise to the same compound nucleus46. This is the

case, for example, of the process A(n, f) (where f is a fission fragment) for which the surrogate reaction

A(d, pf)may be used. To extract the cross section for the former, one needs to know the fraction of protons

produced in the surrogate reaction which are accompanied by the formation of a n+A compound nucleus.

Therefore, the applicability of the method requires the separation of the EBU component (which does not

lead to compound-nucleus formation) from the NEB (which contains the absorption cross section).

The problem of calculating inclusive breakup cross sections is nevertheless not new. In the late 1970s,

the calculations of inclusive breakup had been addressed by several groups. The aim of these theories
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was to derive closed-form formulas, in which the sum over all the possible final states of the x − A

system was done in a formal way. Baur and his collaborators were the first to propose such closed form

formulas. In fact they studied a variety of inclusive-type process108,17,7. Their formula was obtained

by first writing the elastic breakup DWBA amplitude in the post form, and then by using the unitary

of S-matrix and a surface approximation of the form factors of excited states of the residual nucleus.

These two approximations were avoided in later works by Udagawa and Tamura137,136, who used a prior-

form DWBA formalism, and by Austern and Vincent5, who used a post-form DWBA. The later was

refined by Kasano and Ichimura79, who found a formal seperation between elastic breakup and nonelastic

breakup. These results were carefully reviewed by Ichimura, Austern, and Vincent71 and the model was

subsequently referred to as the IAV formalism. Later on, Austern et al. reformulated this theory within a

more complete three-body model4.

It is worth noting that the prior-form model of Udagawa and Tamura (UT), on one side, and the post-

form DWBA model of Austern and Vincent (AV), on the other side, although formally similar, give

different predictions for the NEB part. This led to a long-standing dispute between these two groups,

which was finally settled in the referred IAV work71, where it was demonstrated that a proper derivation

of the prior-form formula gives rises to additional terms not considered by UT. The relation between these

two models will be discussed in the following section and in Chapter 4.

Although the comparison of these theories with experimental data showed very encouraging results,

they have apparently fallen into disuse. Moreover, some of these theories, such as the three-body model

of Austern, has never been tested to our knowledge, probably due to the computational limitations at that

time. This is in contrast to the experimental situation, in which inclusive breakup measurements are used

for many applications, with both stable and unstable beams. Therefore, it seems timely to reexamine

these theories and study their applicability to problems of current interest.

The revival and increasing interest on this problem is evidenced by some recent theoretical works

on this subject27,112,92. These recent applications make use of the IAV model, in DWBA. In Ref.27,

the authors use the zero-range post-form of this model, whereas in Ref.112 the finite-range prior-form

version of the model was used instead. Both of them applied the method to deuteron induced reactions,

with encouraging results.

In this work, we revisit also the IAV model, with special emphasis on the calculation of the NEB part,

for which we provide a new derivation. We have implemented the DWBA version of this model both in
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Figure 1.3: Coordinates used in the breakup reaction.

zero-range and in exact finite-range. To assess the validity of this theory, we have performed calculations

for several reactions induced by weakly bound nuclei and have compared them with available data.

1.2 Models for inclusive breakup

In this section, the early models for inclusive breakup are reviewed. In all cases, the inclusive breakup is

considered as a three body model and the relevant coordinates are depicted in Fig. 1.3.

1.2.1 Baur model

Baur and his collaborators considered the reaction

A+ a → b+ B, (1.1)

where the projectile a decomposes into the constituents b and x (a = b+ x) in the Coulomb and nuclear

fields of the target nucleus A. B is any possible state between x and A system. Only one part of the

fragment, b, is supposed to be detected. They assumed that the system is described by the Hamiltonian

H = K+ Vbx + UAb + UAx, (1.2)
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where K denotes the kinetic energy, and Vbx, UAb and UAx are the interactions between the 3 particles

of the system. The interactions UAb and UAx are supposed to be given by phenomenological (complex)

optical potentials. The (real) potential Vbx gives the bound state of the projectile a = b+ x.

The T−matrix for a given final state of this process in the post form DWBA can be written as*

T⃗ka→k⃗b⃗kx =

∫ ∫
d3rbxd3raχ

(−)
b (⃗rbA)∗χ(−)

x (⃗rx)∗Vbx(⃗rbx)φbx(⃗rbx)χ
(+)
a (⃗ra), (1.3)

where k⃗a, k⃗b, and k⃗x denote the momenta of a, b, and x in the initial and final state. The internal ground

state wave function of the projectile a is denoted by φbx(⃗rbx) and the χ’s denote the scattering wave

functions of a, b, and x generated by the appropriate optical potentials.

For light particle induced reactions, expression (1.3) can be evaluated in the zero range approximation,

introducing the usual zero range constant D0 (see Sec. 2.3 for details).

The contribution of the elastic breakup to the inclusive (a, b) cross section can be obtained by an

integration over the angle of the unobserved particle x. The matrix element expression (1.3) can be

expanded in partial waves as

T⃗ka→k⃗b⃗kx =
∑
lxmx

Tlxmx(k̂x, k̂b), (1.4)

where

Tlxmx(k̂x, k̂b) =
(4π)2D0

kakbkx

∑
lalb

ila+lb+lx(−)la−lbei(σla+σlb+σlx )̂lâlb⟨lblx − mxmx|la0⟩

× ⟨lalb00|lx0⟩Y−mx
lb (k̂b)Ymx

lx (k̂x)
∫ ∞

0

dr
r
χla(ka, r)χlb(kb, r)χlx(kx, r),

(1.5)

where σl denote the Coulomb phases. By using the orthogonality of the spherical harmonics the integra-

tion over the angle of the unobserved particle x leads to the following expression for the elastic breakup

(EBU) double differential cross section

d2σ
dΩbdEb

∣∣∣
EBU

=
2π
ℏva

ρb(Eb)ρx(Ex)
∑
lxmx

∣∣∣Tlxmx(k̂b)
∣∣∣2, (1.6)

where va is the projectile-target relative velocity and ρ(E) = kμ/[(2π)3ℏ2] is the density of states. † Note
*Note that they ignored the remnant term interaction (UbA − UbB).
†Note that the parameter μaμbμxkbkx/4(πℏ

2)3ka of Ref 108,17,7 is replaced by ρb(Eb)ρx(Ex)2π/ℏva, consistent with
our definition of the amplitude for the plane waves as ei⃗k⃗r.
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that the sum over the partial waves lx becomes incoherent.

The processes in which the interaction of the particle xwith the target is nonelastic will also contribute

to the inclusive spectrum. This is the nonelastic breakup (NEB) defined in the previous section. Within

certain approximations the nonelastic breakup cross section can be calculated with the matrix element

already needed for elastic breakup.

The starting point of Baur’s formula for the NEB is the DWBA expression for the breakup reaction

a+ A → b+ c, where c is one specific two-body final state of the system B = A+ x:

Ta,bc = ⟨Φ(−)
Bc χ(−)

b
∣∣Vbx

∣∣ϕ0Aφaχ(+)
a ⟩, (1.7)

where ϕ0A is the ground state wave function of nucleus A and ΦBc is a scattering state of system Bwith the

boundary condition appropriate for channel c. In order to evaluate the transition amplitude (1.7), they

first integrate the internal coordinates ξA of ψA which leads to a generalization of the radial form factor

“wave function of the transferred particle”) to nonelastic processes:

∫
dξAΦ

(−)∗
Bc (⃗r, ξ)ϕ0A(ξ) = 4π

∑
lxmx

ilxχclx(r)Y
mx
lx (r̂)Y

mx∗
lx (k̂c). (1.8)

In principle, it would be possible to calculate this form factor with the help a model wave function for

Φ(−)
Bc . However, this would be very difficult and impracticable if there are too many open channels. To

avoid the sum over ΦBc states, Baur and his collaborators make use of the unitary of the S-matrix for

the system B = A+ x. In addition they assume that the main contribution to the DWBA integral comes

from the region outside the nuclear interaction r > R0 8. Then the radial form factor χclx can be entirely

expressed in terms of the scattering matrix element Slx,c, which connects the elastic channel lx and the

nonelastic channel c:

χclx(r) = δlx,cjlx(kxr) +

√
μxkx
μckc

1
2
(Slx,c − δlx,c)h

(+)
lx (kxr), (1.9)

where jl and hl are, respectively, the spherical Bessel- and Hankel-functions. With the help of the radial

form factor, Eq. (1.9), Baur introduced a “reduced” T-matrix for the process a+ A → b+ c

Treda,bc =

√
μxkx
μckc

Slx,c
Slx,lx − 1

D0

∫
d3rχ(−)∗

kb (⃗r)[χlx(kx, r)− jlx(kxr)]Y
mx
lx (r̂)χ

(+)
ka (⃗r). (1.10)
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Now the entire dependence on the channel index c appears only in the S-matrix element Slx,c. This allows

to sum over all c ̸= lx, using the unitarity of the S-matrix,

∑
c ̸=lx

∣∣Slx,c∣∣2 = 1−
∣∣Slx,lx∣∣2. (1.11)

Using the usual definitions of the elastic and reaction cross section σellx and σ
R
lx the nonelastic breakup cross

section can be expressed as108,17,7

d2σ
dΩbdEb

∣∣
NEB =

2π
ℏva

ρb(Eb)ρx(Ex)
∑
lxmx

σRlx
σellx

∣∣Tlxmx − T0lxmx

∣∣2, (1.12)

where the T−matrix has been split into two parts according to equation (1.10). For the inclusive (a, b)

double differential cross section, the elastic and nonelastic contributions, Eqs. (1.6) and (1.12) have to be

added up.

1.2.2 Udagawa-Tamura model

Udagawa and Tamura (UT) considered the inclusive breakup as a two-step mechanism137,93, i.e., the

process in which breakup of the projectile takes place first, and is followed by an interaction of one

member of the broken-up pair with the target nucleus. Such a process can be written as

a+ A → b+ x+ A → b+ B∗. (1.13)

A feature of this process is that, after the first breakup, the fragment b behaves as a spectator, and thus

the remaning process can be viewed as essentially a two-body interaction. This inclusdes the elastic

scattering of x on A (elastic breakup), and the absorption of x with A (breakup fusion‡).

The starting point of UT is the relation30

σRa = − 2
ℏva

⟨χ(+)
a
∣∣Wa
∣∣χ(+)

a ⟩, (1.14)

where σRa is the reaction cross section, while χ
(+)
a andWa are, respectively, the distorted wave function in

the incident channel, and the imaginary part of the optical potential used in generating χ(+)
a .

‡Note that the breakup fusion of UT corresponds to the NEB according to the terminology adopted throughout
this work.
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In order to calculate the elastic breakup and breakup fusion cross sections, UT first single out σd and

Wd, i.e., the cross section and the imaginary part of the optical potential, from the first step of Eq. (1.13)

which is called channel d(= b+ x+ A). Using the Feshbach formalism80,49,138

Wd = Im⟨ϕ0A
∣∣VpriorG(+)

d Vprior
∣∣ϕ0A⟩, (1.15)

and

σd = − 2
ℏva

⟨χ(+)
a
∣∣Wd
∣∣χ(+)

a ⟩, (1.16)

where ϕ0A is the target ground state wave function, Vprior = VxA +UbA −UaA is the prior form interaction

andG(+)
d is the Green’s function for the propagation in the d channel. In addition, UT assume VxA → UxA

and then the optical model Green’s function can be written as

G(+)
d =

1
E− H0 − KxA − KbB − UxA − UbB + iε

, (1.17)

where H0 denotes the intrinsic Hamiltonian, and Ki and Ui are the kinetic energies and optical potentials.

The absorption of x by A is thus described by the imaginary part of UxA. In order to isolate the absorption

due to this imaginary potential, UT used the following identity for G(+)
d :

G(+)
d = Ω(−)

bB [ω(−)
xA g(+)ω(−)†

xA − G(+)†
xA U†

xAG
(+)
xA ]Ω(−)†

bB −Ω(−)
xA G(+)†

bB U†
bBG

(+)
bB Ω(−)†

xA , (1.18)

where

ω(−)
i = 1+ G(+)†

i U†
i ,

G(+)
i = 1/(E− H0 − KxA − KbB − Ui + iε),

Ω(−)
i = 1+ G(+)†

d U†
i ,

g(+) = 1/(E− H0 − KxA − KbB + iε).

(1.19)

Note that ω(−)
i is nothing but the wave operator that, acting on a plane wave, generates a distorted wave.

Also g(+) is the free Green’s function, while G(+)
i is the optical model Green’s function. Based on the

fundamental assumptionmentioned above that after the breakup b can be treated as a spectator, UT neglect
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the last term in Eq. (1.18), and approximate Ω(−)
b by ω(−)

b , i.e.,

Ω(−)
xA G(+)†

bB U†
bBG

(+)
bB Ω(−)†

xA ≃ 0 and Ω(−)
b ≃ ω(−)

b . (1.20)

Using Eq. (1.18) and Eq. (1.20) in Eq. (1.16), it is obtained

σd =
∫

dEbdΩb
2π
ℏva

ρb(Eb)
(∑

k⃗x

∣∣⟨χ(−)
b χ(−)

x (⃗kx)
∣∣Vprior∣∣χ(+)

a φa⟩
∣∣2 − ⟨ψx

∣∣Wx
∣∣ψx⟩/π

)
. (1.21)

Here χ(−)
x and χ(−)

b denote the distorted waves for the relative motion between x−A and b−B respectively,

φa is the bound state wave function of the projectile a, whileψx is the wave function in the channel xwhich

is given by

ψUT
x (⃗rx) = G(+)

xA (χ(−)
b
∣∣Vprior∣∣χ(+)

a φa⟩, (1.22)

where the round bracket (|⟩ indicates integration over b−coordinates only. The physical meaning of

Eq. (1.21) is clear. This first term is the elastic breakup cross section in the DWBA form, while the

second term describes the breakup-fusion process. This second term is given, in differential form, by

d2σ
dΩbdEb

∣∣∣∣∣
UT

BF

= − 2
ℏva

ρb(Eb)⟨ψUT
x
∣∣Wx
∣∣ψUT

x ⟩. (1.23)

This result was also derived by Kerman and McVoy (see Eq. (33) of Ref.84).

1.2.3 Ichimura-Austern-Vincent model

In the work of Ichimura, Austern and Vincent71, they consider the reaction of the form

a+ A → b+ anything, (1.24)

where b is a definite fragment of the incident projectile and the energy of b is low enough so the remaining

system x+ A is unbound.

The model Hamiltonian for this process can be written as

H = HA(ξ) + KbB + KxA + VxA + UbA + Vbx, (1.25)
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in which the interaction VbA of the spectator particle with the target nucleus has been replaced by the op-

tical potential UbA. Thus it is assumed that possible excitations of the target nucleus due to its interaction

with b are embedded in the imaginary part of UbA. Since explicit wave functions and Hamiltonians for

the internal states of b and x are not needed, for simplicity they are not included in our notation. The

target nucleus ground state wave function is written as ϕ0A, with energy EA, so

HAϕ0A = EAϕ0A. (1.26)

The eigenstates of the system x+ A are written Ψ c
xA, and they satisfy

HxAΨ
c
xA = EcΨ c

xA, (1.27)

with

HxA ≡ HA + KxA + VxA. (1.28)

In general, the post-form DWBA expression for inclusive breakup of outgoing b particles is

d2σ
dΩbdEb

∣∣∣∣∣
post

=
2π
ℏva

ρ(Eb)
∑
c

|⟨χ(−)
b Ψ c

xA|Vpost|χ(+)
a φaϕ

0
A⟩|2δ(E− Eb − Ec), (1.29)

where ρ(Eb) = μbkb/(8π3ℏ2) is the density of states and Vpost = Vbx + UbA − UbB is the post form

interaction. Here we use distorted wave functions defined by

[Ka + Ua(ra)]χ(+)
a (⃗ra) = (E− EA − Ea)χ(+)

a (⃗ra), (1.30)

and

[Kb + U†
bB(rb)]χ

(−)
b (⃗rb) = Ebχ

(−)
b (⃗rb), (1.31)

where a denotes the incoming channel a + A and b denotes the outgoing channel b + B∗, where B∗ is

any possible state of the (x + A) system. To evaluate Eq. (1.29) first the delta function is written as the

imaginary part of an energy denominator (the Sokhotski–Plemelj theorem123)

δ(E− Eb − Ec) = −1
π
Im

1
E+ − Eb − Ec . (1.32)
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Then, one gets

d2σ
dΩbdEb

∣∣∣∣∣
post

= − 2
ℏva

ρ(Eb)Im
∑
c
⟨χ(+)

a φaϕ
0
A|Vpost|χ

(−)
b Ψ c

xA⟩(E+ − Eb − Ec)−1

× ⟨Ψ c
xAχ

(−)
b |Vpost|χ(+)

a φaϕ
0
A⟩.

(1.33)

The energy denominator is taken inside of the matrix elements and replaced by the Green’s function of

the many body system

⟨ϕ0A|(E+ − Eb − Ec)−1|ϕ0A⟩ = ⟨ϕ0A|(E+ − Eb − HxA)
−1|ϕ0A⟩. (1.34)

Next, one applies the closure over the states of Ψ c
xA

∑
c

|Ψ c
xA⟩⟨Ψ c

xA| = 1. (1.35)

The sum on c is performed as

d2σ
dΩbdEb

∣∣∣∣∣
post

= − 2
ℏva

ρ(Eb)Im⟨ϕ0Aχ(+)
a φa|Vpost|χ

(−)
b ⟩(E+ − Eb − HxA)

−1

× ⟨χ(−)
b |Vpost|χ(+)

a φaϕ
0
A⟩.

(1.36)

BecauseVpost and the optical wave function do not depend on the internal coordinates of the target nucleus,

the ϕ0A expectation allows the optical reduction

(ϕ0A|(E+ − Eb − HxA)
−1|ϕ0A) = (E+

x − KxA − UxA)
−1 ≡ Gx (1.37)

where Ex ≡ E− Eb − EA and Ux is the Feshbach formal optical potential for particle x. Then

d2σ
dΩbdEb

∣∣∣∣∣
post

= − 2
ℏva

ρ(Eb)Im⟨ρb(⃗rx)|Gx|ρb(⃗rx)⟩ (1.38)

with the source function

ρb(⃗rx) ≡ (χ(−)
b |Vpost|χ(+)

a φa⟩ (1.39)
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A helpful transformation71,79 of the Green’s function is obtained from the adjoint pair of equations

Gx = G0(1+ UxGx) = (1+ G†
xU†

x)G0(1+ UxGx)− G†
xU†

xGx (1.40)

G†
x = (1+ G†

xU†
x)G

†
0 = (1+ G†

xU†
x)G

†
0(1+ UxGx)− G†

xUxGx (1.41)

in which G0 is the free Green’s function for channel x at relative energy Ex. By subtraction of these

equations,

ImGx ≡
1
2i
(Gx − G†

x) = (1+ G†
xU†

x)ImG0(1+ UxGx)− G†
xWxGx (1.42)

in which Wx is the imaginary part of Ux, and

ImG0 = −πδ(Ex − Kx). (1.43)

Then

d2σ
dΩbdEb

∣∣∣∣∣
post

=
2π
ℏva

ρ(Eb)⟨ρb(⃗rx)|(1+ G†
xU†

x)δ(Ex − Kx)(1+ UxGx)|ρb(⃗rx)⟩

− 2
ℏva

ρ(Eb)⟨ρb(⃗rx)|G†
xWxGx|ρb(⃗rx)⟩.

(1.44)

The distorted wave for particle x is introduced as

|χ(−)
x ⟩ = (1+ G†

xU†
x)|⃗kx⟩, (1.45)

where Kx |⃗kx⟩ = (ℏ2k2x/2μx)|⃗kx⟩. Then the first term of Eq. (1.44) is rewritten as

2π
ℏva

ρ(Eb)

∫
d3kx|⟨ρb(⃗rx)|χ(−)

x ⟩|2δ(Ex − ℏ2kx/2μx)

=
2π
ℏva

ρ(Eb)

∫
d3kx|⟨χ(−)

b χ(−)
x |Vpost|χ(+)

a φa⟩|2δ(Ex −
ℏ2k2x
2μx

).

(1.46)

This is nothing but the energy-averaged elastic breakup cross section. The second term of Eq. (1.44) can

be written as
d2σ

dΩbdEb

∣∣∣∣∣
IAV

NEB

= − 2
ℏva

ρ(Eb)⟨ψIAV
x (⃗rx)|Wx|ψIAV

x (⃗rx)⟩ (1.47)
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with

ψIAV
x (⃗rx) = Gxρb(⃗rx) (1.48)

Note that the Baur model, Eq. (1.12), is an approximation of the second term of Eq. (1.47).

1.2.4 Hussein and McVoy model

Hussein andMcVoy considered the multi-channel problem in which the channels are defined by the states

|n⟩ of the target, and choose the projection operators

P = |0⟩⟨0|, Q = 1− P. (1.49)

Considering the interaction in the form UP + VQP for this purpose, where UP is the optical potential in

channelP , its eigenfunctionPΨ(+) contains none of the reaction channels produced by VQP , so it can be

written as χ(+)
a |φaϕ

0
A⟩ ; this includes the full elastic optical distortion in the definition of the incident wave.

Then Ψf is any exact final state in the Q-space. For the same reaction type as discussed before67,69,i.e.,

Eq. (1.1), (1.13) and (1.24). Hussein and McVoy write the matrix elements in the “prior” form67, which

considers the interaction causing the fragmentation to be the entrance-channel potential,

VQP = VQP
xA + VQP

bA , (1.50)

and choosing b as the spectator means that QVbAP can be neglected as far as the reaction is concerned.

Thus the spectator model matrix element can be written as

TcHM =
⟨
χ(−)
b Ψc

xA
∣∣VQP

xA
∣∣φaχ(+)

a ϕ0A
⟩
, (1.51)
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where Ψc
xA is the exact wave function for any possible state of x − A system including the internal state

of A. Then the nonelastic breakup cross section can be written as

d2σ
dEbdΩb

∣∣∣∣∣
HM

=
2π
ℏva

ρb(Eb)
∑
c

∣∣TcHM∣∣2δ(Ea + Ba − Eb − Ec)

=
2π
ℏva

ρb(Eb)
⟨
χ(+)
a χ(−)†

b φa
⟨
ϕ0A
∣∣VPQ

xA δ(Ea + Ba − Eb − HQQ
xA )VPQ

xA
∣∣ϕ0A⟩χ(+)

a χ(−)†
b φa

⟩
= − 2

ℏva
ρb(Eb)

⟨
χ(+)
a χ(−)†

b φa
∣∣Wx
∣∣χ(+)

a χ(−)†
b φa

⟩
, (1.52)

where Ba > 0 is the binding energy of the projectile a and note that the closure sum was done within the

Q−space. Now the Hussein-McVoy’s x− A channel wave function is defined as

ψHM
x (⃗rx) =

(
χ(−)
b (⃗rb)

∣∣φa(rbx)χ(+)
a (⃗ra)

⟩
, (1.53)

Finally, the NEB cross section can be written as

d2σ
dEbdΩb

∣∣∣∣∣
HM

= − 2
ℏva

ρb(Eb)
⟨
ψHM
x
∣∣Wx
∣∣ψHMx ⟩

. (1.54)

Note that, in the original paper of Hussein and McVoy67, they interpreted Eq. (1.54) as the total inclusive

breakup cross section, but latter it turned out that Eq. (1.54) only represents the nonelastic breakup part69

.

1.2.5 Relation between post and prior forms

This section will focus on the relation between the model of Udagawa and Tamura (UT), and that by

Ichimura, Austern and Vincent (IAV). The main difference between these models is that, whereas UT use

the prior-formDWBA, IAV employ the post-form representation. Although the final expressions for these

models have the same formal structure ,i.e., Eq. (1.23) and Eq. (1.47), they lead to different predictions

for the NEB cross sections. To show the relation between the post and prior DWBA expressions, we

follow Li, Udagawa and Tamura93. They start from the relation between the post-prior interactions, i.e.,

Vprior = Ha + Vprior − Ea = Hb + Hx + Vpost − Ea = Hx − Ex + Vpost, (1.55)
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where Ha, Hb, and Hx are defined as

Ha = ha + KaA + UaA,

Hb = KbB + UbB,

Hx = KxA + UxA,

(1.56)

where ha is the intrinsic Hamiltonian of the projectile a, while

Vprior = VaA − UaA = UxA + UbA − UaA,

Vpost = Vbx + VaA − UbB − UxA = Vbx + UbA − UbB.

(1.57)

Inserting Eq. (1.55) into Eq. (1.22) one gets

ψIAV
x (⃗rx) = ψUTx (⃗rx) + ψHM

x (⃗rx), (1.58)

where ψHMx (⃗rx) is also called nonorthogonality term. Replacing Eq. (1.58) into Eq. (1.47) results

d2σ
dEbdΩb

∣∣∣∣IAV
NEB

=
d2σ

dEbdΩb

∣∣∣∣UT
NEB

+
d2σ

dEbdΩb

∣∣∣∣HM
NEB

+
d2σ

dEbdΩb

∣∣∣∣IN
NEB

, (1.59)

where the interference (IN) term cross section is defined as

d2σ
dEbdΩb

∣∣∣∣IN
NEB

= − 4
ℏva

ρb(Eb)Re⟨ψUT
x |WxA|ψHM

x ⟩. (1.60)

Equation (1.59) represents the post-prior equivalence of the NEB cross sections in the IAV model, with

the RHS corresponding to the prior-form expression of this model. The first term is just the UT formula,

Eq. (1.23), which is formally analogous to the IAV post-form formula Eq. (1.47), but with the x-channel

wave function given by ψUT
x (⃗rx). The two additional terms, which are responsible for the discrepancy

of the IAV and UT results, arise from the nonorthogonality overlap (HM term). These terms ensure the

post-prior equivalence of the NEB cross sections. However, UT considered that these two additional

terms are unphysical and hence that the post-prior equivalence does not hold for the NEB. We note here

that this problem does not arise for the EBU part, for which the post and prior formulas are well known

to give identical results71.
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The rest of this dissertation is organized as follows. In Chapter 2 we revisit the formal aspects of

the model developed by Ichimura, Austern and Vincent, for which we have presented an alternative

derivation of the NEB formula. In Chapter 3, the formalism is applied to several inclusive reactions

induced by d, 6Li, 11Be, 7Li, 7Be and 8B. In Chapter 4, we discuss the numerical assessment of post-

prior equivalence. In Chapter 5, we present possible extensions of IAVmodel to incomplete fusion (ICF)

calculations. Finally, we summarize the main results of this work and outline some future developments

in Chapter 6.
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If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is.

John von Neumann

2
IAV and UT Models

In this chapter, we revisit the formal aspects of the Ichimura, Austern, Vincent model71. We provide an

alternative derivation of the NEB formula, based on a direct application of the coupled-channels optical

theorem. As we will see, this provides a transparent interpretation of the NEB as the part of the flux that

leaves the EBU channels to more complicated configurations of the x+A system. Afterwards, we discuss

some technical and formal aspects related to the practical implementation of the model, such as its partial

wave expansion and the treatment of the slow-converging integrals appearing in the post-form breakup

matrix elements. Finally, we also discuss the possibility of using IAV model to include final bound states

of the x+ A system.

2.1 The Ichimura, Austern, Vincent (IAV) model

In this section we briefly review the model of Ichimura, Austern and Vincent71,4. The final formula

obtained in this model has been derived in different ways. Here, we closely follow the early derivation

done by Austern and Vincent5 because, as we will show, it provides an interesting physical insight.
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We write the process under study as

a(= b+ x) + A → b+ B∗. (2.1)

This process will be described with the Hamiltonian

H = K+ Vbx + UbA(⃗rbA) + HA(ξ) + VxA(ξ, r⃗x), (2.2)

where K is the total kinetic energy operator, Vbx is the interaction binding the two clusters b and x in the

projectile a, HA(ξ) is the Hamiltonian of the target nucleus (with ξ denoting its internal coordinates) and

VxA and UbA are the fragment–target interactions. The relevant coordinates are depicted in Fig. 1.3. Note

that the coordinate r⃗b connects the particle b with the center of mass (c.m.) of the x+ A system.

In writing the Hamiltonian of the system in the form (2.2) we make a clear distinction between the

two cluster constituents; the interaction of the fragment b, the one that is assumed to be detected in

the experiment, is described with an optical potential. Non-elastic processes arising from this interaction

(e.g. target excitation), are included only effectively throughUbA. The particle b is said to act as spectator.

On the other hand, the interaction of the particle x with the target retains the dependence of the target

degrees of freedom (ξ).

Within the assumed three-body model, and using the post-form representation, the total wave function

of the system can be written in integral form as

Ψ(ξ, r⃗x, r⃗b) =
[
E+ − Kb − UbB − HB

]−1 VpostΨ(ξ, r⃗x, r⃗b), (2.3)

where E+ = E+ iε, ε → 0, UbB is an auxiliary (and, in principle, arbitrary) potential between b and the

composite B, Vpost ≡ Vbx + UbA − UbB and HB is the Hamiltonian of the x+A pair, given by

HB(ξ, r⃗x) = HA(ξ) + Kx + VxA(ξ, r⃗x). (2.4)

The eigenstates of the target Hamiltonian will be denoted as φcA(ξ), i.e., [HA(ξA) − Ec
A]φcA(ξ) = 0, with

c = 0 corresponding to the target ground state, for which we assume E0A = 0.

We consider now a specific final state of the detected particle b, characterized by a given final mo-

mentum of this fragment (⃗kb). The motion of b will be described by a distorted wave with momentum k⃗b,
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obtained as a solution of the single-channel equation

[
Kb + U†

bB − Eb

]
χ(−)
b (⃗kb, r⃗b) = 0. (2.5)

The wave function describing the motion of x after the breakup, that will be denoted as Zx(ξ, r⃗x), can be

obtained projecting the total wave function [Eq. (2.3)] onto this particular state of the b particle, i.e., *

Zx(⃗kb, ξ, r⃗x) ≡ (χ(−)
b |Ψ⟩ =

[
E+ − Eb − HB

]−1
(χ(−)

b |Vpost|Ψ⟩, (2.6)

where the round bracket denotes integration over r⃗b only. The last equation can be also written in differ-

ential form as [
E+ − Eb − HB

]
Zx(⃗kb, ξ, r⃗x) = (χ(−)

b |Vpost|Ψ⟩. (2.7)

The source term of this equation involves the exact and hence unknown wave function Ψ which, in actual

calculations, must be approximated by some calculable form. For example, in DWBA, one assumes the

factorized form

Ψ(ξ, r⃗x, r⃗b) ≈ φ0A(ξ)φa(⃗rbx)χ
(+)
a (⃗ka, r⃗a), (2.8)

where φa(⃗rbx) is the projectile ground-state wave function and χ
(+)
a (⃗ka, r⃗a) is a distorted wave describing

the a+ A motion in the incident channel. In practice, the latter is commonly replaced by the solution of

some optical potential describing a + A elastic scattering. Austern et al.4 proposed also the three-body

approximation

Ψ(ξ, r⃗x, r⃗b) ≈ φ0A(ξ)Ψ
3b(⃗rx, r⃗b), (2.9)

where Ψ3b is a three-body wave function for the three fragments (x+b+A) and contains, in addition to the

b+ x ground state, contributions from b+ x inelastic scattering and breakup.

It is worth noting that, either in the approximation (2.8) or in (2.9), the three-body wave function does

not contain explicitly excited states of A. Thus, in the IAV model, the NEB can be viewed as a two-step

process in which the first step is the dissociation of the projectile, leaving the target in its ground state,

while the second step is the absorption of x or the excitation of A.

A possible procedure to solve Eq. (2.7) is to expand the function Zx in a complete set of x+ A states,

*Note that this function will also depend on k⃗a, which indicates the direction of the incident beam. Because this
direction is fixed, this dependence will be omitted for simplicity of the notation.
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i.e.,

Zx(⃗kb, ξ, r⃗x) =
∑
c

ψc
x(⃗kb, r⃗x)φ

c
A(ξ), (2.10)

where ψc
x(⃗kb, r⃗x) describes the x − A relative motion when the target is in the state c. The expansion

(2.10) can be inserted into Eq. (2.7), giving rise to a set of coupled equations for the unknown functions

ψc
x(⃗kb, r⃗x).

This approach will be in general unpractical because the expansion (2.10) involves a very large number

of final states. If one is not interested in the description of the transition to specific x+A states, but rather

in their summed contribution, one can proceed as follows. Following Feshbach, the Zx(⃗kb, ξ, r⃗x) function

is decomposed as

Zx(⃗kb, ξ, r⃗x) = PZx +QZx, (2.11)

where P is the projector operator onto the target ground state and Q = 1 − P . From Eq. (2.10) we see

that PZx = ψ0
x (⃗kb, r⃗x)φ0A(ξ). The function ψ0

x (⃗kb, r⃗x), which describes the x+ A relative motion when the

target is in the ground state, verifies the equation

(E+
x − Kx − Ux)ψ0x (⃗kb, r⃗x) = ρ(⃗kb, r⃗x), (2.12)

with Ex = E−Eb, ρ(⃗kb, r⃗x) ≡ (χ(−)
b |Vbx|Ψ⟩ is the so-called source term, and Ux the formal optical model

potential describing x+ A elastic scattering. Explicitly,

Ux = ⟨φ0A|VxA + VxAQ[E+ − Eb − HQQ]
−1VxA|φ0A⟩, (2.13)

whereHQQ ≡ QHBQ. The formal potentialUx is a complicated non-local, angular- and energy-dependent

object. However, as done in two-body scattering problems, it can be approximated by some energy-

averaged (possibly local) potential or by some phenomenological representation (denoted Ux hereafter)

with parameters adjusted to describe x+ A elastic scattering.

Note that Eq. (2.12) is formally analogous to the inhomogeneous equation appearing in DWBA and

CCBA calculations between bound states, as formulated in the source term method of Ascuitto and Glen-

denning3, and used by several coupled-channels codes128.
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2.1.1 Separation of elastic and nonelastic breakup

In their original paper, Austern and Vincent provide only the total inclusive cross section. Later on,

Kasano and Ichimura79 showed that this expression can be formally decomposed into two pieces, corre-

sponding to the elastic breakup (EBU) and non-elastic breakup (NEB) contributions.

Here, we present an alternative derivation of these formulas, which exploits the aforementioned anal-

ogy of Eq. (2.12) with that found in the DWBA/CCBA formalisms. This equation is to be solved with

purely outgoing boundary conditions (since there are no incoming waves in the x− A channel), that is,

ψ0
x (⃗kb, r⃗x) → f(⃗kb, r̂x)

eikxrx
rx

. (2.14)

The function f(⃗kb, r̂x) depends, in addition to the direction of k⃗b, on the angular part of r⃗x. Asymptotically,

when rx is large, the position vector r⃗x becomes parallel to the momentum k⃗x and wemay write f(⃗kb, r̂x) →

f(⃗kb, k⃗x). We therefore recognize f(⃗kb, k⃗x) as the scattering amplitude for the elastic breakup process, and

its square is proportional to the differential cross section for the detection of the x particle in the direction

of k⃗x, and the b particle in the direction k⃗b. To obtain this amplitude, one can proceed in two different ways.

One possibility is to integrate the differential equation (2.12) and, at a sufficiently large distance (beyond

the range of the short-range potentials), equate the solution to the asymptotic form (2.14), from which the

scattering amplitude can be obtained. A second approach to solve Eq. (2.12) is to use integral methods

(e.g., Green’s function) techniques. This latter procedure gives the following closed-form expression for

the scattering amplitude,

f(⃗kb, k⃗x) = − μx
2πℏ2

⟨χ(−)
x χ(−)

b |Vpost|Ψ3b⟩, (2.15)

where μx is the reduced mass of the x+ A system and the distorted wave χ(−)
x (⃗kx, r⃗x) is a solution of the

homogeneous part of equation Eq. (2.12), i.e.,

[
Kx + U†

x − Ex
]
χ(−)
x (⃗kx, r⃗x) = 0, (2.16)

whose solution consists of a plane wave of momentum k⃗x plus an ingoing spherical wave.

The corresponding differential cross section, for a final differential volume in momentum space, is

24



given by† (c.f., for instance, Eq. (5.36) of Ref.54)

dσ =
(2π)−5

ℏva

∫
d⃗kxd⃗kbd⃗kA δ(Ef − Ei)δ(P⃗f − P⃗i)|Tfi|2, (2.17)

where Tfi is the usual transition amplitude (or T-matrix), which is related to the scattering amplitude by

f = −(μx/2πℏ2)Tfi. In the c.m. frame, P⃗i = 0. Also, the target momentum (⃗kA) is not measured, so we

can integrate over it, making use of the momentum-conserving delta function,

dσ =
(2π)−5

ℏva

∫
d⃗kxd⃗kbδ(Ef − Ei)|Tfi|2. (2.18)

The element d⃗kb is conveniently expressed in terms of energy and solid angle elements using d⃗kb =

(2π)3ρb(Eb)dΩbdEb, where ρb(Eb) = kbμb/((2π)3ℏ2) is the density of states.‡ Using this in Eq. (2.18),

dσ =
(2π)−2

ℏva

∫
δ(Ef − Ei)|Tfi|2ρb(Eb)dΩbdEbd⃗kx. (2.19)

The double differential cross section with respect to the energy and the scattering angle of b is therefore

given by
d2σ

dΩbdEb

∣∣∣∣
EBU

=
(2π)−2

ℏva
ρb(Eb)

∫
δ(Ef − Ei)|Tfi|2d⃗kx, (2.20)

which coincides with the result of Austern et al. (Eq. (8.15) of Ref.4) noting that
∫
d⃗kx → (2π)3

∑
k⃗x .

We note also that the previous expression can be used to compute the EBU cross section, with respect

to the angles and energies of b and x. For that, we use again d⃗kx = (2π)3ρx(Ex)dΩxdEx and use the

energy-conserving delta function, resulting§

d2σ
dΩbdEbdΩx

∣∣∣∣
EBU

=
2π
ℏva

ρb(Eb)ρx(Ex)|Tfi|2. (2.21)

To obtain the expression for the NEB component we make use of the coupled-channels optical the-

orem recently formulated by Cotanch30. This work generalizes the well-known optical theorem to the
†Note that the factor (2π)4 of Ref. 54 is replaced here by a (2π)−5 factor, consistent with our definition of the

amplitude for the plane waves as ei⃗k⃗r.
‡These expressions result from N(k)d⃗kb = ρb(Eb)dΩbdEb, where N(k) is the number of states in the differential

volume d⃗kb, which is determined from ⟨⃗k|⃗k′⟩ = δ(⃗k − k⃗′)/N(k). In our case, ⟨⃗k|⃗k⟩ = (2π)3δ(⃗k − k⃗′), and hence
N(k) = (2π)−3.

§the partial wave expansion can be found in Appendix B
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multichannel case. If χi is the channel wave function andWi the diagonal imaginary part for this channel,

the contribution to the absorption in this particular channel is given by30

σiabs = − 2
ℏvel

⟨χi|Wi|χi⟩, (2.22)

where vel is the projectile–target relative velocity in the incident (elastic) channel.

We may use this result to calculate the NEB contribution by noting that the latter is nothing but the

absorption occurring in the x+ A channel. The channel wave function is given by ψ0
x (⃗kb, r⃗x), which is a

solution of Eq. (2.12). Since Eq. (2.12) corresponds to a definite energy and direction of the b particle,

we consider Eq. (2.22) for a differential cross section corresponding to a range of the outgoing momenta

of b,

d2σ = − 2
ℏva

⟨ψ0
x |Wx|ψ0

x⟩N(kb) d⃗kb, (2.23)

with Wx ≡ Im[Ux]. Transforming the element of momentum into energy and solid angle elements, we

get the double differential cross section

d2σ
dEbdΩb

∣∣∣∣
NEB

= − 2
ℏva

ρb(Eb)⟨ψ0x |Wx|ψ0x⟩. (2.24)

This equation is the key result of the IAV model. The same formula was obtained, by different ar-

guments, by Kasano and Ichimura79. A similar result was also obtained by Hussein and McVoy67. The

alternative derivation presented here, based upon the generalized optical theorem, provides a clear inter-

pretation of this formula, as the flux leaving the x + A channel following the breakup of the projectile

into b+x.

To recapitulate, in the IAV model, the breakup can be viewed as a two-step process. The first step

corresponds to the dissociation of the projectile (a) into the fragments b and x, leaving the target in the

ground state. The subsequent motion of the participant particle (x) is described by the function ψ0
x (⃗kb, r⃗x),

which is the solution of the inhomogeneous equation (2.12). This particle can then be scattered elastically

by the target or can interact non-elastically (for example, excite the target or fuse with it). The former

corresponds to the EBU part of the inclusive breakup cross section whereas these non-elastic processes,

corresponding to the second step in this two-step picture, yield the NEB contribution. Quantitatively,

this contribution is obtained as the expectation value of Im[Ux] in the state ψ0
x (⃗kb, r⃗x) [Eq.(2.24)]. Note

that, since this function depends on the final state of the spectator particle (b), the NEB expression (2.24)
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yields the absorption for each final state of b.

2.1.2 Practical implementation of the IAV model

The IAV formula for NEB breakup, Eq. (2.24), has a deceptively simple form. The function ψ0x must

be first calculated from the inhomogeneous Eq. (2.12), whose source term contains the three-body wave

function Ψ3b, which is a complicated object by itself. Furthermore, this equation must be solved for each

outgoing energy and angle of b covering the range of interest.

For these reasons, practical implementations of this theory have resorted to additional approxima-

tions. Standardly, all these applications rely on the DWBA approximation of the incident channel [that

is, Eq. (2.8)], rather than on a three-body model [Eq. (2.9)]. Even at the DWBA level, Eq. (2.12) is not

trivial. Usually, a partial wave decomposition of the scattering waves appearing in Eq. (2.12) will be

used and this means that a large number of angular momenta for the a + A, x + A, and b + B distorted

waves will be required for convergence of the calculated cross sections. In addition, the right-hand-side

of this equation contains non-local kernels, similar to those appearing in DWBA calculations between

bound states, but involving a larger number of angular momenta. Consequently, in addition to the DWBA

approximation, most of the existing calculations of this kind have been done in the zero-range (ZR) ap-

proximation.

One of the goals of our work, will be to assess the validity of these approximations by comparing ZR

with finite-range (FR) calculations. These numerical results will be presented in subsequent chapters. In

the remainder of this chapter, we will present more detailed formulas for the different approximations

and discuss several issues related to their numerical implementation. The detailed formulas for the NEB

cross sections in these two approximations are given in the following sections.

2.2 Partial wave expansion of the NEB formula in exact finite range

In this section, we discuss details on how to carry out the numerical calculations. Throughout this workwe

ignore the spin-orbit interactions by assuming that these interactions are insignificant for the continuum

cross section. We introduce the x−channel wave function of Eq. (2.12), and its partial expansion as

ψ0
x;mbx

=
1
rx

∑
lxmx

ψ0
lxmx;mbx

(rx, k⃗a, k⃗b)Ymx
lx (r̂x). (2.25)
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The radial part ψ0lxmx;mbx
(rx, k⃗a, k⃗b) satisfies the inhomogeneous differential equation given by

{
ℏ2

2μx

[ d2
dr2x

− lx(lx + 1)
r2x

]
− Ux + Ex

}
ψ0lxmx;mbx

(rx, k⃗a, k⃗b) = ρlxmx;mbx
(rx, k⃗a, k⃗b). (2.26)

Here ρlxmx;mbx
(rx, k⃗a, k⃗b) is the source term function given as

ρlxmx;mbx
(rx, k⃗a, k⃗b) ≡ rx

(
Ymx
lx (r̂x)χ

(−)
b (⃗rb, k⃗b)|Vpost|χ(+)

a (⃗ra, k⃗a)φa(rbx)
⟩
, (2.27)

where Vpost = Vbx + UbA − UbB
¶. In the finite-range approximation, the source term (2.27) is evaluated

exactly. Because all the relevant coordinates lie on the same plane (see Fig. 1.3), one can express any

coordinate in terms of two independent vectors. So, for example, choosing r⃗x as r⃗b independent vectors,

one may write

r⃗bx = q⃗rx − r⃗b and r⃗a = (1− pq)⃗rx + p⃗rb, (2.28)

where p = mb/(mb + mx) and q = mA/(mA + mx). The projectile wave function, neglecting again its

internal spin, can be expressed as φa(⃗rbx) = (Rlbx(rbx)/rbx)Y
mbx
lbx (r̂bx). Ignoring the internal spins of the

colliding particles, the distorted waves can be expanded as

χ(+)(⃗k, r⃗) =
4π
kr
∑
lm

ilRl(r)Yml (r̂)Ym∗l (k̂). (2.29)

For charged particles, the radial part is here assumed to include the Coulomb phase, eiσl , where σl are the

Coulomb phase shifts. Using this, and the partial wave decomposition of the distorted waves, the source

term is written as

ρlxmx;mbx
(rx, k⃗a, k⃗b) =

16π2

kakb
rx
∑
lama

∑
lbmb

ila+lb(−1)lbYmb∗
lb (k̂b)Yma∗

la (k̂a)
∫

dr̂xYmx∗
lx (r̂x)

∫
dr⃗bVpost

× Rlb(rb)
rb

Ymb
lb (r̂b)

Rla(ra)
ra

Yma
la (r̂a)

Rlbx(rbx)
rbx

Ymbx
lbx (r̂bx). (2.30)

To calculate this, we transform the spherical harmonics Yma
la (r̂a) and Ymbx

lbx (r̂bx) into linear combinations

of the spherical harmonics Ymb
lb (r̂b) and Ymx

lx (r̂x). This is done by means of Moshinsky solid-harmonic

¶Note that in Udagawa and Tamura’s formula, Vpost → Vprior = UxA + UbA − UaA
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expansion102

Ymbx
lbx (r̂bx) =

√
4π

lbx∑
n=0

n∑
λ=−n

c(lbx, n)
(qrx)lbx−n(−rb)n

rlbxbx
Ymbx−λ
lbx−n (r̂x)Y

λ
n(r̂b)⟨lbx − n, n,mbx − λ, λ|lbx,mbx⟩,

(2.31)

Yma
la (r̂a) =

√
4π

la∑
u=0

u∑
ν=−u

c(la, u)
(prb)la−u(1− pq)u(rx)u

rlaa
Yma−ν
la−u (r̂b)Y

ν
u(r̂x)⟨la − u, u,ma − ν, ν|la,ma⟩,

(2.32)

where

c(x, y) =

(
(2x+ 1)!

(2y+ 1)!(2(x− y) + 1)!

)1/2

. (2.33)

Because the interaction Vpost is an scalar, we can perform the Legendre expansion

Vpost
Rla(ra)
(ra)la+1

Rlbx(rbx)
(rbx)lbx+1 =

Tmax∑
T=0

(2T+ 1)qTla,lbx(rb, rx)PT(z). (2.34)

We note that, even if a finite-range treatment is made, in reactions of light projectiles on heavy targets

(e.g., deuteron scattering on heavy targets), the difference UbA − UbB, known as remnant term, can be

neglected, and thus Vpost ≃ Vbx. The limit Tmax is chosen large enough to generate all the couplings for

partial waves to be used. Here, the argument z in the Legendre polynomials PT(z) is the cosine of the

angle between r⃗b and r⃗x. The radial kernels are explicitly given by

qTla,lbx(rb, rx) =
1
2

∫ 1

−1
Vpost

Rla(ra)
(ra)la+1

Rlbx(rbx)
(rbx)lbx+1PT(z)dz. (2.35)

Finally, the source term results

ρlxmx;mbx
(rx, k⃗a, k⃗b) =

16π2

kakb

∑
lalb

∑
l

Yllxmxmbx
lalb (k̂a, k̂b)ρlalbllx (rx), (2.36)

with

Yllxmxmbx
lalb (k̂a, k̂b) =

∑
mamb

Yma∗
la (k̂a)Ymb∗

lb (k̂b)⟨lalbxmambx|lml⟩⟨llbmlmb|lxmx⟩, (2.37)
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and

ρlalbllx (rx) = rx
∑
nu

∑
ΛaΛb

∑
T

ila+lb(−1)lb+l+n+Λb−Λapla−u(qrx)lbx−n(rx)u(1− pq)u l̂a − ul̂bx − nn̂û

× l̂bxΛ̂aΛ̂b l̂a l̂bT̂/̂l/l̂xc(lbx, n)c(la, u)⟨u, lbx − n, 00|Λb0⟩⟨la − u, n, 0, 0|Λa, 0⟩

× ⟨Λb, T, 0, 0|lx, 0⟩⟨Λa, lb, 0, 0|T, 0⟩(2l+ 1)


lbx l la

n Λa la − u

lbx − n Λb u


×W(lx,Λb, lb,Λa; T, l)

∫
drbRlb(rb)(rb)

la−u+n+1qTla,lbx(rb, rx). (2.38)

The wave function ψ0
lxmx;mbx

(rx, k⃗a, k⃗b) of the inhomogeneous equation (2.26) can be expanded as

ψ0lxmx;mbx
(rx, k⃗a, k⃗b) =

16π2

kakb

∑
lalb

∑
l

Rlalb
llx (rx)Y

llxmxmbx
lalb (k̂a, k̂b), (2.39)

where the radial coefficients,Rlalb
llx (rx), are solutions of the inhomogeneous equation{

ℏ2

2μx

[ d2
dr2x

− lx(lx + 1)
r2x

]
− Ux + Ex

}
Rlalb

llx (rx) = ρlalbllx (rx). (2.40)

For Ex > 0 (unbound x-A states), this equation is to be solved with outgoing boundary conditions

Rlalb
lx (rx) → −Sla,lblx H(+)

lx (kxrx), (2.41)

where H(+)
lx (kxrx) is a Coulomb outgoing wave and the coefficients Sla,lblx are the S-matrix elements.

Finally, the double differential cross section with finite range within the post-form DWBA can be

written as [ d2σ
dΩbdEb

]NEB
post

=
64πμaμb
ℏ4k3akb

1
2lbx + 1

∑
lxmx

∑
mbx

Imbx
lxmx

(⃗ka, k⃗b), (2.42)

with

Imbx
lxmx

(⃗ka, k⃗b) = −
∫

drxWx(rx)
∣∣∣∣∑
lalbl

Rlalb
llx (rx)Y

llxmxmbx
lalb (k̂a, k̂b)

∣∣∣∣2. (2.43)

The double differential cross calculated in Eq. (2.42) is in c.m. frame. In order to compare the calculated

results with the experimental observables, the calculated results need to transform from c.m. frame to lab
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frame. The detailed formulas are given in Appendix A.

2.2.1 Special case lbx = 0

When the projectile ground state is in a dominant s-wave (lbx = 0), such as in the deuteron and 6Li cases,

the expressions above are greatly simplified. In this case, the projectile wave function can be expressed

as φa(⃗rbx) = Rlbx(rbx)/
√
4π/rbx. Then the source term, Eq. (2.36), can be rewritten as

ρlxmx;0(rx, k⃗a, k⃗b) =
16π2

kakb

∑
lalb

Ylxmx
lalb (k̂a, k̂b)ρ

lalb
lx (rx), (2.44)

with

Ylxmx
lalb (k̂a, k̂b) =

∑
mamb

Yma∗
la (k̂a)Ymb∗

lb (k̂b)⟨lblambma|lxmx⟩, (2.45)

and

ρlalblx (rx) =rxila+lb
∑
uT

(−)lbc(la, u)(1− pq)u(rx)ûlb l̂a − uT̂û̂la/̂lx⟨lb, la − u, 0, 0|T, 0⟩

× ⟨T, u, 0, 0|lx, 0⟩W(lb, la − u, lx, u|T, la)
∫

drbrb(prb)la−uRlb(rb)q
T
la,0(rb, rx). (2.46)

Similar to Eq. (2.39), the channel wave function ψ0
lxmx;0(rx, k⃗a, k⃗b) in Eq. (2.26) is also expanded in

ψ0lxmx;0(rx, k⃗a, k⃗b) =
16π2

kakb

∑
la

∑
lb

Rlalb
lx (rx)Ylalb

lxmx
(k̂a, k̂b). (2.47)

The radial function Rlalb
lx (rx) verifies the inhomogeneous equation

{
ℏ2

2μx

[ d2
dr2x

− lx(lx + 1)
r2x

]
− Ux + Ex

}
Rlalb

lx (rx) = ρlalblx (rx), (2.48)

to be solved with the same boundary condition of Eq. (2.41). Analogous to Eq. (2.42), we obtain the

double differential cross section of nonelastic breakup

[ d2σ
dΩbdEb

]NEB
post

=
64πμaμb
ℏ4k3akb

∑
lxmx

Ilxmx (⃗ka, k⃗b), (2.49)
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where

Ilxmx (⃗ka, k⃗b) = −
∫

drxWx(rx)
∣∣∣∣∑

la

∑
lb

Rlalb
lx (rx)Ylalb

lxmx
(k̂a, k̂b)

∣∣∣∣2. (2.50)

2.3 Partial wave expansion of the NEB formula in zero range

If the remnant term UbA − UbB of the post form interaction in Eq. (2.27) is small, φa(⃗rbx) corresponds to

an s-wave and Vbx is short-ranged, the integral is dominated by the values rbx ≈ 0 and can be evaluated

in the zero-range approximation119, i.e.,

Vpostφa(⃗rbx) ≃ Vbx(rbx)φa(⃗rbx) ≃ D0δ(⃗rbx), (2.51)

where D0 is the zero-range constant. Using this approximation in (2.27), the source term results

ρlxmx;0(rx, k⃗a, k⃗b) =
16π2

kakb

∑
la

∑
lb

ρlalblx (rx)Ylalb
lxmx

(k̂a, k̂b) (2.52)

with

ρlalblx (rx) =
D0

crx
ila+lb(−1)lb

[ (2la + 1)(2lb + 1)
4π(2lx + 1)

]1/2
⟨lalb00|lx0⟩Rla(rx)Rlb(crx)Λ(rx) (2.53)

and

Ylalb
lxmx

(k̂a, k̂b) =
∑
mamb

⟨lalbmamb|lxmx⟩Ymb∗
lb (k̂b)Yma∗

la (k̂a), (2.54)

where c = mA/(mA +mx) and Λ(rx) is the finite-range correction factor (see details in the Appendix C).

Following the partial wave expansion of Eq. (2.47), the double differential cross section of nonelastic

breakup with zero-range approximation results

[ d2σ
dΩbdEb

]NEB
post

=
64πμaμb
ℏ4k3akb

∑
lxmx

Ilxmx (⃗ka, k⃗b), (2.55)

where

Ilxmx (⃗ka, k⃗b) = −
∫

drxWx(rx)
∣∣∣∣∑

la

∑
lb

Rlalb
lx (rx)Ylalb

lxmx
(k̂a, k̂b)

∣∣∣∣2. (2.56)
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2.4 Convergence of the post-form amplitude

Another difficulty arising in solving Eq. (2.12) are the well-known convergence problems of the post-

form DWBA formula when applied to breakup reactions. This is because χ(−)
b , being a scattering state,

will be infinitely oscillatory and the operator in the matrix element Vbx and the initial state (ψa in DWBA)

depend on the r⃗bx coordinate and hence there is no natural cutoff in the r⃗b integration. As a consequence,

the source term has infinite range. To overcome this problem, several solutions have been proposed in the

literature. We discuss some of these solutions, which will be later used and compared in our calculations:

(i) The damping factor method proposed by Huby and Mines64 and Vincent139. In this method the

source term is multiplied by an exponential convergence factor, which damps the contribution of

the integral at large distances, i.e., the source term of Eq. (2.12) can be interpreted as

ρ(⃗kb, r⃗x) ≡ lim
α→0+

ρ(α)(⃗kb, r⃗x), (2.57)

with

ρ(α) = e−αrxρ(⃗kb, r⃗x). (2.58)

It can be demonstrated that by using the damping α, the left-hand side (LHS) of Eq. (2.57) oscillates

with zero mean at large rx.

(ii) The binning method. In this method, the scattering states are first expanded in partial waves (see

Sec 2.2), and the radial coefficients, Rℓb(rb, kb) are then averaged over small energy or momentum

intervals, i.e.,

R̄ℓb(rb, k
i
b) = N

∫ kib+Δkb/2

kib−Δkb/2
dkb Rℓb(rb, kb), (2.59)

where Δkb is the bin width, kib the central momentum of the bin and N is a normalization constant.

The resulting bin wave function is square-integrable and thus leads to convergent results when used

in the source term of Eq. (2.12).

(iii) The complex-integration by Vincent and Fortune140. They suggest using the actual scattering wave

function, but choosing an integration contour along the complex plane in such a way that the os-

cillatory integrand is transformed into an exponential decay, thus improving the convergence and

numerical stability of the calculation.
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2.5 Extension of IAV model to Ex < 0

The sort of breakup cross section that considered by Ichimura, Austern and Vincent can be regarded as

transfer to continuum (Ex > 0). In general, the inclusive cross section will contain also contributions

coming from Ex < 0. For example, in a (d, pX) reaction, the prottons emitted at the higher energies will

actually correspond to neutron transfer to bound states of the target nucleus. One would like to have one

framework to describe both transfer to continuum state and as well as to bound states (Ex < 0). The

explicit inclusion of all possible final bound states is unpractical because of the large number of final

states and the undertaintities in their spin/parity assignments and spectroscopic factors. An alternative

procedure was proposed by Udagawa and Tamura, as presented here. The key idea is to extend the com-

plex potential to negative energies. Then, the bound states of the system are simulated by the eigenstates

in this complex potential. The imaginary part will be associated with the spreading width of the single-

particle states, which accounts for the fragmentation of these states into more complicated configurations

due to the residual interactions. The formalism is greatly simplified if one assumes a constant imaginary

part, i.e.:

Wx = −Γ/2. (2.60)

The inhomogeneous equation Eq. (2.40) can be rewritten as

(Hx − Ex)R
lalb
llx (rx) = rxρlalbllx (rx), (2.61)

with

Hx = − ℏ2

2μx

[ d2
dr2x

− lx(lx + 1)
r2x

]
+ Ux. (2.62)

H0
x is the Hamiltonian Hx (defined in Eq. 2.62), when Wx is set zero in the latter. Then there is a set of

(real) eigen-solutions ψi of this new Hamiltonian H0
x :

(H0
x − Ei)ψi = 0. (2.63)

H0 can be regarded as the radial single-particle Hamiltonian, and ψi and Ei as the corresponding single-

particle wave functions and energies, respectively.
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Under this assumption (Wx is constant), ψi also satisfies

(Hx − Ẽi)ψi = 0, (2.64)

with

Ẽi = Ei − iΓ/2. (2.65)

Namely, ψi is an eigenfunction of the complex Hamiltonian Hx with the complex eigenvalue Ẽi. The

imaginary part Γ then describes the spreading (decaying) width of the eigenstate i95.

In terms of ψi, one can expand R
lalb
llx as

Rlalb
llx =

∑
i

1
Ex − Ei + iΓ/2

|ψi⟩⟨ψi|rxρ
lalb
llx ⟩. (2.66)

Note that the sum over i is over the complete set of states i, which includes not only the discrete

(bound) states, but also the continuum states with Ex > 0. Therefore, Rlalb
llx given by Eq. (2.66) includes

continuum effects.

By using Eq. (2.66), the matrix element in Eq. (2.24) can be written as

⟨Rlalb
llx |Wx|Rlalb

llx ⟩ =
∑
i

⟨ψi|Wx|ψx⟩
(E− Ei)2 + Γ2/4

|⟨ψi|rxρ
lalb
llx ⟩|

2. (2.67)

Finally obtained

[ d2σ
dΩbdEb

]Ex<0

post
=

64πμaμb
ℏ4k3akb

1
2lbx + 1

∑
i

Γ
2(E− Ei)2 + Γ2/2

dσlx
dΩb

, (2.68)

with
dσlx
dΩb

=
∣∣∣∑
lalbl

∑
mbxmx

⟨
ψi|rxρ

lalb
llx Y

llxmxmbx
lalb (k̂a, k̂b)

⟩∣∣∣2. (2.69)

The single-differential cross section given by Eq. (2.69) is nothing but the usual DWBA cross section

of the transfer reaction, in which x is captured into a single-particle state i. It is thus seen that the

double-differential cross section of Eq. (2.68) is, in fact, an energy average of the DWBA cross section

of Eq. (2.69) with appropriate weight functions.

In this Chapter, we have reviewed themodel purposed by IAV and discussed the partial wave expansion
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of that model. In the following Chapters, we will investigate the application of IAV model.
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I learned very early the difference between knowing the

name of something and knowing something.

Richard Feynman

3
Applications

This chapter will present the calculations for several reactions induced by deuterons, 6Li, 11Be, 7Li, 7Be

and 8B projectiles and compare the calculated inclusive cross sections with experimental data to assess

the validity of the theory. In all cases, the contributions for the elastic (EBU) and nonelastic (NEB)

breakup cross sections are computed separately. The EBU cross sections are calculated with the CDCC

formalism4, using the coupled-channels code FRESCO128. This makes it possible to treat the EBU to

all orders. For some cases, the CDCC and DWBA formalisms for EBU are compared. The NEB cross

sections are calculated with the DWBA version of the IAV model, given by Eq. (2.24) and the accuracy

of the Zero-Range approximation is tested by comparing zero range with finite range calculations.

3.1 Calculations for (d, pX)

There is a large body of exclusive and inclusive breakup data for deuteron-induced reactions. We have

considered the inclusive (d, pX) data for the reactions d+93Nb at Ed = 25.2 MeV from Ref.108, and

d+58Ni at 80 and 100 MeV from Refs.142,115.
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Figure 3.1: Calculated double differential cross section, as a function of the proton scattering angle, for the protons

emitted in the 93Nb(d, pX) reaction with an energy of 14MeV, and a deuteron incident energy ofEd = 25.5MeV. The

dotted and dashed lines are the elastic breakup angular distributions calculated with CDCC andDWBA, respectively.

3.1.1 d+93Nb

The data for d+93Nb were already analyzed in Ref.108, using the so-called surface approximation, in

Ref.79, using the zero-range version of the post-form DWBA formula discussed here, and in Ref.112,

using the prior form of the DWBA IAV model. These calculations give a reasonable account of the

experimental data.

In our calculations, the elastic breakup cross sections have been obtained with the CDCC method4. In

the CDCC formalism the deuteron breakup is treated as inelastic excitations to the p-n continuum. This

continuum is truncated at a maximum excitation energy, and discretized in energy bins. For the present

case, the p-n states were included for ℓ = 0− 4 partial waves, and up to a maximum excitation energy of

20 MeV. For the p-n interaction, the simple Gaussian form of Ref.4 was considered. The proton-target

and neutron-target interactions were adopted from the global parametrization of Koning and Delaroche

(KD)88, omitting the spin-orbit term, and evaluated at half of the deuteron incident energy. In the CDCC
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Figure 3.2: Calculated double differential cross section, as a function of the proton scattering angle, for the protons

emitted in the 93Nb(d, pX) reaction with an energy of 14MeV, and a deuteron incident energy ofEd = 25.5MeV. (a)

Non-elastic breakup angular distribution calculated with ZR-DWBA (dotted line), FR-DWBAwithout remnant (dashed

line) and full FR-DWBA (solid line); (b) Convergence of the NEB calculation with respect to the bin width,Δkb, used for
the b distorted waves; (c) Convergence of the NEB calculation with respect to the value of damping factor, α, used for the
b distorted waves. See text for details.

method, the breakup cross sections are calculated in terms of the center ofmass (c.m.) scattering angle and

excitation energy of the p-n system. Therefore, to compare with the proton inclusive data, these breakup

cross sections must be converted to the proton energy and scattering angle, making use of the appropriate

kinematical transformation. This was done with the formalism and codes developed in Ref.131. Fig. 3.1

shows the elastic breakup angular distribution , for the protons emitted in the 93Nb(d,pX) reaction with

an energy of 14 MeV, and a deuteron incident energy of Ed = 25.5 MeV, with the CDCC method (dotted

line) discussed above. For comparison we also show the EBU calculation obtained with DWBA post-

form formalism. For this DWBA calculation, we used the exact finite-range treatment and included

the full remnant term. The KD parameterization was also used for the proton-target and neutron-target

interactions, but evaluated at the corresponding proton (Ep) and neutron (En) energies. In DWBA, one

needs also the incoming channel optical potential (d+93Nb), which was taken from Ref.2. It can been

seen that the DWBA calculation (dashed line) is close to the CDCC calculation (dotted line) indicating
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Figure 3.3: Experimental and calculated double differential cross section, as a function of the proton scattering angle, for

the protons emitted in the 93Nb(d,pX) reaction with an energy of 14MeV, and a deuteron incident energy ofEd = 25.5
MeV. The dotted, dashed and solid lines are the elastic breakup (CDCC), the non-elastic breakup (FR-DWBA) and their

incoherent sum, respectively. Experimental data are taken fromRef. 108 .

that the former is accurate in this particular case.

For the NEB calculations, we have performed calculations using different approxiations, namely,(i)

a exact finite-range calculation, including the full remant term, (ii) a finite-range calculation without

remnant term and (iii) a zero-range calculation. For the ZR-DWBA calculations the zero-range constant

D0 = 125 MeV · fm3/2 was used, and we included the finite-range correction factor (see, e.g., Refs.18,119

and Section 2.3).

Fig. 3.2(a) shows double differential NEB cross section, comparing the results obtained with the dif-

ferent approximations. The dotted line is the ZR-DWBA calculation with the finite range correction

factor Λ(rx) (see Sec. 2.3). The dashed line is the FR-DWBA calculation, omitting the remnant term in

the transition operator (i.e., using Vpost ≈ Vpn). Finally, the solid line is the full FR-DWBA calculation.
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It can be seen that the ZR calculation (with finite-range correction) provides a very accurate result in the

present reaction, thus supporting the validity of this approximation in this case. Further, the non-remnant

term has a very small effect, and can be also safely ignored in the calculation.

In order to obtain meaningful results, the calculated observables must converge as the bin width Δkb

is progressively decreased [c.f. Eq. (2.59)]. This is verified in Fig. 3.2(b) for the present case, where

the calculated NEB angular distribution for different values of Δkb are shown. Although the rate of

convergence was found to be slow, it is seen that for Δkb ≈ 0.02 fm−1 the calculations are well converged

for the full angular range.

As discussed in Sec. 2.4, other approaches have been proposed to overcome the slow convergence of

the breakup post-form calculations. One of these methods is the introduction of an exponential damping

factor in the source term, i.e., exp(−αr), and study the convergence of the of the calculated observables

as α → 0. This convergence study is illustrated in Fig. 3.2 (c) for the present case. It is seen that for α ≈

0.001 fm−1 the calculations arewell converged. Moreover, the converged result is in good agreement with

that found using the binning procedure. Convergence was found to be somewhat faster for the binning

procedure so, unless stated otherwise, this method was adopted for the subsequent calculations presented

below. In each, a convergence study with respect to the bin size was done, but only the converged results

are presented.

In Fig. 3.3, the experimental108 and calculated inclusive double differential cross section, d2σ/dEpdΩp,

corresponding to a proton energy of Ep = 14 MeV are compared. The dotted line is the EBU calculation

(CDCC), which is found to underestimate the data at all angles. The dashed line is the exact FR-DWBA

calculation for the NEB part (see Section 2.2). The solid line is the sum of the EBU and NEB contribu-

tions. Except at very large angles, it is found to explain satisfactorily the data. It it to be noted that, at

the largest angles, the cross section is very small and other sources of protons (such as those produced in

fusion + evaporation) might also contribute. It is seen that, except for the smallest angles, the inclusive

breakup cross section is largely dominated by the NEB contribution. Our results are consistent with those

reported in Refs.108 and79.

3.1.2 d+62Ni

Now the results of d+62Ni reaction at 25.5 MeV are presented. The experimental data86,97 for (d, pX)

were analysed by Mastroleo et. al 97 using the Udagawa-Tamura’s prior form and they found that their
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Figure 3.4: (a) Convergence of nonelastic breakup calculations with respect to bin width in fm−1 (dotted line) and

damping factor (dashed line) used for the b distorted waves, as a function of the outgoing proton emitting energy, and
a deuteron incident energy ofEd = 25.5MeV; (b) Double differential cross section as a function of the proton energy in

the laboratory frame, for θp = 20◦. The dashed, dotted, and solid lines are the elastic breakup (CDCC), the non-elastic
breakup (FR-DWBA) and their incoherent sum, respectively. The experimental data are taken fromRefs. 86,97.

calculations successfully reproduced these data, whereas the calculations using the IAV model largely

over-predicted them. We reexamine these results using the CDCC method for the EBU part and our

implementation of the IAV model for the NEB part. In the CDCC calculation, we employ the same

proton-target and neutron-target interactions as used in Ref.97. We keep the same p + n interaction as

for the d+93Nb case. For the p-n continuum we considered the partial waves ℓ = 0 − 6, and excitation

energies up to 20 MeV. For the NEB part, we use the same potential as in Ref.97.

Before comparing with the data, we compare the NEB results obtained with the two stabilization

methods discussed above, namely, the binning method and the damping method. The converged (i.e.

stabilized) results obtained with these two methods are displayed in Fig. 3.4(a) for the angle-integrated

NEB cross section as a function of the proton energy in the CM frame. The shaded region corresponds to

negative energies of the neutron, that is, transfer to bound states. In Fig. 3.4(a), the dashed line shows the

calculation result using the damping factor method with α = 0.001 fm−1 which gives almost identical

result as bin method with the bin size, Δk = 0.02 fm−1. In both cases, with the choice of the value of the

factors, i.e.,α, Δk, the calculations are converged.

In Fig. 3.4(b) the calculated cross sections are compared with the experimental data from Refs.86,97,

corresponding to the double differential cross section as a function of the proton energy and a proton
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detection angle of θp = 20◦ in the laboratory frame. Note that, in this experiment, compound-nucleus

contributions were estimated and subtracted so the data should mainly correspond to the direct breakup

modes considered here. It is seen that the sum of them, EBU + NEB, reproduces reasonably well the

magnitude and shape of the data, except for some underestimation at the smaller energies and some

overestimation at the larger ones. Note that the low-energy tail will be mostly affected by the compound-

nucleus subtraction and hence some uncertainty is expected at these energies. The results shown here

are at variance with those reported in Ref.97, who found an overestimation of the IAV model. A more

detailed comparison between the IAV and UT models is deferred to Chapter 4.

3.1.3 d+58Ni
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Figure 3.5: (a) Experimental and calculated angle-integrated proton differential cross section, as a function of the outgo-

ing proton energy in the LAB frame, for the 58Ni(d,pX) reaction atEd = 80MeV. The dotted and thin solid lines are the

EBU andNEB contributions, calculated with CDCC and FR-DWBA, respectively. The dot-dashed line is the contribution

coming from pre-equilibrium and compound nucleus 75. The thick solid line is the incoherent sum of the three contribu-

tions. Experimental data are fromRef. 142 . (b) Non-elastic breakup calculated with ZR-DWBA (dotted), non-remnant

FR-DWBA (dashed), and full FR-DWBA (solid) formulas.

Now the results for the 58Ni(d,pX) reaction at 80 and 100 MeV are presented and compared with the

data from Refs.142,115. These data have been also analyzed in Refs.144,75,105, using the CDCC method for

the EBU part, and the semi-classical Glauber approach for the NEB part. In the CDCC calculations, the

proton-target and neutron-target interactions are obtained again from the Koning-Delaroche parametriza-
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tion, and employed the same p-n interaction used before. For the p-n continuumwe considered the partial

waves ℓ = 0 − 6, and excitation energies up to 50 MeV and 90 MeV for the data at Ed = 80 MeV and

Ed = 100 MeV, respectively. For the NEB calculations, the d+58Ni potential was taken from Ref.2.

In Fig. 3.5, the angle-integrated energy differential cross section at Ed=80MeV (dσ/dEp) is presented.

In Fig. 3.5(a), the dotted and thin solid lines correspond to the EBU (CDCC) and NEB (FR-DWBA)

calculations. It is seen that the NEB contribution is much larger than the EBU part. Both distributions

show a bell-shaped behavior, with amaximum around half of the deuteron energy. However, it is observed

that the sum of these two contributions cannot explain the experimental yield at small proton energies. As

shown in Ref.75, these low-energy protons comemainly from compound nucleus followed by evaporation

and from pre-equilibrium. Since these processes are not accounted for by the present formalism, in this

work the estimate done in Ref.75 was adopted (dot-dashed line in Fig. 3.5(a)). The total inclusive cross

section, including this contribution (thick solid line) reproduces reasonably well the shape and magnitude

of the data. Note that protons with energies larger than ∼74 MeV correspond to bound states of the

neutron-target system and are therefore associated with a stripping mechanism. This contribution can

be accommodated in the present formalism solving Eq. (2.12) for Ex < 0 and with boundary conditions

appropriate for bound states instead of outgoing boundary conditions. Further, for high-lying bound

excited states, were the density of levels will be very high, one may use the ideas of Udagawa and co-

workers of extending the complex potential to negative energies to describe the spreading of single-

particle states133,134 (See details in Sec. 2.5). We consider the neutron single-particle states of 59Ni as

1g9/2 (Ex = −5.796 MeV), 2d5/2 (Ex = −3.911 MeV), 3s1/2 (Ex = −3.537 MeV) where the energies

correspond to the experimentally extracted centroids for these configurations [73]74 with the spreading

width Γ = 2 MeV. Since our formalism ignores the spin-orbit interaction of the neutron-target potential,

for each configuration the depth of this potential was adjusted to yield the corresponding separation

separation energy. We note that, when the energy close to the threshold (Ep ∼ 74 MeV), the numerical

results are unreliable due to the difficultly of calculating the wave function of n−58Ni system for En ∼ 0.

As a result, the nonelastic breakup differential cross section plotted in Fig. 3.5 exhibits a dip at Ep = 74

MeV which does not seem to be supported by the smoother trend of the experimental data. A proper

understanding of this near-threshold behaviour and of its correct numerical treatment, while interesting,

goes beyond the scope of this work and is left for future investigations.

In Fig. 3.5(b), the different approximations for the transition amplitude used in the NEB calculation
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Figure 3.6: Double differential cross section of protons emitted in the 58Ni(d,pX) reaction atEd = 100MeV in the

laboratory frame. (a) Proton angular distribution for a fixed proton energy ofEp = 50MeV. (b) Energy distribution for

protons emitted at a laboratory angle of 8◦ (arrow in top figure). Themeaning of the lines is the same as in Fig. 3.5, and

are also indicated by the labels. Experimental data are fromRef. 115.

are compared, namely, zero-range DWBA (dotted), finite-range DWBA with no remnant (dashed) and

full finite-range DWBA (solid). As in the previous case, the ZR-DWBA and FR-DWBA calculations

agree very well for proton energies around and above the maximum, although some small differences are

visible. The effect of the remnant term is again found to be very small.

Finally the results for the d+58Ni reaction at 100 MeV are presented. The results are shown in Fig. 3.6,

where the top panel contains the experimental and calculated proton angular distributions for protons

detected at 50 MeV in the laboratory frame, and the bottom panel shows the energy distribution for the

protons scattered at 8◦ in the laboratory frame. Again, it is seen that the inclusive breakup is dominated by

the NEB contribution in the full angular range, particularly at large scattering angles. As in the 80 MeV

case, both the EBU and NEB contributions exhibit bell-shaped distributions, with a maximum around ≈

Ed/2. On the other hand, the protons coming from compound nucleus and pre-equilibrium dominate the

low-energy region. Except for some underestimation of the cross section at the maximum, the agreement

between the theory and the data is rather satisfactory.
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3.2 (6Li, αX)

We have seen that the IAV model provide a suitable description of inclusive breakup reaction induced

by deuterons. As a second example, we consider now the case of 6Li induced reactions, for which a

large body of experimental data exist. Invariably, these data show a remarkably large yield of α particles.

The understanding of the large α yields observed in reactions with 6Li has been subject of many stud-

ies110,28,83,107,19,124,89,117,113. These works have shown (see e.g. Refs.89,19) that the total exclusive cross

sections (α+d and α+p) are much smaller than the total α production cross section. Consequently, the α

inclusive cross sections are largely underestimated by CDCC calculations which, as we have seen, ac-

count only for the EBU part. Here, we apply the IAV to calculation of the total inclusive cross sections

of 6Li induced reaction.

3.2.1 209Bi (6Li, αX)

We first consider the 6Li+209Bi reaction at several bombarding energies between 24 and 50 MeV, for

which experimental data exist117. The nominal Coulomb barrier for this system is around 30.1 MeV31,

so these data span energies below and above the barrier. The 6Li nucleus is treated in a two-cluster model

(α+d). CDCC calculations based on this model have been performed for many 6Li induced reactions. In

order to reproduce the elastic data, these calculations usually require a reduction of the imaginary part

of the fragment-target interactions63,11,116. On the other hand, four-body CDCC calculations, based on a

more realistic three-body model of 6Li (α+p+n), are able to describe the elastic data for 6Li+209Bi without

any readjustment of these potentials141, thus suggesting that the need for a reduced absorption is related

to the limitations of this two-body model for 6Li. Since the inclusive formulas considered in this work

are based on a two-body model of the projectile, the calculations are performed with the α+d model, and

allow for the same kind of renormalization prescribed in previous works.

For that, first the elastic scattering within the CDCC framework is studied. These calculations include

s-wave (Jπ = 1+), p-wave (Jπ = 0−, 1−, 2−), and d-wave (Jπ = 1+, 2+, 3+) continuum states. For

the d wave, a finer division of bins is made in order to describe the 6Li resonant states at 2.186 MeV

(Jπ = 3+), 4.31 MeV (Jπ = 2+) and 5.7 MeV (Jπ = 1+). For the α + d ground state, a Woods-Saxon

well is used with V0 = 78.46 MeV, r0 = 1.15 fm, and a = 0.7 fm106. A second Woods-Saxon well is

used to describe the p− and d−wave states with parameters V0 = 80.0 MeV, r0 = 1.15 fm, a = 0.7 fm
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Figure 3.7: Elastic scattering of 6Li+209Bi at different incident energies. The solid and dashed lines are, respectively, the

CDCC calculation and the optical model calculation with the optical potential from 29. The experimental data are from

Ref. 118 .

and supplemented with a spin-orbit term, with the usual Woods-Saxon derivative form, and parameters

Vso = 2.5 MeV, rso = 1.15 fm, aso = 0.7 fm in order to place the d−wave resonances correctly. The

d−209Bi and α−209Bi optical potentials are taken from Refs.57 and6, respectively. Consistently with

previous works, these calculations were found to underestimate the elastic data. It was found that, by

removing the surface part of the d−209Bi imaginary potential, a good description of the experimental

elastic angular distributions is achieved. This is shown in Fig. 3.7 by solid lines. For comparison, the

optical model calculation using the potential of Cook29 (dashed lines) is also shown. Note that this

reduction of the imaginary potential is consistent with the conclusions of Ref.141, which points toward an

effective suppression of the deuteron breakup in 6Li scattering, compared to the free deuteron scattering.

Now the inclusive breakup cross sections (6Li,αX) are discussed. The EBU contribution was obtained

from the CDCC calculations discussed above. For the NEB calculations, we used Eq. (2.24), both in
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Figure 3.8: Angular distribution of α particles produced in the reaction 6Li+209Bi at the incident energies indicated by the

labels. The dotted, dashed and solid lines correspond to the EBU (CDCC), NEB (FR-DWBA) and their sum, respectively.

Experimental data are fromRef. 117.

the ZR and FR-DWBA approximations. The same optical potentials for α/d+209Bi were used as in the

CDCC calculations. For simplicity, the deuteron and target spins are ignored (note that, in the CDCC

calculations, the inclusion of the deuteron spin is important to place correctly the ℓ = 2 resonances). The

distorted waves for the incoming channel are calculated with the optical potential of Cook quoted above.

In Fig. 3.8, the calculated and experimental angular distributions of α particles are compared, for

several incident energies of 6Li. The dotted and dashed lines are the EBU (CDCC) and NEB (FR-DWBA)

results. Except for the lowest energies, theNEB is found to account formost of the inclusive breakup cross

section, in agreement with previous findings89,19. The summed EBU + NEB cross sections (thick solid

lines) reproduce fairly well the shape and magnitude of the data, both above and below the barrier. These

results give confidence on the possibility of extending the formulation of the IAV theory to situations in
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incident energies of (a) 24MeV and (b) 38MeV. The dotted, dashed and solid lines are the ZR-DWBA, FR-DWBAwithout

remnant term and full FR-DWBA calculations, respectively.

which the unobserved particle is a composite system.

At the most forward angles (where the α yield is nevertheless small) the EBU is found to be larger than

the NEB part. Using a semi-classical picture, this can be understood by noting that these small angles

will correspond to distant trajectories. However, according to Eq. (2.24), the NEB is only effective for

distances within the range of the deuteron-target imaginary potential and hence it will be very small for

these distant trajectories. It is worth noting, however, that the separation between EBU and NEB parts in

the (6Li,αX) case is less clear than in the (d,pX) case. In the present model, the NEB is associated with

the absorption due to the d+target imaginary potential. If an empirical deuteron-target potential is used,

part of this absorption will be due to the breakup of the deuteron into p+n. However, in a more realistic

description of 6Li in terms of α+p+n, the breakup of 6Li into α+p+n (leaving the target in the ground state)

would actually correspond to elastic breakup. Despite this ambiguity, we believe that the sum of the two
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contributions, that is, the TBU cross section, can be reasonably well estimated by the present model, as

supported by the comparison with the data.

Now the validity of the ZR approximation is studied in the present reaction. This is shown in Fig. 3.9,

were we show the angular distribution of α particles produced by NEB, calculated with different DWBA

approximations, and at two different energies, one below (24 MeV) and one above (38 MeV) the barrier.

The dotted, dashed and solid lines are the ZR-DWBA, FR-DWBA without remnant term and full FR-

DWBA results, respectively. It is seen that the ZR-DWBA calculations underestimate systematically

the FR-DWBA results by about ∼ 10 − 20% and hence the validity of the ZR approximation is more

questionable than in the deuteron case. Further, it is found that the no-remnant FR-DWBA calculation

underestimates the full FR-DWBA result by about∼ 30− 40%, indicating that the effect of the remnant

term is much more important than in the deuteron case, owning to the strong Coulomb interaction and

the difference of the geometry, r⃗bA and r⃗b, caused by the valence particle.

Finally, the incident energy dependence of the total α yield is studied. This is shown in Fig. 3.10. The
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squares and the open circles correspond, respectively, to the NEB (FR-DWBA) and EBU (CDCC) con-

tributions to the α production cross section. At energies above the nominal Coulomb barrier (indicated

by the arrow) the NEB largely dominates the inclusive breakup. Below the Coulomb barrier, both contri-

butions become comparable. This can be again explained in classical terms, by noting that, at these small

energies, the distance of closest approach will be relatively large, due to the presence of the Coulomb

barrier and, therefore, the imaginary part of the d+target potential (which is responsible for the NEB part)

will have little effect. We have included in the same plot the total reaction cross sections, as extracted

from the CDCC calculations, which are found to be very close to the values calculated with the Cook

optical potential (not shown). It is seen that, at energies below the Coulomb barrier, the reaction cross

section is almost exhausted by the (6Li,αX) TBU cross section, whereas at energies above the Coulomb

barrier other processes beyond the breakup seem to be present (e.g. pure target excitation, α absorption,

complete fusion, etc). A more detailed analysis of these processes will be presented in Sec 3.8 .

3.2.2 208Pb (6Li, αX)

Now the results for the 208Pb(6Li,αX) reaction at several energies between 29 and 39 MeV are presented,

comparing with the data from Refs.122,83. The Coulomb barrier for this system is around 29.5 MeV122.

The CDCC calculations use the same structure model and bin discretization as in the 209Bi case. The

d−208Pb and α−208Pb optical potentials are taken from Ref.57 and Ref.6, respectively. As in the 209Bi

case, the surface term of the imaginary part of the d+208Pb potential was removed. For the NEB calcu-

lations, the optical potential of 6Li+208Pb is taken from Ref.29.

Fig. 3.11 shows the comparison of the calculated and experimental angular distributions of α particles

produced in this reaction for several incident energies. The dashed and dotted lines are the EBU (CDCC)

and NEB (FR-DWBA) results. As in the 6Li+209Bi case, the NEB is found to account for most of the

inclusive breakup cross section. The squares and circles are the experimental data taken from Ref.122 and

Ref.83, respectively. It is observed that there is an appreciable difference between the two sets of data.

The sum of EBU and NEB reproduces reasonably well the magnitude and shape of the data of Ref.122,

except for some overestimation.

From the results shown here and in Sec. 3.2.1, it can be concluded that the α−emitting channel is

the dominant nonelastic breakup process in the 6Li induced reactions on heavy targets. To investigate

whether this conclusion is a general feature of 6Li induced reactions or it is true only for specific cases, it
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Figure 3.11: Angular distribution of α particles produced in the reaction 6Li+208Pb at the incident energies indicated by

the labels. The dotted, dashed and solid lines correspond to the NEB (FR-DWBA), EBU (CDCC) and their sum, respec-

tively. Experimental data are fromRef. 122,83 , see text for details.

is important to carry out a systematic investigation of 6Li induced reactions on various targets, especially

medium-heavy and medium-mass targets.

3.2.3 159Tb (6Li, αX)

This section presents the results for the reaction of 6Li on the medium-heavy mass target 159Tb, at several

energies between 23 MeV and 35 MeV, whose angular distributions of inclusive α particles have been

measured by Pradhan et. al.113. In Ref.113, they considered that the inclusive α particles arise from the

following processes: (i) breakup of 6Li into α and d fragments where both fragments escape without being

captured by the target, i.e., a no-capture breakup (NCBU) process, (ii) α particles resulting from d capture

by the target (d−ICF), following the breakup of 6Li into α and d, or a one step transfer to the target, (iii)
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single-proton stripping from 6Li to produce unbound 5He that decays to an α particle plus a neutron, (iv)

single-neutron stripping from 6Li to produce an α−unstable 5Li, which will subsequently decay into an

α particle plus a proton, and (v) single-neutron pickup from 6Li to produce 7Li, which breaks into an α

particle and a triton if 7Li is excited above its breakup threshold of 2.468MeV. Under this assumption, the

integrated inclusive α−particle cross sections are nearly reproduced, but not for the angular distributions.

Considering the two-body structure of the projectile by using the IAV model, the processes discussed

by Pradhan et. al.113 can be re-defined as follows: the process (i) can be divided into two parts. First,

the no-capture breakup with the target remaining in its ground state, i.e., EBU. Second, the non-capture

breakup accompanied by target excitation, which we call “inelastic breakup” and is part of our ”non-

elastic breakup” cross section; processes (ii)-(iv) may be also embedded in the NEB part, for wich d is

absorbed by the target or d breaks up into a p and a n following the breakup of 6Li into α and d; it can also

happen that after the breakup of 6Li, the deuteron picks a neutron to become a tritium, contributing to the

process (v). In general processes (ii)-(v) and inelastic breakup can be considered as nonelastic breakup

and therefore accounted by IAV formalism.

Here the inclusive α−particle cross section is analysed by means of IAV model which divides the

inclusive breakup into elastic breakup and nonelastic breakup. First the elastic scattering with the CDCC

framework is studied. Since there are no elastic scattering data available for the 6Li+159Tb system,

the CDCC calculations are adjusted to reproduce the elastic scattering data of a similar system, i.e.,
6Li+144Sm51. The same interaction of α − d as discussed in the previous cases is used. The optical
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Figure 3.13: Angular distribution of α particle productions of the reaction 6Li+159Tb at the incident energies indicated

by the labels. The dashed, dotted and solid lines are EBU calculated with CDCC, NEB calculated with finite-range DWBA

and their sum, respectively. The experimental data are taken fromRef. 113

potentials of α−144Sm and d−144Sm were evaluated at 2/3 and 1/3 of the incident energy of 6Li, respec-

tively. The global optical model potential parameters65,57 were used to describe the interactions at the

corresponding energies. The CDCC calculation is shown in Fig. 3.12 by solid lines. For comparison, the

optical model calculation using the potential of Cook29 (dashed lines) is also shown. It can be seen that

the CDCC result is similar to the optical model calculation, particularly at E = 35.1 MeV. At this energy,

the calculations reproduce very well the elastic data. For the lower energy, the calculations underestimate

the data at backward angles. Note that that, in contrast to the 6Li reactions on heavy targets, i.e., 6Li+209Bi

(Sec. 3.2.1) and 6Li+208Pb (Sec. 3.2.2), the surface term of imaginary part of d−target potential was kept

in this case.

Now the inclusive breakup cross sections 159Tb(6Li,αX) are discussed. The EBU contribution was

obtained from the CDCC calculations discussed in the previous paragraph. For the NEB calculation, the

same optical potentials α/d+144Sm were used. The Cook potential29 was used to calculate the distorted

wave of the incoming channel.

In Fig. 3.13, the calculated and experimental angular distributions of α particles are compared, for

several incident energies of 6Li. The dashed and dotted lines are the EBU (CDCC) and NEB (FR-DWBA)

results. Similar to the heavy target systems, i.e., 6Li+209Bi (Sec. 3.2.1) and 6Li+208Pb (Sec. 3.2.2), the
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the CDCC calculation and the optical model calculation with the optical potential from 110. Experimental data are from

Ref. 110 .

NEB is found to account for most of the inclusive breakup cross section, and the summed EBU + NEB

cross sections (solid lines) reproduced fairly well the shape and magnitude of the data, except some small

overestimation.

3.2.4 118Sn (6Li, αX)

In this section the results for 118Sn(6Li, αX) at energies between 18 and 24 MeV are presented and com-

paredwith the data fromRef.110. The optical potential parameterizations of Refs65,57 are used for α−118Sn

and d−118Sn. For the NEB calculations, the optical potential of 6Li+118Sn is taken from Ref.110.

First the validity of the two-cluster of 6Li was studied for the elastic scattering of 6Li + 118Sn at several

incident energies. It is found that the CDCC calculations with this model give a good agreement with

the experimental data. This is shown in Fig. 3.14 by solid lines. For comparison, the optical model

calculation using the potential mentioned in Ref.110 (dashed lines) is also shown.

Fig. 3.15 shows the comparison of the calculated and experimental angular distributions of α particles

produced in the reaction 6Li+118Sn, for several incident energies. The dashed line is the EBU result from
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tively. Experimental data are fromRef. 110.

the CDCC calculation, whereas the dotted line is the NEB result using the IAV formalism. It can be seen

that NEB accounts for most of the inclusive breakup cross section and the EBU becomes the dominant

breakup mode for angles smaller than ∼ 50 degrees. The summed EBU + NEB (solid line) reproduces

remarkably well the shape and magnitude of the data.

We have seen that the IAV model works rather well for 6Li reactions with heavy-mass and medium-

mass targets. In the following subsections, we examine the validity of the model for the lighter targets.

3.2.5 59Co (6Li, αX)

As discussed before, for the heavymass targets 209Bi and 208Pb andmedium-heavymass targets 159Tb and
118Sn the nonelastic breakup process dominates the inclusive α production in the 6Li induced reactions.

In this section we present analysis of the reaction of 6Li on a much ligher mass target, 59Co, at Elab = 21.5

MeV, which is above the Coulomb barrier (VB = 12.0MeV). The inclusive α particles have been reported

by Souza et. al.124. First the elastic scattering is studied with the CDCC method to test the validity of
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the two-body projectile model in this reaction. Since there are no elastic scattering data available at 21.5

MeV, the CDCC calculation is compared with the elastic scattering data at a lower energy, i.e., Elab = 18

MeV. The optical model potentials for α+59Co and d+59Co were taken from Refs65 and57, respectively,

and evaluated at 2/3 and 1/3 of the incident 6Li energy. The CDCC calculation is shown in Fig. 3.16 by

the solid line. For comparison, the optical model calculation using the potential of Cook29, dashed line,

is also shown. It can be seen that both CDCC and optical model calculations reproduce fairly well the

experimental data of Souza et. al.125. We notice that no renormalization of the deuteron potential was

required in this case.

Now the inclusive breakup cross section 59Co (6Li, αX) is discussed. The EBU contribution was

obtained from the CDCC calculation discussed above. The distorted wave for the incoming channel

is calculated with the optical potential of Cook29. In Fig. 3.17, the calculated and experimental angular

distributions of α particles are compared. The dashed and dotted lines are, respectively, the EBU (CDCC)
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and NEB (FR-DWBA) calculations. Except for the forward angles, the NEB was found to dominate the

inclusive α productions. The summed cross section, EBU + NEB, reproduces well the shape of the

experimental data, although the magnitude is underestimated by 30% at the maximum. This might

indicate that, in this reaction, there might be other relevant mechanisms leading to the production of α

particles. Possible candidates are the formation of a compound nucleus followed by α evaporation and

also transfer populating bound states of the target.

The experimental and calculated α production spectra for Elab = 21.5 MeV and at θlab = 15◦, 25◦,

35◦, 45◦, 55◦, 65◦ and 75◦ are shown in Fig. 3.18. Except at θlab = 15◦, the sum of EBU and NEB

reproduces the peak of the α production spectra. For the low energy part, the main contribution of the

inclusive α production may come from compound nucleus followed by evaporation and pre-equilibrium

which is not considered in the present calculations, whereas for high energy α particles may be attributed

to the contribution of transfer (n, p, or d) to the target. Further calculations are planned to investigate
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these possibilities.

3.2.6 58Ni (6Li, αX)

Now the α production of 6Li + 58Ni at several incident energies between 12 MeV and 20 MeV is studied.

The angular distributions of inclusive α particles have been measured by Pfeiffer et. al.110. To test the

two-body structure of 6Li and the fragment-target interactions, the elastic scattering data were compared

with CDCC calculations. The same optical model potentials as in the 6Li+59Co case were used. Fig. 3.19

shows the elastic scattering of 6Li + 58Ni at several energies. The solid lines are the CDCC calculations

which give good agreement with the experimental data from Ref.110. For comparison the optical model

calculation using the potential mentioned in Ref.110 (dashed line) is also shown.

59



0 50 100 150
0.6

0.8

1
dσ

/d
Ω

 (
m

b/
sr

)

Pfeiffer et. al.
CDCC
OM

0 50 100 150
0

0.5

1

1.5

0 50 100 150
θlab (deg)

0

0.5

1

1.5

0 50 100 150
θlab (deg)

0

0.5

1

1.5

dσ
/d

Ω
 (

m
b/

sr
)

0 50 100 150
θlab (deg)

0

0.5

1

1.5

12 MeV 14 MeV 16 MeV

18 MeV 20 MeV

6
Li+

58
Ni
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respectively, the CDCC calculation and the optical model calculation with the optical potential from 110. Experimental

data are fromRef. 110 .

We present now the inclusive alpha cross sections. For the NEB calculation, the 6Li optical poten-

tial from Ref.110 was used. Fig. 3.20 shows the comparison of the calculated and experimental angular

distributions of α particles produced in this reaction, for several incident energies. The dashed line is

the EBU result obtained with the CDCC calculation and the dotted line is the NEB result using the IAV

formalism. Again, the NEB part dominates the inclusive α productions. In general, the summed EBU +

NEB cross section (solid lines) reproduces fairly well the shape and magnitude of the data. At 14, 16 and

18 MeV some underestimation is observed, which might be associated with other α-production channels,

as pointed out in the 6Li+59Co case.

From the results presented in the previous sections, we may conclude that the strong α-production

channel observed in 6Li experiments originates mostly from non-elastic breakupmechanisms. In all cases

analyzed so far, the EBU mode turns out to account for a relatively small fraction of the total inclusive

alpha cross section and its contribution is only important for the alpha particles emitted at small angles.

We found also a indirect evidence that other alpha production mechanisms, such as fusion or transfer,

might have some contribution for the lighter targets.
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Figure 3.20: Angular distribution of α particles produced in the reaction 6Li + 58Ni at the incident energies indicated

by the labels. The dashed, dotted and solid lines are, respectively, the EBU (CDCC), NEB (FR-DWBA) and their sum.

Experimental data are fromRef. 110.

3.2.7 Systematics of inclusive α production

Systematic studies of α production yields in 6Li reactions show an interesting universal behaviour when

plotted as a function of the incident energy scaled by the Coulomb barrier energy. As an example, we

show in Fig. 3.21 the results reported by Pakou et. al.107. It is seen that the experimental α production

shows some kind of universal behaviour except for a few cases (6Li+28Si and 6Li+58Ni). In this section,

we will investigate whether our calculations exhibit also this universal behaviour. For this study, we

have considered the systems 59Co, 118Sn, 159Tb, 208Pb and 209Bi. The results are shown in Fig. 3.22 (a),

where we plot the calculated σTBUα cross sections as a function of the reduced energy (Ec.m./Vb), with

Vb the energy of Coulomb barrier, estimated as Vb = ZpZte2/(rB(A
1/3
p + A1/3t )), where Zp (Zt) and Ap

(At) are atomic number and atomic mass of the projectile (target), respectively, and rB = 1.44 fm. The

squares, circles, diamonds, up triangles, left triangles and down triangles correspond, respectively, to the

reactions of 6Li + 58Ni, 6Li + 59Co, 6Li + 118Sn, 6Li + 159Tb, 6Li + 208Pb and 6Li + 209Bi. It can be

seen that for the medium-heavy and heavy targets the inclusive breakup cross sections show same trend,
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Figure 3.21: α particle cross section in reactions involving 6Li scattering on several targets. 6Li+28Si, 6Li+58Ni, 6Li+118Sn,
6Li+120Sn, and 6Li+208Pb are designated with solid circles, solid stars, up and down solid triangles, and solid boxes, respec-

tively. The plot is taken fromRef. 107.

but not for the medium mass targets. We recall however that, for these lighter systems, there might be

additional contributions from other channels, such as compound nucleus and transfer to bound states,

which are not accounted for by the IAV formalism. Fig. 3.22 (b) shows the reduced inclusive breakup α

cross sections, σTBUα /(πR2B) with R2B = rB(A
1/3
p + A1/3t ), as a function of the reduced energy. The curves

of reduced inclusive breakup cross sections are clearly different for medium, medium-heavy and heavy

mass targets. For a given reduced energy, the reduced inclusive breakup cross section decreases with the

product ZpZt, in agreement with the calculations of Ref.24.

We have also studied the relative importance of EBU versus NEB as a function of the incident energy.

For that, we display in Fig. 3.23 the ratio of EBU over TBU (= EBU + NEB) It is seen that, for incident

energies below the Coulomb barrier, the elastic breakup cross section becomes comparatively more im-

portant as the energy decreases. By constrast, for energies above the Coulomb barrier, the ratio shows an

almost constant behavior. It can also be seen that, while for the heavy mass targets elastic breakup plays

an important role in the inclusive α production, especially below the Coulomb barrier, for the medium

mass targets elastic breakup is less important and the nonelastic breakup is dominant.
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Figure 3.22: (a) Inclusive breakup α cross sections involving 6Li projectile with several different targets as a function of

Ec.m./Vb. (b) Reduced inclusive breakup α cross sections as a function ofEc.m./Vb for the same systems as (a). See text

for the details.

In conclusion, the α production in the reactions involving the weakly bound 6Li projectile and differ-

ent masses and charges targets have been discussed in this subsection. The calculated total breakup cross

sections (TBU = EBU + NEB) showed some universal trend for the heavy targets, but significant devi-

ations have been found for the light targets. This could indicate that the latter do not obey the universal

behaviour, but we cannot rule out that the deviations are due to the presence of additional α production

mechanisms, not included in our calculations. This problem deserves further investigation which goes

beyond the goals and capabilities of this dissertation.

3.3 (11Be,10Be X)

So far, we have considered the case of reactions induced by the weakly bound nuclei d and 6Li. We

extend now our study to the case of the halo nuclei, considering first the case of 11Be. This nucleus has

been largely studied in the literature, both experimentally and theoretically. It is the archetype of one-

neutron halo nucleus in which one nucleon has a large probability of being at large distances of the center

of the nucleus, well beyond the range of the nuclear potential. It has a single bound excited state and a

very small separation energy (0.5 MeV). Consequently, this nucleus breaks easily in collisions with other

nuclei. In particular, in reactions with heavy targets, the nucleus is strongly polarized due to the action

of the Coulomb potential on the 10Be core, thus favouring the dissociation of the projectile. Therefore,
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Figure 3.23: (a) Ratios of calculated EBU over TBU (= EBU +NEB) for different systems. (b) Ratios of calculated NEB over

TBU (= EBU +NEB) for different systems. See text for the details.

elastic breakup is expected to be an important breakup mode. Experimental data for 10Be observables

in reactions with 11Be have been reported in Refs.36,109,35. These works suggest that the inclusive 10Be

cross section is dominated by the elastic breakup. In this section, we focus on the calculation of nonelastic

breakup process of 11Be on a medium mass target, 64Zn.

For that purpose, the 11Be + 64Zn reaction at an incident energy of 28.7 MeV, corresponding to about

1.4 times the Coulomb barrier, was considered. The EBU part is estimated using the CDCC formalism,

assuming a 10Be + n two-bodymodel for 11Be. Within this simplifiedmodel, the 11Be ground state (1/2+)

and the first excited state (1/2−; Ex = 320 KeV) are described, respectively, by the pure single-particle

configurations 2s1/2 and 1p1/2, coupled to the ground state of 10Be. In order to attain convergence of

the calculated cross sections, we needed to include n−10Be partial waves up to ℓ ≈ 5, and a maximum

excitation energy of ε = 12 MeV, with respect to the neutron separation threshold.

The n−10Be interaction, which is required to generate the 11Be wave functions, was adopted from

Ref.25. This potential consists of a central and a spin-orbit components, of WS shape, with a fixed

geometry and a parity-dependent depth. For even partial waves, this potential reproduces the ground state

separation energy as well as the position of the 5/2+ resonance at Ex = 1.8 MeV, assuming that these

states are described by pure 2s1/2 and 1d5/2 configurations, respectively. For the ℓ = 1 states, the depth

was adjusted to reproduce the separation energy of the 1/2− bound state. For other odd partial waves, the

depth determined for ℓ = 1 was used. We note that this potential reproduces also the continuum B(E1)

distribution extracted from the Coulomb dissociation experiment of Fukuda et. al.52.
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Figure 3.24: Differential cross section for the angular distribution of inclusive 10Be produced in 11Be+64Zn. (a) Elastic

breakup calculated with CDCC (dotted line), nonelastic breakupwith (FR-DWBA) and their sum (solid line). (b) Elas-

tic breakup calculated with XCDCC (dotted line), nonelastic breakupwith (FR-DWBA) and their sum (solid line). I The

experimental data are fromRef. 36 .

The optical potential for 10Be-target was taken from Ref.36 where it was extracted from the fit of the
10Be + 64Zn elastic scattering data. The n−target potential was taken from the global parametrization of

Koning and Delaroche88, evaluated at the corresponding energy. For the NEB calculation, the optical

potential of 11Be+64Zn was also taken from Ref.36. This potential reproduces the elastic scattering data.

The calculated inclusive 10Be angular distribution is comparedwith the experimental results in Fig. 3.24.

In panel (a) the EBU contribution (dotted line) was obtained from the CDCC calculation discussed above.

It can be seen that the EBU contribution dominates the inclusive 10Be production, and follows a similar

shape compared with the data, but the absolute magnitude is underestimated by about 30% for angles

around θ = 20◦. The NEB obtained from the IAV model (dashed line in Fig. 3.24) shows a comparable

contribution with EBU for angles larger than 30 degrees and becomes negligible for small angles. The un-

derestimation at the smaller angles (θ < 25◦), it can be attributed to the limitations of the structure model

used for the 11Be nucleus. Recent studies have demonstrated that this simple single-particle picture is not

accurate for 11Be due to the effect of core excitations. These effects have been recently incorporated in

an extended version of the CDCC formalism (XCDCC)126,33. Calculations using this XCDCC method

have been recently reported for this reaction33, so we include also these results for comparison. These

results are shown in Fig. 3.24 (b), where the EBU is now obtained with the XCDCCmethod, whereas the

IAV is the same as in the panel (a). As anticipated, the inclusion of core excitations produces an increase

65



20 22 24 26 28
0

150

300

450

600
dσ

/d
E

dΩ
 (

m
b/

sr
 M

eV
)

NEB (FR-DWBA)
EBU (XCDCC)
EBU (XCDCC) + NEB (DWBA)

20 22 24 26 28
0

150

300

450

20 22 24 26 28
Elab (MeV)

0

70

140

210

280

dσ
/d

E
dΩ

 (
m

b/
sr

 M
eV

)

20 22 24 26 28
Elab (MeV)

0

70

140

210

280

θ
c
=15.5

o θ
c
=20

o

θ
c
=25

o θ
c
=35

o

Figure 3.25: Experimental and calculated inclusive 10Be energy distributions produced in the reaction 11Be + 64Zn at

energies of 28.7MeV for the laboratory angles indicated. The dotted, dashed and solid lines are respectively, the EBU

(XCDCC), NEB (DWBA) and their sum. The experimental data were taken fromRef. 111.

of the EBU contribution, improving significantly the agreement with the data at small angles.

Ideally, the NEB should be also calculated with the same structure model used in the XCDCC calcu-

lations. However, this extension has not yet been implemented.

In addition, we show in Fig. 3.25 the calculated breakup energy distributions of the 10Be fragments,

together with with the preliminary data for this channel111 , for four measured laboratory angles. The

solid curves are the sum of EBU obtained with XCDCC (dotted lines) and NEB (dashed lines) calculated

with DWBA. The general features of the data, their magnitude, centroids, and widths, are well described

by the calculations. For the forward angles, the EBU component dominates the TBU, whereas the NEB

part is relatively small. At larger angles, i.e., θ = 25o and θ = 35o, the NEB cross section are comparable

with EBU.
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Figure 3.26: Elastic scattering of 7Li + 208Pb at different incident energies. The dashed, dotted and solid lines are, re-

spectively, with the full t−target imaginary part of the optical potential, reduced t−target imaginary part and the optical

potential from Ref. 29. experimental data are taken fromRef. 81

3.4 (7Li,αX)

For the three projectiles considered so far (6Li, d, 11Be) the g.s. consists of a s wave configuration and

we have been able to use the simplified NEB formula for lbx = 0 (see Sec. 2.2.1). To test the validity of

the IAV model, it is important to extend our study to more general cases, for which lbx ̸= 0.

For that purpose, the 7Li+208Pb reaction at bombarding energies between 29 and 39 MeV were con-

sidered, for which experimental data exit. The 7Li nucleus is treated in a two-cluster model (α + t).

Compared to the (α + d) two-cluster model of 6Li, the main difference between the two nuclei is the

internal angular momentum lbx, for 6Li lbx = 0, whereas for 7Li lbx = 1. Furthermore the difference in

breakup threshold energy of the two Li isotopes, 1.474 MeV for α+ d breakup of 6Li compared to 2.468

MeV for the α+ t breakup of 7Li is also important.

In order to test the validity of the α+t two cluster model of 7Li breakup, first the elastic scattering of the

same reactionwas studied using the CDCC framework. The α−t interaction, which is required to generate
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Figure 3.27: Angular distribution of α particles produced in the reaction 7Li + 208Pb at energies indicated by the labels.

The dotted, dashed and thick solid lines are, respectively, the EBU, NEB and their sum, for which the calculations were

performedwith full imaginary part of t−208Pb optical potential. For comparison, the TBU calculation with the reduced

imaginary part of the t−208Pb optical potential is also showed as thin solid line. The experimental data are taken from

Refs. 98,83

the 7Li ground state wave function as well as the bound excited state and continuum wave functions was

taken from Ref.16. This potential consists of a central and a spin-orbit component, of Gaussian shape,

with a fixed geometry and a parity-dependent depth. The potential well depths were adjusted to give the

correct binding energy or resonance energy for bound or resonant states, respectively. In order to achieve

the convergence of the calculated cross sections, we needed to include α − t partial waves up to ℓ = 3.

For the f wave, a finer division of bins is used in order to reproduce the ℓ = 3 resonant states at 4.63

MeV (7/2−) and 6.68 MeV (5/2−) correctly. The α−208Pb and t−208Pb optical potentials are taken from

Refs.6 and78, respectively. For comparison, the optical model calculation using the potential of Cook29

was also performed. Fig. 3.26 shows the elastic scattering of 7Li + 208Pb at different incident energies.

The data are taken from Ref.81. The dashed and solid lines are, respectively, the CDCC and optical model

calculations. It can be seen that the optical model calculation reproduces better the data, particularly at
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E = 29MeV. As in the 6Li case we have performed and additional calculation allowing for a modification

of the fragment-target potentials. In this case, we modified the t+208Pb potential, which was rescaled by

0.8. The corresponding elastic angular distributions, displayed by the dotted line in Fig. 3.26, show a

better agreement with the optical model calculation and hence with the data.

Now the inclusive breakup cross section (7Li,αX) is discussed. The EBU part was obtained from the

CDCC calculation discussed abovewith both the full imaginary part as well as with the reduced imaginary

part of t−208Pb optical potential. The NEB part was calculated with the IAV model using the exact finite

rangeDWBA formalismwith the two sets of t−208Pb optical potentials. In Fig. 3.27 the dotted and dashed

lines are, respectively, the EBU (CDCC) and NEB (DWBA) components calculated with the full t−208Pb

optical potential. First, it is noticeable that the two data sets98,83 agree with each other well at forward

angles, but they clearly differ at backward angles. We recall that a similar discrepancy was already found

for the 6Li+ 208Pb data, measured by the same groups. Concerning the comparison with the calculations,

we observe a good agreement with the data by Mazzocco et. al.98 at forward angles for E = 33 and 39

MeV, but a large overestimation at larger angles. At 29 MeV, the overestimation is observed in the full

angular range. This discrepancy is found for the two potential sets. The reason of that is not clear at

this stage but new experimental data for this, or nearby systems, would be desirable to clarify this large

discrepancy.

3.5 (7Be,α/t X)

We consider now the similar case 7Be. Being the mirror nucleus of 7Li, they exhibit a similar structure.

The 7Be nucleus is radioactive with a well pronounced 3He + 4He cluster structure and is bound by only

1.586 MeV with respect to 7Be→ 3He + 4He breakup. As in the 7Li case, the g.s. of 7Be has a dominated

lbx = 1 configuration. We have performed calculations for the 7Be+58Ni reaction which has been recently

measured at an incident energy of 21.5 MeV99. Interestingly, these data show a dominance of the alpha

production channel over the 3He channel (by a factor of ∼ 4). This suggest that these fragments are

not produced by elastic breakup but more complicated processes are present. Consequently, we may

anticipate a large contribution arising from NEB.

The EBU component was calculated within the CDCC framework. The 4He-target was obtained from

aWoods-Saxon potential fit to the 12 MeV 4He + 58Ni elastic scattering data of Ref.90 with the following

parameters : V = 49.5MeV, R0 = 5.88 fm, a0 = 0.5 fm,W = 11.0MeV, Rw = 5.69 fm and aw = 0.5 fm.
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Figure 3.28: Angular distribution of α particles (a) and 3He particles (b) produced in the reaction 7Be + 58Ni at energies of

21.5MeV. The dotted, dashed and thick solid lines are, respectively, the EBU (CDCC), NEB (DWBA) and their sum. The

experimental data are taken fromRef. 99. Note the different scale of the plots.

The 3He-target interaction was taken from the 8.95 MeV t+58Ni parameters of Ref.50. The interaction

between the 7Be cluster constituents was taken from16. This potential was properly tuned to reproduce

the binding energies of the 7Be ground state and first excited state and also the excitation energies of

the 7/2− (Eex = 4.57 MeV) and 5/2− (Eex = 7.21 MeV) resonances assuming a ℓ = 3 configuration.

The continuum states in 7Be were discretized up to 12 MeV above the 3He + 4He breakup threshold.

Finer energy bins were introduced for the resonances. For the NEB calculations, the 7Be + 58Ni optical

potential was taken from the 21.5 MeV 7Li + 58Ni parameters from Ref.29.

Fig. 3.28(a) shows the angular distribution of α particles. The dotted line is the EBU component

calculated by the CDCC formalism, whereas the dashed line is the NEB part obtained by the DWBA

version of IAVmodel. In contrast to the 7Li + 208Pb case, the sum of EBU andNEB (solid line) reproduces

fairly well the shape and magnitude of the experimental data. Fig. 3.28(b) shows the angular distribution

of 3He particles. The EBU part was obtained from the same CDCC calculation, whereas for the NEB part

the role of participant and spectator were interexchanged. The sum of EBU and NEB reproduces well the

experimental data of forward angles but, for the larger angles, the data are overestimated by∼ 60%. We

stress, however, that the 3He yield is much smaller than that for 4He and uncertainties in our calculations,

might lead to larger relative errors for the former case.

We have also compared the experimental and calculated energy distribution of α and 3He fragments.

This is shown in Fig 3.29 (a) and (b) for 4He and 3He, respectively. The dotted and dashed histograms
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Figure 3.29: Experimental and calculated inclusive α (a) and 3He (b) produced in the reaction 7Be + 58Ni at energies of

21.5MeV. The solid line is the sum of EBU (CDCC) andNEB (DWBA) see test for details. The dotted and dashed his-

tograms are respectively corresponding to the events detected at forward and backward angles Ref. 99 arbitrarily nor-

malized to approximately match themaximum of the calculation.

depict the spectra at forward and backward angles, respectively. Since the experimental spectra are given

in counts, theywere arbitrarily normalized for a better comparisonwith the theoretical curves. The overall

trend of the data is well reproduced. It is also apparent that the fragments with outgoing energies below

a certain threshold (E4He < 7.3 MeV and E3He < 6.6 MeV) were not detected, as it is indeed explained

in Ref.99. These low-energy fragments contribute mostly at large angles and this might explain part of

the overestimation found for the 3He particles.

We have tried to elucidate the origin of the dominance of the 4He yield over the 3He yield. In general,

the fragment with larger penetrability is expected to interact stronger with the target nucleus and, hence,

to have a larger non-elastic breakup cross section. However, in this particular case, the two fragments

have the same charge and similar masses, so they will have similar penetrabilities. Another aspect to be

considered is the fact that the 4He nucleus is a compact system, and will not be broken or excited by the

target. By contrary, non-elastic channels channels are expected to be more relevant in the 3He+58Ni case.

In particular, the neutron pickup channel is expected to be very important.

These arguments suggest that the 3He+58Ni system will have a larger reaction cross section as com-

pared to the 4He+58Ni system for the relevant kinetic energies. To verify this, we have computed the

corresponding reaction cross sections as a function of their corresponding 3He and 4He incident energies.

This is shown in Fig.3.30, where these reaction cross sections are indicated by solid and dotted lines, re-
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Figure 3.30: Calculated reaction cross section of α/3He + 58Ni as function of incident energy in lab frame.

spectively. In each case, the circle corresponds to the average incident energy for each fragment (i.e. 3/7

and and 4/7 of the incident energy, respectively). As anticipated, it is seen that the reaction cross section

is significantly larger for the 3He projectile, and this should explain, at least partially, the dominance of

the (7Be,3HeX) channel.

3.6 (8B,7Be X)

We consider now the case of the 7Be production in reactions with the proton halo nucleus 8B. The valence

proton has dominant p3/2 configuration and hence this is another example of lbx ̸= 0. In particular, we

investigate the reaction 58Ni(8B,7BeX) at Elab = 25.8 MeV for which experimental data exit131,87.

In the CDCC calculation, the 8B is treated in a 7Be−p two-cluster model, assuming a pure p3/2 con-

figuration for the ground state. For simplicity, the 7Be intrinsic spin was neglected. The p−7Be binding

potential was taken from Esbensen and Bertsch44. The potential used to construct the bin states was the

same (real) potential as used to bind the 8B ground state. The 7Be−p partial waves were needed up to

ℓ = 4 with bins extending up to εmax = 8 MeV to obtain converged results for these three-body observ-
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and their sum. The experimental data was taken from 131,87

ables. For the 7Be−58Ni system, the interaction of Moroz et al.101 was used, as in the earlier analysis131.

The p−58Ni potential is taken from the global parametrization of Koning and Delaroche88. For the NEB

calculation , the optical potential of 8B+58Ni was taken from Ref.1.

Fig. 3.31 shows the calculated and experimental 7Be cross section angular distribution following the

breakup of 8B on 58Ni at 25.8 MeV. The dashed, dotted and solid lines are respectively, the EBU (CDCC),

NEB (DWBA) and their sum. It can be seen that the calculated result gives an overall good agreementwith

the experimental data131,87. Similar to the halo nucleus case of 11Be, the inclusive breakup is dominated

by the EBU part, whereas the NEB part gives a small contribution and is negligible at small angles. This

can be understood within a semi-classical picture by noting that these small angles will correspond to

distant trajectories. However, according to Eq. (2.24), the NEB is only effective for distances within the

range of the proton-target imaginary potential and hence it will be very small for these distant trajectories.

For the backward angles, the NEB part is comparable to the EBU part.

Fig. 3.32 shows the calculated breakup energy distributions of the 7Be fragments, together with the

data from Refs.131,87, for four measured laboratory angles. For the smallest angle (≈ 20◦), the data are
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Figure 3.32: Experimental and calculated inclusive 7Be energy distribution produced in the reaction 8B + 58Ni at energies

of 25.8MeV for the laboratory angles indicated. The dashed, dotted and solid lines are respectively, the EBU (CDCC),

NEB (DWBA) and their sum. The experimental data were taken from 131,87.

the average of the distributions at θlab = 19◦ and θlab = 21◦. For the largest angles, θlab = 50◦, the

curves and data are similarly the average of the distributions obtained at θlab = 50◦ and θlab = 60◦.

The solid curves are the sum of EBU (dashed lines) and NEB (dotted lines). The general features of

the data, their magnitude, centroids, and widths, are well described by the calculations. As discussed

above, the EBU component dominates the TBU, whereas the NEB part is relatively small. Although

a full understanding of this result would require additional calculations, we may speculate that, for a

proton participant, the NEB will be suppressed compared to a neutron case due to the repulsive effect of

the proton-target interaction.
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3.7 Influence of the separation energy and the incident energy on the EBU and NEB

As we have discussed above, for the weakly bound nuclei, such as deuteron, 6,7Li and 7Be, the NEB

part dominates the TBU. It is nevertheless expected that the relative importance of EBU versus NEB will

depend on several factors, such as the target mass/charge (see details in Sec. 3.2.7), the separation energy

of the projectile and the incident energy. For example, in the scattering of halo nuclei, such as 11Be

and 8B, on heavy targets, long-range Coulomb couplings favor the distant breakup of the projectile thus

enhancing the EBU component over theNEB one. The effect has been found to be particularly remarkable

at energies around and below the Coulomb barrier (see details in Sec. 3.6 and Sec. 3.3). One may expect

that, as the incident energy decreases, the EBU component will become progressively more important

as compared to the NEB part, because the breakup will occur at larger distances, thus suppressing the

absorption of the x+target system. Taking 6Li + 209Bi reaction system as an example, we have studied

this dependence by performing calculations at three incident energies, one below, one around and one

above the Coulomb barrier (Vb ≈ 30.1 MeV). Simultaneously, we have also studied the dependence on
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the binding energy by varying artificially the separation energy of the 6Li nucleus (Sαd). The results are

presented in Fig. 3.33 for the 209Bi (6Li, αX) reaction. The left, middle and right panels correspond to the

binding energies Sαd=0.47 MeV, 1.47 MeV (the physical one) and 2.47 MeV, respectively. In each panel,

the EBU, NEB and TBU cross sections are displayed as a function of the incident energy.

It is seen that the EBU depends strongly on the separation energy, decreasing by ∼ 1 − 2 orders

of magnitude when the latter is artificially increased from 0.47 MeV to 2.47 MeV. By contrast, the NEB

breakup shows a moderate reduction with this variation of binding energy. As a consequence, the relative

importance of EBU versus NEB varies drastically with the separation energy. For Sαd=1.47MeV and 2.47

MeV, the TBU is largely dominated by the NEB component, whereas for Sαd=0.47 MeV (typical of halo

nuclei), the EBU component dominates. This different behavior of the EBU and NEB components can

be understood as follows. The EBU is a peripheral process and thereby highly sensitive to the tail of the

α−dwave function. Since the magnitude of the wave function at large distances is mostly determined by

the separation energy of the two clusters, it is conceivable that the EBU is reduced as the binding energy is

increased. On the contrary, Eq. (2.24) indicates that the NEB component depends on the internal region,

and will be therefore sensitive to the overall size of the projectile and target, being therefore less sensitive

to the change in the tail of the α− d relative wave function.

Regarding the dependence on the incident energy shown in Fig. 3.33, for the physical separation energy

(middle panel), the NEB largely dominates at energies around and above the barrier, and the EBU only

becomes competitive at energies well below the barrier, for which the breakup is expected to occur at large

projectile-target separations, and the absorptive effect of the d+target interaction will be less effective.

For the more weakly-bound case (left panel) the EBU and NEB contributions turn out to be similar above

the barrier but, as the incident energy decreases, the NEB drops faster than the EBU, making the latter

dominant. This result corroborates the dominance of EBU observed in breakup experiments with halo

nuclei (Sec. 3.3 and Sec. 3.6). Conversely, for the tightly bound case (right panel), the NEB dominates

in the whole energy range.

These results confirm the strong sensitivity of the relative importance of EBU and NEB on the incident

energy as well as on the separation energy. In particular, for halo nuclei, we expect a dominance of EBU

at energies around and below the barrier, whereas for tightly bound nuclei we expect a dominance of

NEB for all energies.
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3.8 Reaction modes and reaction cross section of 6Li + 209Bi

For a weakly bound nucleus, it is expected that breakup contributes a significant fraction of the reaction

cross section. We have investigated this in a quantitative way for the 6Li+209Bi reaction. For example, for

the two-body projectile using the notation introduced above, the reaction can be represented as a+A → X,

where X is any possible configuration of the b+ x+ A system. The main contributing processes will be

the following:

(i) The elastic breakup process (EBU), in which the three outgoing particles are emitted in their ground

state, i.e., a+ A → b+ x+ Ags.

(ii) Inelastic breakup (INBU), in which the breakup is accompanied by the excitation of some of the

fragments. For example, if the target is excited, a + A → b + x + A∗, whereas if the core particle

is excited, a+ A → b∗ + x+ Ags.
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(iii) Particle transfer, leading to the bound states of the A+ x system, i.e., a+ A → b+ B (B ≡ A+ x),

or the bound states of the A+ b system, i.e., a+ A → x+ B (B ≡ A+ b)

(iv) Incomplete fusion (ICF), in which the fragment x is absorbed by the target, forming a compound

nucleus C, which will eventually decay by particle or gamma-ray emission: a+ A → b+C, or the

fragment b is absorbed by the target, forming a compound nucleus C, which will eventually decay

by particle or gamma-ray emission: a+ A → x+ C

(v) Complete fusion (CF) followed by evaporation. We include also in this category the preequilibrium

(PE) processes.

In Fig. 3.34, these processes are schematically depicted for a 6Li+A reaction (assuming a two-body

dissociation 6Li→α+d).

The EBU cross sections [process (i)], can be obtained with the CDCC framework, as we have done in

the calculation presented in Sec. 3.2.1.

The calculation of INBU, process (ii), has been less explored in the literature. In the case of target

excitation, this was done by the Kyushu group in the early days of the CDCC method143 for the case of

deuteron scattering, with the aim of comparing the relative importance and mutual influence of target-

excitation and deuteron breakup in elastic and inelastic scattering of deuterons. Process (iii), i.e., transfer

of x to bound states of A, has been traditionally treated within the DWBA method119. For weakly-bound

projectiles, the coupling to the breakup channels becomes important, and this effect is known to affect

the transfer cross sections. This effect can be incorporated using the adiabatic distorted wave model

of Johnson and Soper (ADWA)77 and more elaborate versions of it (e.g.76). A recent review of these

theories can be found in Ref.20.

The process (iv), ICF, is very challenging from the theoretical point of view to the extent that, at

present, no fully-quantum mechanical theory exists to calculate ICF cross sections. For this reason,

alternative methods, based on semiclassical ideas, have been proposed in the literature96,39,37. Moreover,

from the experimental point of view, the identification of this process is not without its difficulties since,

many times, the products coincide with those produced in the transfer reactions.

Processes (ii)-(iv) correspond to the NEB, as defined in Chapter 1 and evaluated with the IAV, Eq. 2.24,

in our calculation.

Process (v) is qualitatively different from the previous ones, because it takes place via the formation

of a compound nucleus, rather than via a direct process. The calculation of detailed cross sections, as a

78



25 30 35 40 45 50
Elab (MeV)

10
0

10
1

10
2

10
3

σ 
(m

b)

CF
EBU (CDCC)

NEB (
6
Li,αX)

NEB(
6
Li,dX)

SUM
σR (CDCC)

6
Li+

209
Bi

Figure 3.35: Decomposition of the reaction cross section for the 6Li+209Bi reaction at several incident energies. The
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breakup for d as a spectator and the complete fusion which were taken fromRef. 32. Their sum (solid line) is remarkably

close to the reaction cross sections which obtained from the CDCC calculations. The arrow indicates the nominal posi-
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function of the angle/energy of the outgoing particles, requires the use of statistical models, first proposed

by Bohr12, and whose modern formulation can be found in many textbooks129.

According to the previous discussion the reaction cross section for two-body projectile reaction system

can be written as

σR = σCF + σEBU + σ(b)NEB + σ(x)NEB. (3.1)

where σ(b)NEB is the part of the NEB cross section observing b particle and σ(x)NEB is the part of the NEB

cross section observing x particle. Here the 6Li + 209Bi reaction was taken as an example to investigate

decomposition of the reaction cross sections. This is shown in Fig. 3.35 for different incident energies.

The crosses, squares and diamonds are, respectively, the cross sections of elastic breakup, nonelastic

breakup for α as a spectator, nonelastic breakup for d as a spectator. For completeness, we include

also the experimental CF cross section reported by Dasgupta et al.32. The sum of these contributions is

79



compared at each energy with the reaction cross section, obtained from the CDCC calculation. It is seen

that the sum EBU+NEB+CF is remarkably close to the reaction cross section.

This is a very interesting result which suggests that the reaction cross section for this reaction is well

exhausted by the sum of the breakupmodes considered here, plus the CF cross section. Other contribution

to the reaction cross section, such as pure target excitations (not accompanied by projectile breakup) are

small in this case.

The situation may be of course qualitatively different for other systems. Although it is our purpose to

extend our study to other projectiles and/or targets, we have not been able to accomplish this before the

submission of this dissertation, and the study is differed for the future.

In this Chapter, we have we have compared the IAV model with inclusive breakup data for reactions

induced by several weakly bound nuclei, including the halo nuclei 11Be and 8B. Our results can be sum-

marized as follows:

• Overall, our calculations show a very encouraging agreement with the data, which reinforces the

validity of the IAV model.

• For the non-halo systems, the have found that the inclusive breakup data is dominated by non-

elastic breakup channels. In particular, this result explains why the alpha production yields re-

ported in 6Li and 7Li reactions are largely overestimated the CDCC calculations, since the latter

method accounts only for the EBU part.

• Despite the dominance of NEB for the non-halo nuclei (d, 6Li, 7Li, 7Be), we have found that the

relative importance of EBU and NEB depends on several structure and dynamical factors, such as

the projectile binding energy, and the incident energy. For example, at sub-Coulomb energies the

EBU becomes progressively more important as compared to the NEB part.

• For the halo nuclei studied here (11Be, 8B), the EBU is found to be dominant, at least for the targets

and energies considered in our analysis.

In the following Chapter, we will address the problem of the post-prior equivalence in inclusive breakup

reactions induced by weakly bound nuclei.
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Physics depends on a universe infinitely centred on an

equals sign.

Mark Z. Danielewski

4
Post-Prior Equivalence

In the introductory chapter, we saw that there was an intense activity in the 1980s by several theoretical

groups with the aim of developing appropriate theories for the evaluation of inclusive breakup cross sec-

tions5,9,17,67,71,79,121,135,137. This research was leaded by two main groups, the group of Austern, Ichimura

and Vincent (IAV), on one side, and the group of Tamura and Udagawa (UT).

In the preceding chapters, we have implemented and applied extensively the IAV model. However,

as pointed out in the introductory chapter, there was a long-standing debate between these two groups

regarding the validity of their respective models. In this chapter we explain in more detail the formal

differences of these two models and we compare them numerically for some practical cases.

From the formal point of view, the main difference between the two models is that the IAV uses the

post-form representation of the transition amplitude, whereas UT used the prior-form representation. This

is in contrast to the DWBA formula for transfer between bound states, where it is well known that the

post and prior formulas are fully equivalent. This discrepancy led to a long-standing controversy between

these two groups, which lasted for more than a decade. The heart of the discussion was the fact that the

transformation of the post form DWBA expression of IAV to its prior form gave rise to additional terms,
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not present in the UT prior formula (see Sec. 1.2.5). These additional terms guaranteed the post-prior

equivalence for NEB, but they were nevertheless regarded as unphysical terms by UT. To support their

conclusions, UT performed calculations for several inclusive reactions93,97, in which they showed that

the IAV calculations largely overestimated the data.

This result is at variance with the numerical results presented in the previous chapters, where we have

shown that the IAV model gives a very reasonable account of inclusive experimental data for most of the

reactions analysed in this work. Moreover, recent calculations performed by other groups, using also the

IAV model27,112, show also a good agreement with the data. To clarify the situation, we have compared

these two models, performing calculations for the same reaction, and comparing with experimental data.

For ameaningful comparison, we have used the same input ingredients (e.g. potentials) in the twomodels.

As an additional motivation, with this study we aim at obtaining a better understanding of the post-prior

equivalence in the context of inclusive breakup reactions, both at a formal as well as at a numerical level.

Before presenting the numerical results, we briefly recall the main differences between the two for-

mulations.

4.1 The post-prior formulas

Using the post-form DWBA, the inclusive breakup differential cross section, as a function of the detected

angle and energy of the fragment b, is given by

d2σ
dΩbdEb

=
2π
ℏva

ρ(Eb)
∑
c

|⟨χ(−)
b Ψc,(−)

xA |Vpost|χ(+)
a φaφ

0
A⟩|2δ(E− Eb − Ec), (4.1)

where Vpost ≡ Vbx + UbA − UbB is the post-form transition operator, ρb(Eb) = kbμb/((2π)3ℏ2) (with μb

the reduced mass of b+B and kb their relative wave number) , φa(⃗rbx) and φ0A are the projectile and target

ground-state wave functions, χ(+)
a and χ(−)

b are distorted waves describing the a − A and b − B relative

motion, respectively, and Ψc,(−)
xA are the eigenstates of the x + A system, with c = 0 denoting the x and

A ground states. Thus, for c = 0 this expression gives the EBU part, whereas the terms c ̸= 0 give the

NEB contribution.

The theory of IAV allows to perform the sum in a formal way, making use of the Feshbach projection
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formalism and the optical model reduction, leading to a closed form for the NEB differential cross section:

d2σ
dEbdΩb

∣∣∣∣IAV
NEB

= − 2
ℏva

ρb(Eb)⟨ψpostx |Wx|ψpostx ⟩, (4.2)

where Wx is the imaginary part of the optical potential Ux, which describes x+ A elastic scattering. The

function ψpost
x (⃗rx) (the x-channel wave function hereafter) describes the x − A relative motion when the

target is in the ground state and the b particle scatters with momentum k⃗b, and is obtained by solving the

inhomogeneous equation

(E+
x − Kx − Ux)ψpost

x (⃗rx) = (χ(−)
b |Vpost|χ(+)

a φa⟩, (4.3)

where Ex = E− Eb and Vpost ≡ Vbx + UbA − UbB.

Udagawa and Tamura137 derived a very similar formula for the same problem, but making use of the

prior form. Their final result is formally identical to Eq. (4.2), but with the x-channel wave function given

by ψprior
x , which is a solution of

(E+
x − Kx − Ux)ψpriorx (⃗rx) = (χ(−)

b |Vprior|χ(+)
a φa⟩, (4.4)

with Vprior ≡ UxA + UbA − UaA.

Despite their formal analogy, the UT and IAV expressions lead to different predictions for the NEB

cross sections. An important result to understand the connection between these two expressions is the

relation93

ψpost
x = ψprior

x + ψno
x , (4.5)

where

ψno
x (⃗rx) = ⟨χ(−)

b |χ(+)
a φa⟩, (4.6)

is the so-called non-orthogonality (NO) overlap.

Replacing Eq. (4.6) into Eq. (4.2) one gets

d2σ
dEbdΩb

∣∣∣∣IAV
NEB

=
d2σ

dEbdΩb

∣∣∣∣UT
NEB

+
d2σ

dEbdΩb

∣∣∣∣NO
NEB

+
d2σ

dEbdΩb

∣∣∣∣IN
NEB

, (4.7)
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where we have introduced the NO cross section

d2σ
dEbdΩb

∣∣∣∣NO
NEB

= − 2
ℏva

ρb(Eb)⟨ψno
x |Wx|ψnox ⟩, (4.8)

and the interference (IN) term

d2σ
dEbdΩb

∣∣∣∣IN
NEB

= − 4
ℏva

ρb(Eb)Re⟨ψprior
x |Wx|ψno

x ⟩. (4.9)

Equation (4.7) represents the post-prior equivalence of the NEB cross sections in the IAV model, with

the RHS corresponding to the prior-form expression of this model. The first term is just the UT formula,

which is formally analogous to the IAV post-form formula (4.2), but with the x-channel wave function

given by ψpriorx (⃗rx). The two additional terms, which are responsible for the discrepancy of the IAV and

UT results, arise from the NO overlap. These terms ensure the post-prior equivalence of the NEB cross

sections. However, UT considered that these two additional terms are unphysical and hence that the post-

prior equivalence does not hold for the NEB. We note here that this problem does not hold for the EBU

part, for which the post and prior formulas are well known to give identical results71. To support their

interpretation, Mastroleo, Udagawa and Tamura97 performed calculations for the reactions 58Ni(α, pX)

at Eα = 80 MeV and 62Ni(d, pX) at Ed = 25.5 MeV. In both cases, they found that the sum of the EBU

(calculated with DWBA) and the NEB (calculated with the IAV model) overestimates the data. This

result was interpreted as evidence for the failure of the IAV model, and support for the UT theory.

This interpretation was later questioned in subsequent works by Ichimura et al.72,73,70 and also by

Hussein and co-workers66. These works clearly demonstrated that the UT formula provides only the so-

called elastic breakup fusion component, which corresponds to breakup without simultaneous excitation

of the target A by the interaction UxA, and that the prior-post equivalence does indeed hold for inclusive

processes as well.

In the following section, we apply the IAV and UT models to specific reactions comparing, in the

former, the prior and post results.

4.2 Post-prior equivalence for the x− A channel wave function

The relation between Udagawa and Tamura (UT) model and Ichimura, Austern and Vincent (IAV) model

has been discussed in the previous section. The relation of the IAV and UT model for the x− A channel
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wave function is given by Eq. (4.5). It should be noted that ψno
x (⃗rx) is long ranged and behaves asO(1/r2x)

for rx → ∞. To overcome this long range behaviour, the energy binning procedure introduced in Sec. 2.4

and applied in the calculations of Chapter 3 is used here. With the finite range partial wave expansion

Eq. (2.39), the radial part of Eq. (1.58) can be rewritten as

Rlalb
llx (rx)

∣∣∣post = Rlalb
llx (rx)

∣∣∣prior +Rlalb
llx (rx)

∣∣∣no. (4.10)

For the UT model, the x − A channel partial wave function Rlalb
llx (rx)

∣∣∣prior can be calculated with the

exact the same formula as Rlalb
llx (rx)

∣∣∣post, but changing the interaction form from Vpost to Vprior, and the

non-orthogonality term (NO) is calculated as:

Rlalb
llx (rx)

∣∣∣no = ρlalbllx (rx)
∣∣∣no, (4.11)

where ρlalbllx (rx)
∣∣∣no is nothing, but Eq. (2.38) by setting the interaction Vpost = 1.

As an example, the reaction 93Nb(d, pX) at an incident energy of 25.5MeVwas considered. The details

about the interaction potentials can be found in Sec. (3.1.1). We recall that the post-form expression has a

marginal convergence, due to the oscillatory behaviour of the source term. To overcome this problem, in

the present calculations we resort to the binning procedure used in the calculations presented in Chapter

3. Although this stabilization procedure is not needed in the prior-formmethod, we use the same averaged

χb distorted waves in this case, in order to have a meaningful comparison of the two methods. Fig. (4.1)

shows the comparison of the x channel wave function Rlalb
llx (rx) calculated with IAV and UT models,

respectively, for partial wave la = 5, l = 5, lb = 0 and lx = 5. It is seen that, for both the real and

the imaginary parts, the IAV and UT x-channel wave functions are similar at large distances, but they

clearly differ at short distances. Addition of the NO term to the UT function, gives a result in remarkable

agreement with the IAV curve. This result confirms the relation (4.10) at a numerical level.

4.3 Testing the post-prior equivalence for the 62Ni(d, pX) reaction

As a first example, we consider the 62Ni(d, pX) reaction. This reaction was analysed by Mastroleo,

Udagawa and Tamura, leading them to the conclusion that the IAV model tended to largely overestimate

the data, a result that they attributed to the presence of spurious contributions in this model. Therefore,
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Figure 4.1: x channel wave functionRlalb
llx (rx) for la = 5, l = 5, lb = 0 and lx = 5 of 93Nb(d, pX) at incident energy of

25.5MeVwith outgoing p energy at 14MeV. The real and imaginary parts are shown in pangels (a) and (b), respectively.

it seems timely to start reexamining these results using our implementation of the two models.

For that purpose, the reaction 62Ni(d, pX) at Ed = 25.5 MeV, which had already been investigated in

Sec. 3.1.2, has been considered. The same potentials used the calculations shown in Sec. 3.1.2 are also

used here. As noted before, to evaluate the post-form formula the distorted waves χb are averaged over

small momentum intervals. Although this procedure is not required for the prior-form formula, to have

consistent ingredients in both calculations, the same averaged distorted waves were used in that case.

In Fig. 4.2 (a), the post-form IAV calculation (thick solid line) with the prior calculation (dashed line),

for the angle-integrated proton energy distribution in the c.m. frame. The agreement between the prior

and post calculations is seen to be very satisfactory, with only small differences possibly due to numerical

inaccuracies. This agreement corroborates the post-prior equivalence at the numerical level. The choice

of one or another representation becomes therefore a matter of numerical convenience. The separate

contributions of the prior-form calculations (i.e., prior, NO, IN) , according to Eq. (1.59), are also shown
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Figure 4.2: Proton energy spectra for 62Ni(d,pX) at 25.5MeV, (a) Comparison of the post and prior results; (b) Com-

parison of IAV andUTmodels with the data fromRefs. 86,97, corresponding to the double differential cross section as a

function of the proton energy in the laboratory frame, for θp = 20◦.

in Fig. 4.2 (a). It is seen that the full IAV calculation and the UT result (thin solid line) are in clear

disagreement and that the inclusion of the NO term is essential to achieve the post-prior equivalence.

In Fig. 4.2 (b), the calculations are comparedwith the experimental data fromRefs.86,97, corresponding

to the double differential cross section as a function of the proton energy and for a proton detection angle

of θp = 20◦ in the laboratory frame. Note that the reaction has analyzed in Sec. 3.1.2 and here the

calculation of UT model is also presented. It is seen that the sum EBU + NEB(UT), represented by

the thin solid line, largely under-predicts the data. In contrast, the sum EBU + NEB(IAV) (thick solid

line) reproduces reasonably well the magnitude and shape of the data, except for some underestimation

at the smaller energies and some overestimation at the larger ones. It should be noticed that the low-

energy tail will be mostly affected by the compound nucleus subtraction and hence some uncertainty is

expected at these energies. The results shown here are in contrast with those reported in Ref.97, who

found an overestimation of the IAVmodel. Since we have tried to use, whenever possible, the same input

ingredients as theirs, the reason for the discrepancy is unclear to us.

4.4 Testing the post-prior equivalence for the 209Bi(6Li,αX) reaction

As a second example, the reaction 6Li+209Bi, which has been analyzed in Sec. 3.2.1 using the post-form

IAV formula, is considered. The calculations shown in Sec. 3.2.1 reproduced rather well the shape and
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Figure 4.3: Angular-integrated energy differential cross section, as a function of the α c.m. energy, for the reaction
6Li+209Bi at the incident energies indicated by the labels. See text for the details.

magnitude of the experimental angular distribution of the α particles for a wide range of incident ener-

gies above and below the Coulomb barrier. To test the post-prior equivalence, several different incident

energies are selected. The same potentials are employed as in Sec. 3.2.1.

The results are shown in Fig. 4.3 for the angle-integrated α energy distribution (in the c.m. frame), with

the same meaning for the lines as in Fig. 4.2 (a). The results are qualitatively similar to those found in

the deuteron case; namely, (i) the post-form IAV model and the prior-form UT model yield significantly

different results, and (ii) the sum UT+NO+IN gives a result very close to the post-form IAVmodel. Thus,

the post-prior equivalence is also well fulfilled in this case.

In Fig. 4.4, the calculations are compared with the data from Ref.117, which correspond to the angular

distribution of α particles in the laboratory frame. The EBU cross section corresponding to the CDCC

calculation and NEB cross calculated by IAV formalism are taken from Sec. 3.2.1. The EBU+NEB(IAV)
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Figure 4.4: Experimental and calculated angular distribution of α particles, in the laboratory frame, for the 6Li+209Bi

reaction at 36MeV. The data are taken fromRef. 117 .

calculation (thick solid line) reproduces remarkably well the shape and magnitude of the data. In contrast,

the EBU+NEB(UT) calculation, represented by the thin solid line, clearly underestimates the data. This

result reinforces the reliability of the IAV model.

In conclusion, in this chapter, we addressed the problem of the post-prior equivalence in the calcula-

tion of NEB cross sections within the closed-form DWBA models proposed in the 1980s by Ichimura,

Austern, and Vincent71 and by Udagawa and Tamura137. We performed calculations for the 62Ni(d, pX)

and 209Bi(6Li, αX) reactions. In both cases, we find an excellent agreement between the post and prior

expressions of the IAV model, confirming this equivalence at a numerical level. Moreover, the IAV

model reproduces rather well the data in both reactions. In contrast, the UT model has been found to

underestimate the experimental cross sections.

The results presented in this work indicate that the IAV model provides a reliable framework to cal-

culate NEB cross sections in reactions induced by deuteron and 6Li projectiles.
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Whether we like it or not, modern ways are going to alter

and in part destroy traditional customs and values.

Werner Heisenberg

5
Extension to Incomplete Fusion

The collisions of weakly bound nuclei have turned on great interest, both theoretical and experimental,

over past decade21,22. In such collisions, the breakup cross section tends to be very large and breakup

couplings may have a strong influence on the cross sections for several other channels. An important

example is the fusion process, which becomes much more complex. In addition to the usual fusion

reaction, in which the whole projectile merges with the target, there are other fusion processes taking

place in collisions with weakly bound nuclei. There is the possibility that one or more, but not all, parts

of projectile are absorbed by the target, whereas the other part(s) escapes the interaction region. It can

also happen that all the parts of projectile are sequentially absorbed by the target, producing the same

compound nucleus as in the case of direct fusion. When the compound nucleus does not contain all of

the projectile’s fragments, the process is named incomplete fusion (ICF), whereas the fusion of all of the

projectile’s nucleons with the target is called complete fusion. The CF cross section is the sum of the

cross section for the direct fusion of the projectile with the target (DCF) and of the sequential fusion of

all of the projectile’s fragments (SCF). In Fig. 5.1, these processes are schematically depicted for a 6Li+A

reaction (assuming the two-body dissociation 6Li→ α+ d)
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Figure 5.1: The basic idea of the fusion and breakup processes that can take place in 6Li induced reaction. For simplicity
6Li is considered as α− d two cluster model.

Many theoretical approaches have been proposed to study fusion reactions with weakly bound nu-

clei21,22, including simple classicalmodels55,38, semi-classicalmodels14,96 and fully quantum-mechanical

calculations56,40,41,82 using the continuum discretized coupled channel method (CDCC). However in the

CDCC calculations there is no procedure to distinguish CF and ICF.

This chapter will present possible extensions of IAV model to the calculation of ICF cross sections.

This is a very timely topic in fusion studies, since there are experimental evidences indicating that in

some cases ICF can be a significant part of the total fusion cross section. Moreover, ICF cross sections

are needed for many applications, such as for surrogate reactions, as explained below. The calculation of

ICF cross section is a very challenging problem to the extent that, nowadays, there are no fully quantum

mechanical methods to reliably calculate these cross sections andmost of the calculations rely on classical

or semiclassical models. We note here that ICF is part of the NEB cross section. However, to extract the

ICF cross section, one has to isolate it from other sources of NEB, such as transfer or target excitation.

In this chapter we propose a simple model to make this separation and apply it to several cases.
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5.1 A simple model for ICF within the IAV theory

In this section, we discuss a simple model to estimate the ICF cross section. To estimate the ICF part, the

imaginary part of x− A potential,Wx, has been divided into two parts,

Wx = WCN
x +WDR

x (5.1)

one partWCN
x corresponding to the formation of compound nucleus and the other partWDR

x associated to

all the remaining processes included in NEB, such as target excitation and the breakup of the x particle.

The potential WCN
x is parameterized in some convenient way (e.g., using a Woods-Saxon form) and its

parameters are adjusted in order to reproduce the fusion cross section for the binary x+ A process. This

procedure requires therefore the knowledge of the fusion cross section for the x + A two-body reaction.

In some cases, this quantity is known experimentally, but, if this not the case, one may resort to some

theoretical estimate, for example, from a coupled-channel calculation. In the applications discussed be-

low, we will use these two procedures. Once the parameters ofWCN
x have been determined, the ICF cross

section is estimated as
d2σ

dEbdΩb

∣∣∣∣∣
ICF

= − 2
ℏva

ρb(Eb)
⟨
ψIAV
x
∣∣WCN

x
∣∣ψIAV

x
⟩
. (5.2)

Notice that, by construction, σICF < σNEB, as it should be. Note also that the remaining part σNEB − σICF

is associated with nonelastic direct processes of x+ A, such as x+ A inelastic scattering.

5.2 Incomplete fusion contribution in (6Li, αX) reactions

The collision of 6Li on 209Bi was considered as an example, whose inclusive α production was discussed

in Sec. 3.2.1. First, the fusion potentials, WCN, for α+209Bi and d+209Bi were extracted. For that, we

made use of the experimental fusion cross sections for these systems, which are shown in Fig. 5.2(a) and

(b), respectively. For the former case, we consider the (α, n)6 and (α, 2n)61 contributions. We found that

the optical potential of α+209Bi mentioned in Ref.6 reproduce well these fusion data, as can be seen in

Fig. 5.2 (a). This can be explained by noting that the α particle is tightly bound, and cannot be easily

excited or broken up, thus making the fusion the dominant reaction channel. On the other hand, for the

d+209Bi case, we regarded (d, 2n) and (d, 3n) as sources of fusion channel. To determine, WCN, we

start from the parameters of the optical model potencial of Ref57. In order to reproduce the fusion data,

92



20 25 30
Eα (MeV)

0.01

0.1

1

10

100

1000
σ 

(m
b)

Barnett & Lilley : (α,n)
Hassan : (α,n)+(α,2n)

σfus (W
CN

)

10 15 20 25
Ed (MeV)

0.01

0.1

1

10

100

1000

(d,2n)
(d,3n)
sum

σfus (W
CN

)

(a)

α+
209

Bi d+
209

Bi

(b)

Figure 5.2: Calculated and experimental complete fusion cross section energy distribution of α+209Bi (a) and d+209Bi (b)

in lab frame. The experimental data are taken fromRefs. 6,61 for α+209Bi, and Ref. 114 for d+209Bi.

the radius of this potential needed to be reduced. This result is not unexpected, since direct channels,

such as (d, p) or deuteron breakup, are expected to be important and must be therefore removed from the

fusion potential. As shown in Fig 5.2 (b), with this fusion potential, the calculated fusion cross section

reproduces fairly well the experimental data.

Now we compare the calculated ICF cross sections with the corresponding experimental data, re-

ported in Ref.32. We note that the experimental data correspond to the cross sections for the production

of nuclei with atomic numbers one or two units higher than that of Bi, namely, At and Po isotopes. Con-

sidering the dominant d+ α structure of 6Li, we may associate these processes with the absorption of the

deuteron or the α clusters, respectively. Consequently, the total ICF cross section, will be calculated as

the sum of the deuteron absorption (with the α surviving after the reaction) and the α absorption (with

the deuteron surviving after the reaction). Using the notation introduced in previous chapters, these two

contributions will be denoted as (6Li, αX) and (6Li, dX), respectively. Fig. 5.3 shows the calculated and

experimental incomplete fusion cross section energy distribution as a function of the incident 6Li energy.

For comparison, we also show the experimental fusion data of 6Li+208Pb from Ref.94. It can be seen that

the agreement between experiment and theory is poor. The calculated results largely overestimate the

experimental data of Dasgupta et. al.32 and underestimate the experimental data of Liu et. al.94.

However, the experimental data of Dasgupta et. al. might have underestimated the actual incomplete

fusion cross section, as some residues are populated both in complete and incomplete fusion and so
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Figure 5.3: Calculated and experimental incomplete fusion cross section energy distribution of 6Li+209Bi in lab frame.

The experimental data was taken fromRefs. 32,94

there is no way to disentangle experimentally the two components. Moreover, some residues produced

in incomplete fusion events can proceed from the alpha decay of complete fusion evaporation residues.

This contribution was in fact subtracted in the experimental analysis, but, as a result, larger error bars

affect the data32. Under these circumstances, the incomplete fusion cross section of Dasgupta et. al.

might be considered as a lower limit for the actual incomplete fusion cross section.

Concerning the comparison with the 6Li+208Pb case, it must be borne in mind that we assume that

the ICF for this reaction has the same magnitude as that for 6Li+209Bi. Moreover, the experimental

analysis of these data were extracted in a more indirect way. Each detected deuteron was assumed to

have an alpha counterpart, and the α-ICF was obtained from the inclusive deuteron cross section, after

subtracting the cross sections for the α+ d and α+ p coincidence channels, which were measured in this

experiment. Similarly, the d-ICF cross section was also estimated. To do so, one has to make some strong

assumptions, such as that the alpha and deuteron evaporation cross sections might be neglected (rather

strong, especially for deuterons) and that α-, p- and n-transfer cross sections can be neglected as well.
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Under these hypotheses, the evaluated ICF cross section for the system 6Li+208Pb might overestimate the

actual ICF cross section.

We cannot rule out some uncertainties in our computed ICF cross sections. For that reason, further

tests of the proposed model with ICF data are necessary to validate its reliability.

5.3 Application to surrogate reactions

Neutron induced reaction cross sections are important in several domains such as nuclear structure, nu-

clear astrophysics and nuclear technology. As reported in Ref.46, these cross sections are key input infor-

mation for modeling stellar element nucleosynthesis via s− and r−processes. They also play an essential

role in the design of advanced nuclear reactors for the transmutation of nuclear waste, or reactors based

on innovative fuel cycles like Th/U cycle. However, direct measurements of these cross sections may

encounter a variety of difficulties: The energy relevant for a particular application is often inaccessible.

For the astrophysical purposes, such as descriptions of stellar environments and evolution, reaction rates

at energies below 100 keV are needed. Furthermore, many important reactions involve unstable nuclei

which are difficult to produce with currently available techniques or are too short lived to serve as targets

in present setups, for which the surrogate reaction method can overcome this problem.

The surrogate reaction method aims at determining neutron induced cross sections for compound-

nuclear reactions that involve targets which are difficult to produce. In this method, the same compound

nucleus as in the neutron-induced reaction of interest is produced via an alternative or surrogate reaction.

The surrogate reaction method is schematically represented in Fig. 5.4. The left part of this figure illus-

trates the desired reaction, n+A, which leads to the formation of the compound nucleus B∗. The nucleus

B∗ can decay via different exit channels: neutron evaporation, fission, and γ emission. On the right hand

side of Fig. 5.4, the same compound nucleus B∗ is produced through a surrogate reaction. As shown in

Fig. 5.4, the surrogate reaction is an inclusive breakup reaction between the projectile, d, and the target

A, leading to a heavy residual nucleus B∗ and an ejectile p.

In most applications of the surrogate method, the surrogate reaction is used to measure the decay

probability Pχ corresponding to a given decay model χ and the desired neutron induced reaction cross

section is

σCNBχ (En) = σCNB (En)Pχ(En) (5.3)
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Figure 5.4: Schematic representation of the desired and surrogate reactionmechanisms. The basic idea of the surrogate

approach is to replace the first step of the desired reaction, n + A, by an surrogate reaction, d + A → p + B∗, that is

experimentally easier to populate the same compound nucleus. The subsequent decay of the compound nucleus into the

relevant channel which can bemeasured and used to extract the desired cross section. Three typical decay channels are

showed here: neutron evaporation, fission, and γ emission.

where σCNB (En) is the cross section for the formation of a compound nucleus B via the absorption of a

neutron by the target A and En is the relative energy of x− A system. The compound nucleus formation

cross section σCNB can be estimated by phenomenological optical model calculations with an accuracy

of about 10% for nuclei no too far from the stability valley46. Then, in the surrogate method the decay

probability is estimated as43:

Pχ(En) =
NC
χ (En)

NS(En)εχ(En)
, (5.4)

where NS(En) is the total number of detected protons as a function of En, i.e., the inclusive total breakup

(TBU). NC
χ (En) is the “coincidence spectrum”, corresponding to the number of protons detected in coin-

cidence with the observable that identifies the decay mode, i.e., incomplete fusion with neutron absorbed

by the target, and εχ(En) is the associated detection efficiency. The (n, x) cross sections determined using

these decay probabilities tend to underestimate the direct neutron induced data. One possible explanation

is, that in the surrogate reaction, there are sources of protons which do not lead to the formation of the

compound nucleus (CN) B∗. These protons are however detected and included in the quantity NS(En) of

96



0 1 2 3
En (MeV)

1500

3000

4500
σ C

N

Coupled Channel Calculation

W
CN

n+
238

U

σCN=σR-σIN CC calculation
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PIRE 62 using the CCmethod, whereas the dashed line is the absorption obtainedwith the fusion potentialWCN
x . See text

for details.

Eq. (5.6). Consequently, NS(En) must be corrected by multiplying it by the fraction of protons which are

actually associated with the formation of B∗ or, in other words, by the fraction of protons leading to ICF.

This amounts at multiplying NS(En) by the factor:

σICF(En)

σTBU(En)
, (5.5)

or, equivalently, correcting Pχ(En) as

Pcorrχ (En) =
Pmeasχ (En)σTBU(En)

σICF(En)
, (5.6)

where Pmeasχ (En) is the measured decay probability.

As an example, the surrogate reaction 238U (d, pf) is considered. This reaction was recently measured

by B. Jurado and her collaborators from Bordeaux as a surrogate for the 238U(n, f) reaction, where ”f”

denotes a fission channel. The experimental results presented here and the corresponding theoretical
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analysis have been recently submitted for publication43 and are also included in the Ph.D. thesis of Q.

Ducasse42.

First the fusion potential of n−238U,WCN, was studied. In this case, since we did not find experimental

data for the total fusion cross section for this system, we relied on the fusion cross section predicted by a

coupled-channel calculation, supplied by Dr. Roberto Capote26 and performed with the code EMPIRE62.

This calculation assumed that the dominant non-elastic channels for n+238U correspond to the inelastic

scattering populating the first low-lying states of 238U. These states were treated within the rotational

model, with deformation parameters of β2 = 0.222 and β4 = 0.102. The CN cross section is then

obtained subtracting the summed cross section for the population of these states to the reaction cross

section, also obtained from this calculation. The resulting CN cross section is shown in Fig. 5.5 (the

black solid line). To determine Wx, we consider single-channel optical model calculation for n+238U,

using the optical model potential from Ref.58. The absorption cross section due to an imaginary potential

WCN is then calculated as:

σCN = − 2
ℏva

⟨χ(+)
a |WCN

x |χ(+)
a ⟩, (5.7)

where χ(+)
a is calculated with the neutron optical potential of Han58, and WCN

x , has the same form as the

imaginary part of Han, but with a smaller interaction radius, rCNw < rw. By modifying the value of rCNw ,

the fusion shown in Fig. 5.5 (dashed line) is obtained, which shows a reasonable agreement with the CC

fusion cross section (solid line).

Now the calculations for the surrogate reaction 238U (d, pf) at 15 MeV and 18 MeV are presented and

compared with the data from Refs.43,15. The EBU component was calculated with the CDCC framework.

For the p−n interaction, the simple Gaussian form of Ref.4 was considered. The n−p states were included

for ℓ = 0 − 7 partial waves to achieve convergence of the calculated cross sections. The proton-target

and neutron-target interactions were adopted from the global parametrization of Ref.58, omitting the spin-

orbit term, and evaluated at half of the deuteron incident energy. The NEB component was calculated

with the IAV formalism. The d−target potential was taken from Ref.2.

Figure 5.6 shows the calculated contributions to the inclusive total deuteron breakup process (TBU)

for a deuteron beam energy of 15MeV and the outgoing proton angle of 140 degrees (a) and for a deuteron

beam energy of 18 MeV and the outgoing proton angle of 150 degrees (b), as a function of the excitation

energy of the residual nucleus 239U, E∗ = En + Sn, where Sn = 4.806 MeV is the neutron separation

energy of 239U. The dotted, dashed and dash-dotted lines are, respectively, the elastic breakup (EBU),
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Figure 5.6: Calculated contributions to the inclusive total deuteron breakup process (TBU) as a function of the excitation

energy of 239U for deuteron beam energy of 15MeVwith outgoing proton angle of 140 degrees (a) and for deuteron

beam energy of 18MeVwith outgoing proton angle of 150 degrees (b). The dotted, dashed and dash-dotted lines are,

respectively, the elastic breakup (EBU), nonelastic breakup (NEB) and incomplete fusion (ICF) contributions. The solid

line is the sum of EBU andNEB. The vertical dotted lines indicate the neutron separation energy of 239U.

nonelastic breakup (NEB) and incomplete fusion (ICF) contributions. The solid line is the sum of EBU

and NEB. The vertical dotted lines indicate the neutron separation energy of 239U. It can be seen that the

relative contribution of the different processes to the total cross section for both incident energies and

outgoing angles is rather similar. For the energy range E∗ < (Sn + 1.5)MeV, the elastic breakup is less

than 5% of the total breakup, whereas the ICF represents nearly 80%. The computed ICF cross sections

are used to correct the measured decay probabilities for the (d, pf) channel, where f is a fission product.

The corrected probabilities are compared with the direct measurements for the (n, f) reaction obtained

from the Japanese Evaluated Nuclear Data Library (JENDL) 4.0 database120.

The corrected decay probability of 238U(d, pf) at the incident energy of 15 MeV with θp = 126◦

and 18 MeV with θp = 140◦ are presented in Fig. 5.7. In this figure, the solid line is the data from

the JENDL. The solid circles and solid triangles are the uncorrected values extracted from the (d, pf)

surrogate reactions at 15 MeV and 18 MeV, respectively. The open circles and open triangles are the

corrected probabilities, obtained from Eq. (5.6). It can be seen that the corrected probability of 238U (d,

pf) at the incident energy of 15 MeV43 is in better agreement with the neutron-induced data. However,

this corrected decay probability is still lower by about 15% than the neutron-induced data evaluated by

JENDL 4.0120. As discussed in more detail in Ref.42, this difference may be attributed to the contribution

from protons coming from fusion-evaporation on oxygen in the target. When the decay probability of
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Figure 5.7: MeasuredPmeas
f and correctedPcorr

f decay probabilities as a function of excitation energy. The solid line are

the values for the direct neutron-inducedmeasurement, taken from the JENDL database 120. The circles and up triangles

are respectively the decay probabilities of 238U (d,pf) at incident energy of 15MeVwith θp = 126o and 18MeVwith

θp = 140o.

238U (d, pf) at the incident energy of 18 MeV15 is corrected, the resulting probability is still significantly

lower than the neutron-induced data. The differencemight also come from fusion-evaporation on oxygen,

which can be very significant due to the complete oxidation of the target used in Ref.15.

Despite these differences with the data, we believe that the calculations presented in this section have

served to illustrate the potential usefulness of the method as a tool to correct surrogate reaction cross

sections.
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To explain all nature is too difficult a task for any one man

or even for any one age.

Isaac Newton

6
Conclusions and perspectives

In this dissertation, we have addressed the problem of the calculation of inclusive breakup cross sections in

reactions induced byweakly-bound projectiles, within the framework of the theory proposed by Ichimura,

Austern and Vincent in the 1980s71,4. We have presented the post and prior formulas of this model, and

discussed their formal and numerical equivalence. We have also provided an alternative derivation of the

IAV formula, which combines the original derivation of Austern and Vincent5 and the coupled-channels

optical theorem30. This provides in a very straightforward way the formulas for the elastic and non-elastic

breakup parts of the total inclusive cross section. We have applied the model to several reactions induced

by weakly bound projectiles, comparing with experimental data when available.

We have applied the IAV formulas to deuteron induced reactions on light and medium-mass targets.

For the EBU part, we have compared the results employing the distorted-wave Born approximation

(DWBA) method and the Continuum Discretized Coupled Channels (CDCC) method. The latter is ex-

pected to be more accurate since it treats the breakup to all orders. Nevertheless, in the cases studied in

this work, the DWBA method has been found to be a good approximation to the CDCC method. For

the NEB part, we have investigated the convergence problem of the post form DWBA, comparing the

101



damping factor and binning methods. We have also tested the validity of zero-range (ZR) approximation

and the effect of the remnant term in the NEB calculation by comparing zero-range with finite-range

DWBA calculations. For the deuteron induced reaction the effect of the remnant term has been found to

be very small and the ZR calculation gives a result very close to the full FR calculation. Interestingly,

the proton inclusive cross section is largely dominated by the NEB mechanism. The EBU mechanism

becomes competitive only at very small angles.

We have applied the IAV formulas to 6Li induced reactions on different targets and energies around the

Coulomb barrier. We have found that the sum EBU (calculated with CDCC) + NEB (DWBA) provides

a good agreement with the experimental angular distributions of α particles. As in the (d, pX) case, the

inclusive cross section is largely dominated by the NEBmechanism, and the EBU becomes only dominant

at very small angles, where the breakup is nevertheless small. The systematic behaviour of the α-particle

production has been also studied. We have found that the calculated total breakup cross sections (TBU =

EBU + NEB) show some universal trend for the heavy targets, but significant deviations have been found

for the light targets.

We have extended our study to the case of halo nuclei, taking the 11Be system as an example. We have

performed calculations for the 11Be+64Zn reaction, comparing our calculations with the experimental data

from Ref.36 In this case, we found that the EBU part is the dominant contribution of the 10Be inclusive

cross section, whereas the NEB part becomes only relevant and comparable to the EBU part at large

angles. For the EBU part, we have used the recent results obtained with an extended version of the

CDCC method (XCDCC), which includes the effect of core excitations in the structure of 11Be as well

as in the reaction dynamics. The summed EBU (calculated with XCDCC) + NEB (DWBA) agrees well

with the experimental data and evidences the importance of the NEB mechanism.

In order to test the validity of IAV model for non s−wave projectiles, we have investigated reactions

induced by 7Li and 7Be, for which the g.s. consists of a p− wave. These nuclei are treated within the

two-cluster model 4He+t/3He. For the 7Li + 208Pb reaction, there are two sets of the experimental data

available for the angular distribution of inclusive alpha particles98,83, which agree well at forward angles,

but differ significantly at backward angles. Our calculations reproduce well the forward-angle data of

Mazzocco et. al.98 at Elab = 33 and 39MeV, but they overestimate the data at larger angles. At Elab = 29

MeV, the overestimation is observed in the full angular range. The explanation of this disagreement not

clear to us.
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We have analysed the α and 3He yields resulting from the 7Be + 58Ni reaction at the near-barrier energy

of 21.5 MeV. The experimental data of Ref.99 show that the alpha yield is about 4 ∼ 5 times larger than

the 3He one, suggesting that the elastic breakup mechanism is small in this reaction. In this case, our

calculations reproduces fairly well the (7Be,αX) data, but overestimate the (7Be,3HeX) cross section by

∼ 60% at large angles. However, we should emphasize that the cross section of (7Be,αX) is much larger

than the cross section of (7Be,3HeX). Our calculations corroborate the dominance of the NEB. Additional

calculations for the 4He+58Ni and 3He+58Ni reactions suggest that this result is a consequence of the larger

reaction cross section for the latter case.

We also considered the case of the 7Be production in the scattering of the proton halo nucleus 8B on a
58Ni target. This is another example of non s−wave projectile, since the proton halo has a dominant p3/2

configuration. In this case, we found that the inclusive 7Be production is dominated by the EBU part and

the influence of NEB is very small.

We have studied the dependence of the EBU and NEB contributions with the incident energy and the

separation energy of the projectile taking the 6Li+209Bi reaction as an example, and varying artificially

the separation energy of 6Li. In most situations, we find a clear dominance of NEB. The EBU becomes

only dominant for very small separation energies (Sαd ≈ 0.5 MeV), at near- and sub-Coulomb energies.

We have verified that the sum of the calculated EBU+NEB cross section and the experimental CF

cross section is very close to the reaction cross section for the 6Li+209Bi reaction, at the energies around

Coulomb barrier. Since the reaction cross section imposes an strict upper limit for non-elastic processes,

this result constitutes a robust consistency test of the theories considered here.

We have investigated the problem of the post-prior equivalence for inclusive breakup cross sections.

We have reexamined the post and prior formulas of this model, and discussed their formal and numerical

equivalence. We have seen that the prior-form formula consists of three terms. One of these terms

coincides with NEB formula proposed by Udagawa and Tamura (UT). The remaining terms, which arise

from the non-orthogonality of the initial and final partitions, ensure the post-prior equivalence of the NEB

cross sections. We have applied these formulas to the 6Li+209Bi and d+62Ni reactions, finding that the

post and prior expresssions give identical NEB results, thus confirming the post-prior equivalence at a

numerical level. We have also verified that the prior formula proposed by Udagawa and Tamura, which

omits the non-orthogonality terms appearing in the IAV formula, tends to underestimate the experimenta

data for the analyzed reactions.

103



We also discussed the possibility of applying the IAV theory to the calculation of incomplete fusion

(ICF). As noted in the Introduction, ICF is part of the NEB cross section and, as such, is included in the

IAV formula. However, it is not straightforward how to isolate the ICF contribution from other sources

of NEB associated with direct reactions (DR) of x with the target, such as x + A inelastic scattering.

Assuming that one can split the imaginary part of Ux as the sum of CN and DR contributions, i.e.,Wx =

WDR
x + WCN

x , we have proposed that that the ICF cross section can be approximately calculated with a

formula analogous to that of IAV, but using theWCN
x instead ofWx in the expectation value [see Eq. (5.2)].

As an application of this formula we have considered the reactions 6Li+209Bi and 6Li+208Pb. Although

the ICF is expected to be similar for both systems, the data is considerably larger for the second case.

Our calculated ICF cross sections lie between the two experimental data sets. We have also applied our

ICF model to the surrogate reaction 238U(d, pf), comparing also with recent data.

The results presented in this work, along with those presented in related works27,92,91,112, indicate that

the IAV model provides a reliable framework to calculate NEB cross sections in reactions induced by

weakly bound projectiles.

Several possible extensions and improvements are planned for the future. We enumerate some of

them:

(i) As mentioned in the dissertation, all the inclusive breakup calculations performed so far rely on the

DWBA approximation, i.e., they represent the exact scattering wave function by the product of a

elastic scattering distorted wave (χ(+)
a ) times the projectile and target ground-state wave functions,

i.e.,

Ψ(+)(ξ, r⃗x, r⃗b) ≈ φ0A(ξ)φa(⃗rbx)χ
(+)
a (⃗ka, r⃗a). (6.1)

The distorted wave χ(+)
a is meant to include, in an effective way, all possible couplings affecting

the elastic scattering of a + A. This includes, for instance, the excitation of the projectile and/or

target. As occurs in other coupled-channels (CC) problems, it may happen that these intermediate

states, which may also lead to NEB, need to be incorporated explicitly.

(ii) For simplicity, our implementation of the IAV model ignores the internal spins of the participant

and spectator fragments. In particular, this means that the spin-orbit part of the x−target interaction

is omitted, and this may lead to an unrealistic descripion of the x−target spectrum (for example, the

position of bound states and resonances). Consequently, the inclusion of the spin is planned for a
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future implementation of the model.

(iii) Our numerical implementation of IAVmodel relies on the DWBA approximation. For very weakly-

bound projectiles, the effect of breakup in the incident channel is important. In this case, Ψ(+) can be

approximated by a CDCCwave function. This corresponds in fact to the three-bodymodel proposed

by Austern et al.4. Although the CDCCmethod is widely used nowadays, its implementation in the

IAV formalism is not straightforward. Nevertheless, with the present computational capabilities,

this should be feasible at least for specific cases.

(iv) In some cases, the simple two-cluster model with inert clusters may be too simplistic. For example,

in the 11Be+64Zn reaction, we pointed out that the effect of the 10Be deformation is very important

in the structure of the 11Be projectile, leading to noticeable effects in the EBU cross sections. It

would be interesting to study the effect of deformation on the NEB cross sections.

(v) If collective excitations to some states of the projectile or target are strong, one may include them

explicitly using a CC approximation for Ψ(+). Notice that, in this case, this wave function becomes

formally analogous to that appearing in the standard CCBA method.

(vi) The CDCC wave function contains in general many terms so the evaluation of the source term of

the inhomogeneous equation (2.12) will be cumbersome. For incident energies of several tens of

MeV per nucleon, one may invoke as an alternative the adiabatic approximation of Johnson and

Soper77. This approximation will be valid when the average excitation energies of the projectile

are small with respect the beam energy. Under this situation, the adiabatic wave function is known

to reproduce well the full three-body wave function for small b-x separations, which dominates the

source term.

(vii) A more complete three-body description of the incident channel is given by the Faddeev wave

function. This is the choice made in the formal works of Hussein and co-workers66. In practice,

the solution of the Faddeev equations is too complicated for many practical applications and, even

if this solution is available, its implementation in Eq. (2.12) will be very challenging.
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A
Cross section in Lab Frame

The double differential cross calculated with the IAV model is in c.m. frame, so in order to compare with

the experimental observables, the calculated results need to be transformed from c.m. frame to lab frame.

For the nonelastic breakup process of the form

a(b+ x) + A → b+ B(A+ x), (A.1)

the initial center of mass energy is

Ei
cm = Elab

mA

mA + ma
. (A.2)

If v⃗cmb is the velocity of b in the c.m. system pointing in the direction (θC, φC) and v⃗labb its velocity in the

laboratory system corresponding to a direction (θL, φL), one has

v⃗labb = v⃗cmb + V⃗lab, (A.3)
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where V⃗lab is the velocity of the center of mass in the laboratory system. Thus

vlabb cos θLb = vcmb cos θCb + Vlab, (A.4)

vlabb sin θLb = vcmb sin θCb . (A.5)

Combining the two equations above we get the following expression for the transformation of the center

of mass to the laboratory frame angles:

cos θLb =
cos θCb + τ

(1+ 2τ cos θCb + τ2)1/2
, (A.6)

where

τ =
Vlab

vcmb
=
[mamb

mAmB

Ei
cm

Ef
cm

]1/2
, (A.7)

where Ef
cm is the c.m. energy in the final channel b+ B. The relation between center of mass energy and

lab energy of particle b is

Elab
b = β2Ecm

b , (A.8)

with

β =
vlabb

vcmb
= [1+ 2τ cos θCb + τ2]1/2. (A.9)

Ec
bm is the energy of the particle C in the c.m. frame, which is related to the total c.m. energy as by:

Ecm
b =

mB

mb + mB
Ef
cm. (A.10)

Analogously, using again Eqs. (A.4) and (A.5) we may derive the following relations for the trans-

formation of the scattering angle and the energy of the b particle from the laboratory frame to the c.m.

frame:

tan θCb =
sin θLb

cos θLb − γ
, (A.11)

with

γ =
Vlab

vlabb

= τ/β, (A.12)

Ecm
b =

1
β2
Elab
b . (A.13)
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A.0.1 Relations Between Cross Sections

The relation between the differential cross sections in the two frames can be obtained from

dσcm

dEcm
b dΩcm

b

dEcm
b dΩcm

b =
dσlab

dElab
b dΩlab

b

dElab
b dΩlab

b , (A.14)

dσlab

dElab
b dΩlab

b

=
dσcm

dEcm
b dΩcm

b

sin θcmb
sin θlabb

. (A.15)

The differential cross section provided by the DWBA calculations is a funciton of the total kinetic energy

Ecmf. Using the relation Eq. (A.10) we may rewrite it in terms of the energy of the b particle as :

dσcm

dEcm
b dΩcm

b

=
dσcm

dEb
cmdΩ

cm
b

dEf
cm

dEcm
b

=
dσcm

dEf
cmdΩcm

b

mb + mB

mB
. (A.16)
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B
The partial wave expansion of EBU formula in

DWBA

We recall the differential cross section of elastic breakup of Eq. (2.21)

d2σ
dΩbdEbdΩx

∣∣∣∣
EBU

=
2π
ℏva

ρb(Eb)ρx(Ex)|Tfi|2. (B.1)

where ρb(Eb) and ρx(Ex) are the phase-space factors given by ρ(E) = μk/8π3ℏ2. It should be noted that

the transition amplitude Tfi contains the three-body wave function Ψ3b, which is a complicated object

by itself. For that reason, we apply the DWBA approximation to the incident channel, then transition

amplitude can be written as

Tfi = ⟨χ(−)
x (⃗rx, k⃗x) χ

(−)
b (⃗rb, k⃗b)|Vpost|χ(+)

a (⃗ra, k⃗a)φa(rbx)
⟩
. (B.2)
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By using the relation of Eq. (2.29) and Eq. (2.27), the transition amplitude can be partial wave expanded

as

Tfi =
∑
lxmx

∫
4π
kx

ilxRlx(rx)ρlxmx;mbx
(rx, k⃗a, k⃗b)Ymx∗

lx (k̂x)drx, (B.3)

where ρlxmx;mbx
(rx, k⃗a, k⃗b) is again the source term already introduced in Chapter 2 [see Eq. (2.27)]. As

we did for the NEB contribution, this source term can be evaluated exactly, or using some of the approx-

imations discussed in Chapter 2. The finite-range and zero-range expansions are given in Eqs. (2.38) and

(2.52). By inserting this transition amplitude into the triple differential cross section and integrating on

dΩx, we get the double differential cross section with respect the energy and the scattering angle of b,

d2σ
dΩbdEb

∣∣∣∣
EBU

=
2π
ℏva

ρb(Eb)ρx(Ex)
∑
lxmx

∣∣∣∣∣
∫

4π
kx

ilxRlx(rx)ρlxmx;mbx
(rx, k⃗a, k⃗b)drx

∣∣∣∣∣
2

. (B.4)
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C
Finite Range Correction

As in transfer reactions leading to bound states, one may include part of the finite-range effects introduc-

ing the so-called finite-range correction119. In the present formulation, a similar procedure can be used.

This is done as follows. The source term can be written as

ρb(⃗rx) =
∫

d⃗rbxχ
(−)∗
b (⃗rb)Vbx(⃗rbx)φa(⃗rbx)χ

(+)
a (⃗ra)

=

∫
d⃗rbxχ

(−)∗
b (q⃗rx − r⃗bx)Vbx(⃗rbx)φa(⃗rbx)χ

(+)
a (⃗rx − p⃗rbx).

(C.1)

Then, by use of the translation operator, the distorted waves can be written as

χ(−)∗
b (q⃗rx − r⃗bx) = e−

1
q r⃗bx∇bχ(−)∗

b (q⃗rx), (C.2)

χ(+)
a (⃗rx − p⃗rbx) = e−p⃗rbx∇aχ(+)

a (⃗rx), (C.3)

then

ρb(⃗rx) =
∫

d⃗rbxer⃗bx·Oχ
(−)∗
b (q⃗rx)Vbx(⃗rbx)φa(⃗rbx)χ

(+)
a (⃗rx), (C.4)
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with

O = −1
q
∇b − p∇a. (C.5)

The operator exp(⃗rbx · O) can be expressed as an expansion in powers and multipoles (solid harmonics)

of its arguments:

e(⃗rbx·O) = 4π
∑
nλμ

Cnλr2n+λ
bx Yμ∗λ (r̂bx)O2n+λYμλ(Ô), (C.6)

where

Cnλ =
(n+ λ)!2λ

n!(2n+ 2λ+ 1)!
. (C.7)

Let us introduce the integral

Ibx(O) =

∫
d⃗rbxer⃗bx·OVbx(⃗rbx)φa(⃗rbx)

=

∫
d⃗rbx4π

∑
nλμ

Cnλr2n+λ
bx Yμ∗λ (r̂bx)O2n+λYμλ(Ô)Vbx(⃗rbx)φa(⃗rbx),

(C.8)

with

φa(⃗rbx) =
∑
mbx

Rlbx(rbx)
rbx

Ymbx
lbx (r̂bx), (C.9)

The integral over r̂bx selects out the λ = lbx, μ = mbx term from the Taylor expansion, so

Ibx(O) =
∑
mbx

Ilbxmbx(O), (C.10)

where

Ilbxmbx(O) = 4π
∑
n

CnlbxdnlbxO2n+lbxYmbx
lbx (Ô), (C.11)

dnlbx =
∫

drbxVbx(rbx)Rlbx(rbx)r
2n+lbx+1
bx . (C.12)
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For the case lbx = 0 (common for light ions) one has

I00(O) = (4π)1/2
∑
n

dn0
(2n+ 1)!

O2n

= (4π)1/2d00 + (4π)1/2
1
6
d10O2 + · · ·

= D0[1+
1
6
ρ2O2 + · · · ]

≈ D0Λ(rx),

(C.13)

where

D0 = (4π)1/2d00 ρ2 =
d10
d00

. (C.14)

Let us introduce the operator∇x which operates only on χ
(−)∗
x (⃗rx). By means of the Green’s theorem:

∮
S
(φ∇ψ− ψ∇φ)dS =

∫
V
(φ∇2ψ− ψ∇2φ)dV. (C.15)

Then ∫
d⃗rx∇2

xχ
(−)∗
b (⃗rx)χ(−)∗

x (⃗rx)χ(+)
a (⃗rx) =

∫
d⃗rxχ(−)∗

x (⃗rx)∇2{χ(−)∗
b (⃗rx)χ(+)

a (⃗rx)}

=

∫
d⃗rx(∇2

a + 2∇a∇b +∇2
b)χ

(−)∗
b (⃗rx)χ(−)∗

x (⃗rx)χ(+)
a (⃗rx),

(C.16)

so

∇2
x = ∇2

a + 2∇a∇b +∇2
b. (C.17)

Then

O2 = (
1
q2

− p
q
)∇2

b + (p2 − p
q
)∇2

a +
p
q
∇2

x . (C.18)

Since O2 involves only ∇2 operators, we may replace these by using the Schrodinger equations obeyed

by the corresponding functions on which they act:

∇2
aχ(+)

a (k⃗a, r⃗x) =
2μa
ℏ2

(Ua − Ea)χ(+)
a (k⃗a, r⃗x), (C.19)

∇2
bχ

(−)∗
b (k⃗b, r⃗x) =

2μb
ℏ2

(Ub − Eb)χ
(−)∗
b (k⃗b, r⃗x), (C.20)

∇2
xχ(−)∗

x (k⃗x, r⃗x) =
2μx
ℏ2

(Ux − Ex)χ(−)∗
x (k⃗x, r⃗x). (C.21)
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Then

O2 = (
1
q2

− p
q
)
2μb
ℏ2

(Ub − Eb) + (p2 − p
q
)
2μa
ℏ2

(Ua − Ea) +
p
q
2μx
ℏ2

(Ux − Ex). (C.22)

Finally, we get

Λ(rx) = 1+
d10
d00

{
(
1
q2

− p
q
)
2μb
ℏ2

(Ub − Eb) + (p2 − p
q
)
2μa
ℏ2

(Ua − Ea) +
p
q
2μx
ℏ2

(Ux − Ex)

}
. (C.23)
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