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Notation

||
‘ ' ’r
-1l
|| ) HLT(T,T;X)
-1l
('7')

Bx(z,r)
Bx(x,r)
C(L*(Q))

dx

diStX(Ol, 02)

D(Q)
D'(Q)
f+
L(X,R)
P(X)
R3

norm in RV and the Lebesgue measure of a subset of RY for N > 1
norm in L"(§2) with r» > 1

norm in Wy (Q) with > 2, given by de L"(€2) norm of the grandient
norm in L"(7,T; X)) where r > 1 and X is a separable Banach space
norm in the dual space of W, (Q) with r > 2

inner product in L?(Q)

inner product in H{ () given by the product in (L*(Q2))V of the
gradients

duality product between the dual space of W, (Q) and W, () for
r>2

closure in X of a subset of X

almost everywhere (in the sense of the Lebesgue measure)
ball in the metric space X of center x and radius r

closed ball in X of center x and radius r

positive cone of L*(Q), i.e. the set {g € L*(N): g >0 a.e. Q}
distance defined on a (metric) space X

Hausdorff semi-distance in the metric space (X, dx), i.e.
SUp,.co, infyco, dx(z,y) for 01,0, C X

C>(Q2) N C2(Q)

£(D©)

positive part of f, i.e. fT(x) = max{0, f(z)}

the space of continuous linear forms from X into R

the family of all nonempty subsets of X

the set {(t,7) e R? : 7 < t}

After identifying L?(Q) with its dual, it is also denoted by:

('7')
<'= >

the duality product between LP(Q2) and L4(f2), where p is the con-

jugate exponent of ¢
the duality product between H1(Q) + L9(Q2) and HJ(Q2) N LP(£2),
where p and ¢ are conjugate exponents.
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Introduction

In recent decades, nonlocal problems have arisen in modeling with great interest by
its usefulness in real applications (e.g. cf. [59, 19, 67, 109, 12]). For instance, in
Biology, the evolution of some species might be better represented by a nonlocal
equation than within the corresponding local simplification. Of course, the disad-
vantage is that sometimes it is very complicated to deal with the nonlocal operators
and terms since they are more involved.

In 1989, within of this nonlocal framework, Furter & Grindfeld published [60], a
paper in which models of populations with nonlocal effects are analysed. They stated
that in the ecological context, there did not exist any reason why the interactions
in single-species population dynamics should be local. A few years later, in [46],
Chipot & Rodrigues studied the behaviour of a population of bacterias within a
container, which was modelled by the nonlocal elliptic problem

—a</u>Au+/\u:f in €,
Q
8nu—|—fy(/ u)zO on 0f),

where ) is a bounded open subset of R, the boundary 02 is Lipschitz, ' C €,
A > 0, the functions a and v belong to C(R; R, ), f € L*(Q2) and 9,u is the normal
derivative of w.

In the following papers by Chipot and his collaborators, instead of considering

the nonlocal term a ( [, u), the authors use a more general nonlocal operator a(l(u))
where [ € L(L*(Q2),R), i.e. for some g € L*(Q)

Namely, a lot of attention has been paid to the nonlocal parabolic equation

ou

5~ allw)du = J, 1

where the function a € C'(R; R, ) and there exist positive constants m, M > 0 such
that
O<m<a(s) <M VseR.
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These are natural conditions of non-degeneracy of a in order to avoid the extinction
and the existence of the solutions only in finite time intervals. Under these condi-
tions, the equation possesses a parabolic nature and therefore, classical results such
as the Maximum Principle and the sub-supersolution method can be applied (for
more details, see [87]).

It is worth highlighting that equation (1) is not a trivial perturbation of the heat
equation and great difficulties arise in different contexts. For instance, some com-
mon manipulations such as multiplying by u, do not give any additional information
in the a priori estimates, unlike what happens in the local case (see [5, Chapter 2, p.
32]), since it is not possible to consider a(l(u))<%|Vu|? as the temporal derivative of a
function due to the fact that the nonlocal term a(l(u)) depends on time. Regarding
the existence of a Lyapunov function, it is not guaranteed in a general framework.
Additional requirements (see for more detail [45]) or more specific nonlocal operat-
ors, which are strongly related to the diffusion terms (see [49, 47]), are needed to
build this function. Furthermore, some obstacles arise when the nonlocal equation
is set in unbounded domains. It seems that due to the presence of the nonlocal
operator in the diffusion term, Rosa’s method, which is detailed in [101], cannot be
applied to problem (2). As far as we know, the analysis in unbounded domains is
still an open problem.

From a biological point of view, the function v might represent the density of a
population. Additional assumptions could be imposed on the function a to better
reflect the behaviour of the community. For instance, to model species with a
tendency to leave crowded zones, a natural assumption would be to assume that
a is an increasing function of its argument. On the other hand, if we are dealing
with species attracted by growing population, one would assume a to decrease. In
addition, nonlocal models have been used in epidemic theory and from a physical
point of view, to study the heat propagation (cf. [120, 18, 38, 119]).

To analyse a complete model, it considers the nonlocal problem studied by Chi-
pot & Lovat in [44]

9 ai(w) A= f(t) in Q x (0,00),

ot )
w=0 onFOX(O,oo),a—zzo on Ty x (0, 00), (2)

u(z,0) = up(x) in €,

where ) is a smooth open subset of RY, whose boundary is split into two parts,
Iy and T'y. Furthermore, f € L*(0,T;V’) where V' is the dual space of V =
{ve HY(Q)/v=0o0n Ty} and uy € L*(©). The existence of weak solution is shown
making use of the Galerkin approximations and compactness arguments. To deal
with the limit of the sequence of Galerkin approximations associated to the nonlocal
term —a(l(u))Au, the Aubin-Lions Lemma and [85, Lemme 1.3, p. 12] are applied.
In addition, to prove the uniqueness of solution, due to the nonlinearity generated in
the diffusion term by the nonlocal operator, the function a is assumed to be globally
Lipschitz. This condition can be weakened assuming only that the function a is
locally Lipschitz.



Introduction 15

The stationary study is the most interesting analysis of the cited paper. The
existence of stationary solution to (2) are related (if and only if) to the solution of
the scalar equation

a(p) = 1(p), (3)

where ¢ is the weak solution to the problem

—Ap=f inQ
¢ =0 on [,

(see [44, Theorem 3.2] for more details). Observe that the number of stationary
solutions to (2) is characterised by the number of intersection points of the curve
y = a(s) and the hyperbola y = I(¢)/s, since the intersection points fulfil a(s)s =
l(¢), which is the expression (3). Therefore, the uniqueness of stationary solution
will be guaranteed, for instance, if we assume that a is a non-decreasing function,
since a cuts just once the hyperbola. In this framework, it makes sense to study the
exponential decay of the solution of the evolution problem (2) towards the unique
stationary solution. Namely, this result can be proved as long as it satisfies the

condition i 0 e
(La)* 101z 220 ) 1 lI2(17)

(I())?

where L, is the globally Lipschitz constant of the function a, \; is the first eigenvalue
of —A with zero Dirichlet boundary conditions and p* is the unique solution to (3).
This result does not appear in [44], but it is a contribution to the outstanding study
made by Chipot & Lovat, which continues as follows.

Assume that

< m2>\1,

>0, ie l(u)>0 Yu>0/u#0ae. €,
and f e V' fulfils
f#Z0 and (f,v)>0 YoeV /v>0ae

where (-, -) denotes the duality product between V' and V".
Suppose that there exist two stationary solutions to (2). Therefore, the equation
(3) possesses two solutions called p; and pe. Namely, we consider (see Figure 1)

(o) <a(s)s Vs € [u, ol

and
alpe) < als) < alpr) Vs € [, pa].

For + = 1,2, we denote by u; the solution to

—a(pi)Au; = f  in
U; = 0 on FO.

Then, when the initial datum wg fulfils

u <up <up  ae. Q, ug £ us,
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Figure 1: a(s) and ——= intersect at two points.
s

it holds (cf. [44, Theorem 4.1])
u(t) — uy strongly in L?(Q) as t — oo.

Observe that when the function f appearing in problem (2) depends on the
unknown u, the difficulty of the problem increases considerably, making the previous
result not be available in this more complex framework. As far as we know, there
is only a comparison result between the solution of the evolution problem and two
(assumed to exist) stationary solutions (cf. Theorem 3.10).

Later, Chipot & Molinet in [45] generalise the results obtained in [44], dealing
with a continuum of steady states using dynamical systems. In the same lines of
[44, 45], in [48] Chipot & Siegwart consider a more general elliptic operator than
the —A and study the asymptotic behaviour of the solutions to problems with
nonlocal diffusion and mixed boundary conditions. In [35], Chang & Chipot are
also interested in the asymptotic behaviour of the solutions to nonlocal problems,
but in this case they deal with two nonlocal operators. In particular, they prove
results which establish relationships between the solution to the evolution problem
and stationary solutions. These results are similar to those given in the simpler
framework of paper [44] which have been detailed previously. Considering also zero
Dirichlet boundary conditions, in [50], Chipot & Zheng analyse the convergence
of the solution of the evolution problem to one of the equilibria without assuming
uniqueness of stationary solutions.

Observe that not only have authors been interested in analysing problems in
which the nonlocal operator is defined by a(l(u)), but they have also studied other
variants, such as a(|Vul?) and a(||Vul[?). The first one

ou

i a(|Vul>)Au = f

was analysed in [49] by Chipot et al. The main advantage of considering this new
variation is that it allows to study the long-time behaviour of weak solutions making
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use of global minimizers. In [47], Chipot & Savitska consider the p-Laplacian in the
diffusion term instead of the —A together with the nonlocal operator a(||Vul?),
which involve several difficulties, since although the p-Laplacian is a monotone op-
erator, its lack of linearity makes it more complicated to deal with the nonlocal
diffusion as we will show later (see Chapter 7).

Another variant, which has been analysed when f is still independent of u, deals
with local nonlocal operators, i.e. the nonlocal operator is not acting globally in the
whole domain but in a part of it contained in a ball centered on each position point:

L.()(z): L*(Q) — R
v L)) = / ey g€ )

Problems with this kind of operators have been analised by Andami Ovono & Rou-
girel in [2, 3]. The authors study radial solutions, bifucation, the existence of branch
of solutions and stability. Namely, in [2], Andami Ovono proves the existence of local
branches of solutions in a radial setting by bifurcation analysis. Furthermore, in the
cited paper, the existence of the compact global attractor in L?((2) is analysed.

For f depending on the unknown w, the situation is more involved. In [70],
Hilhorst & Rodrigues analyse the parabolic equation

% — <ﬁ/gu(w)dw) Autf (u ﬁ/ﬁu(w)dw) ,

studying the existence of weak solutions and obtaining a rigorous derivation of a
class of diffusion equations that have been used to model the threshold phenomena
in porous media combustion. Later, in [97], Menezes analyses the equation

ur — a(l(u))Au+ f(u) = h(t) in Qx (0,7),

where f is a Lipschitz function, h belongs to L*(0,T; H~'(€)) and € has a smooth
boundary. Using fixed point techniques, the existence and uniqueness of weak solu-
tions are analysed. Moreover, making use of the Galerkin approximations, the ex-
istence of periodic solutions is also studied.

In this more complex framework of f depending on wu, Corréa considers in [53]
the nonlocal elliptic problem

—a (/Q |u|q) Au= H(z)f(u) inQ
w=10 ondQ,

and the existence of positive solutions through fixed point theorems is analysed. An
analogous result is proved by Corréa et al. in [54], analysing the existence of positive

solutions to
—a (/ u) Au = f(x,u) in
Q
u=0 on 0N
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Recently, Figuereido de Sousa et al. have also made interesting contributions in this
framework (see [58]), showing the existence of positive solutions to the non-local

logistic equation
—a (/ u) Au = Au—b(x)u* in
Q

u=0 on 9.

As we can appreciate by the large number of references cited along this intro-
duction, there have been many advances related to equation (1) and its variants,
with contributions on existence and uniqueness of weak solutions, radial solutions,
periodic solutions or convergence of the solution of the evolution problem towards
a stationary solution, amongst others.

Concerning the long-time behaviour of solutions, except for some concrete prob-
lems, it is an intractable task to study the existence of stationary solutions and their
stability or Lyapunov functions, amongst others. That is why it is worth consider-
ing the information that can be obtained by the theory of attractors to study the
asymptotic behaviour of the solutions (see [2], also some previous results on this
direction by Lovat [87]).

In the context of attractors, the compact global attractor is a useful tool that
has been developed to study autonomous dynamical systems in the last few decades.
Namely, this object has been deeply analysed by Hale [69], Ladyzhenskaya [83],
Babin & Vishik [16], Vishik [113], Ball [17], Temam [111], Robinson [100], Sell &
You [105] or Babin [15]. A global attractor is characterised for being a compact
set in a given metric space which is maximal and invariant for the corresponding
semiflow and attracts through the semiflow to all fixed nonempty bounded subsets
of the metric space. In [69, 16, 100], the authors provided conditions that guarantee
the existence of global attractors as well as examples.

However, after including time-dependent terms, which allow to model more com-
plex situations, studying the asymptotic behaviour of the solutions through the com-
pact global attractor may not make much sense. For instance, consider the Cauchy
problem

(4)

x(7) = .,

{ ' (t) = —ax(t) +t

where a > 0. It is easy to check that the solution to (4) is defined by

1 T t 1
x(t”—?ajr) = (x—r‘{’ ? - a) e alt=7) + a — ?

Taking limit when t — 0o, we do not obtain any information about the behaviour
of the solutions.

What happens is that the trajectories are attracted by a time-dependent family
defined by A = {A(t) = t/a — 1/a?}. For a fixed t € R, the section A(t) is a com-
pact set which attracts the solutions in a pullback sense, i.e. when the initial time
7 — —o0. This approach allows us to establish not only the asymptotic behaviour
of the dynamical system but also what the current attractions sections are when the
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initial data come from long time ago in the past. Furthermore, observe that in the
autonomous framework, both concepts, forward attraction and pullback attraction,
coincide.

In addition to this approach, there are other different ones from the point of
view of non-autonomous dynamical systems, like skew-product flows (see Sell [104])
or uniform attractors and their kernel sections, which seem to be the natural gen-
eralisation of the compact global attractor, studying the asymptotic behaviour of
the solutions when the time goes to infinity (see Chepizhov & Vishik [40]). All of
them are valid to analyse different features of the evolution of a non-autonomous
dynamical system.

In this thesis, we choose the approach of pullback attractors (see Kloeden &
Schmalfuf§ [81, 82] and Kloeden [76], also related to random dynamical systems
[55]), since it allows us to minimize the assumptions on the forcing terms and the
resultant objects are invariant (in a suitable “non-autonomous-dynamical-system
sense”), unlike what happens with the uniform attractors which do not fulfil any
property of invariance in general. However, this new object, the pullback attractor,
may not be unique like the compact global attractor. For instance, see [93, Example
11]. In the cited example, Marin-Rubio & Real consider a continuous function f =
f(t,x) : R* — R, which is globally Lipschitz w.r.t. = and fulfils that f(¢,z) = —z if
|z| < e . Then, they define a process U on R given by

Ult, "), =x(t;1,2,) Ve, eR Vt>r,

where z(t; 7, z,) is the unique solution to the Cauchy problem

{ 2'(t) = f(t,z)

(1) = z,.

To prove that there exist more than one pullback attractor consider A; = {0} and
Ay = {Ay(t) = [-e7fe7?] : t € R}. Both of them are families of compact and
nonempty sets, invariant for the process U in a non-autonomous-dynamical-system
sense, and attract fixed nonempty bounded subsets of R (for more detail about
pullback attractors see Chapter 1). To solve this problem, a minimality condition
is imposed (cf. Definition 1.11). This way the uniqueness is guaranteed, being A,
the minimal pullback attractor.

In this approach of pullback attractors, many new results have appeared over the
last years. Some authors have been interested in studying the pullback attractor in
the classical sense, i.e. the pullback attractor of solutions starting in fixed bounded
sets. Others, though, have employed the concept of attraction related to a class of
families, called universe D, which is made up of sets which are allowed to move in
time and are usually defined in terms of a tempered condition (e.g. cf. [51, 31, 32]).
In [93], Marin-Rubio & Real analyse these two different concepts of pullback at-
tractor with detail, highlighting some difficulties which appear in the framework of
the universe of fixed nonempty bounded sets and which can be solved making use
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of tempered tools. Finally, the authors establish relationships between these two
notions of attractors proving that in fact both families coincide under a suitable
assumption (see [93, Proposition 23]).

This PhD project is split into seven chapters. In Chapter 1, abstract results
on pullback attractors within the framework of universes are analysed. Chapters
2, 3 and 4 are devoted to studying the existence and uniqueness of solutions as
well as the existence of minimal pullback attractors in the phase spaces L?(£2) and
HJ () for non-autonomous nonlocal parabolic equations. Next, in Chapter 5, the
theory of pullback attractors for multi-valued non-autonomous dynamical systems
will be analysed to be applied later in the following two chapters, Chapters 6 and 7.
In Chapter 6, a non-autonomous nonlocal reaction-diffusion equation with a small
perturbation in the nonlocal diffusion term and the non-autonomous force is ana-
lysed in a multi-valued framework. The existence of weak solutions and pullback
attractors in L?(Q) is proved. In addition, the upper semicontinuous behaviour of
attractors will be analysed when the perturbation goes to zero. Finally, in Chapter
7, the existence of solutions for an autonomous nonlocal p-Laplacian equation is
shown. Furthermore, the asymptotic behaviour of the solutions is studied proving
the existence of the compact global attractor in L?(Q2). The study of problem (P)
in the non-autonomous framework is also possible, but for the sake of simplicity, we
have focused on a problem without non-autonomous terms to make the proof clearer.

Chapter 1 is split in three sections. In Section 1.1, we consider a universe D
composed of families parameterised in time. We analyse some basic concepts as
well as some abstract results which will be crucial to prove the existence of pullback
attractors under minimal assumptions.

In Section 1.2, we study the main result of this chapter. Namely, Theorem
1.13 guarantees the existence of the minimal pullback D-attractor. Making use of
this result, in Corollary 1.15, we establish relationships between the attractor of the
universe of fixed nonempty bounded sets and the attractor associated to the universe
D (for more details see [93, Proposition 23]). In addition, in Theorem 1.16, we also
establish relationships between attractors related to general universes associated to
different phase spaces (see [62, Theorem 3.15]).

To end this chapter, in Section 1.3, the flattening property is analysed. The
notion provided in this thesis is a slight modification of the well-known “Condition
(C)” introduced by Ma, Wang and Zhong in [88], coined by Kloeden & Langa as the
flattening property in [77]. It is a useful tool that allows to prove one of the main
ingredients in order to guarantee the existence of the minimal pullback attractor,
the pullback asymptotic compactness (cf. Proposition 1.18).

In Chapter 2, the non-autonomous nonlocal parabolic problem

ou :
o — all)Au = f(u) + h(t) nQx (7,00,

u=0 on 9N x (1,00),
u(z,7) =u,(x) in

(P)
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is analysed, where € is an open bounded subset of RY, 7 € R and the function
a € C(R;R,) is locally Lipschitz and there exists a positive constant m, such that

0<m<a(s) VseR. (5)

In addition, [ € L(L*(2),R), f € C(R) and there exist two constants n > 0 and
Cy > 0 such that

/(5]
(f(s) = F(r))(s =7)

To conclude the setting of (P), we assume that the initial datum u, € L*(Q2) and
the non-autonomous term h € L2 (R; H*(Q)).

We divide Chapter 2 into four sections. Section 2.1 is devoted to existence and
uniqueness results. First of all, the existence of local solution to (P) is proved making
use of [52, Theorem 1.1, p.43], which is a generalisation of the Peano Theorem.
To guarantee the uniqueness, the function a also needs to be locally Lipschitz.
Then, in Theorem 2.4, the existence and uniqueness of weak (global) solutions are
analysed making use of the Galerkin approximations and compactness arguments.
The main difficulty of this result consists in dealing with the limit of the Galerkin
approximations of the nonlinear terms —a(l(u))Awu and f(u). To do this, in addition
to applying the Aubin-Lions lemma, we use [85, Lemme 1.3, p. 12], which allows us
to work with the nonlinearities. Furthermore, in this section, namely in Theorem
2.5, the regularising effect of the equation is stated as well as the existence of strong
solution in a more regular framework.

In Section 2.2, we study the existence and uniqueness of stationary solutions and
their stability. For the existence result, we make use of a corollary of the Brouwer
fixed point theorem (see [85, Lemme 4.3, p. 53]). Furthermore, the uniqueness of
stationary solution is shown under additional requirements. The exponential decay
of the solution of the evolution problem (P) towards the unique stationary solution
is also analysed.

Section 2.3 is devoted to proving the existence of minimal pullback attractors
in the phase space L?(Q2) as well as some relationships between these families (cf.
Theorem 1.15). In this case, to build a suitable tempered universe for our purposes,
we need to make this additional assumption on the function f

f(s)

lim sup ——= < mA, (7)

|s|—o0 S

f(1+|s]) VseR,

<C
<n(s—r)? Vs,reR. (6)

where )\; is the first eigenvalue of —A with zero Dirichlet boundary conditions. Ob-
serve that to prove the most difficult result of this section, the pullback asymptotic
compactness (cf. Proposition 2.15), which leads immediately to the existence of
attractors, we use an energy method which relies on the continuity of the solutions
(cf. for more details [73, 92, 94, 62]).

Finally, in Section 2.4, in a more regular framework we show the existence of
minimal pullback attractors in the phase space H{(f2) and establish some relation-
ships between these objects and the attractors analysed in Section 2.3. In this case,
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the pullback asymptotic compactness is also proved using the energy method that
has been applied in Section 2.3, but making use of a more regular energy equality
associated to strong solutions (cf. Proposition 2.22). All the results of this chapter
can be found in [21].

Chapter 3 is devoted to studying problem (P) when the function f € C(R)
satisfies (6) and there exist positive constants oy, g, k and p > 2 such that

—k—aq|slP < f(s)s <k —agls|P VseER. (8)

Although we relax the assumptions on f, since now we are not dealing with
semilinear reaction terms, we need to impose some strong smoothness condition on
the domain ). Nevertheless, we do not impose any restriction on the dimension
of the domain 2 C RY, which allows to deal with problems which have a strong
dependence not only on the spatial variables, but also on others.

The structure of Chapter 3 is as follows. In Section 3.1, the existence and unique-
ness of weak solutions to (P) is analysed in Theorem 3.3. To do this, we use the
Galerkin approximations and compactness arguments, together with some projec-
tion operators which are well-defined thanks to the regularity imposed to the domain
2. Next, the existence and uniqueness of strong solutions to (P) and the regularising
effect of the equation are studied in Theorem 3.4. Whereas in local reaction-diffusion
equations, strong solutions belong to L*(,T; H*(Q) N Hg (Q))NC ([, T]; Hj(2)) for
all T > 7 (cf. [100, 5]), in nonlocal problems like problem (P) we are not able to
obtain the regularity C([r,T]; Hi(€2)) for the solution u, due to the fact that in
general, v’ € L7, T; L1(Q)) (1 < q < 2), instead of belonging to L?(7,T; L*(2)).
Therefore, making use of the fact that u € L>®(7,T; Hy(2)) together with the cited
regularity of u/, we can only obtain that u € C,([r,T]; Hy(Q)) for all T > 7 (cf.
[108, Theorem 2.1, p. 544] or [111, Lemma 3.3, p. 74]). Furthermore, a Maximum
Principle is provided for problem (P), which is an essential tool to study biological
models, because in order to analyse population dynamics it is crucial to guarantee
that the solution is positive (for more details see Remark 3.25).

Section 3.2 is in a certain sense complementary to our main results on attractors.
We analyse some results concerning the stationary solutions. Observe that due to
the presence of the nonlinear terms —a(l(u))Au and f(u), this problem is far from
being trivial. Therefore we can only provide some partial results. Namely, we
establish the existence of nontrivial solutions for a special choice of f making use of
a result by Chipot & Corréa (cf. [42, Theorem 2.1]). In a more general framework,
we provide a conditional result in the same line as [44, Lemma 4.1]. Namely, we
obtain a comparison result between the solution to problem (P) and two (assumed
to exist) stationary solutions.

Section 3.3 focuses its study on the existence of minimal pullback attractors in
the phase space L?(2) and some relations between them are obtained. Regarding
f, while in the sublinear framework (see Chapter 2) we also needed to impose the
usual assumption (7) to study the asymptotic behaviour of the solutions through
the theory of attractors, here condition (8) will be enough.
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To conclude this chapter, Section 3.4 is devoted to analysing the existence of
minimal pullback attractors in the phase space Hj(€2) in the strong-solutions frame-
work. Due to the fact that in general f(u) belongs to L(7,T; L4(2)), it does not
make any sense to multiply the equation of problem (P) by —Au € L?(7,T; L*(Q)).
Therefore, in the general case in which f(u) does not belong to L*(7,T; L*(Q)), we
cannot use an energy equality in a strong sense. However, to prove the existence of
pullback attractors in Hj(€2), we need to deal with this kind of equalities. That is
the reason why in this last section we impose the additional assumption

F(u) € L3(r, T5 L12(9)) Vu € L3(r, T; HA(Q) 0 HL(SQ)) 0 L=(r, T; HA(9),
which will be replaced along this section by

“f(u)H%Q(T,T;L2(Q)) < Cf”“”%l;o(f,T;Hg(Q))||“||%Z(T,T;H2(Q)0H5(Q))v

for some lA), b, C ¢ > 0. This assumption has been obtained using interpolation results
(cf. [116, Lemma I1.4.1, p. 72]) and the regularity of the domain Q. Then, tak-
ing this into account, the existence of attractors is guaranteed, where the pullback
asymptotic compactness has been proved using the same kind of energy method as
the one applied in Chapter 2 for the same purpose. All the results of these chapter
have been analysed in [23].

In Chapter 4, we continue analysing problem (P) in the reaction-diffusion frame-
work, i.e. when the function f fulfils the assumptions (6) and (8), like in Chapter
3. In this chapter 4, we get rid of the strong assumptions made on the domain
2 in Chapter 3, which allows to model real phenomena with more accuracy since
they tend to be posed in nonsmooth domains (see [68] for more details). Neverthe-
less, in this case we need to impose some restrictions on either the dimension N
(cf. Theorem 4.8) or the reaction term (see Theorem 4.10) or even both of them
(cf. Corollary 4.11) when we are analysing the existence of strong solutions and the
regularising effect of the equation, unlike what happened in Chapter 3 that it was
only necessary smoothness assumptions on the domain 2. To prove the existence
of pullback attractors in H}(€2) in this chapter 4, it is not enough with assuming
only the restrictions on the dimension of the domain 2 that were made in Theorem
4.8, we need to study the existence of these families in the settings of Theorem 4.10,
imposing requirements on the reaction term, or Corollary 4.11, making assumptions
on the dimension of the domain and the reaction term. Observe that thanks to the
restrictions made on the dimension of the domain in Corollary 4.11, the reaction
term can be taken more general in this corollary than in Theorem 4.10.

We split this chapter into three sections. In Section 4.1, we study the existence of
weak and strong solutions to the nonlocal reaction-diffusion problem (P). In the first
part, Section 4.1.1, we briefly recall the monotonicity method for solving nonlinear
PDEs (cf. [85, Chapitre 2]). Next, in Section 4.1.2, the existence and uniqueness of
weak solutions to (P) are shown making use of an iterative method together with
monotonicity and compactness arguments. Namely, we consider the sequence of
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problems

u € L*(1,T; HY(Q)) N LP(,T; LP(Q)) N C([r, T); LA(Q)) VT > 7,

(Pa) {2 ult), ) + ol ))((ul), 0)) = (F(u(t) ) + (h(1), 0,

u(T) = ur,

where u = 0 and " is the solution to (P,) if n > 1.

Observe that the existence and uniqueness of weak solutions to (P,) are guar-
anteed by the monotonicity method. Then, applying compactness arguments to the
sequence {u"}, we can prove the existence of weak solutions to (P). Observe that
this result is an improvement compared to the existence result of Chapter 3 in the
weak-solutions framework (cf. Theorem 3.3), since in this case we are able to prove
the existence of weak solutions to (P) without making any smoothness assumptions
on the domain 2. The uniqueness holds immediately when we also assume that the
function a is locally Lipschitz. Next, in Section 4.1.3, the existence and uniqueness of
strong solutions as well as the regularising effect of the equation are proved without
assuming any smoothness conditions on the domain 2 as in Chapter 3. In return,
we need to impose some restrictions on either the dimension N (cf. 4.11) like in
Theorem 4.8 or the reaction term. Namely in Theorem 4.10, to prove the existence
and uniqueness of strong solutions and the regularising effect of the equation, we
assume that

[f()] <CL+[s"™) Vs eR, (9)

with vy = 2/N if N > 3, where this estimate has been obtained applying interpolation
results (cf. [116, Lemma I1.4.1, p. 72]) to the Sobolev spaces L>(7,T; L?(£2)) and
L*(1,T; Hy(Q)). Observe that when N = 1,2, v can be any positive value (cf.
Remark 4.9 (i)). In fact, the assumption (9) can be improved if we impose some
requirements on the dimension of the domain 2. Namely, v = 2/(N — 2) when
3< N <2p/(p—2) (see Corollary 4.11 for more details).

Section 4.2 is devoted to studying the existence of pullback attractors in the
phase space L*(f2) in the more general setting of Section 4.1.2. Although this result
is not new in this PhD project, since the existence of these families has been proved
in Chapter 3 (see Theorem 3.17 for more details), the method applied to prove the
pullback asymptotic compactness is. Namely, we argue similarly as it was done in
[101].

For the sake of completeness, in Section 4.3, we analyse the existence of pullback
attractors in H} () in the framework of universes and establish some relationships
amongst these families of attractors and the ones analysed in Section 4.2. Observe
that the existence of pullback attractor in H'-norm has been analysed in Chapter 3
(cf. Theorem 3.23). Nevertheless, in this chapter to prove the pullback asymptotic
compactness we use the pullback flattening property, which is a tool that has not
been used before in this thesis. In addition, it is worth highlighting that to prove
these results, we need to work in the setting of Theorem 4.10 or Corollary 4.11,
since assuming only restrictions on the dimension of the domain 2 is not enough to
guarantee the existence of stronger energy equalities as well as the continuity of the
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strong solutions in Hj(£2). The results of this chapter can be found in [25].

From Chapter 5 forward, all the results provided in this PhD project are set in a
multi-valued framework. Many authors have been interested in analysing problems
in which the uniqueness of solution is not guaranteed. Amongst them, it is worth
highlighting 3D incompressible Navier-Stokes equations (cf. [17]), differential inclu-
sions (cf. [96]), reaction-diffusion equations (cf. [6]) and delay differential equations

(cf.[89]).

In Chapter 5, we describe abstract results on multi-valued non-autonomous dy-
namical systems in the framework of universes. This chapter is divided into two
sections. In Section 5.1, we analyse the basic concepts studied in Chapter 1 in this
new setting. In addition, the notion of upper semicontinuous process (cf. Definition
5.2) is shown. Later, in Section 5.2, the existence of pullback attractors and some
relationships between them are established in this multi-valued framework (cf. The-
orem 5.11, Corollary 5.13 and Theorem 5.14).

Chapter 6 is devoted to the study of the perturbed non-autonomous nonlocal
reaction-diffusion problem

g_"; ~ (1 )a(l(w)Au = f(u) + eh(t) in Q x (r,00),
(P) Y w=0 on 0 x (1, 00),

u(z,7) =u,(x) in Q,

where € € [0,1), 7 € R, Q C R is a bounded open set, the function a € C(R;R;)
fulfils (5), f € C(R) satisfies (8), and [ € L(L*(f2),R). In addition, the initial datum
u, € L?(Q2) and the non-autonomous term h € L} (R; H'(2)).

This chapter is split into three sections. In Section 6.1, the existence of weak
solutions to (P.) is analysed in Theorem 6.2 making use of the Galerkin approx-
imations and compactness arguments. Observe that although we are analysing a
reaction-diffusion equation similar to the one studied in (P), it is not necessary to
assume any smoothness condition on the domain 2. The reason is that along the
proof of this result, we do not need to obtain a uniform estimate of the Galerkin
approximations associated to u/, the temporal derivative of a solution u to (P:),
since instead of applying the Aubin-Lions lemma, we make use of the compactness
by translation (cf. [110, Theorem 13.2, p. 97| and [110, Remark 13.1, p. 100]) in
the compactness arguments.

In Section 6.2, namely in Theorem 6.12, the existence of minimal pullback at-
tractors in the phase space L*((2) is stated and some relationships between them are
established. In this case, to prove that the multi-valued process U is asymptotically
compact, we make use of the same kind of energy method applied in Chapters 2 and
3 for the same purpose.

In Section 6.3, we study the upper semicontinuous behaviour of attractors. In
Theorem 6.15, we prove that the family of pullback attractors indexed by ¢ converges
to the global attractor associated to (Py) when the parameter e goes to zero.
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Finally, in Section 6.4, we analyse some regularity results. Namely, in Theorem
6.17 the existence of strong solutions and the regularising effect of the equation are
studied. Observe that to prove this result, since the uniqueness of solution is not
guaranteed, we make use of an argument of a posteriori regularity. Then, the exist-
ence of pullback attractors in H}(Q) as well as the upper semicontinuos behaviour
of attractors in H} () are proved in Theorems 6.23 and 6.26 respectively. All these
results have been studied in [22, 26].

In Chapter 7 we generalise the diffusion term, analysing a nonlocal problem for
the p-Laplacian. This operator appears in a wide range of areas in Physics. For
instance, in Fluid Dynamics, where p = 2 if the fluid is Newtonian, p < 2 when
it is pseudoplastic and p > 2 when the fluid is dilatant. In addition, this operator
is also essential in the study of flow through porous media (p = 3/2), Nonlinear
Elasticity (p > 2), Glaciology (1 < p < 4/3) and Image Restoration (for more
detail cf. [118, 121, 99, 107]). As it has been mentioned before, in [47], Chipot &
Savistka analyse a nonlocal problem for the p-Laplacian, —A,u = —div(|Vu[P2Vu).

Namely,

O ol Vul) Va2V = f i x (0.00),
u=0 on 9N x (0,00),

u(z,0) = up(x) in Q,

where  is a bounded open subset of RV, 1 < p < oo, the function a € C(R;R,)
fulfils (5), f € W=54(Q), where ¢ is the conjugate exponent of p, and the initial
datum ug € W,P(Q) N L3(Q). The existence and uniqueness of weak solutions are
proved rescaling the time as follows

alt) = / a(1(u(s)))ds, (10)

and making use of the Galerkin approximations and compactness arguments.

Although this change of variable has already been used by Chipot et al. in [49]
in order to prove the uniqueness of solution for a nonlocal problem, as far as we
know, it is the first time that it is used as a tool to prove the existence of solutions
for nonlocal diffusion problems. The main reason is that in the previous papers (cf.
[43, 44, 45, 35, 36, 48, 49, 37, 50, 97, 2]), the diffusion term contained the Laplacian,
which is linear. Then, although the nonlocal term generated a nonlinear diffusion,
making use of [85, Lemme 1.3, p. 12], it was not difficult to ensure the existence of
solution. However, for the p-Laplacian, it does not seem to be possible to argue in
the same way, even using monotonicity arguments.

In this chapter, we consider the nonlocal problem for the p-Laplacian

o)A =i (0,00),

(P) u=0 on dQ x (0,00),
u(x,0) = up(x) in €,

where p > 2, the function a € C(R;R,) fulfils (5), f € W~149(Q) (where ¢ is the
conjugate exponent of p), I € L(L*(Q2),R) and ug € L*(Q).
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We split Chapter 7 into two sections. In Section 7.1, the existence of weak solu-
tions to (P) is shown in Theorem 7.2 using the Galerkin approximations, the change
of variable (10) and compactness arguments. However, under the assumptions made
on the function a, the uniqueness of solution to (ﬁ) is not guaranteed. In addition,
in this result we also show a regularising effect of the equation. Next, in Section
7.2, we prove the main result of this chapter, Theorem 5.11, in which we study the
asymptotic behaviour of the solutions to (P) through the theory of attractors. To
do this, we prove the existence of the compact global attractor for a multi-valued
semiflow in the phase space L?(f2), since (P) is an autonomous problem. To estab-
lish the existence of this object, the main difficulty lies in proving the asymptotic
compactness. To that end, we build an absorbing set in W, () (cf. Proposition
7.8) and make use of the compactness of the embedding Wy () < L?(Q). Observe
that the analysis of problem (13) in the non-autonomous framework is also possible.
However, for the sake of simplicity the study has been made in the autonomous
setting, since the proof of Theorem 7.2 involves a change of variable that makes it
quite technical.

To conclude this PhD project, we also provide a non-exhaustive list of problems
that we would like to study in the near future like nonlocal equations in unbounded
domains, the Kneser property or nonlocal delays problems, amongst others. In
addition, we describe some of the works in progress and highlight the difficulties
that have arisen.
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En las dltimas décadas, muchos autores han estado interesados en analizar proble-
mas no locales por su utilidad en aplicaciones reales (e.g. cf. [59, 19, 67, 109, 12]).
Concretamente, se ha prestado especial atencién a ecuaciones parabdlicas no locales

del tipo

0

5 —all(w)Au = f, ()
(cf. [87, 43, 44, 35, 36, 48, 49, 37, 50, 97, 2|, para andlisis con el p-Laplaciano ver
[103]), donde la funcién a es continua y esta acotada inferior y superiormente por
constantes positivas, es decir

O<m<a(s) <M VseR. (12)

Obsérvese que en muchas ocasiones la constante M puede ser calculada localmente.
A lo largo de este proyecto de tesis, la hipétesis (12) s6lo serda impuesta para el
analisis de problemas elipticos (cf. Secciones 2.2 y 3.2).

Desde un punto de vista bioldgico, la funcién u que aparece en la ecuacién (11)
representa la densidad de una determinada poblacién. Las caracteristicas de la mis-
ma pueden reflejarse en la ecuaciéon imponiendo ciertas condiciones a la funcién a.
Por ejemplo, si se pretende modelar el comportamiento de una especie que tiene
tendencia a alejarse de zonas donde la densidad de poblacion es alta, esta actitud
se traduce imponiendo que la funciéon a sea creciente. De este modo la difusion
sera mayor.

Con respecto a las condiciones impuestas a la funcion a, la continuidad y la acota-
cion inferior por una constante estrictamente positiva parecen las hipétesis minimas
necesarias para evitar que la especie exista sélo en intervalos finitos de tiempo y
ademas, permiten que la ecuacién conserve su caracter parabolico. Por tanto, re-
sultados clasicos como el Principio del Maximo y métodos de sub-supersoluciones
pueden aplicarse (ver [87] para mas detalles).

En este proyecto de tesis se estudia el comportamiento asintotico de las soluciones
de problemas no locales (variantes de (11) con condiciones de contorno Dirichlet
homogéneas) haciendo uso de la teoria de atractores. En este marco hay varias
tendencias a seguir dependiendo de si el problema es auténomo o no.

En la teoria autéonoma, el principal objeto de estudio es el atractor global, ana-
lizado con detalle por Hale [69], Temam [111], Ladyzhenskaya [83], Babin & Vishik
[16], Vishik [113], Robinson [100] o Sell & You [105].

29
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Sin embargo, para modelar situaciones mas complejas que conlleven la apari-
cién de términos dependientes del tiempo es necesario recurrir a una teoria mas
general, los sistemas dindmicos no auténomos. Dentro de este marco, existen varias
tendencias que permiten analizar el comportamiento asintotico de las soluciones.
Por ejemplo, el estudio de los atractores uniformes (cf. Chepizhov & Vishik [40]) es
una generalizacion natural del atractor global, ya que se analiza el comportamiento
de las soluciones cuando el tiempo tiende a infinito. Sin embargo, los atractores no
satisfacen en general la propiedad de invarianza y los términos no auténomos necesi-
tan satisfacer determinadas restricciones. Otra opcién posible es considerar la teoria
de atractores pullback!, la cual ha sido ampliamente desarrollada en la tltima déca-
da (cf. Kloeden & Schmalfufl [81, 82]; Kloeden [76]; Caraballo, Lukaszewicz y Real
[31, 32]); Kloeden & Rasmussen [80]; y Carvalho, Langa y Robinson [33]). Dentro
de esta tendencia, algunos autores estan interesados en estudiar atractores pullback
en el sentido clasico, i.e. atractores pullback de soluciones comenzando en conjuntos
acotados fijos. Otros, en cambio, emplean el concepto de atraccién asociado a una
clase de familia, llamada universo D, constituida por conjuntos dependientes del
tiempo y definidos a partir de una condicién temperada (e.g. cf. [51, 31, 32, 62]).
Este 1ltimo concepto de atraccidén serd el que se aplique en este proyecto de tesis.
Ademas se estableceran relaciones entre estas familias de atractores y aquellos dados
en el sentido clésico.

Este trabajo esta dividido en siete capitulos. En los Capitulos 1 y 5, analizamos
resultados abstractos de sistemas dinamicos no auténomos univaluados y multivalua-
dos dentro del marco de los procesos. Estos resultados son utilizados en los Capitulos
2, 3, 4 y 6 para analizar el comportamiento asintético de las soluciones de proble-
mas parabdlicos no locales con términos no auténomos. Finalmente, en el Capitulo
7, las variantes autonomas de estos resultados abstractos se aplican a una ecuacion
no local para el p-Laplaciano sin unicidad de solucién. El estudio en el marco no
auténomo también es posible, pero por simplicidad y claridad en las pruebas, hemos
decidido analizar el problema sin términos dependientes del tiempo.

El primer capitulo esta dedicado a realizar una descripcion de la teoria abstracta
de atractores pullback en el marco de los universos. Esta dividido en tres secciones.
En la Seccién 1.1, consideramos un universo D formado por familias dependientes
del tiempo y analizamos algunos conceptos béasicos como la definicion de familia
pullback D-absorbente y la compacidad asintotica pullback con respecto al universo
D. Ademas, desarrollamos algunos resultados abstractos que seran esenciales pa-
ra demostrar la existencia de los atractores pullback asumiendo las hipdtesis mas
débiles.

A continuacién, en la Seccién 1.2, demostramos el principal resultado de este
capitulo, el Teorema 1.13, el cual garantiza la existencia del D-atractor pullback
minimal. Haciendo uso de este resultado, en el Corolario 1.15 establecemos relaciones
entre el atractor del universo de los acotados fijos y el asociado al universo D. Para
concluir esta seccién, demostramos el Teorema 1.16, el cual nos permite comparar

INo existe una traduccién literal en castellano de esta nocién, la cual trata el comportamiento
asintético de las soluciones cuando el dato inicial viene desde menos infinito.
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atractores para universos méas generales (no sélo el universo de los acotados fijos)
asociados a diferentes espacios de fases.

Finalmente, en la Seccién 1.3, analizamos la propiedad flattening?, una herra-
mienta muy util que nos permite probar uno de los ingredientes claves para determi-
nar la existencia del atractor pullback, la compacidad asintética, de forma inmediata
(cf. Proposicién 1.18).

En el Capitulo 2 consideramos una ecuacién parabdlica no local con términos
sublineales y no auténomos. Este capitulo esta dividido en cuatro secciones. En
la Seccion 2.1, estudiamos la existencia y unicidad de soluciones débiles y fuertes
aplicando las aproximaciones de Galerkin y argumentos de compacidad. En primer
lugar, probamos la existencia de soluciéon local empleando una generalizacién del
Teorema de Peano (cf. [52, Theorem 1.1, p. 43]). A continuacién, demostramos la
unicidad de solucién local imponiendo al operador no local el caracter localmente
lipschitziano. Posteriormente, en el Teorema 2.4, probamos la existencia y unicidad
de soluciones (globales) débiles utilizando [85, Lemme 1.3, p. 12], ya que necesi-
tamos pasar al limite en las aproximaciones de Galerkin asociadas a los términos
no lineales —a(l(u))Au y f(u). Ademds, en un marco més regular demostramos el
efecto regularizante de la ecuacion asi como la existencia de soluciones fuertes.

En la Seccién 2.2 estudiamos la existencia de soluciones estacionarias aplicando
un corolario del teorema del punto fijo de Brouwer (ver [85, Lemme 4.3, p.53]). Mos-
tramos la unicidad de solucién de forma andloga a como hicimos anteriormente en
el caso parabdlico, pero en un marco mas restrictivo. Finalmente, bajo las hipdéte-
sis que garantizan la unicidad de solucién estacionaria, obtenemos el decaimiento
exponencial de la solucién del problema evolutivo hacia la estacionaria.

En la Seccion 2.3, concretamente en el Teorema 2.16, probamos la existencia
de atractores pullback minimales en L?*(Q2) en el marco de los universos mediante
un método de energia que utiliza la continuidad de las soluciones débiles (véase
(73, 92, 94, 62]). Ademsds, establecemos relaciones entre estas familias de atractores.

Para finalizar este capitulo, en la Seccién 2.4, demostramos la existencia de atrac-
tores pullback en H;(§2) usando un método de energfa del mismo tipo que el usado
en la Seccién 2.3 y establecemos relaciones entre estas nuevas familias y los atrac-
tores obtenidos en el Teorema 2.16. Todos los resultados de este capitulo han sido
tratados en la publicacién [21].

En el Capitulo 3 analizamos una ecuacion de reaccion-difusién no local en pre-
sencia de términos no auténomos. A lo largo de este capitulo imponemos que el
dominio €2 sea regular, pero no imponemos ninguna restricciéon a la dimension del
mismo, lo que nos permite tratar problemas que tienen fuertes dependencias de
otras variables no sélo la espacial. Este capitulo esta dividido en cuatro secciones.
En la Seccién 3.1 estudiamos la existencia y unicidad de soluciones débiles emplean-
do las aproximaciones de Galerkin, argumentos de compacidad y la regularidad del

2Esta propiedad consiste en un aplanamiento del sistema dindmico usando sélo un nimero finito
de nodos. En espanol se usa esta palabra ya que su traduccién literal al castellano, aplanamiento,
no ha tenido mucha trascendencia.
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dominio (véase el Teorema 3.3). Ademads analizamos la existencia y unicidad de so-
lucion fuerte asi como el efecto regularizante de la ecuacién. Obsérvese que mientras
que en las ecuaciones de reaccion-difusion locales, la solucion fuerte u pertenece a
L*(7,T; H*(Q) N H} () N C([r, T); HL(Q)) para todo T > 7 (cf. [100, 5]), en las
variantes no locales analizadas en este capitulo no podemos alcanzar en general la re-
gularidad C'([r, T]; H3(€)), debido a que v’ € L(7,T; L4(2)) (donde 1 < g < 2), en
lugar de pertenecer a L*(7,T; L*(2)), que junto con v € L*(r,T; H*(Q) N H (D)),
garantizarfan la citada continuidad en H}(f2) de la solucién.

A continuacion, en la Seccion 3.2, realizamos algunas aportaciones en el marco
estacionario. Concretamente, en los Teoremas 3.8 and 3.10 estudiamos respectiva-
mente la existencia de soluciones no triviales y un resultado de comparacion entre
la solucién del problema evolutivo y dos soluciones estacionarias.

Finalmente, en las dos tltimas secciones analizamos el comportamiento asintotico
de las soluciones a través de la teoria de atractores pullback.

En la Seccién 3.3 demostramos la existencia de atractores pullback en L%(Q) en
el marco de los universos y establecemos relaciones entre estas familias (véase el
Teorema 3.17).

Para concluir este capitulo, en la Seccién 3.4, estudiamos la existencia de atrac-
tores pullback en H{ (). Para ello, necesitamos imponer hipétesis adicionales sobre
la funcién f que garanticen que f(u) pertenece a L2(7,T; L*(Q)). Estas hipétesis
son construidas usando resultados de interpolacion y la regularidad del dominio €2.
De esta forma, v’ € L*(,T; L*(2)) y por tanto, las manipulaciones con —Au tienen
sentido asi como es posible obtener estimaciones mas regulares usando la igualdad
de energia asociada a las soluciones fuertes (cf. (3.55)). Estos resultados han sido
analizados en el trabajo [23].

En el Capitulo 4 continuamos analizando la ecuaciéon de reaccién-difusion no
local con términos no auténomos estudiada en el Capitulo 3 bajo otras condicio-
nes. A lo largo de este capitulo no imponemos ninguna regularidad al dominio 2.
Esto nos permite modelar problemas reales con mas precision ya que muchos de
ellos estan planteados en dominios no regulares (véase [68] para mas detalles). Este
capitulo esta dividido en tres secciones. En la Seccién 4.1 analizamos la existencia
de soluciones débiles y fuertes. A diferencia de lo que ocurria en el Capitulo 3, en
el Teorema 4.6 se demuestra la existencia y unicidad de solucién débil sin imponer
ninguna regularidad al dominio, utilizando un método iterativo y argumentos de
compacidad y de monotonia. Este resultado supone una mejoria con respecto al re-
sultado de existencia de solucién débil del Capitulo 3 (cf. Teorema 3.3), en el que la
regularidad del dominio {2 era imprescindible. La existencia y unicidad de solucién
fuerte asi como el efecto regularizante de la ecuacion se prueba haciendo uso de las
aproximaciones de Galerkin y argumentos de compacidad. Como no asumimos que
el dominio §2 es regular, como se hizo en el Capitulo 3, a cambio necesitamos impo-
ner ciertas restricciones a la dimensién del dominio N (cf. Teorema 4.8), al término
de reaccién (cf. Teorema 4.10) o a ambos (cf. Corolario 4.11).

A continuacion, en la Seccion 4.2, estudiamos la existencia de atractores pullback
en L?(Q) en el marco de los universos. Aunque este resultado no es nuevo en esta
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tesis, la existencia de estas familias ha sido probada en el Capitulo 3 (cf. Teorema
3.17), el método usado para probar la compacidad asintétitca pullback si lo es.
Concretamente, se emplea el método usado por Rosa en [101] adaptado al marco no
local.

Finalmente, en la Seccion 4.3, analizaremos la existencia de atractores pullback
en H}(Q). Mientras que en el Capitulo 3, para garantizar que f(u) € L*(7,T; L*(2))
en el marco de las soluciones fuertes usabamos que el dominio €2 fuese regular, en
este capitulo para obtener que f(u) € L*(7,T; L*(£2)), como no estamos asumien-
do ninguna condiciéon de regularidad al dominio €2, tenemos que imponer algunas
restricciones al término de reaccién (cf. Teorema 4.10). Obsérvese que estos reque-
rimientos pueden ser debilitados imponiendo ciertas restricciones a la dimensién del
dominio €2 (cf. Corolario 4.11).

Los problemas analizados en los restantes capitulos de esta tesis, concretamente
en los Capitulos 6 and 7, estdn planteados en un marco multivaluado, ya que no
podemos garantizar la unicidad de solucion bajo las hipotesis impuestas. Por ello,
en el Capitulo 5, estudiamos algunos resultados abstractos sobre sistemas dinamicos
multivaluados para procesos. Este Capitulo 5 esta constituido por dos secciones. En
la Seccion 5.1 definimos algunos conceptos basicos y estudiamos varios resultados
abstractos que nos permitiran demostrar el teorema principal de existencia de atrac-
tores pullback en la Seccién 5.2. Concretamente, dicho resultado se corresponde con
el Teorema 5.11. A continuacién, en el Corolario 5.13 se establecen relaciones entre
el atractor de los acotados fijos y el atractor asociado a un universo D constituido
por familias parametrizadas en tiempo. Para concluir el capitulo, en el Teorema
5.14, estudiamos mas relaciones que se pueden establecer entre atractores asociados
a universos mas generales.

En el Capitulo 6, estudiamos una ecuacién de reaccién-difusion no local sin uni-
cidad de soluciéon con una pequena perturbacion € en el término de difusion y en
la fuerza no auténoma. Este capitulo estd dividido en tres secciones. En la Seccion
6.1 demostramos la existencia de soluciones débiles usando las aproximaciones de
Galerkin y argumentos de compacidad. Obsérvese que a diferencia de lo que ocurria
en el Capitulo 3, en este caso no es necesario imponer ninguna regularidad al domi-
nio 2. Esto es debido a que a lo largo de la prueba del Teorema 6.2 no realizamos
ninguna estimacion uniforme de la aproximacion de Galerkin asociada a la derivada
temporal de una solucion, ya que en los argumentos de compacidad, en lugar de usar
el lemma de Aubin-Lions, hacemos uso de la compacidad por traslacién (cf. [110,
Theorem 13.2, p. 97] y [110, Remark 13.1, p. 100]).

A continuacion, en la Seccion 6.2, demostramos la existencia de atractores pull-
back en L%(€2). Para ello, en la Proposicién 6.11 se analiza la compacidad asintética
pullback aplicando el mismo tipo de método de energia que el usado en los Capitulos
2y 3.

En la Seccion 6.3, estudiamos la propiedad de semicontinuidad superior de atrac-
tores. Concretamente, en el Teorema 6.15 se prueba que la familia de atractores
pullback dependiente del parametro €, cuya existencia ha sido demostrada en el
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Teorema 6.12, converge, cuando el pardmetro tiende a cero, al atractor global del
semiflujo multivaluado asociado al problema auténomo inicial con € = 0.

Para finalizar este capitulo, en la Seccién 6.4, estudiamos algunos resultados
de regularidad. Concretamente, estudiamos la existencia de soluciones fuerte para
(P.) asi como el efecto regularizante de la ecuacién. A continuacién, demostramos
la existencia de atractores pullback en H} () as{ como generalizamos el resultado
de semicontinuidad superior de atractores estudiado en la seccién anterior, demos-
trando la convergencia en la H!'-norma. Para estudiar el comportamiento de las
soluciones en este marco mas regular, como la unicidad de solucién no esta garanti-
zada, usamos un razonamiento de regularidad a posteriori (véase el Teorema 6.17).
Los resultados de este capitulo han sido analizados en los trabajos [22, 26].

En el Capitulo 7, analizamos un problema auténomo en el que el término de
difusién esta constituido por un operador no local y el p-Laplaciano, generalizando
asi la difusion con respecto a los capitulos anteriores, en los que todos los analisis
han sido hechos para el Laplaciano. Este capitulo estd dividido en dos secciones. En
la Secciéon 7.1 probamos la existencia de soluciones débiles. A través de un cambio de
variable temporal transformamos un problema con difusién no local en un problema
con difusién local, andlogamente a como fue hecho por Chipot & Savitska en [47].
Sin embargo, la unicidad de solucién no estad garantizada debido a la generalidad
del operador no local. Ademas de la existencia de soluciones débiles, en el Teorema
7.2, se demuestra una propiedad de regularizacién del problema analizado.

A continuacion, en la Seccién 7.2, analizamos el comportamiento asintético de las
soluciones demostrando la existencia del atractor global en L?(§2) ya que el problema
estudiado no posee términos no auténomos. Para ello, en la Proposicion 7.8 cons-
truimos un conjunto absorbente en VVO1 P(€Q)) empleando la propiedad regularizante
citada anteriormente. Finalmente, teniendo esto en cuenta junto con la compacidad
de la inyeccién Wy () < L*(Q), concluimos este trabajo demostrando la existen-
cia del atractor global en el Teorema 7.9. Obsérvese que también es posible analizar
el problema (P) en el marco no auténomo. Sin embargo, por simplicidad el estudio
se ha hecho sin términos dependientes del tiempo, ya que la prueba del Teorema 7.2
emplea un cambio de variable que la hace muy técnica. Estos resultados han sido
analizados en [24].

Para concluir este proyecto de tesis, proporcionamos una lista no exhaustiva
de problemas que nos gustaria estudiar en el futuro como por ejemplo, ecuaciones
no locales en dominios no acotados, la propiedad Kneser o problemas no locales
con retardo, entre otros. Ademds, describimos algunos de los trabajos en curso y
resaltamos las dificultades que nos han aparecido.



Chapter 1

Abstract results on the theory of
pullback attractors. Pullback
flattening property

The modelisation of real phenomena in different scientific fields like Physics, Bio-
logy or Chemistry, makes the equations more and more complex when they try to
reproduce the reality with accuracy. As a consequence, the study of the existence
of points of equilibrium and their stability or Lyapunov functions associated to par-
tial differential equations proves to be an intractable task in many occasions. On
the other hand, as a natural generalisation of the behaviour of the solutions around
points of equilibrium and thanks to the presence of chaos and turbulence phenomena
in the reality, the dynamical systems field, which involves the theory of attractors,
inertial manifolds or fractal dimension analysis in diverse senses, amongst others,
has been developing in the last few decades.

In the context of attractors there are several choices to study the asymptotic
behaviour of the solutions of evolution problems. One can prove the existence of
the global compact attractor in the autonomous framework (cf. [100]). However,
when the equation possesses time-dependent terms, several approaches from non-
autonomous dynamical systems can be used. Namely, one can do attempts with
uniform attractors (cf. [40]), skew-product flows (cf. [105]) and pullback attractors
(see [76, 31, 32, 93, 62] for more details; also related to random dynamical systems,
cf. [55]).

In this chapter, we analyse abstract results of the theory of pullback attractors,
which allow us to study not only the future of the dynamical system but also what
the current attracting sections are when the initial data come from —oo. In addition,
making use of this approach, we can analyse the existence of attractors for equa-
tions with general forcing terms and the resultant objects are invariant in a “suitable
non-autonomous-dynamical-system sense”, unlike what happens with the uniform
attractors. The theory of pullback attractors has been used for a wide range of
problems such as non-autonomous difference equations (cf. [76]), non-autonomous
and stochastic multi-valued dynamical systems (cf. [29]), non-autonomous difference
inclusions (cf. [79]), non-autonomous 2D-Navier-Stokes equations in some unboun-
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ded domains (cf. [32, 84]), non-autonomous differential equations (cf. [14]), non-
autonomous reaction-diffusion equations in unbounded domains (cf. [114, 7, 6, 115]),
2D or 3D-Navier-Stokes equations with delay (cf. [95, 90, 63, 64, 66]). Within this
framework, some authors are interested in studying the pullback attractor in the
classical sense, i.e. the pullback attractor of solutions starting in “fixed” bounded
sets. Others, though, employ the concept of attraction related to a class of families,
called universe D, made up by sets which are allowed to move in time and usually
defined in terms of a tempered condition (cf. [31, 32, 61]). This approach will be
the one analysed along this chapter.
The results of this chapter can be found in [93, 62, 33, 65].

1.1 Basic concepts

Consider given a metric space (X, dx).

Definition 1.1.

(a) A process on X (also called a two-parameter semigroup) is a mapping RZx X >
(t,7,2) — U(t,7)x € X such that U(r,7)x = x for any (1,x2) € R x X, and
U(t,s)(U(s,r)x) =U(t,r)x for anyr < s <t and all x € X.

(b) A process U on X is said to be

1. continuous if for any pair (t,7) € R%, the mapping U(t,7) : X — X 1is
continuous;

2. strong-weak (also known as norm-to-weak) continuous if for any pair
(t,7) € R2, the map U(t,T) is continuous from X with the strong to-
pology into X with the weak topology;

3. closed if for any pair (t,7) € R% and any sequence {z,} C X, if x, —
reX and U(t,7)r, =y € X, then U(t,7)x = y.

Remark 1.2. [t is clear that every continuous process is strong-weak continuous
and every strong-weak continuous process is closed.

Let Dy = {Dy(t) : t € R} C P(X) be a family of nonempty sets. Observe that
we do not require any additional condition on these sets such as compactness or
boundedness.

Definition 1.3. A process U on X is said to be pullback ﬁo-asymptotz'cally compact
if for any t € R, and any sequences {7} C (—o0o,t| and {x,} C X satisfying
T, — —00 and x, € Dy(7,) for all n, the sequence {U(t, T,)x,} is relatively compact
m X.

Denote the omega-limit set of 130 by

A(lA)O, t) = ﬂ U U(t,T)DQ(T)X vt e R. (1.1)

s<t1<s
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Proposition 1.4 (Sequential characterisation of the omega-limit set). It
holds that y € A(Do,t) if and only if there exist sequences {7,} C (—oo,t] and
{z,} C X, with 7, - —o0 and x, € D(1,) for all n, such that U(t,1,)x, — y.

Then, we have the following result.

Proposition 1.5. If the process U on X is pullback ﬁg—asymptotically compact,
then for any t € R, the set A(Doy,t) given by (1.1) is a nonempty compact subset of
X and R

Tgmoo distx (U(t,7)Do(7), A(Do,t)) = 0. (1.2)
In addition, the family {N(Dy,t) : t € R} is minimal in the sense that if C = {C(t) :
t € R} C P(X) is a family of closed sets such that

lim distx (U (¢, 7)Do(r), C(t)) = 0,

then A(Dy,t) C C(2).

Proof. Consider fixed t € R, and sequences {7,} C (—o0,t] and {z,} C X such
that 7, — —oo and z,, € Dy(7,) for all n. Since the process U is pullback 130—
asymptotically compact, there exist subsequences {7,} and {z,} (relabeled the
same) and y € X such that U(¢,7,)z, — y in X. Then, from the sequential charac-
terization of A(ﬁo, t), it holds that y € A(ﬁo, t). Therefore, A(ﬁo, t) is nonempty.
Now we will show that the set A(Dy,t) is compact. To do this, since A(Do, t)
is closed (cf. (1.1)), we only need to prove that this set is relatively compact in
X. To that end, consider {y,} C A(Dy,t). Since y, € A(Dy,t) for all n, from the
sequential characterization of A(ﬁo,t), we deduce that there exist 7, < ¢t —n and

x, € Do(7,) such that
1

Now, taking into account that the process U is pullback ﬁo—asymptotically compact,

it holds that there exists a convergent subsequence of {U (¢, 7,,)x,, }. Then, from (1.3),

there exists a convergent subsequence of {y, }. Thus, A(Dy,t) is a compact set.
Thereupon, to prove (1.2), we argue by contradiction. Assume that there exists

t € R such that (1.2) does not hold. Then, there exist £ > 0 and sequences {7,,} C
(—o0,t] and {z,} C X with 7, = —o0 and z,, € Dy(7,,), such that

dx (U(t, Tn)xn, A(Do, 1)) > Vn > 1. (1.4)

On the other hand, since the process U is pullback ﬁo—asymptotically compact, there
exists a subsequence of {U (t, 7,,)z,, } which converges to an element of A(Dy, t), which
is a contradiction with (1.4).
Finally, we will prove that given a family of closed sets C = {C(t) : t € R} C
P(X) that fulfils
lim distx(U(t,7)Do(7),C(t)) =0, (1.5)

T——00
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the relationship A(Dy, ) C C(t) holds.
Consider fixed t € R, ¢ > 0 and x € A(Dy,t). Let us see that z € C(t). To do
this, we will prove that

Bx(z,6) N C(t) £ 0. (1.6)

Since x € A(ﬁo, t), from the sequential characterization of A(ﬁo, t), it holds that
there exist sequences {7,,} C (—o0,t] and {z,} C X with 7, = —o0 and z,, € Dy(7,)
for all n, such that

lim dx(z,U(t, 7,)x,) = 0.

n—oo

Therefore, there exists ng(¢) > 1 such that
dx(x,U(t, Tn)zn) < g Yn > no(e). (1.7)
On the other hand, from (1.5) we deduce that there exists ny(¢) > 1 such that
dx (U(t, 7)zn, C(1)) < g Vi > i (e). (1.8)

Then, taking into account (1.7) and (1.8), (1.6) holds. O

Now, if we assume that the process U is closed, the invariance of the family of
sets {A(Dy,t) : t € R} is fulfilled.

Proposition 1.6. If the process U on X is pullback ﬁo—asymptotz’cally compact and
closed, then the family of sets {A(Dy,t);t € R} is invariant for U, that is

A(Dg,t) = U(t, 7)A(Do,7) V7 < t.

Proof. Consider fixed 7 < t and y € A(ﬁo,T). Then, from the sequential charac-
terization of A(Dy,7), there exist sequences {r,} C (—o0,7] and {z,} C X with
T, — —oo and x,, € Dy(7,) for all n, such that U(r,7,)x, — y. From this, taking
into account that U(t,7,) = U(t,7)U(T,7,) for all n, and the process U is closed
and pullback ﬁo—asymptotically compact, it holds that U(t,7)y € A(ﬁo,t). Thus,
U(t, 7)A(Do,7) C A(Do, t).

Thereupon, we will prove that A(ﬁo,t) C U(t,T)A(ZjQ,T). To do this, consider
y € A(Dy,t) fixed. Then, there exists sequences {7,} C (—00,t] and {z,,} C X with
T, — —o0 and z,, € Dy(7,) for all n, such that

nh_)rgo dx(U(t, Tn)xn,y) = 0. (1.9)

Since 7,, — —o0, there exists n(7) > 1 such that 7,, < 7 for all n > n(7). Therefore,
we have

Ut, )z, = U(t, 7)U(T, 1)z, Y0 > n(T). (1.10)
Now, since the process U on X is pullback ﬁo—asymptotically compact, there exists
subsequences {7, }n>n(r) and {2y, }n>n(r) (relabeled the same), such that U(7, 7,,)z, —

z € A(ﬁo, 7). From this, taking into account that the process U is closed, (1.9) and
(1.10), it satisfies that U(t,7)z = y. Therefore, A(Do,t) C U(t,7)A(Dy, 7). O
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__ In what follows, consider a nonempty class D of families parameterized in time
D ={D(t):t € R} C P(X). The class D is called a universe in P(X).
Then, we have the following definition.

Definition 1.7. The family Do = {Dyo(t) : t € R} C P(X) is pullback D-absorbing
for the process U on X if for any t € R and _any De D, there exists TO(D t) <t
such that U(t,7)D(1) C Dy(t) for all T < TO(D,t).

Observe that in the above definition, ZA)O does not necessarily belong to the class
D.

Proposition 1.8. If the family Do is pullback D-absorbing for the process U on
X, then A(D, 1) C A(Dy,t) for all D € D and t € R. Moreover, if Dy € D, then

A(Dy, t) C Dy(t) ) for allt € R.

Proof. Consider fixed DeDandt € R If A(B,t) is nonempty, then given
y € A(IA), t), from the sequential characterization of A(ZA), t), there exist sequences
{m} C (—0,t] and {z,} C X with 7, - —oc0 and x,, € D(7,) for all n, such that
U(t,7,)x, — y. On the other hand, since the family Dy is pullback D-absorbing
for the process U, there exists 7o(D,t) < t such that U(t,7)D(r) C Dy(t) for all
T < To(ﬁ,t). Then, we deduce that there exists n(rp) > 1 such that U(t, 7,)z, €
Dy(t) for all n > n(1). Now, consider a subsequence of {7,} which satisfies that
Tn, < t—Fk and y,, = U(t — k, 7, )xn, € Do(t —k) for all & > 1. From this,
taking into account that U(t t— k)ynk = U(t, Tnk)xnk for all £ > 1, it fulfils that
y € A(Dy,t). Therefore, A(D,t) C A(Dy,t) for all D € D and t € R.

Finally, if Dy € D, we will prove that A(ﬁo, t) C m){ for all t € R.

Consider t € R fixed. If A(lA)O,t) is nonempty, given y € A(ﬁo,t), there ex-
ist {7,} C (—o0,t] and {z,} C X with 7, - —oc0 and z,, € Dy(7,), such that
U(t,7,)x, — y. Now, taking into account that the family D, is pullback D-
absorbing, there exists ng € N such that U(t,7,)Do(7,) C Dy(t) for all n > n.

Therefore, y € Do(t)X. O
Now, we have the following definition.

Definition 1.9. A process U on X is said to be pullback D-asymptotically compact
if it is pullback D- asymptotically compact for any DeD (cf. Definition 1.3).

Proposition 1.10. If Dy = {Dy(t) : t € R} C P(X) is a pullback D-absorbing fam-
ily for the process U on X and the process U is pullback Dg-asymptotically compact,
then the process U is also pullback D-asymptotically compact.

Proof. Consider fixed t € R, D € D, and the sequences {7,,} C (—00,t] and {z,,} C
X such that 7, - —o0 and z,, € D(7,) for all n. Our aim is to prove that the
sequence {U(t,7,)x,} is relatively compact in X.

Since the family ﬁo is pullback D-absorbing for the process U on X, for any
k > 1, there exist 7, € {7,} such that 7,,, <t—k and y,, := U(t — k, 7, )T, €
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Dy(t — k). Now, taking into account that U is pullback ﬁg-asymptotically compact,
it satisfies that the sequence {U(t,t — k)y,, } is relatively compact. Finally, since
U(t,t — k)yn, = U(t, Tn, )Tn,, then we have proved that the sequence {U(t, 7., )Tn, }
is relatively compact in X. O]

1.2 Existence and relationships between pullback
attractors

Definition 1.11. Consider a family Ap = {Ap(t) : t € R} C P(X). Then, it is
called the minimal pullback D-attractor for the process U if the following properties
are satisfied:

(a) the set Ap(t) is a nonempty compact subset of X for anyt € R,
(b) Ap is pullback D-attracting, i.e.

lim disty(U(t,7)D(7), Ap(t)) =0 VteR VD e D,

T——00
(¢c) Ap is invariant, i.e. U(t,7)Ap(7) = Ap(t) for all T < t,

(d) Ap is minimal, i.e. if C = {C(t) : t € R} C P(X) is a family of closed sets
which is pullback D-attracting, then Ap(t) C C(t) for allt € R.

The uniqueness of the minimal pullback D-attractor comes from its own defini-
tion (cf. (d)). See also Remark 1.14 (i).

Now, to prove the main result of this section, we need the following proposition,
which is a consequence of Propositions 1.5 and 1.6.

Proposition 1.12. Suppose that the process U on X is pullback D-asymptotically
compact and closed. Then, for any DeDandte R, the set A(D t) is a nonempty

compact subset of X, which is invariant for U _and atiracts D in the pullback sense.
In addition, for each D € D, the family {A(D,t) : t € R} is minimal amongst all
the pullback attracting families of closed sets.

The following theorem guarantees the existence of the minimal pullback at-
tractor.

Theorem 1.13. Assume that U : R3 x X — X is a closed process, D is a universe
in P(X) and Dy = {Dy(t) : t € R} C P(X) is a pullback D-absorbing family for U.
Moreover, suppose that U is pullback Dy-asymptotically compact. Then, the family
Ap = {Ap(t) : t € R}, which is given by

——X

Ap(t) = | J AD,t)  VtER, (1.11)

DeD
1s the minimal pullback D-attractor for the process U. In addition, if lA)O € D, then
Ap(t) € Do(t)" for allt € R.
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Proof. Firstly, we will prove that Ap(t) is a nonempty compact set and fulfils
Ap(t) € A(Dy,t) for all t € R. Consider ¢ € R fixed. Making use of Proposi-
tions 1.10 and 1.12, and taking into account (1.11), Ap(t) is a nonempty closed
set. In fact, thanks to Propositions 1.5 and 1.8, we have that Ap(t) is compact and
Ap(t) € A(Dy, t).

Moreover, the family Ap is pullback D-attracting. Namely, from (1.11) we de-

duce
distx (U(t,7)D(1), Ap(t)) < distx(U(t,7)D(7), A(ﬁ, t)),

for all D € D and (t,7) € RZ. From this, taking into account Proposition 1.12, it
holds that the family Ap is pullback D-attracting.

Thereupon, the invariance of Ap will be proved. Firstly, we will show that
Ap(t) C U(t,7)Ap(7) for all (¢,7) € R2. Consider fixed (¢,7) € R? and y € Ap(t).
From (1.11), we deduce that there exist two sequences {D,,} C D and {y,} C X such
that y, € A(ﬁn, t) for all n and y,, — y. Since A(lA),t) is invariant (cf. Proposition
1.6), there exists a sequence {z,} C X with z,, € A(D,,7) C Ap(r) such that
Yn = U(t, 7)x, for all n. Since Ap(7) is a compact set and the process U is closed,
y € U(t,7)Ap(7). Now, to prove that U(t,7)Ap(T) C Ap(t), we fix (¢,7) € R? and
y € Ap(1). We will check that U(t,7)y € Ap(t). Since y € Ap(7), there exist two
sequences {D,} € D and {y,} C X such that y, € A(D,,7) and y,, — y. From
this, taking into account that A(ﬁn,t) = U(t, T)A(ﬁn,T) and Ap(t) is compact, it
holds that the sequence {z,} C X, given by z,, := U(t,7)y, € Ap(t) for all n, is
relatively compact in X. Finally, bearing in mind that the process U is closed, we
conclude that U(t,7)y € Ap(t).

The minimality of Ap is due to Proposition 1.12 and (1.11). Namely, assume
that C = {C(t) : t € R} C P(X) is a family of closed sets such that for any
D={D():teR}eD,

Tgmoo distx (U(t,7)D(1),C(t)) = 0.
Consider fixed ¢ € R and y € Ap(t). From (1.11), we deduce that there exists
two sequences {D,} C D and {y,} C X such that y, € A(D,,t) for all n and
yn — y. In fact, {y,} C C(t) (cf. Proposition 1.12). Then, y € C(t) and therefore,
Ap(t) C C(t).
Finally, when Dy € D, it holds that Ap(t) C WX for all ¢t € R, thanks to
(1.11) and Proposition 1.8. O

Remark 1.14. (i) If Ap € D, then it is the unique family of closed subsets in D
that satisfies (b) and (c) in Definition 1.11. A sufficient condition for Ap € D
is to have that Dy € D, the set Dy(t) is closed for all t € R and the universe D
is inclusion-closed, that means that if D€ D and D' = {D'(t) : t € R} C P(X)
satisfies that D'(t) C D(t) for allt € R, then D' € D.

(ii) The universe of fivred nonempty bounded subsets of X is denoted by Dy .

Then, the corresponding minimal pullback D -attractor for the process U is the
attractor defined by Crauel, Debussche and Flandoli (cf. [55, Theorem 1.1]).
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Now it is not difficult to conclude the following result (see [93, Proposition 23]
for more details).

Corollary 1.15. Under the assumptions of Theorem 1.13, if DX C D, then the
minimal pullback attractors Apx and Ap exist and Apx(t) C Ap(t) for all't € R.

Besides, if for some T € R, the set | J,p Do(t) is a bounded subset of X, then
Apx (t) = Ap(t) for allt <T. -

Thanks to the following result, we can compare two attractors for a process (see
[62, Theorem 3.15]).

Theorem 1.16. Suppose that {(X;, dx,)}iz12 are two metric spaces such that X, C
Xy with continuous injection, D; is a universe in P(X;) fori = 1,2, and Dy C Ds.
Assume that U is a map that acts as a process in both cases, i.e. U : R2x X; — X;
fori=1,2 is a process. For eacht € R,

- = X

Aty = | Mty i=1,2,

f)iE'Di

where the subscript i in the symbol of the omega-limit set A; is used to denote the

dependence on the respective topology. Then, Ai(t) C Ay(t) for allt € R.
If moreover

(i) Ai(t) is a compact subset of Xy for allt € R,

(i) for any Dy € Dy and t € R, there exist a family D1 € Dy and a t5, such that

U is pullback ﬁl—asymptotically compact, and for any s < t*f)l there exists a
Ts < S such that
U(s,7)Dy(T) C Di(s) V71 < 75,

then Ay (t) = As(t) for allt € R.

Proof. Consider t € R fixed. From the sequential characterization of the omega-
limit set, taking into account that X; C X, with continuous injection and D; C D,
we deduce

— X1 — Xo
U Mty c | Aa(Dast)

D1€Dy D2€Ds
Therefore, taking into account (1.11), A;(t) C As(t).

To prove the opposite inclusion, fix 132 € Dy and t € R. Given x € Ag(ﬁg,t),
from the sequential characterization of Ag(f)z,t), we deduce that there exist two
sequences {1,} C (—oo,t] and {x,} C Xs, with 7, = —o0 and z, € Dy(7,) for all
n, such that

lim distx, (U(t, 7,)@n, x) = 0.

n—oo

By the assumption (ii), there exist a lA)l € D; and an integer k5 > 1 such that
U is pullback ﬁl—asymptotically compact and for any k& > kp and there exist
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Ty, € {z,} and 7, <t—ksuchthaty,, =U(t—k, 7, )Ts, € Di(t—k). Then, since
the process U is pullback D;-asymptotically compact, there exist a subsequence of
{Yn,} (relabeled the same) and z € A;(D;,t) such that

lim distx, (U(t,t — k)yn,,2) = 0.

n— oo
Now, taking into account that U(t,t — k)y,, = U(t, Ty, )x,, and X; C X, with
continuous injection, z = x holds. Therefore,

U Ae(Dot) € | Mi(Dit) € As(h).

ﬁz €Dsy ﬁ1 €D,

Finally, bearing in mind that thanks to the continuous injection X; C X, A;(t) is
not only compact in X7, but also in X5, A;(t) = Ax(¢) holds. O

1.3 Pullback flattening property

Thereupon, we recall some results about the pullback ﬁ—ﬂattening property, a useful
tool that will be very helpful to prove the pullback D-asymptotic compactness. This
notion, introduced by Ma, Wang and Zhong in [88], was called “Condition (C)”. In
[77], it was re-christened by Kloeden & Langa like flattening property. In both
papers, it was necessary to assume the existence of a projection operator P, in order
to prove this property. Later, in [33, Definition 2.24] and [65, Definition 8|, the
assumptions on P. were weakened and it does not need to be a projection operator
anymore.

Definition 1.17. Consider a Banach space X with norm || - ||x and a family D =
{D(t) : t € R} C P(X). If for anyt € R and € > 0, there exist 7. < t, a finite-
dimensional subspace X. of X and a map P. : X — X., all depending on ﬁ, t and
e, such that {P.U(t,T)u, : 7 < 7e,u, € D(7)} is bounded in X and

(I — PHU(t,Tu,||x <e Vr <71 Yu,€ D(r),

then the process U on X is said to satisfy the pullback ﬁ-ﬂattem’ng property.

The following result establishes a relationship between the pullback ﬁ—ﬂattening
property and the pullback D-asymptotic compactness. We show the proof for the
sake of completeness (cf. [88, 77, 33, 65]).

Proposition 1.18. If X is a Banach space and D = {D(t):te R} CP(X) isa
family such that the process U on X fulfils the pullback D-flattening property, then
the process U 1is pullback D-asymptotically compact.

Proof. Consider fixed t € R, a sequence {7,} C (—o0,t] such that 7,, - —oco and a
sequence {z,} such that z,, € D(r,) for all n. Our aim is to prove that the sequence
{U(t, 1)z} is relatively compact in X.
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For each k£ > 1, making use of the pullback B—ﬂattening property, there exists
N, > 1, a finite dimensional space of X denoted by X, and an application Py :
X — Xy such that {PU(t, 7,)x, : n > Ny} is a bounded set of Xj. Therefore, it is
a relatively compact subset of X. In addition, we also have

1
(I = Pp)U(t, )zl x < o Vn > Nj. (1.12)

Then, the set {U(t, 7,)x, : n > 1} can be covered by a finite number of balls in X
with radius 1/k. Let us prove it.

Case 1: n > N,.

Since the set { P U(t, 7,)x, : n > Ny} is relatively compact in X, we have

{PU(t,7)xn :n > N} C U By (x i) , (1.13)

"2k
zel CX

where [ is a finite dimensional subset of X.
Consider n > Ny, fixed. From (1.13), we deduce that there exists x € Ij such
that .
P.U(t,1,)x, — < —.
1P 7 =l < o
Taking this into account together with (1.12), we deduce

1
U (t, )z, — z||x < T
1 .
Therefore, U(t, ,)x, C Bx (x, E) with z € I}.
Case 2: n < N,.

This steps is immediate since

(Ut m)znin < N} € | Bx (U(t,Tn)xn, %) |

n<Ng

Now, bearing in mind that k is arbitrary and making use of a diagonal procedure,
it is not difficult to check that the sequence {U(t,7,)x, : n > 1} has a Cauchy
subsequence in X. Then, since X is a Banach space, we have that the sequence
{U(t, 7)x, : n > 1} is relatively compact in X. O



Chapter 2

Non-autonomous nonlocal
parabolic equation with sublinear
terms

Over the last few decades the study of nonlocal problems has taken a keen interest
(e.g., cf. [59, 19, 67, 109, 12] amongst many others), especially those of diffusion
type (see e.g. [46, 87, 43, 41, 11]). Namely, many authors have analysed this kind
of nonlocal parabolic equations

ou
i a(l(u))Au = f. (2.1)
where a € C(R;R;) and l(u) = [, g(x)u(x)dz with g € L*(Q2).

Prof. Chipot and his collaborators have studied the asymptotic behaviour of
the solution of nonlocal evolution problems with uniqueness of solution similar to
(2.1) considering mixed boundary conditions (cf. [35, 48]), different nonlocal terms
(cf. [43, 45, 49]) and even they have analysed other types of nonlocal evolution
equations like the nonlocal p-Laplacian equation (cf. [47]). To that end, different
techniques have been applied such as dynamical systems (cf. [87, 45, 50]), energy
functionals, global minimizers (cf. [47]) and Lyapunov functions (cf. [49]), which do
not always exist (see [50] for more details). In addition, some results that establish
order relationships among two stationary solutions and the long-time behaviour of
the solution of the evolution problem have also been studied (cf. [44, 45, 35, 36, 37]).

In this chapter, we will analyse a non-autonomous nonlocal parabolic equation of
the same type as (2.1). However, in this case f, which has sublinear growth, depends
on the unknown w. First, we will show the existence and uniqueness of weak and
strong solutions using the Galerkin approximations and compactness arguments.
Later, the existence and uniqueness of stationary solution are analysed as well as
its global exponential stability. Then, the existence of several pullback attractors in
L*(Q2) and Hy () is shown. The proof of the asymptotic compactness, which is an
essential ingredient to prove the existence of these families, is based on an energy
method which relies on the continuity of solutions (e.g. cf. [62, 94, 92, 73]). In
addition, we establish some relationships between the attractors.

The results of this chapter can be found in [21].

45
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2.1 Statement of the problem. Existence results

Consider the following problem for a non-autonomous nonlocal parabolic equation

ou :
o — all)Au = f(u) +h(t) inQx (r,00),

u=0 on dQ x (1,00),
u(z, 7) = u (x) in Q,

(2.2)

where 2 C R is a bounded open set, 7 € R, the function a € C(R;R,) and there
exists a positive constant m, such that

0<m<a(s) VseR. (2.3)

This condition of non-degeneracy of a is essential to guarantee the existence of
solution not only in finite-time intervals (see [87] for more details).

In addition, we assume that [ € £(L?(Q),R), f € C(R) and there exist constants
n >0 and Cy > 0, such that

[f(s)l < Cp(1+s]) Vs eR, (2.4)
(f(s) = f(r)(s—7) <n(s—7r)* Vs,r €R. (2.5)
Finally, u, € L?(Q) and the non-autonomous term h € L? (R; H~(Q)).

loc

From now on, we identify L?(Q) with its dual. Therefore, we have the usual
chain of dense and compact embeddings H}(Q) C L?(2) € H'(Q). Observe that
thanks to the previous identification, {(u) is in fact (I,u). However, we keep the
usual notation in the existing previous literature [(u) instead of (/,u) for the oper-
ator [ acting on wu.

Now we will show the existence and uniqueness of solutions.

Definition 2.1. A weak solution to (2.2) is a function v € L*(7,T; H}(2)) N
L®(7,T; L*(Q)) for all T > 7, with u(7) = u,, such that

%(U(t)av) +a(l(u®))((u(t),v)) = (f(u(®),v) + (h(t),v) Vv € Hy(Q), (2:6)

where the previous equation must be understood in the sense of D'(1,00).

Observe that if u is a weak solution to (2.2), the continuity the a, [ € L*(f),
(2.4) and (2.6) imply that v’ € L*(7,T; H'(Q)) for any T > 7. Therefore, u €
C([r,00); L*(2)) and the initial datum in (2.2) makes sense. Moreover, the following
energy equality holds

¢ ¢ ¢
) +2 [ b)) o) B = o) 342 [ (a2 [ (h60), )
(2.7)
for all 7 < s <t (cf. [56, Théoreme 2, p. 575] or [111, Lemma 3.2, p. 71]).

A notion of more regular solution is also suitable for the problem.
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Definition 2.2. A strong solution to (2.2) is a weak solution u which also satisfies
that w € L*(1,T; D(—=A)) NL®(7,T; H} () for all T > 7.
When h € L} _(R; L*(Q)), as long as u is a strong solution to (2.2), we have that

u' € L3(7,T; L*(Q)) for all T > 7. As a consequence, u € C([1,00); H}(2)) and the
following energy equality holds

¢ t
()13 + 2/ a(l(u(r)| = Au(r)|3dr = [[u(s)]3 +2/ (f(u(r)) + h(r), =Au(r))dr

’ ’ (2.8)
forall 7 < s <t.

To prove the existence of weak solution and strong solution to (2.2), we will
use the Faedo-Galerkin approximations and pass to the limit by using compactness
arguments. Using spectral theory, it holds that there exists a sequence {w;};>1,
which is a Hilbert basis of L*(2) composed by the eigenfunctions of —A in H} ().

Firstly, we consider the function u,(t;7,u,) = > 7, ¢n;(t)w; (for short denoted
un(t)) for all n > 1, the unique local solution to

%(Un(t)awj) + all(ua(t))((un(t), w;)) = (f (un(t)), wj) 4 (h(t),w;), t € (7,00),
(un(7), wy) = (ur, wy), j=1,...,n.

(2.9)
Observe that (2.9) is a Cauchy problem for the following ordinary differential system
in R"”

P (1) 4 Ajal(un (1)) o (8) = (f (un(t)), w;) + (b(E), wy), G =1,...,n, (2.10)

where t > 7, A; is the eigenvalue associated to the eigenfunction w; and the vector
(@n1s- -y Pnn) is the unknown.

Proposition 2.3. Suppose a € C(R;Ry) fulfils (2.3), f € C(R) verifies (2.4),
he L (R; HY(Q)) and l € L*(). Then, for each initial datum u, € L*(2), there
exists (Pn1s - -+, ©un) local solution of the ordinary differential system (2.10) defined
on some interval (1,t,). Furthermore, if the function a is locally Lipschitz and f

satisfies (2.5), the uniqueness of local solution is guaranteed.

Proof. We split the proof into two steps.

Step 1. Existence of local solution. To do this, we are going to use [52,
Theorem 1.1, p. 43], which is a generalization of Peano’s Theorem. We define
g: R — R
(t,z) — (=Mz(x)zr + (fOS zawi), wr) + (h(t),ws), . ..
_/\nz(l‘)xn + (f(z;l:1 xiwi)a wn) + <h<t>7 wn>)a

I

where

R=A{(t,z) e [r,T| xR": 7 <t <T, |z — ((up,wy),...,(ur,w,))| <b},
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for any fixed b € R* and
v =(21,...,2,) > 2(z) = a(ld_ zawy)). (2.11)
i=1

In what follows, for simplicity we denote & = ((u,, w1),. .., (ur, wy)).
Firstly, we are going to prove that g is a Caratheodory function.
Consider x fixed. The function g(-,x) is measurable because

gi(H, ) = =\jz(x lewl w;) + (h(-), wy)

is measurable function as a consequence of Fubini’s Theorem.

Secondly, we need to check that the function ¢(t,-) is continuous a.e. t € [r,T].
Indeed

gi(t,x) = —\jz(x lewl w;) + (h(t),w;)

is a continuous function with respect to the second variable, because the functions
zand r € R" — (f(>1, zyw;), w;) are continuous.

Now we are going to prove that there exists a function m € L'(7, T) such that
lg(t,x)] <m(t) V(t,z) € R.
From the definition of R, we deduce
2] < b+ [§] =: Cr,

FOQ waws),wy)| < 2205Q1 2wl + 2'2CrOR (Y wilz) w2

i=1 i=1
Observe that taking into account (2.11) and making use of the continuity of the
function a in the compact interval I’ := [—|l|oCr > 7 [wil2, [1|2Cr D5 |wil2], there
exists M > 0 such that
z(x) <M VzeR":|z| <Ck.
Then, bearing this in mind, we deduce
195(t,2)
< N(@)lag| + |(f waz wy)| + [{h(t), w;)

< \MCr + 2'2CHQ 2wyl + 21/2CfCR(Z |wil2)|wjl2 + [(A(), w))]

i=1
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Therefore,

m = ZA MCR+221/20 (19" + Cr( Z|w, Jw;l2

7j=1 7=1 =1

+Z\ ), w;)| € L'(7,T).

In conclusion, there exists a local solution to (2.10).

Step 2. Uniqueness of local solution. Since the function a is locally
Lipschitz, for any bounded interval [—R, R] of R, there exists a positive constant

L,(R) such that
la(z) —a(y)| < La(R)|z —y| Va,y € [-R, R].

Assume that there exist two solutions ¢!, ¢? of the ordinary differential system
(2.10) in (7,t1) and (7,t2) respectively. Then, it holds

{ (@11@(0 - @ij(t»,
(o — ny)(7) =

95(t,0n(1)) = g;(t, @n(t)), t € (r,min{ty, ta}),
0, j=1...,n,
(2.12)
where g;(t, ¢;,(t)) = —Aja(l(u;,(8) gy, (1) + (f (ug, (), wy) + (h(t), w;) for i = 1,2.
Then, multiplying (2.12) by gp}w — gpij, summing from j = 1 to n and making
use of (2.5), we obtain

1 d 2 2 1 1 2 2
Sk (2) — () + all(uh () k(1) — (1)

< la(l(uy (1)) = a(l(un, N ((un(8), vy (8) = ur ()] + 0l () = up ()3
Since u),u2 € C([r,min{ty,t2}]; L*(2)), it fulfils that ul(¢),u2(t) € S for all t €

[T, min{t,, t2}], where S is a bounded set of L*(Q). In addition, taking into account
that | € L*(Q), it satisfies that {l(u},(t)) hefrmin{t.2)] € [—R, R] for i = 1,2, for
some R > 0. Hence, using (2.3), (2.5) and the fact that the function a is locally

Lipschitz (with Liptschitz constant L,(-)), we deduce

Club() w2 (O < Club(t) — (O

where - )
o (La(R)PIEMCE + rn

2m

Then, using the Gronwall Lemma, we have

b (t) — ()3 < Jub(r) — u?(7) |54,

n
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Now, we will show the existence and uniqueness of weak solutions and the con-
tinuity of the solution in L*(Q) with respect to the initial data.

Theorem 2.4. Suppose that the function a is locally Lipschitz and fulfils (2.3),
[ € C(R) satisfies (2.4) and (2.5), h € L (R; H () and | € L*(Q). Then, for

loc
each initial datum u, € L*(Q)), there exists a weak solution to the problem (2.2). In

addition, this solution behaves continuously in L*(Q)) w.r.t. the initial data.

Proof. We split the proof into two steps.

Step 1. Existence of weak solution. Multiplying by ¢,,;(¢) in (2.9), summing
from j =1 to n and using (2.3), we obtain

%Wn(t)@ +2m[un ()3 < 2 (n(t)), un(t)) + 2(h(t), un(t)) ae. t € (7,tn),

where (7,t,) is the interval of existence of maximal solution. By the Cauchy in-
equality (cf. [57, Appendix B, p. 622]) and (2.4),

4c2|0)|

>\1m

d 2 2 40]% 2 2 2
Gl @B+ ml @ € S22+ OB + S IhOIE ae. te (rt,)

where A; is the first eigenvalue of —A with zero Dirichlet boundary conditions.
Integrating between 7 and ¢ with 7 <t < t,,, we obtain

t
un(B) + m / lun(s)|3ds
ACHOIT —7) | 4C] [T

< 2
o |UT|2 * )\1m )\1m r

2 2 g 2
O O

Therefore, the Gronwall lemma implies that {u,} is well defined for all time t > 7,
and actually bounded in L*(7,T; L*(Q))NL*(1,T; Hy(Q)) for all T > 7. Thus,
taking this into account together with the fact that each w, € C([r,T]; L*(2)), we
deduce that there exists a positive constant Cy, such that

un(t)s < Coe VEE[r,T] VYn > 1.

From this, bearing in mind that a € C(R;R) and [ € L?*(), it satisfies that there
exists a positive constant M. > 0 such that

a(l(up(t))) < Mg, Yte[r,T] Vn>1.
Now, we have
[ ()Pl - dun0)dt < e )? [ )i (21

Taking into account that {u,} is bounded in L*(7,T; H}(S2)), we deduce that the
sequence {—a(l(u,))Au,} is bounded in L*(7,T; H~(Q)).



Chapter 2. Non-autonomous nonlocal parabolic equation with sublinear terms 51

On the other hand, using (2.4), we have

//|funmt|dmdt</ /20f1—|—|unxt)|)dxdt

<202(Q(T ~ )+20f/ o (8) 2. (2.14)

Now, using that {u,} is bounded in L*®(7,T;L*())), we have that {f(u,)} is
bounded in L*(7,T; L*()).

To prove that the sequence {u/,} is bounded in L*(7,T; H !(Q)), we need first
to define the following projectors:

P,: HY(Q) — HYQ) ~
£ = [0 € Hy(Q) = (Puf. 0) = ([, o)),

where
P,: L*Q) — V,:=spanfwi,...,w,)

¢ — Z?:l (¢7 wj)wj'
Observe that P, is the continuous extension in H=(2) of P,. Then, in what follows,
we will make an abuse of notation and denote this projection by P,.

Bearing in mind (2.13), (2.14) and the definitions of the above projectors, we
have that the sequence {u/,} is bounded in L*(7,T; H~'()), since

T
[ lolkar

- / la(U(an(t))) Mun(t) + Pofun(t)) + Puh(t)]2dt
< 3(M.. ) / Jun(8) et + 5 / P f (1))t + 3 / | Pu(t) 2t

T T
< (3(Me ) + 6C2ATY) / lun(®) |3t + 6C2ATQU(T — ) + 3 / () 2dt.

Therefore, making use of compactness arguments and the Aubin-Lions lemma,
there exist a subsequence of {u,} (relabeled the same) and u € L*(7,T; L*(Q2))
NL*(7,T; H} () with v € L*(7,T; H1(Q)), such that

(

u, = u weakly-star in L(7, T; L*(12)),
u, = u weakly in L*(1,T; H3(Q)),
ul, — ' weakly in L*(7,T; H1(Q)),
u, — u strongly in L*(7,T; L*(Q)),
up(z,t) = u(x,t) ae. (z,t) € Qx (r,7T),
un(t) = u(t) strongly in L*(Q) a.e. t € (1,T),
fluy) — & weakly in L2(7,T; L*(Q)),
L a(l(un))u, = & weakly in L*(7,T; Hg(9)),

(2.15)
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for all T > 7.
Now, we need to check that & = f(u) and & = a(l(u))u. Since u,, converges to
u strongly in L?(f2), we deduce that

up(z,t) = u(x,t) V(z,t) € Qx (1,7)\Vy, (2.16)
u,(t) — u(t) strongly in L*(Q)) Vt € (7,T)\ N, (2.17)
where NV is a null set in RV and N, is a null set in R.
From this, we can deduce that & = f(u) applying [85, Lemme 1.3, p. 12], since
f€C), {f(u,)} is bounded in L?(7,T; L*(©2)) and converges pointwisely to f(u)
a.e. Q0 x (7,7T) making use of (2.16).

Finally, we will prove that & = a(l(u))u. Asa € C(R;R,), 1 € L*(Q) and (2.17)
holds, it satisfies

a(l(un(t))) = a(l(u(t))) ¥Vt e (r,T)\Na.
Therefore,
a(l(un(t)))un(z,t) = a(l(u(t)))u(x,t) Y(x,t) € Qx (1,T)\(N1 U (2 x Ny)),

where Ny U (2 x Ny) is a null set in RV, In addition, {a(l(u,))u,} is bounded
in L?(7,T; Hy(Q2)). Then, applying again [85, Lemme 1.3, p. 12], & = a(l(u))u
follows. Now, passing to the limit in (2.9), taking into account (2.15) together with
the fact that U,enV,, is dense in H}(Q2), (2.6) holds for all v € H}(2). Therefore,
to prove that u is a weak solution to (2.2), we only need to check that u(r) = u.,
which makes complete sense since u € C([r,T]; L*(Q)).

On the one hand, consider fixed n, ¢ € H'(7,T) with ¢(T) = 0 and (1) # 0,
and w € V,,. Multiplying by ¢ in (2.9), integrating between 7 and 7', we obtain for
all p >n

~ (up w)p(r) — / (1) (1, (£), w)dt + / (1t (1)) (— Ay (), whp ()t
- / (1)), w)p()dt + / (h(t). wyp(t)dt. (2.18)

Taking limit when ¢ — oo and using (2.15), we deduce
~ (i) = [ OO+ [ el -Bu(t) )00
= [ Gty [ b (219

On the other hand, multiplying by ¢ in (2.6) and integrating between 7 and T, we
obtain

~ () wiplr) = [ SO, W+ [ alu()(-du(o). w)p)d:
= [ G e [ . w)pe
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Comparing (2.19) with the above expression, we have (u(7), w)p(7) = (ur, w)e(T).
As ¢(7) # 0 and {w;} is a Hilbert basis of L?(Q2), we conclude u(7) = u,.

Step 2. Uniqueness of solution and continuity w.r.t. initial data.
Assume that there exist two weak solutions, u;(+; 7,ul) and us(+; 7, u?), to (2.2). For
short, we will denote wu;(-) = u;(+;7,u’) for i = 1,2. From the energy equality, we
obtain

s 8 a0 3+ (2o (1)) o () a0
=la(l(uz(t))) = all(ur ()] ((ua(t), ur (t) —uz () +(f (ur () = f (ua(t)), ua (t) —ua(t))
a.e. t € [1,T].

Since uy,uy € C([r,T); L*(2)), there exists a bounded set S C L?(f2) such that
{u;(t) }eprrp € S for i = 1,2. Besides, taking into account that [ € L?*(2), there
exists a constant R > 0 such that {l(u;(t))}elrm C [—R, R] for i = 1,2. Then,
making use of (2.3), (2.5) and the locally Lipschitz continuity of the function a, we
obtain

1d 2 2
5 7711 (8) = w2 (8) 3 + ml|us () — ua(0)]3

< La(R)|U2fur(t) — ua(t) |2 ]luz(®)l|2llun (8) — ua(t)ll2 + nlua () — ua(t)]3,

where L,(R) denotes the Lipschitz constant of the function a in [—R, R].
Now, applying the Cauchy inequality to the above expression, we have

%\ul(t) —uy(t)|3 < C)|ur(t) —ua(t)|3 ae. t € (r,7T)

where

cip) — LalBDPBa ()13 + 2
- .
Thus, we deduce
s (£) = ua()[3 < Jul — 2|3l % vt e [r,T).

Both results, the uniqueness of solution to (2.2) and the continuity w.r.t. the initial
data, follow immediately. O

In the following result, we will study the regularising effect of the equation. In

addition, taking a more regular initial datum, the existence of a strong solution will
be analysed.
Theorem 2.5. Under the assumptions of Theorem 2.4, if h € L} (R; L*(2)), for
every € > 0 and T > T + ¢, the weak solution u belongs to C((7,T], H}(Q))N
L*(t +&,T; D(—A)). In fact, if the initial condition u, € H}(QY), then the function
uwe C([r,T], H} () N L3(7,T; D(—A)) for every T > 7.
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Proof. We split the proof into two steps.

Step 1. Regularising effect. Multiplying by \;¢,;(t) in (2.9), summing from
j = 1ton, and using (2.3), (2.4) and the Cauchy and Poincaré inequalities, it yields

d 1c310] | 4C 9
@z +m| = Aun (03 < ;1 o L (1 I+ —[h(t); ae t>7.

Integrating between s and ¢ with 7 < s <t < T, we obtain

t
a1+ o / - S

ACHOUT —7) 402 ,
< L a3 + 2 [ e + @ 220

Now, integrating in s between 7 and ¢, we deduce

(=0l < LT (40?@4) 1) [ )

A1m
2T —7) [T )
_ h dr.
el MGI
Therefore,
4C3HQNT — 7)* 4C3(T — 1) + Aym\ [T
2 < f f / 2
ool < L0 =Ty (DI [l
2T —7) [T )
—— h d
e AL

for all t € [e 4+ 7,T] with e € (0,7 — 7).

From this and taking into account the boundedness of {u,} in L*(7,T; H}(Q))
(cf. Theorem 2.4), we deduce that {u,} is bounded in L*(e + 7,T; H}(Q)). As
a byproduct, the boundedness of {u,} in L*(7 + &,T; D(—A)) is immediate just
taking s = ¢ and ¢t = T in (2.20). In addition, making use of this more regular
boundedness, we deduce that the sequence {u/,} is bounded in L?(7 + ¢, T; L*(Q)).
Thanks to the uniqueness of the weak solution, u,, converge to u weakly in L*(7 +
e, T; D(—A)) and u/, converge to v’ weakly in L*(7+¢,T; L*(2)). As a consequence,
ue L*(t+¢e,T;D(=A)NC((r,T]; H ().

Step 2. Strong solution. In this step if u, € H}(2), we will show that
uw e L*(1,T; D(—=A)) N C([r, T]; H} () for all T > 7. To that end, we multiply by
Ajnj in (2.9), sum from j =1 to n and use (2.3), obtaining

S @13+ m| = Aun (O < (f(ua(t)), —Aun(t)) + (h(t), —Aua(t))  (2:21)
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Now, from (2.4) and the Cauchy inequality, we deduce

(Flun(6), ~ Bein(8)) < | Flun () + 1 — (1)
C21Q C?
LU 2Mnu@ 2 A (1)

1
().~ (1)) < BB+ 2]~ Au, (D)
Taking this into account, from (2.21), we deduce that

d 4C% 4C31Q 2
gl O3+ m| = Ay (O < T flun () + =2+ ~|A(0)B

a.e. t>T.
Integrating between 7 and t € [r, T], we have

t
H%@M+m/l—mMM%s
AC2 [T AC2QT —7) 2 [T
< 2 f 2 f _/ 21s.
_wmm+hmﬁuw@mw+ o [ s

Taking into account that {u,} is bounded in L?(7,T; Hj(2)) (cf. Theorem 2.4),
we deduce that {u,} is bounded in L>(7, T; H}(Q)) N L*(7,T; D(—A)). As a result,
the sequence {u/} is bounded in L?(7,T; L*(Q2)). Then, thanks to the uniqueness
of a weak solution, it holds that u, converge to u weakly-star in L>(7,T; Hy(f2))
and weakly in L?(7,T; D(—A)), and u/, converge to u’ weakly in L*(7,T; L*(2)).
Therefore, since u € L>®(7,T; H}(Q)) N L*(7,T; D(—A)) and v’ € L*(r,T; L*(Q)),
we obtain that u € C([r,T]; Hy(Q2)). O

2.2 Analysis of the stationary problem

In this section we study the elliptic problem

{ ;CLI(Z(SU)B)ﬁ%;f(U) +h in Q, (2.22)

where the functions a and f are globally Lipschitz, with respective Lipschitz con-
stants Lo, Ly > 0 and there exists a positive constant M > 0 such that

O<m<a(s) <M VseR. (2.23)

In addition, h is time-independent, i.e. h € H~ ().

We analyse the existence of solutions to (2.22) making use of a corollary of the
Brouwer fixed point theorem. The uniqueness as well as the global exponential
stability are also studied under suitable assumptions.
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Definition 2.6. A solution to (2.22) is a function u* € Hg(Q) such that
a(l(u”))((u™,v)) = (f(u"),v) + (h,v) Vv € Hy(Q).

In the following result we analyse the existence, uniqueness and regularity of the
stationary solutions of the problem (2.2) (the idea of the proof is close to that in
[91]).

Theorem 2.7. Assume that a and f are globally Lipschitz functions, with Lipschitz
constants L, and Ly respectively, (2.23) is satisfied, h € H*(Q), | € L*(Q) and
m > A\ 'Ls. Then:

1. There exists at least one solution to (2.22). In addition, any solution u* to

(2.22) fulfils

AR £(O)] + A
m — )\1_1Lf '
Further, if h € L*(2), then the solutions given above belong in fact to D(—A).

[u*]ls < T = (2.24)

2. Under the additional assumption
A2l LeY < m— ALy, (2.25)
problem (2.22) possesses a unique solution.

Proof. We split the proof into four steps.

Step 1. Existence. Let us consider the orthonormal Hilbert basis {w; : j > 1}
of L*(Q) consisting of the eigenvectors associated with eigenvalues {)\; : j > 1} of
the operator —A with zero Dirichlet boundary condition in €. For each n > 1, let
us denote V,, = span|wy, ..., w,], with the inner product ((-,-)) and norm || - ||z.

Now, the operators R,, : V,, — V,, for all n > 1 are defined as follows

(Ryu,v)) = (—a(l(u))Au,v) — (f(u),v) — (h,v) Yu,v € V,.

Observe that each R,u € V,, is well defined thanks to the Riesz Theorem, since
the right hand side is a continuous linear map from V,, to R. In addition, R, is
continuous. Namely, making use of (2.23), the Poincaré inequality and the Lipschitz
continuity of the functions a and f, we deduce

((Ryu — Ry,v))

= (—a(l(u)Au+a(l(@)Au — f(u) + f(a),v)

= (a(l(w))(=A(u — @) + (a(l(@)) — a(l(w)) A, v) + (f(@) = f(u),v)
< (M + LallloAT a2 + LA [ — ulla o],

for all u,w,v € V,,. Therefore,

| Rt = Rylls < (M + LallloAT [z + LTl — ull.
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for all u,u € V,,.
On the other hand, making use again of (2.23), the Poincaré inequality and the
global Liptchiz continuity of f, we have

(Bnu, u)) = (=a(l(w))Au, u) = (f(u),u) = (b, u)

(—
(—a(l(w)Au,u) — (f(u) = F0),u) — (£(0),u) — (h, u)
mllulld — LT |ull3 = LFOQ72A 2 fulla — (12wl

v

for all u € V,.
Therefore, taking

A IQ121£(0)] + |18

T := 1 )

we obtain

(Ryu,u)) >0 YueV,/|lulls=7T

Now, making use of a corollary of the Brouwer fixed point theorem (see [85,
Lemme 4.3, p.53]), we deduce that for each n > 1 there exists u, € V,, such that
R, (u,) =0, with

lunlla < T. (2.26)

Therefore, it verifies
(—a(l(up))Auy, v) = (f(un),v) + (h,v) Yv e V,. (2.27)

Now, using the boundedness of {u, } in H} () by T and the compact embedding
Hi(Q) — L*(Q2), we can extract a subsequence {u,, } C {u,} which fulfils

U, — u* weakly in H}(Q),
u,, — u* strongly in L*(Q),
where u* € Hj(Q) is a solution to (2.22). To check that, just take limit in (2.27)

and make use of the assumptions made on a, [ and f. In addition, observe that u*
fulfils (2.26).

Step 2. The a priori estimate (2.24). So far, we only have proven that there
exists at least a solution to problem (2.22) and u* verifies (2.24). But this does not
imply that any wu, solution to problem (2.22) fulfils (2.24) since the uniqueness of
solution is not guaranteed. Therefore, let us prove that any u, solution to problem
(2.22) verifies (2.24).

Consider fixed u, a solution to (2.22). It holds

mlfuly < [f(we) = F(0)]ofuslo + [ FONR ulo + (7]l |2-
Using that the function f is globally Lipschitz and the Poincaré inequality, we obtain
~1/2
3 < Lorr w3 + 1FO)IQL AT sl + (1Al |2-

Therefore, u, satisfies (2.24).
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Step 3. Regularity. Now, we will check that if h € L?(£2), any solution u, to
(2.22) belong to D(—A). In what follows, we represent u), = Pyu, == Y ¢ (s, w;)w;.
Since u, is a solution to (2.22), taking v = —Au} in Definition 2.6, we deduce

a(l(u)] = Auyfy = (f(w), —=Auy) + (h, —Auy).

Using the Cauchy-Schwartz and Cauchy inequalities, the fact that f is globally
Lipschitz and (2.24), we deduce

1
(f), =) < —|fu)f3 + | = Ayl

1, m .
< — (A Lilluals + 2 O)P1QD) + | = Awgls

2ATILAY2 4+ 21 F(0) 2|92
< 1 ~f |f()|| |+@—Aufl|§,
m 4
. 1 m .

Thus, from above we obtain

| = Aupls < —5 (20 L7 + 2| £(0)*|Q] + |A]3).

=

Then, as the sequence { P,u,} is bounded in D(—A) and P,u, converge to u, strongly
in L?(Q), it holds that u, € D(=A).

Step 4. Uniqueness. Let u; and us be two solutions to (2.22). Then,
(—a(l(u))Auy + a(l(ug))Aug, v) = (f(u1) — f(u),v) Yov € Hy(Q).
Adding +a(l(uy))Auy and taking v = uy — ug, we obtain
mlur = wall < Al Lalluslls + AT L) — a3

Now we argue by contradiction. Assume that u; # wus. Then, we can simplify
the above expression, dropping the factor ||u; — us||3. However, using the a priori
estimate (2.24) for uy, we would arrive at the opposite inequality to that one in
(2.25), what is a contradiction. Therefore, u; = us holds. O

To conclude this section, we will show that the unique stationary solution to
(2.2) is globally asymptotically exponentially stable.

Theorem 2.8. Under the assumptions of Theorem 2.7, if (2.25) also holds, the
difference between any solution to (2.2) and the unique solution u* to (2.22) fulfils

lu(t; T,ur) —ut2 < e M|y, — w2 V> T

where A = 21 (m — A; 2 |llsLa Y — A\{'Ly) > 0.
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Proof. For short, denote by u(-) the weak solution to the problem (2.2). Then, from
the energy equality,

5 lu(t) = ulz = (al(u(?))) Au(t) — a(l(u"))Au™ + f(u(t)) = f(u"), u(t) = u),

a.e. t € (1,7).
Adding +a(l(u))Au* and using (2.23), the Poincaré inequality and the global
Lipschitz continuity of the functions a and f, we have
1d

* —1/2 * — *
5 7100 = w3 < (=t AT oLl [l2 + LA u(t) — |l

Finally, making use of (2.24), (2.25) and the Poincaré¢ inequality, we deduce

d
—|u(t) —u*|? < =Au(t) —u*]? ae t>T,
dt 2 2
where A is given in the statement. O]

Remark 2.9. (i) The upper bound M in (2.23) can be removed to obtain Theorems
2.7 and 2.8. Indeed, consider the function a substituted by

with M = A;1/2|Z|QT, thanks to the a priori estimate (2.24).

(i1) The same argument allows to remove the global Liptchitz character of the func-
tion a in Theorem 2.7. However, for Theorem 2.8, it seems to be necessary to keep
the function a globally Lipschitz since |u(t)|2 can take arbitrary large values.

2.3 Minimal pullback attractors in L?-norm

Now, under the initial setting of Section 2.1, fulfilled with some more general as-

sumptions, we are going to analyse the long-time behaviour of the solutions to (2.2)

in L?(Q2) making use of the results on pullback attractors shown in Chapter 1.
First of all, thanks to Theorem 2.4, the map U : RZ x L*(Q) — L*(Q) defined as

U(t, T)u, = u(t;7,u,) Vur € L*(Q) V7 <t, (2.28)

where u(t; 7, u,) is the weak solution to (2.2), is a process on L*(2). In addition, as
a consequence of Theorem 2.4, we have the following result.

Proposition 2.10. Suppose that the function a is locally Lipschitz and fulfils (2.3),
f € C(R) satisfies (2.4) and (2.5), h € L} (R, H () and | € L*(Q)). Then, for

loc

any pair (t,7) € R2, the map U is continuous from L*(§)) into itself.
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Proof. Consider (t,7) € R2 fixed and let u; and uy be two solutions to (2.2) corres-
ponding to the initial condition u! € L*(Q) and u? € L*(Q) respectively, and with
the same non-autonomous term h € L2 (R; H*(Q)).

From the proof of Theorem 2.4, namely Step 2, we deduce
fur(£) = wa(1)[3 < Juy — uZfFel €O, (2.29)
where C(s) is given by

(La(R))?[3]|ua(s) I3 + 2ma
m Y

C(s) =

with L,(R) the Lipschitz constant of the function a in [—R, R] D {l(u;(t))}iec[rm for
i=1,2.
Therefore, using (2.28), we can rewrite (2.29) as follows

Ut 7)ul — U(t, )ulls < Jub — u2|pez - O,

From now on, we assume that the function f also fulfils
f(s)s<als?+8 VseR, (2.30)

where a € [0, \ym) and S > 0. Observe that if the constant C; appearing in the
assumption (2.4) belongs to [0, \;ym), this new assumption would be redundant.
Now, we have the following estimate.

Lemma 2.11. Suppose that the function a is locally Lipschitz and satisfies (2.3),
f € CR) fulfils (2.4), (2.5) and (2.30), h € L (R; H'(Q)), I € L*(Q) and
u, € L*(Q). Then, the solution u to (2.2) fulfils

e 1t

(m —aA(?)

25|02
) < 2 4 e

t
_ / e h(s)|2ds V> 7
- :u)‘l T
(2.31)
for any p € (0,2(Aym — «)).

Proof. From the energy equality, the Cauchy-Schwartz inequality, (2.3) and (2.30),
we deduce

%IW)I% + plu(t); + 2mllu(®)]; < 20+ wlu(t); + 26]2 + 2/[AE) [ [ut)]-.

Applying the Poincaré and Cauchy inequalities in the above expression, we obtain

1
— (2a+ p)

d 2 2 2
—|u(t )3 < 28|Q h(t)|s-
Sl + plu®)]; < 2610 + — peai KO/ B

Finally, multiplying by e’ and integrating between 7 and ¢, (2.31) holds. O
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Thanks to the previous estimate, now we can define a suitable tempered universe

in P(L2()).

Definition 2.12. The class of all families of nonempty subsets D = {D(t) : t €
R} C P(L*(Q)) such that

lim | e’ sup |vf3] =0
T veED(T)

15 denoted by Dﬁz for all p > 0.

Now, if we assume that h satisfies a suitable growth condition, using the above
estimates, we can prove the existence of a Dﬁz-absorbing family for the process U.

Proposition 2.13. Assume that the function a is locally Lipschitz and satisfies
(2.3), f € C(R) fulfils (2.4), (2.5) and (2.30), | € L*(Q) and h € L} (R; H*(Q))
fulfils that there exists some p € (0,2(A\ym — «)) such that

0
/ e ||h(s)||2ds < oo. (2.32)
Then, the family Dy = {Do(t) : t € R} defined by Do(t) = B2 (0, Ri/f(t)), where
23|19 e M
+ - -1
H 2(m — ady) — pAy

t
Riz(t) =1+ / e ||h(s)]|2ds,

is pullback DﬁQ-absorbmg for the process U : R x L*(Q) — L*(Q). Moreover,
ﬁo S DﬁQ
Proof. Let us fixt € R and D € Df. Using Lemma 2.11, (2.28) and (2.32), it holds

2681Q| . et b
00l < 2 D S [ (o) (239
1 1 —00

for all u, € D(7) € D and 7 < t.
Since D € DﬁQ, there exists 79(D,t) < t such that

ey 2 <1 Vu, € D(r) V7 < 7o(D,t). (2.34)
Now, simply replacing the estimation (2.34) in (2.33), we obtain
U(t,7)u, € Do(t) Yu, € D(r) V7 < 70(D,1).

Finally, thanks to (2.32) it is not difficult to prove that Dy € Dﬁz. ]

To prove the existence of minimal pullback attractors in L?(2), we only need to
check that the process U is pullback Df—asymptotically compact. To that end, we
need first to establish some estimates.
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Lemma 2.14. Under the assumptions of Proposition 2.13, for any t € R and De
DﬁQ, there exists 7 (D,t) < t —2 such that for any T < 7(D,t) and any u, € D(T),

it fulfils
lu(r; 7, ur)|3 < pi(t) Vrelt—2,1],

" . 2 < _
/r_1 lu(s; 7, ur)||5ds < po(t) Vre[t—1,t, (2.35)

| s run)lds < ) vrefe- L
\ Jr—1

289 e =2 Yo
pilf) =1+ ;‘L x 2(m — aA ') — pAL! / ().

m(t)—;(zmmm(m; s, [ ||h<s>uids),

e m — o[ relt-14 J,_4

e

w

—~
~+

~—
I

3 (0 Ppalt) + 26000 4 pu(0) 4 mmax, [ (o) ).

€lt—1,]
where M, 1)) 15 a positive constant.

Proof. Let 71(D,t) < t — 2 be such that

~

e—u(t—2)€W|uT|g <1 VYu, € D(r) V7 <n(D,t).

Consider fixed 7 < 71(D, t) and u, € D(7).

The first estimate in (2.35) follows directly from (2.31), using the increasing
character of the exponential.

Now, we will prove the other two inequalities in (2.35) for the Galerkin approx-
imations and later, making use of compactness arguments, we will obtain the same
ones for the solution. Observe that the first estimate in (2.35) also holds for the
Galerkin approximations.

From the energy equality for the Galerkin approximation, making use of (2.3),
we have

()3 2l ()13 < 20 (1)), (1)) + 2(B(0), 0 (1)) . 1> 7.

Applying (2.30) and the Poincaré inequality, we deduce

%Wn(t)lg +2(m = a7 [ua ()3 < 2810 + 2(h(t), ua(t)) ace. t > .

Now, using the Cauchy inequality, we obtain

d B 1
—|un ()5 + (m — X |lua (D)5 < 2681Q] + ————=[|h(t)[|} ae. t> 7.
dt m — o]
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Integrating between r — 1 and r when r € [t — 1,t], we deduce for all n € N

T 1 T
[ untolas < s (luntr = DB+ 20000+ s [ s fas)
1 m — a\] m—aA " Jr_1

< paft), (2.36)

where py(t) is given in the statement, thanks to the first inequality in (2.35) for w,.
Taking inferior limit in (2.36) and using the well-known fact that w, converge to
u(+;7,u,) weakly in L?(r — 1,7; H}(Q)) for all r € [t — 1,¢] (cf. Theorem 2.4), the
second inequality in (2.35) holds.

Finally,

ler, (D112 < Ba(l(un(£))?] — Aun ()3 + %If(un(t))lg + 3[R

a.e. t>T.

Observe that making use of the continuity of the function a and the fact that
[ € L*(Q2) and |u,(r)|3 < pi(t) for all v € [t — 2,t] and n € N, there exists a positive
constant M,, ),y such that

a(l(un(r))) < M(pl(t),l) Vr € [t - 2,t] Vn € N.

Taking this into account together with the fact that the function f satisfies (2.4),
—A is an isometric isomorphism from H}(Q) into H~*(Q2), and the already proved
first two estimates of (2.35) for u,,, we deduce

/ I (s)|12ds < ps(t) Vreft—1,4] VneN, (2.37)
r—1

where p3(t) is the expression given in the statement. Now, taking inferior limit
in (2.37) and bearing in mind that u/, converge to u'(:;7,u,) weakly in L*(r —
L,r; HY(Q)) for all r € [t — 1,¢] (cf. Theorem 2.4), the third estimate in (2.35)
holds. O

Now we are ready to prove that the process U is pullback DﬁQ—asymptotically
compact. To that end, we apply an energy method with continuous functions (e.g.

of. [73, 92, 94, 62)).

Proposition 2.15. Under the assumptions of Proposition 2.13, the process U :
R2 x L*(Q) — L*(2) is pullback Dﬁz—asymptotically compagct.

Proof. Consider ¢ € R, a family D € DﬁQ, a sequence {7,} C (—o0,t — 2] with 7,, —
—oo and u,, € D(7,) for all n. Our aim is to prove that the sequence {u(t; 7, u.,)}
is relatively compact in L?*(2). For short we will denote u™(+) = u(*; Ty, U, ).
Making use of Lemma 2.14, the continuity of the function a, [ € L*(Q) and
(2.4), we know that there exists 71 (D, t) < t — 2 satisfying that, if n; > 1 is such
that 7, < 71(D,t) for all n > ny, {u"}ysn, is bounded in L®(t — 2,t: L*(Q)) N
L2(t — 2,t; HY(Q)), {f(u™) }nsn, is bounded in L2(t —2,¢; L*(2)), and the sequences
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{—a(l(u"))Au"},>pn, and {(u™)'},>n, are bounded in L(t —2,¢; H~'(Q)). Then, us-
ing the Aubin-Lions lemma, there exists u € L>(t — 2,t; L*(Q))NLA(t — 2,t; Hy (Q))
with ' € L?(t — 2,t; H'(Q)), such that for a subsequence (relabeled the same) it
holds

u" > u  weakly-star in L>(t — 2,t; L*(Q)),

u" —u  weakly in L3(t — 2,t; H}(Q)),
(u™) — v weakly in L2(t — 2,¢; H1()),

u" — u  strongly in L*(t — 2,t; L*(Q2)), (2.38)
u"(s) — u(s) strongly in L*(Q2) a.e. s € (t —2,1),
f(u™) = f(u) weakly in L*(t — 2,t; L*(2)),
| —a(l(u")Au" = —a(l(u))Au  weakly in L?(t —2,t; H1(Q2)).

Observe that the last two convergences in (2.38) have been obtained arguing in the
same way as in the proof of Theorem 2.4, making use of [85, Lemme 1.3, p. 12].

Furthermore, u € C([t — 2,t]; L*()) and using (2.38), it is not difficult to prove
that w fulfils (2.6) in the interval (t — 2,1).

Since {(u™)}n>n, is bounded in L2(t — 2,t; H~*(Q)), we have that {u"},>n, is
equicontinuous in H~1(Q) on [t —2,t]. Namely, fixed € > 0, consider s, sy € [t —2, 1]
with sy — s1| < 1, then

) 2

(" ey

S1

[ (s2) — u"(s1)|17 < ( sup

vEHG (Q)/|lv]|l2=1

< ( / ||(U"(7’))/||*dr)2

< p3(t)]s2 — s1]-

Then, it just simply takes 6. = min{e?/p3(¢), 1}. In addition, as {u"},>n, is bounded
in C([t—2,t]; L*(Q2)) and the embedding L*(Q) C H () is compact, by the Arzela-
Ascoli theorem, we obtain (for another subsequence, relabeled again the same)

u" — u  strongly in C([t — 2,t]; H1(Q)). (2.39)

Now, consider a sequence {s,,} C [t—2,t] which converges to s,. Since {u"},>n, is
bounded in C([t — 2,t]; L*(R)), there exist a subsequence of {u"(s,,) }n>n, (relabeled
the same) and v € L*(Q) such that

u"(s,) = v weakly in L?(Q). (2.40)

Let us prove that v = u(s,). Fixed € > 0, from (2.39) we deduce that there
exists n. € N such that

|lu™(s) — u(s)||« < Vn >n. Vse[t—2,t.

<
2
From this and using that the function u € C([t — 2,t]; HY(Q)), we deduce

u"(s,) — u(s,) strongly in H=1(Q). (2.41)
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Then, from (2.40) and (2.41), by the uniqueness of the limit we obtain
u”(s,) — u(s,) weakly in L*(Q). (2.42)
Observe that if we prove
u" — u strongly in C([t — 1,t]; L*(Q)), (2.43)

in particular the sequence {u(t; 7., u,, )} is relatively compact in L?().
We establish (2.43) by contradiction. We suppose that there exist ¢ > 0, a
sequence {t,} C [t — 1,t], without loss of generality converging to some t,, with

|u™(t,) —u(ty)]e > Vn > 1. (2.44)
On the other hand, using the energy equality (2.7), the Cauchy inequality, (2.3)
and (2.30), the estimate

#(6) < <001 + 201006 =) + s [ IO V-2 r < s <
1 T

2(m —
holds with z replaced by u or any u".
Now we define the functions
1

A E—— h(r)||2d
eyl BLAGIE
1

S h(r)||2dr.
s ol

From the regularity of u and all v, and the above inequality it holds that these
functions J and J, are continuous and non-increasing on [t — 2,¢]. In addition,
observe that using (2.38), we have

Ja(s) = J(s) ae. s€(t—2,t).

Ta(s) = [u"(s)[3 — 26]Qs —

J(s) = lu(s)lz — 281Qs —

Hence, there exists a sequence {t,} C (t — 2,t,) such that #;, — ¢, when k — 0o and
lim J,(t,) = J(tx) Vk > 1.
n—oo

Fix an arbitrary value e > 0. From the continuity of J on [t — 2,t], there exists
k(e) > 1 such that
|J(ty) — J(ts)| <€/2 Yk > k(e).

Now consider n(e) > 1 such that
tn >t and | Ju(tee) — J(tieo)] < €/2 Vn > n(e).
Then, since all .J,, are non-increasing, we deduce
Tn(tn) = J(te) < Jultr) — J(t.)
< | (ki) — J(t)]

<e Vn>n(e).
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As e > 0 is arbitrary, from above we deduce

lim sup J,(t,) < J(t.).
n—o0
Thus,
tim sup [u" (8] < [u(.)]s

n—oo

From this, (2.42) applied to the sequence {¢,}, it satisfies that the sequence {u"(¢,)}
converges to u(t,) strongly in L?(§2), which is contradictory with (2.44). Therefore,
(2.43) holds. O

As a consequence of the previous results, we obtain the existence of the minimal
pullback attractors for the process U on L*(12).

Theorem 2.16. Suppose that the function a is locally Lipschitz and satisfies (2.3),
f € CR) fulfils (2.4), (2.5) and (2.50), 1 € L*(Q) and h € L}, .(R; H1(Q)) satisfies

loc

condition (2.32) for some p € (0,2(Aym — «)). Then, there exist the minimal
pullback D?-attmctor AD# and the minimal pullback DﬁQ-attmctor ADf for the
process U : R3 x L*(Q) — L*(Q). The family A2 belongs to Dﬁz and the following
relationship holds

Apga)Cv%%ﬂﬂngp«LR%%ﬂ) Vvt € R. (2.45)

Finally, if moreover h satisfies

m{ef/emwﬂm0<m, (2.46)
s<0 — 00
then

Proof. The process U is continuous on L?(§2) and pullback Dﬁz—asymptotically com-
pact (cf. Propositions 2.10 and 2.15 respectively). In addition, there exists a pull-

back DﬁQ—absorbing family (cf. Proposition 2.13) and DIQQ C Dﬁz. Then, from
Corollary 1.15, we deduce the existence of A2 and A2, as well as the first rela-
m F

tionship appearing in (2.45). The second relation in (2.45) is straightforward making
use of Theorem 1.13 and the fact that ﬁ[) € Df.

In addition, using that D% is inclusion-closed, Do(t) is closed in L2(2) for all
teR, Dye DﬁQ and the second relation in (2.45), the family ADﬁQ belongs to Dﬁz.

Finally, under the assumption (2.46), the set Uj<rR;2(t) is bounded for each

T € R, where the expression of R2(t) is given in the statement of Proposition
2.13. Therefore, from Corollary 1.15, we deduce that both families A2 and Ap,»
F w

coincide. O
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Remark 2.17. (i) Observe that condition (2.46) is equivalent to

sup/ |h(r)||2dr < oo.
s<0 Js—1

(ii)When h € L2 (R; H-*(Q)) fulfils condition (2.32) for some u € (0,2(Aym —
a)), it holds

0
/ e”*||h(s)||2ds < oo Vo € (u,2(A\im — ).

Therefore, under the assumptions of Theorem 2.16, there exists the corresponding
minimal pullback DY -attractor Apre for any o € (p,2(AMym — «)). Furthermore,
Apr2(t) C Api2(t) for any t € R for all o € (p,2(Aym — «)), thanks to Theorem
1.16.

In fact, if h satisfies (2.46), using the equivalence pointed out in (i), ADL2( )=

Apr2(t) = Api2(t) holds for allt € R and any o € (1, 2(Mim — «)).

2.4 Minimal attractors in H!'-norm

In this section we prove the existence of pullback attractors for a dynamical sys-
tem associated to (2.2) in the phase space H}(Q). In addition, we establish some
relationships amongst these families and those analysed in Section 2.3.

Observe that from Theorem 2.5, the restriction of U to R3 x Hj(Q) defines a
process into HJ(£2). Since no confusion arises, we do not modify the notation and
continue denoting this process as U.

The following result ensures that the process U is strong-weak continuous in

H; ().

Proposition 2.18. Assume that the function a is locally Lipschitz and (2.3) holds,
f € C(R) satisfies (2.4) and (2.5), and h € L} (R, L*(Q)) and l € L*(Q) are given.

Then, the process U is strong-weak continuous in H}(Q).

Proof. Consider (t,7) € R? fixed and let {u"} be a sequence of initial data which
converges to u, strongly in H}(2). Our aim is to prove

Ut,T)ul’ = U(t,7)u, weakly in H}(Q). (2.47)

On the one hand, in Proposition 2.10 we have shown that the map U(t, 1) is
continuous from L?*(€) into itself. Therefore,

U(t,7)ul’ = U(t,7)u, strongly in L*(Q).

On the other hand, making use of (2.3), (2.4), (2.8) and the Holder and Cauchy
inequalities, we have

) ) 205 ([
e 7yl < gl + 2L ([ G0+ s, uetpyas) + [ hisas.

Observe that it is not difficult to obtain a uniform estimate for {U(-,7)u’} in
L?(7,t; L*(Q)) using the Gronwall lemma and (2.7). Then, the sequence {U (¢, 7)u"}
is bounded in H}(f2). Therefore, by the uniqueness of the limit, (2.47) holds. O
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To prove that the process U : RS x HE(Q) — H () is pullback asymptotically
compact, we previously establish some uniform estimates of the solutions in a finite-
time interval up to ¢ when the initial datum is shifted pullback far enough.

To clarify the statement of the following result, we introduce the next two
amounts:

269 e t
ity =14 + / K R(E)||2dE,
gty =1+ 28 o [ el
(2.48)
1 1 "
SH(t) = ———— [ 2819 + o5 (t) + ——— / h(&)|2dE ) .
0 = ey (20100 0+ ey [ e

[The upper script ext means that these expressions are estimates, close to those in
Lemma 2.14 involving p; and p,, but in an extended interval, as will be indicated
in the proof below.|

Lemma 2.19. Assume that the function a is locally Lipschitz and (2.3) holds, f €
C(R) fulfils (2.4), (2.5) and (2.30), | € L*(Q) and h € L} (R;L*(Q2)) satisfies

(2.32) for some p € (0,2(Aym —«)). Then, for anyt € R and D € DﬁQ, there exists
72(D,t) < t — 3, such that for any 7 < 72(D,t) and any u, € D(7), it holds

(

lu(rs 7 un) 3 < Pa(t) Vr€ [t —2,1],

/ | — Au(&mur)|3dE < pa(t) V€ [t —1,8), (2.49)

/ C (€ un) e < Fa(t) Vet — L1,
r—1

\

where, taking into account {p$*'}i—19 from (2.48), the terms {pi}i=123 are given by

~ 4C21Q)| 4C? 2 r
) = —I—+ (1+—f) P (t) + — max / [ (€)Bde.

A1m m reft-24] J,_4

_ 4020 1 acz 2 r )
palt) = =L 4 0) L0+ 5 max [ b3
r—1

m2 reft—1,t

)\1m
~ 2~ 2 60]% ext " 2
Plt) = 3(Myev.))"Palt) + 6CHQ + —=2p5"(8) +3 max [ [h{E)l5de,

rel=Lt Jr—1

where Mpest(y 1y s a positive constant.

Proof. Analogously as in the proof of Lemma 2.14, we can obtain uniform estimates
for the solutions in a longer time-interval. Actually, there exists 7o(D,t) < t — 3
such that for any 7 < 75(D, t) and any u, € D(7), it holds

u(rs 7, u-)l5 < pi7(8) Vre [t 3.1,

/ (€ 7|36 < p5(8) Vi € [t — 2,1,
r—1
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where {pf*'};_12 are given in (2.48). Actually, these estimates also hold for the
Galerkin approximations wu,(+; 7,u,) (for short denoted by u,(+)).

From now on, consider fixed 7 < 75(D, t) and u, € D(7).

Multiplying (2.9) by Aj@n;(§), summing from j = 1 to n, and using (2.3), (2.4)
and the Cauchy inequality, we have

d 4C21Q|  4C? 2
Ol +mi=8u, (O € L=+ L O+~ MO e €> 7 (250)
Integrating between r and s with 7 <r — 1 < s < r, we deduce
40?\9\ 46’]20

(P13 < llun ()12 +

T 9 2 T 9
ek [ @t [ e

Integrating the last inequality w.r.t. s between r — 1 and r,

402N\ [T a0l 2
fnB < (1452 [ lunolfas+ <25 2 [ jaceya

forall 7 <r—1.
Now, from the estimate on the solutions by p5* given above,

| wn(r; T, uT)Hg <p(t) Vret—2,t] VYneN, (2.51)

where p;(t) is given in the statement. Taking inferior limit in (2.51) and using the

well-known fact that u, converge to u(-; 7, u,) weakly-star in L>(t—2,¢; H}(Q2)) and

u € C([t —2,t]; H(Q)) (cf. Theorem 2.5), the first inequality in (2.49) holds.
Now, integrating between r — 1 and r in (2.50), we obtain in particular

/ |- BB

1 4C3|1Q| 402 [ 2 [T
< — _ 2 f / 2 i 2
> mHun<7’ Ilr m2 + A2 /7"—1 [|un(€)]|2d€ + m2 /T_l |h(&)I5dE,

forall 7 <r—1.
Therefore,

/T | — Au, ()3dE < pa(t) Vreft—1,t VneN, (2.52)
r—1

where po(t) is given in the statement. Now, taking inferior limit in (2.52), bearing
in mind that u, converge to u(-; 7, u,) weakly L?(r—1,r; D(—A)) for all 7 € [t —1, ]
(cf. Theorem 2.5), the second inequality in (2.49) holds.

On the other hand,

JRGIR

< 3/i1 a(l(un(€)))?| _Aun(ﬁ)!§d§+3/i |f(un(§))|§d§+3/i1 h(€)[2de,

1
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forall 7 <r—1.

Observe that from the continuity of the function a, the fact that [ € L*(€) and
lu, ()2 < p§®i(t) for all r € [t — 3,t] and n € N, we have that there exits a positive
constant M ety such that

a(l(un(r))) < Mpeeryyy Vr €[t —3,t] VneN.

Therefore, from this, (2.4) and the above estimates, it yields
/ ! (€)|2de < ps(t) Vrelt—1,1 VneN,
r—1

where p3(t) is given in the statement. Finally, taking into account that u] converge
to u'(+; 7, u,) weakly in L2(r —1,7; L*(Q)) for all » € [t — 1,¢] (cf. Theorem 2.5), the
last inequality in (2.49) holds. O

Now, we introduce additional universes that involve more regularity.

Definition 2.20. For each p > 0, Dﬁz’Hé denotes the class of all families of
nonempty subsets Dy = {D(t) N Hy () : t € R}, where D = {D(t) : t € R} € Df.

Now, from the existence of a pullback Dﬁz—absorbing family (cf. Proposition
2.13) and the regularising effect of the equation (cf. Theorem 2.5), the following
result is straightforward.

Proposition 2.21. Under the assumptions of Lemma 2.19, the family
Do = {(Br2(0, R2(t)) N HL(Q) - t € R}
Hg

L2
belongs to D,,’
that

and for any t € R and any De DﬁQ, there exists 73(13, t) <t such
U(t,7)D(r) C Doy (t) V7 < 73(D,1).

In particular, the famaily IA?O,H(% 1s pullback Dﬁz’Hé—absorbmg for the process U : R? x
H} () — HLQ).

Proof. Let us fix t € R and De DﬁQ. By Proposition 2.13, there exists 70(13, t) <t
such that R

\U(t, T)url3 < Rpa(t) Yu, € D(1) V71 < 70(D, ).
Moreover, thanks to the regularising effect of the equation, when u, € L*(Q), it
holds that u(-;7,u,) € C((1,00); H}(Q)). As a result, U(t,7)u, € H}(Q) if t > 1.
Therefore, it satisfies

~

U(t,7)D(r) C HY(Q) N B2(0, R (1) V7 < 7o(D, 1),

-~

where 73(D,t) = 7o(D, t).

A ~ 2 171
Finally, as a consequence of Dy belonging to D{f, D, i € Dﬁ Hg 0
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The following result establishes that the process U defined on H{(f2) as phase-
2 1
space is pullback Dﬁ ’Ho—asymptotically compact. To that end, we apply again an

energy method analogous to the one we used in Proposition 2.15. We reproduce it
here just for the sake of completeness.

Proposition 2.22. Under the assumptions of Lemma 2.19, the process U : R x
2 1
H}(Q) — HN(Q) is pullback Dﬁ o _gsymptotically compact.

Proof. Let us fix t € R, a family lA)Hé € Dﬁz’Hé, a sequence {1,} C (—oo,t— 3]
with 7, — —oc0 and u,, € Dpyy(7,) for all n. We will prove that the sequence
{u(t; T, u,,)} is relatively compact in H}(Q). For short, we will denote u™(-) =
w(+; T,y Us,, )

As a consequence of Lemma 2.19, it holds that there exists Tg(lA),t) <t-—3,
such that 7, < TQ(E,t) for all n > ng, the sequence {u"},>,, is bounded in
L=(t — 2,8, HY(Q)) N L2(t — 2,t; D(—A)), and the sequences {—a(l(u™))Au"}y>n,,
{f(u™) }nsn, and {(u")'}n>n, are bounded in L2(t — 2,¢; L*(2)). Then, using the
Aubin-Lions lemma, there exists u € L>®(t — 2,t; H3(Q)) N L*(t — 2,¢; D(—A)) with
u' € L*(t — 2,t; L*(Q)), such that for a subsequence (relabeled the same) it holds

( u™ > u weakly-star in L®(t — 2,t; H}(R)),

u” —u  weakly in L2(t — 2,t; D(—A)),
(u™) — ' weakly in L%(t — 2,t; L*(Q2)),
u" —u  strongly in L?(t — 2,t; H}(2)), (2.53)
u"(s) — u(s) strongly in Hj(Q2) a.e. s € (t—2,t),
fu™) — f(u) weakly in L*(t — 2,t; L*(2)),
—a(l(u™)Au™ — —a(l(u))Au  weakly in L2(t — 2,t; L*(Q2)),

\

where the last two convergences have been obtained making use of [85, Lemme 1.3,
p. 12].

Observe that u € C([t — 2,t]; H}(Q)) and due to (2.53), u satisfies (2.6) in the
interval (t — 2,1).

Moreover, since {(u")'},>n, is bounded in L*(t — 2,t; L*(Q)), it satisfies that
{u"},>n, is equicontinuous in L*(Q) on [t — 2, t]. Indeed, fixed € > 0 and considering
S1, 89 € [t — 2,t] with |sy — s1| < 1, we have

2
2

| ey

U (s2) — u"(s1)]5 =
s1

<(/ € e ) o = o

< p3(t)]s2 — s1].

Now, it just suffices to take §. = min{e?/p3(¢),1}. From this and taking into
account that {u"},>n, is bounded in L>®(t —2,¢; H}(Q)) and the compactness of the
embedding HJ(2) — L?*(€2), applying the Arzela-Ascoli theorem we obtain

u" — u strongly in C([t — 2,t]; L*(2)). (2.54)
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On the other hand, using that {u"},>,, is bounded in C([t — 2,t]; H}(Q)), we
have that for any sequence {s,} C [t — 2,t] with s, — s.,

u"(s,) — u(s,) weakly in Hj(Q), (2.55)

where (2.54) has been used to identify the weak limit.
If we prove
u" — u strongly in C([t — 1,t]; Hy(Q)), (2.56)

in particular, we have that the sequence {u"(t)} is relatively compact in HJ(€2). To
that end, we argue by contradiction. We suppose that there exist ¢ > 0, a sequence
{t,} C [t —1,t], without loss of generality converging to some t., with

Ju(t) — u(t) 2 > & ¥ > 1. (2.57)

Now, applying (2.3), (2.4) and the Cauchy inequality to the energy equality (2.7),
the estimate

20%|1Q 20 1 [®
I8 < 1008 + 20 )+ 27 [ qeya+ L [ e

holds with z replaced by u or any u" for all t —2 <r < s <t.
Then, we define the following functions

20210 202
D) =6 = L = S 2 [ ey [ noar
tf
20210 207
15) = (o)l - =L =5 ==L [ jutr)far =~ [ Jhio)

It is clear from the regularity of v and all u™ that these functions are continuous on
[t — 2,t]. In addition, using the above inequality it is not difficult to prove that .J
and all J,, are non-increasing functions on [t — 2, t]. Moreover, from (2.53), it holds

Jo(s) = J(s) ae. s€ (t—2,1).

Hence, there exists a sequence {f;} C (¢ — 2,t,) such that #;, — t, when k — oo
and

n—oo

Consider € > 0 fixed. Since the function J is continuous on [t — 2, t], there exists
k(e) > 1 such that

T () — J(t)] < g Vk > k(e).
Now, we consider n(e) > 1 such that

~ ~ ~ €
tn 2 1o and | Ja(tie) = (o)l < 5 n=nle).
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Then, since all the functions J,, are non-increasing, for all n > n(e)

Jo(tn) — J(te) < Jultr) — J(t)
< [Tn(tri) — J(t)]

(
< | Julrie)) — ()] + [ (Ere) — J(ts)]
<E—|——:e.

2 2

Then, limsup,, . Jn(t,) < J(t.). Thus, it satisfies that limsup,,_, [|[u"(t,)]2 <
||u(ts)||2 which, together with (2.55) applied to the sequence {t,}, allow us to prove
that u"™(t,) converge to u(t,) strongly in H}(Q2), in contradiction with (2.57). There-
fore, (2.56) holds. O

As a consequence of the above results, we obtain the existence of minimal pull-
back attractors for the process U : R2 x H}(Q) — H ().

Theorem 2.23. Suppose that the function a is locally Lipschitz and (2.3) holds,

f € C(R) fulfils (2.4), (2.5) and (2.50), 1 € L*(Q) and h € L} (R, L*(Q)) verifies
1

(2.32) for some p € (0,2(A\ym — «)). Then, there exist the minimal pullback DHO

attractor A Hé and the minimal pullback D 1 _attractor A L2 ug Jor the process

U:R2 x Hl(Q) — H}(Q). In addition, the following relatzonsth holds

AD;I ( ) - ‘ADL2< ) C ADﬁQ (t) = AD£27H5 (t) VvVt € R, (2.58)

In particular, we have the following pullback attraction result in H} (),

lim disty (U(t, 7)D(7), Aps2 () =0 Vt€R VD e DY (2.59)

T——00

Finally, if moreover h satisfies

sup (e“s/ e’“[h(r)]%dr) < 00, (2.60)

SSO o0

then the following chain of equalities holds

Dgé(t) = AD{EQ (t) = ADf (t) = ADﬁQ’H% (t) VteR,

and for any B € Dg,

lim distg (U(¢,7)B, ADL2( ) =0 VteR. (2.61)

T——00

Proof. The existence of ADH‘% and A’DLQ’ i 18 a consequence of Corollary 1.15. In-
F W

deed, the process U is strong-weak continuous (cf. Proposition 2.18), D C DL HG

holds, and the existence of an absorbing family (cf. Proposition 2. 21) and the

asymptotic compactness (cf. Proposition 2.22) hold.
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The chain of inclusions (2.58) follows from Corollary 1.15 and Theorem 1.16.
In fact, the equality for all ¢ € R between Ap.2(t) and ADLZ'H3 (t) is also due to

Theorem 1.16, using Proposition 2.21. Then, (2.59) obviousl; holds.
When h satisfies (2.46), it holds A2 (t) = Apr2(t) for all £ € R (cf. Theorem
7 ©

2.16). The equality ADH(% (t) = AD{;z (t) is again due to Theorem 1.16. To that end

F
we need to assume (2.60), an assumption stronger than (2.46), and make use of the
first estimate appearing in Lemma 2.19. Therefore, (2.61) is straightforward. O

We conclude this chapter with a complement to Remark 2.17.

Remark 2.24. Under the assumptions of Theorem 2.23, for any o € (i, 2(Aym—a))
2 1
there exists the corresponding minimal pullback Dﬁ ’Ho—attmctor, 'ADLQ’H(%’ and the

relationship Ap.2(t) = ADLQ’H(% (t) holds for all t € R. In addition, when h satisfies
(2.60), Angz,Hé (t) = ADH(% (t) for allt € R and any o € (1, 2(Aym — «)).

F



Chapter 3

Non-autonomous nonlocal
reaction-diffusion equations

In this chapter, we are interested in studying the long-time behaviour of the solutions
of the non-autonomous nonlocal reaction-diffusion equation

ou
i a(l(u))Au = f(u) + h(t),

where the main difference with respect to the problem analysed in Chapter 2 is that
in this case the function f fulfils

—k —a|slP < f(s)s < Kk —agls]” Vs €R,

where k, a7 and ay are positive constants and p > 2. Although we relax the
assumptions on f, now we need to impose smoothness conditions on the domain in
order to prove the existence and uniqueness of weak and strong solutions. However,
we do not assume any restriction on the dimension of the domain €2, which is quite
useful when researchers want to deal with problems that have dependencies on other
variables not only the spatial one. In Chapter 4, however, we do impose restrictions
on the dimension of the domain €2 and in return, we do not assume any smoothness
condition on (2.

Next, we focus on analysing the existence of nontrivial stationary solutions under
suitable assumptions, making use of a method developed by Chipot and Corréa in
[42] based on a fixed point argument. In a more general framework, a comparison
result between the solution to the evolution problem and two stationary solutions
(assumed to exist) is given, when the initial datum is ordered w.r.t. the stationary
solutions.

Finally, the existence of minimal pullback attractors in the L?-norm in the frame-
works of universes of fixed bounded sets and that given by a tempered growth con-
dition is proved, and some relationships between them are established. Moreover,
we prove the existence of minimal pullback attractors in Hj(f2) in some particular
cases and study relationships amongst these new families and those given previously
in the L?-context. To prove the existence of these more regular families, we need
to assume that f(u) € L?(7,T;L*(f2)), this way manipulations with —Au make

75
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sense, as well as another restriction related to a boundedness of the norm of f(u) in
L*(r,T; L*(Q)), which is obtained making use of interpolation results together with
the regularity imposed on the domain € (see (3.54)).

The results of this chapter can be found in [23].

3.1 Setting of the problem and existence results

In this chapter, we analyse the nonlocal reaction-diffusion equation

% —a(l(u)Au = f(u) +h(t) in Qx (7,00),
u=0 on 9N X (1,00), (3.1)

w(z,7) = u () in Q,

where 7 € R, the function a € C(R; R, ) and there exists a positive constant m such
that
0<m<a(s) VseR, (3.2)

and [ € L(L*(Q),R).
Assume that the function f € C'(R) and there exist positive constants ay, as, 1,
k and p > 2 such that

(f(s) = frD(s—r) <mls—7r)* Vs,r €R, (3:3)
—k—aq|s|P < f(s)s <k —agls]P VseR. (3.4)

Observe that the case p € [1,2] is not considered here, since the main goals
achieved in this chapter have been studied for this particular case in Chapter 2 in a
more general framework.

From (3.4) we can deduce that there exists § > 0 such that

[f(s)] < B(IsP~"+1) VseR. (3.5)

Although we weaken the assumptions on f, now we impose smoothness condition
on the domain. Namely, in our proofs we require 2 C R to be a bounded open
set of class C*, with k > 2 such that k > N(p — 2)/(2p). Observe that even though
the domain 2 is smooth, we do not assume any requirement on the dimension N of
the domain €2, unlike what happens in Chapter 4. In that Chapter 4, to study the
existence of strong solutions and the regularising effect of the equation, we need to
impose strong requirements on either the dimension of the domain €2 or the reaction
term, or even both of them since no assumption of regularity is imposed on the
domain 2.

Again as in Chapter 2, we assume that the initial datum u, € L*(2) and the non-
autonomous term he€ L2 (R; H~1(Q)). Identifying L?*(Q2) with its dual, the operator

loc
[ acting on u must be understood as (I,u), but for short we keep the notation I(u).
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Definition 3.1. A weak solution to (3.1) is a function u € L>®(r,T;L*(Q)) N
L*(r,T; HY(Q)) N LP(7,T; LP(Q)) for all T > 7, with u(r) = w,, and such that
for allv € H () N LP(Q)

%(u(t),v) +a(l(u(t)((u(t), v)) = (f(u(t),v) + (h(t), v), (3.6)

where the previous equation must be understood in the sense of D'(T,0).

Observe that if u is a weak solution to (3.1), making use of the continuity of a, [ €
L*(Q), (3.5) and (3.6), it holds that ' € L*(r,T; H*(Q)) + L(7, T; LY(Q)) for any
T > 7 (where p and ¢ are conjugate exponents). Therefore, u € C([r,0); L*(Q)).
In addition, the initial datum in (3.1) makes sense and the following energy equality
holds

)42 [ a(utr))lla(r) Bdr=[u(s)E+2 [ (FCulr)),ulr)dr+2 [ b, ur)ar
(3.7)

forall 7 < s <4,

A notion of more regular solution is also suitable for problem (3.1).

Definition 3.2. A strong solution to (3.1) is a weak solution u to (3.1) such that
u € L*(r,T; D(=A)) N L*(r, T; Hy(Q)) for all T > .

Regarding D(—A), it holds that D(—A) = H*(Q)NH () thanks to the assump-
tions made on the domain €2, since it is a bounded open set of class C? at least.
Therefore, we will use either the norm of D(—A) or the norm of H?(Q2) N H (),
since both are equivalent (see [57, Theorem 4, p. 317| or [100, Theorem 6.16, p.
181)).

Observe that due to the presence of the nonlocal operator in the diffusion term,
under the assumptions made, it is not possible to guarantee that the strong solution
uw € O([r,T); H(Q)) (see Theorem 3.4 below), unlike what happens in reaction-
diffusion problems. Nevertheless, every strong w fulfils u € C\([7,T|; Hy(Q)) (cf.
[108, Theorem 2.1, p. 544] or [111, Lemma 3.3, p. 74]).

In this section, we analyse the existence and uniqueness of weak and strong
solutions to (3.1) as well as the regularising effect of the equation. Analogously as in
Chapter 2, we use the Faedo-Galerkin approximations and compactness arguments.
Finally, for the sake of completeness we give a Maximum Principle for (3.1).

First of all, we will prove the existence and uniqueness of weak solutions.

Theorem 3.3. Assume that the function a is locally Lipschitz and satisfies (5.2),
f € CR) fulfils (3.3) and (5.4), h € L} (R; H () and | € L*(Q)). Then, for

loc
each initial datum u, € L*(Q), there exists a unique weak solution to the problem

(3.1), denoted by u(-;T,u,) and fulfilling the energy equality (3.7).
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Proof. We split the proof into two steps.

Step 1. Existence of weak solution. Making use of spectral theory, we
deduce that there exists a sequence {w;};>; of eigenfunctions of —A in Hj (),
which is a Hilbert basis of L?(£2). Observe that thanks to the regularity imposed to
the domain €, each eigenfunction w; € LP(12).

Now, for each integer n > 1, consider the function wu,(t; 7, u;) = Y7, @n;(t)w;
(un(t) for short) which is the local solution to

%(un(t)ng’) + a(l(un (1)) ((un(t), wy)) = (f(un(t)), w;) + (h(t), wy), t € (7,00),
(Un(7), w5) = (ur, wy), g=1,...,n.
(3.8)

To prove this claim we argue analogously as in the proof of Proposition 2.3, making
use of [52, Theorem 1.1, p. 43]. For the sake of brevity, we omit the proof.

Multiplying by ¢,; in (3.8), summing from j = 1 to n and using (3.2), we have

%lun(tﬂg +mfun (O[3 < 20f (wa()), un(t)) + 2(h(t), un(t))  ace. t € (7,t,). (3.9)

Observe that from (3.4) and the Cauchy inequality, we obtain

(Fl, (1)), (8)) <RI = v (D)
(D), un0)) < 5B + 2 ()

Taking this into account, from (3.9) we deduce

d 1
Zlun () +mllun()]3 + 202[un (D) < 261 + —[[RO]Z ae. t € (7,n).

Integrating between 7 and t with 7 <t < t,,, we have

t t
(B +m / i (3) 2ds + 20 / () s

T
< furlp 4 26100 = )+ - [ (o) s
Therefore, {u,} is well defined and bounded in L>(7,T; L?(2)) NL*(r, T; HY(Q)) N
LP(7,T; LP(§2)) for all T' > 7. In addition, taking this into account together with the
fact that each u,, € C([r,T]; L*(Q)), we deduce that there exists a positive constant
C such that
[up(t)]s < C VEte[r,T] Vn>1.

Then, using that a € C(R;R,) and [ € L?*(f2), we have

la(l(ua(t)))] < Me. Vt€[rT] ¥n> 1. (3.10)



Chapter 3. Non-autonomous nonlocal reaction-diffusion equations 79

Therefore, if fulfils

/ a(Uun(t) P — D (8)]2dE < (M, ) / lun®Zdt. (3.11)

Now, bearing in mind that the sequence {u,} is bounded in L?(7,T; H}(f2)), we
have that the sequence {—a(l(u,))Au,} is bounded in L?(7,T; H=1(Q)).

On the one hand, the sequence {f(u,)} is bounded in LI(7,T; L9(S2)), since
making use of (3.5), we have

/TT/Q|f(un(:1:,t))|qudtSBq/TT/Q(lJF|un(x’t)|p—1)qudt
< 207131 /TT(IQI + Juy (£)[2)dt

<o (10 =)+ [ o).

Then, thanks to the boundedness of {u,} in LP(7,T; LP(Q2)), it yields that the se-
quence {f(u,)} is bounded in L(7,T; L1(2)).

Finally, to prove that the sequence {u],} is bounded, we need first to define two
additional projection operators related to

P,: L*Q) — V,:=spanfwi,...,w,)
¢ = (b ww;.

The first one is given by

P,: HYQ) — HYQ) -
v — [0 € Hy(Q) — (P, ¢) := (v, P,¢)].

To define the second one, we need to introduce first some notation. We denote
A = —A with homogeneous Dirichlet boundary condition, i.e. the isomorphism
from Hj(2) into H'(Q) (also seen as an unbounded operator in L?(2)). Now, we
consider the domains of fractional powers of A,

D(A¥?) = {u € L*(Q) : Z )\g‘f(u,wj)Q < 00}.

j21

Now, we are ready to define the second projection operator, which is given by

P,: L1(Q) — D(AM?) N
v — [gb S D(Ak/Q) — <Pn(’U), ¢>D(A—k/2),D(Ak/2) = (U, Pngf))]

Observe that P, and P, are the continuous extensions in L1(Q) and H1(Q) of
P,, respectively. Therefore, from now on we will denote both projections by P,
making an abuse of notation.



80 3.1. Setting of the problem and existence results

Observe that the sequence { P, f(u,)} is bounded in L4(7,T; H=*(Q)) since the
sequence { f(u,)} is bounded in L(7,T; L9(2)). We will show the details for the
sake of completeness. It satisfies

(Pof(un(t)),v) pia-r/2y piar/y /fun(t ))Pvdx
< | f (un(£))lg| Pavly
< Ol (un(®))lgll Envll pearrz)
< Clf (un(®))lgllvllpears),

where C' > 0 is the constant of the continuous embedding D(A%/2?) — LP(Q2). No-
tice that D(A*?) < H*(Q) < LP(Q), since Q is a bounded open set of class C¥,
with & > 2 such that & > N(p —2)/(2p) (cf. [100, Proposition 6.18, p. 183], [57,
Theorem 5, p. 323]).

Then, we have

IR )yt < €7 [ o). (3.12)

Therefore, the sequence {P,f(u,)} is bounded in L?(r,T; D(A™*/?)). Bearing in
mind that LI(r,T; D(A7%/2)) — Li(7,T; H*(Q)) (cf. [100, Proposition 6.19, p.
184]), we have that the sequence {P, f(u,)} is bounded in Li(7,T; H~*(2)),

In addition we have that the sequence {P,h} is bounded in L?(7,T; H1()),
since

[ IRz < [ o)z (3.13)

T

Then, bearing in mind (3.11), (3.12), (3.13) and the equality

ou,

5 (t) — a(l(un (1)) Auy(t) = Py f(un(t)) + Poh(t) in H*(Q) ae. te(r,T),

it holds that the sequence {u/} is bounded in Li(7,T; H*(2)). Therefore, from
compactness arguments and the Aubin-Lions lemma, there exist a subsequence of
{u,} (relabeled the same) and uw € L (7, T'; L*(Q))NL*(7, T; HY (Q))NLP (7, T; LP(2))
with o' € L?(7, T; HY(Q)) + L7, T; LY(f2)), such that

( u, —u weakly-star in L=(r, T; L*(2)),

u, —u weakly in L?(7,T; H}(9)),
u, — u weakly in LP(1,T; LP(£2)),
ul, — v’ weakly in Li(7,T; H *(Q)),
u, — u strongly in L*(1,T; L*(2)),
a(l(up))u, — a(l(u))u weakly in L*(1,T; H}(Q)),
\ flun) = f(u) weakly in LI(r,T; LY(£2)),
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for all 7" > 7. The limits of the sequences {f(u,)} and {—a(l(u,))Au,} have been
obtained by arguing analogously as done in the proof of Theorem 2.4, making use
of [85, Lemme 1.3, p. 12].

Then, (3.6) follows taking limit when n — oo in (3.8) and bearing in mind that
UnenVi, is dense in Hy (2) N LP(Q).

Finally, to prove the existence of a weak solution to (3.1), we only need to check
that u(7) = u,, which makes complete sense since u € C([r,T]; L*(Q2)). To do it we
argue analogously as in the proof of Theorem 2.4. Consider ¢ € H'(7,T) fixed with
©(T) =0 and (1) # 0. Now, we multiply by ¢ in (3.8), integrate between 7 and T,
and pass to the limit. Comparing this limiting equation with the expression obtained
multiplying (3.6) by ¢ and integrating between 7 and 7', we conclude that u(7) = u..

Step 2. Uniqueness of weak solution. Let u; and us be two weak solutions
to (3.1) corresponding to the initial datum u!, u? € L*(2). From the energy equality,
we deduce

1d 2 2
Sl (8) = (1) B+ (i (1)) e (1) — wa(0)3

= la(l(ua(1))) —a(l(ur (8)))]((ua(t), ur (t) =ua(t))) + (f (ur(£)) = f (u2(t)), ua () —ua(t))

a.e. te[r,T].

Now, using that each solution to (3.1) belongs to C([r,T]; L*(f2)), we have that
u;(t) € S for all t € [7,T] and i = 1,2, where S is a bounded subset of L*(€). In
addition, taking into account that [ € L*(Q), we have that {I(u;(t))}+ef-m) C [—R, R]
for i = 1,2, for some R > 0. Therefore, using (3.2), (3.3), the locally Lipschitz
continuity of the function @ and the Cauchy inequality (cf. [57, Appendix B, p.
622]), we have

d
Sun(t) - w ()l <

(La(R))?[13]uz ()13 + 4mn

o lui(t) —us(t)3 ae. t € (r,T),

where L, (R) is the Lipschitz constant of the function a in [— R, R|. Then, uniqueness
follows. O]

Observe that thanks to uniqueness of weak solution to (3.1), the whole sequence
{u,} converges to u weakly in L*(r,T; H}(Q)) N LP(7,T; LP(?)) and weakly-star
in L>®(7,T; L*(2)). Similarly, the whole sequence {u/,} converges to u’ weakly in
L7, T; H*(Q)).

Now, the existence and uniqueness of strong solutions to (3.1) as well as the reg-
ularising effect of the equation will be proved. Recall that the strong solution u of a
reaction-diffusion equation belongs to L*(7, T; H*(Q)NH (Q))NC([r, T); Hy () for
all T > 7 (cf. [100, 5]). To obtain this regularity, it is necessary to prove first that
o' € L*(7,T; L*(Q)) and later, as a consequence it holds that f(u) € L*(7,T; L*(2))
and v € C([r,T); H}(Q)). However, in this more complex framework, due to the
presence of the nonlocal term, we cannot prove directly the regularity of u’. The
reason is that it does not seem to provide useful information to multiply by u), the
equation of the Galerkin approximations to obtain the boundedness of the sequence
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{u,} in L*(7,T; L*(Q)). In this case, it seems to be necessary to analyse first the
regularity of f(u), which belongs in general to L?(7,T'; L(£2), and as a consequence
we will be able to prove that «’ belongs to L(7,T; L9(2)). Observe that this regu-
larity is not enough to prove the continuity of the solution in HJ () with the strong
topology, only with the weak one (cf. [108, Theorem 2.1, p. 544] or [111, Lemma
3.3, p. 74]).

To prove the existence of a more regular solution and the regularising effect of
the equation, we need to establish a more regular setting. Instead of assuming that
the function f satisfies (3.3), we will suppose that f € C'(R) and verifies

f'(s)<n VseR. (3.14)

Observe that unlike what happens in Chapter 4, to prove this result we do not
impose any restriction on dimension of the domain €2 or additional strong assump-
tions on the function f like (4.13).

Theorem 3.4. Assume that the function a is locally Lipschitz and fulfils (3.2), f €
CY(R) satisfies (3.4) and (3.14), h € L} (R; L*(Q)) and | € L*(Q). Then, for any
u, € L*(Q), the weak solutionw € L*(1 + &, T; H*(Q)NH(Q)) N L®(1 + &, T;Hy (2))
and v € LI(T 4+ ¢, T;L1(R2)) for every e > 0 and T > 7 + €. In addition, if the
initial datum u, € Hy(Q), then there exists a unique strong solution u to (3.1) with

uw e Li(7,T; L1(Q)).
Proof. We split the proof into two steps.

Step 1. Regularising effect. Under the above assumptions, the existence of
a unique weak solution to (3.1) is guaranteed by Theorem 3.3. Now, we will prove
that u € L*(7 +¢,T; H*(Q) N HY(Q)) N L>®(T +¢,T; HY(Q)) for all T > 7+ ¢ > 7.

Recall that from the energy equality for the Galerkin approximation u,, at light
of (3.2), we obtained (3.9). Using

(f (un(t)), un(t)) < £[€],

(hft)sun(0) < 53— @) + 5 (0

we deduce

d 1
il B+ mllun (O3 < 2610 + 5 B ae. t€ (7).

Integrating between 7 and 7', we obtain

T 1 T
(D +m [ lun(t) e < 201007 = 1)+ 5o [ BBt +
T 1 T

In particular,

r 26|Q(T — 7) I 1
2 2 2
i < 2D [+ e (39




Chapter 3. Non-autonomous nonlocal reaction-diffusion equations 83

Multiplying by A;¢,; in (3.8), summing from j = 1 to n, and using (3.2), we obtain
1d |
2 dt
a.e. t e (1,T).

Making use of the integration-by-parts formula, (3.14) and the Cauchy inequality,
it holds

[un(t) ]2 +ml = Aun(t)[3 < (f(un(t)) = f(0), =Aun(t)) + (£(0) + h(t), —Aun(t))

a.e. t € (1,7T).
(3.16)

Integrating the previous expression between s and ¢, where 7 < s <t < T’ it holds

d 2 210 (£(0))?
@113 4 m] = A (0)]5 < 20 (8)]3+ EWM%L;}»

t
lun(®)2 + m / |~ Aun(r) 2dr

2A0)(f(O)P(T — )

T 2 T
< (o) +20 [ )+ = [ b+ (317)

In particular,

o018 < a8 +20 [ e+ 2 [ e + 2SO =)

Integrating in s between 7 and ¢, we obtain

a1 =) < (14207 = 27) [ () e+ 222 [ o ar
L 2A0ORT =

m

Then, taking into account (3.15), it holds that the sequence {uw,} is bounded in
L®(r+¢,T;Hy(Q)) for all t € [e+ 7,T) with e € (0,7 — 7).

On the other hand, taking s = 7+ ¢ and ¢ = T in (3.17), and using that
{u,} is bounded in L*®(1 +¢,T; H}()), we can deduce that {u,} is bounded in
L3t +¢,T; H*(Q2) N H}(Q)). Therefore, thanks to the uniqueness of weak solution,

u, — u weakly-star in L®(1 +¢,T; H}(Q)),
u, = u weakly in L*(1 +¢,T; H*(Q) N H}(Q)).

In addition, using (3.10) and the fact that {u,} is bounded in L*(7+¢, T; H*(Q)N
H}(S2)), it satisfies that {—a(l(u,))Au,} is bounded in L*(7 +¢,T; L*(€2)). On the
other hand, using (3.5) and taking into account that the sequence {u,} is bounded
in LP(1,T; LP(Q)), it holds that {f(u,)} is bounded in L4(7,T; L4(2)). Therefore,
it verifies that v’ € Li(1 +¢,T; LY(2)).

Step 2. Strong solution. Assume that u, € H}(Q). We need to check that
w € L*(r,T; H* () N Hy () N L>(7,T; H3 () and v’ € LI(7,T; L)) for all
T >T.
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Integrating (3.16) between 7 and ¢ € [1,T], we obtain

lun (DI + / | = Ay () 2dr
2000(F(0)2( — )

m

T T
2
< Nl 20 [ ua()lBar+ 2 [ hr) B +

T

Then, taking into account that {u,} is bounded in L*(7,T; H}(Q)) (see (3.15)),
we deduce that {u,} is bounded in L>®(7,T;H}(Q)) N L*(7,T; H*() N HI(Q)).
Thanks to the uniqueness of weak solutions, we have

u, —u weakly-star in L=(1,T; H} (1)),
u, —u weakly in L*(7,T; H*(Q2) N H}(Q)).

Thus, u is a strong solution in the sense of Definition 3.2.
On the other hand, since

% —a(l(u))Au = f(u) + h(t) in L1, T; L)),
it holds that " € LI(r,T; L1(£2)). O

Observe that under the assumptions of Theorem 3.4, there exist functions f
such that f(u) € L*(7,T; L*(Q2)) when u is the strong solution. Therefore, it can
be proved that u € C([r,T]; H}(2)). For example, if we consider the functions
f(s) =s—s®or f(s) = —|s|s” with v < 3 when N = 3, it is not difficult to check that
[ verifies (3.4) and (3.14). In addition, using that u € L*(7,T; H*(2) N H3 () N
L>®(7,T; Hy(2)) and the fact that Q is an open set of class C? at least, it holds
that u € L3(7,T; L¥(Q))) thanks to the Sobolev embeddings and the interpolation
results [116, Lemma 11.4.1, p. 72]. Hence, f(u) € L*(7,T; L*(2)) and then, it veri-
fies w' € L*(7,T; L*(Q)). As aresult u € C([r, T]; H}(Q2)) (see Section 3.4 below for

more details).

Now, we will show the Maximum Principle for (3.1), i.e. we will prove that if
the initial datum w, > 0 a.e. € then the solution of (3.1) fulfils that u(t) > 0 for
all ¢ > 0 under suitable assumptions. This is a natural expected behaviour in a
biological framework.

Theorem 3.5. Assume that the function a is locally Lipschitz and fulfils (3.2),
the function f € C(R;R,) satisfies (3.3) and (3.4), and the non-autonomous term
h € L*(7,T; H1(Q)) verifies

(h(t),v) >0 ae t€(r,T) Vv € H)(Q) suchthat v>0 a.e. S

Then, if the initial datum u, € L*(Q) with u, > 0 a.e. Q, the weak solution u to
(3.1) fulfils that u(t) > 0 for all t € [7,T).
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Proof. Under the above assumptions, thanks to Theorem 3.3, there exists a unique
weak solution u to (3.1). Then we have

o a(l(w)du = flu) +h(t) n L2, T H Q) + Li(r, T3 L9(9)).

Observe that since u is the weak solution to (3.1), u belongs to L*(7, T; Hj (2))N
LP(1,T; LP(Q)). Then, (—u)™ € L*(7,T; H}(QY)) N LP(7,T; LP(Y)). Therefore, we
have

[ Gt o ds + [ ettt @), (—uls) s
= [ttt s+ [ Gbis) (s s (5.9
for all ¢ € [, T).
Observe that
(u(s), (~u(s))) =~ [(—u(@)* e s € (r0)

u(s), (—u(s)))) = (Vu(s), V(—u(s)*) = /!V V*2ds ae. s € (r1),
)

(f(u(s)), (~u(s))") >0 ae. s€(1,1),
(h(s),(—u(s))T) >0 ae. se(r,t).

Therefore, taking this into account, from (3.18) we deduce

—~

/\

/—\
V)

Sl + / ai(u(5))) IV (~u(s)) s < Sl(~u() T3 Ve € [ T]

Observe that f u(s)))|V(—=u(s))"|3ds > 0 and (—u,)" = 0 since u, > 0 a.e.
Q. Then,
[(—u(t)*3 <0 Ve [T

Thus, (—u(t))™ =0, i.e. u(t) >0 for all t € [r,T]. O

3.2 Analysis of the stationary problem

In Chapter 2, using a corollary of the Brouwer fixed point theorem, we have shown
the existence of stationary solutions to (3.1) when the function f is globally Lipschitz
(cf. Theorem 2.7). However, when the function f is more general, it is not possible
to argue in this way.

In this section, the existence of at least one nontrivial stationary solution to (3.1)
is analysed for the particular case f : [0, %] — R given by f(s) = bs — b3s® with
b > 0. Namely, we restrict ourselves to the case in which b = 1 for the sake of
simplicity. To do that, we make use of a result proved by Chipot & Corréa in [42]

based on a fixed point argument.
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Thereupon, a conditional result between the solution to (3.1) and two (assumed
to exist) stationary solutions to (3.1) is established in a new setting in the spirit of
those appeared in [44, 45]. To do this, we argue similarly to [44, Lemma 4.1].

In what follows, since we are dealing with stationary solutions, we will assume
that the function h does not depend on time, i.e. h € H (Q).

Now we consider the elliptic problem

{ —a(l(u))Au = f(u) +h in Q,

w=0 on 9. (3.19)

Definition 3.6. A solution to (3.19) is a function u* € H}(Q) N LP(Y) which fulfils
a(l(u))((u*,v)) = (f(u"),v) + (h,v) Vv € Hy(Q) N LP(Q).

The analysis of the stationary solutions to (3.1) and their stability is a difficult
problem due to the nonlinearity f(u). While many authors have been interested in
(3.1) when f does not depend on the function u (for instance cf. [44, 45, 35, 48,
49, 50]), there are few studies in the more complex framework with f(u). Recently,
Simsen & Ferreira have analysed a particular case of problem (3.1), which contains a
unique stationary solution, the trivial one, and the exponential decay of the solutions
of the evolution problem towards the stationary one has been established (cf. [106,
Theorem 6]).

Theorem 3.7 (Ferreira & Simsen). Assume that the function a is globally Lipschitz
and satisfies (3.2), f(s) = g(s)—|s[P~2s, where g is globally Lipschitz (with Lipschitz
constant v), g(0) =0 and p > 2, h =0, 1 € L*(Q) and m > YA . Then, for each
initial datum u, € L*(Q), the weak solution to (3.1) u fulfils

lu(t)]2 < |uT|26_(m)‘1_7)(t_T) YVt > T.

In particular, this means that in the above situation there exists a unique sta-
tionary solution, the trivial one. However, when h # 0 or f satisfies (3.4) with
k > 0, it is worth noting that, with the same kind of estimates, the exponential
decay of the solution of the evolution problem towards 0 does not necessarily hold.
In this more general framework of problem (3.19), the uniqueness of solution is not
guaranteed.

Now, making use of a Chipot & Corréa’s result (cf. [42, Theorem 2.1]), the
existence of at least one nontrivial solution to (3.19) will be proved. To that end,
we need to assume that the function «a fulfils not only (3.2), but also

0<m<a(s) <M VseR, (3.20)
where M is a positive constant.

Theorem 3.8 (Chipot & Corréa). Suppose that the function a € C(R;R,) satisfies
(3.20), MM < 1, f(s) =s—35% h=0andl € L*(Q). Then, there exists at least
one nontrivial solution to problem (3.19). Furthermore, any solution u* to (3.19)

fulfils )
lu*|le < a = (M) : (3.21)

4dm
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Proof. Making use of the Schauder fixed point theorem, we will prove the existence
of nontrivial stationary solutions. First, we need first to do some calculations.

Analogously as it was denoted in the proof of Theorem 3.3, we represent by w;
the first normalized eigenfunction of —A, i.e. the solution to the problem

—A/IU1 = )\171}1 in Q,

w; € Hy(Q), wi(x) >0ae z€Q, /(wl(:v))de =1.
Q

Consider ¢ fixed such that 0 < gpw;(z) < 1 a.e. x € 2 and

f(eow: (7))

MM <
gowy ()

a.e. v € (L (3.22)

Observe that gy exists since w; € L*(2) and A\; M < 1. In what follows we denote
@ = gow;. From (3.20) and (3.22), we deduce that for all w € L?(Q)

feowr) _ f(a) < f(a) Q.

—Au = < =
U= gohwn S T M= a(i(w)

Now we define the closed convex subset of L?()
K={vel*):euw <v<lae Q}.
Then, we are ready to define the map

T " K—K

w— Tw = u",
where u* is the solution to the problem

L ot g(w)
—AUE ) T aliw)) (3.23)
u* € Hy(9),

where g(s) = f(s) + us and p is a positive constant such ¢’(s) > 0 for all s € (0,1).
Observe that if T has a fixed point, then it is a solution to (3.19).

The application T is well-defined, since uv* € K. Namely, since g is a non-
decreasing function in (0, 1) and w € K, it holds

A —1) + a(lfw)) (W —1)<0 ae Q,
Al —u) + ——(i—u") <0 ae Q.

a(l(w))
In addition, since @, u* € H}(Q), we have

u* ' —1<0 on0f,
w—u* <0 on 0f.
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Then, making use of the weak Maximum Principle, we obtain
u<u* <1 ae Q.

Therefore, u* € K.
To apply the Schauder fixed point Theorem, we need to check that 7" is continu-

ous and compact. Firstly, we will prove that the application 7" is continuous. Let
{w,} C K be such that

w, — w strongly in L*(Q). (3.24)

Observe that w € K since K is a closed subset of L?(Q2). We want to prove that
{u}}, where v} = Tw, for all n > 1, fulfils
ul — u*  strongly in L*(Q). (3.25)

n

Since u* and u are solutions to (3.23) with w and w,, respectively, we have

R ) Lu"‘—u*v: 1 — 1 us v
(" = o)+ Ty~ ) ”(aww 7 a(«w))) (un,v)

for all v € H}(Q). Taking v = u* — u}, as a test function, and using (3.20), the fact
that the sequence {u}} C K and the Cauchy-Schwartz inequality, we obtain

<

Ju = w33+ Lou” —u [t —

a(l(wn))  a(l(w))

glw) — g(wn)

a(l(w))  a(l(wn))

Now, applying the Cauchy inequality, we have

+

[u* — uy |o|uy,|o-

2

My *

2

1 gw)  g(wy)

1
a(l(wn))  a(l(w)) a(l(w))  a(l(wn))

Observe that since [ € L*(Q2) and a € C(R; R, ), we deduce

[ = w3 <

a(l(wn)) = a(l(w)). (3.26)
Now, we will prove
g(w,) — g(w) strongly in L*(€). (3.27)
To that end, we only need to prove that

flw,) — f(w) strongly in L?(Q). (3.28)
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Since f € C'(]0,1]) and (3.24) holds, we deduce
flw,) = f(w) ae. Q.

Moreover,

[ (wa(@))]* = | (wa(2)) = FO)* = £ (o) Plwa(@)] ace. Q.
Therefore, making use of the Lebesgue Dominated Convergence theorem, we deduce
(3.28). Then, from (3.26) and (3.27), (3.25) holds.

Finally, we will prove that 7" is compact. Observe that

sup [g(s)| < sup [f(s)] +p=: Cy,
s€[0,1] s€[0,1]

where Cj is a positive constant, since f is continuous and p is a positive constant.
Then, from this and (3.20), it satisfies

1

13

(9(w),u”)

a(i(w)
— [ lotwa)u’ @)
Ol

R

IN

[[w*]l2-

Therefore,
Gyl Q[

lu*ll2 <
)\}/Qm

From this and taking into account that the injection Hj(Q2) < L?*(2) is compact, we
deduce that the application 7" is compact. Therefore, applying the Schauder fixed
point theorem, we deduce that there exists at least one solution to (3.19).

In addition, observe that any stationary solution satisfies

a(l(U*))\IU*!\§=/Q[(U*(SC))Q—(U*(@)‘*} dx

o
J— 4 .
Thus, using (3.20), (3.21) holds. O

Now, considering again the general form for the function f and under new
suitable assumptions, we show that any stationary solution to (3.1) is positive

provided that its existence is guaranteed. To that end, we suppose that the function
a € C(R;Ry) satisfies (3.2), f € C(R;R,), h € H1(Q) fulfils

h#0, (hv)>0 Yve& Hy(Q) such that v >0 a.e. Q, (3.29)
and [ € L*(0Q).

Then, we have the following Maximum Principle for (3.19).



90 3.2. Analysis of the stationary problem

Theorem 3.9. Under the above assumptions, any solution u* to (3.19) fulfils that
u* >0 a.e .

Proof. Since u* is a stationary solution,
a(l(u”))((u*,v)) = (f(u"),v) + (h,v) Vv € Hy(Q) N LP(Q).

Observe that (—u*)* € Hj(Q) since u* € Hy(2). Therefore, taking v = (—u*)" as
a test function in the above equality, making use of the assumptions made on the
functions a, f and h, we have

(", (=u")")) = 0.

However, we also have
(", (—u)*)) = — / IV (—u (2))* 2.

From these two expressions, we deduce that (—u*(z))* = 0 a.e. x € Q. Therefore,
u*(z) >0 a.e. x €. O

In what follows, we assume that there exist two stationary solutions u; and us
to the problem (3.1) which satisfy

up < ug, U FE Us.

Furthermore, to define this new setting, we assume that the function a is locally
Lipschitz, the function f € C(R;R,) fulfils (3.4) and (3.3) with n = A\ym, i.e.

(f(r) = f(s))(r —s) < \ym(r —s)* Vr,s € R, (3.30)

and
1>0 ae Q. (3.31)

Finally, we also assume that the function a satisfies
a(l(uz)) < a(§) < a(l(w)) V€ € [l(ur), l(uz)]. (3.32)

Now we establish a comparison result amongst the weak solution to (3.1) and
two (assumed to exist) stationary solutions. The idea of the proof is close to that
in [44, Lemma 4.1]. We provide the details for the sake of completeness.

Theorem 3.10. Assume that the function a is locally Lipschitz, and (3.2) and (3.52)
hold, f € C(R;Ry) fulfils (3.4) and (3.30), h € HY(Q) satisfies (3.29), | € L*(Q)
fulfils (3.831). Then, if there exist two ordered stationary solutions u; < uy and
u, € L*(Q) satisfies

u <ur <uy  a.e. €, (3.33)

1t holds
0<wu <u(t;r,u,) <uy ae Q Vt>rT. (3.34)
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Proof. Applying [ to (3.33), bearing in mind that [ fulfils (3.31), we deduce
luy) < Uu,) < Uus).

For short, we denote u(-; 7T, u,), the weak solution to (3.1), by u(-). Now we
define
o={t>71:1(u(s)) € [l(ur),l(uz)] Vse€|[rt]},

which is nonempty since 7 € o.
In what follows we denote

to =supo € [1,00].

Then,
L(u(s)) € [l(u1),l(ug)] Vs € [1,to).

We split the proof of (3.34) into two steps.
Step 1. Our aim is to prove

w <u(t) <uy ae Q Vie([rt). (3.35)

Firstly, we show
u(t) <wug ae. Q Vte|[rt). (3.36)

Since u is the weak solution to (3.1), u fulfils

(%(t)>v> +a(l(u®))((u(t),v)) = (f(u(t),v) + (h,v) Vv € Hy(2) N LI(Q)

a.e. t>r.
Then, introducing +a(l(u(t)))((u2,v)) in the previous expression, we obtain

(1), 0) -+ L) ((u(t) — s, ) = (F(u(1)), ) — () (2, )) + (b, v)

a.e. t > 7, for all v € H}(Q) N LP(R).
Since uy is a stationary solution to (3.1), it holds

a0 () (2, 0)) = ~ D (), 0) 4+ (h )] o € (@) 0 1),

Therefore, it satisfies

a.e. t>T.
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Using [41, Lemma 11.2, p. 203], we have

ai(u(t)) .
a(l(u2)) (f<u2)7(u<t) 2) )

all(u) — alllw(®) ,
a(l(uz)) <h7 (U(t) 2)+>

= (f(u(t)), (u(t) —u2)") -

_|_

a.e. t>T.
Observe that

a(l(us)) — a(l(u(t)))

u —U2+_ a.c. T,%0),
ST (D) —w2)) 0 et [rito

since

o (h, (u(t) —ug)™) > 0 because h fulfils (3.29), (u(t) —uz)*™ € HJ(Q) and (u(t) —
ug)t >0 ae. Q,

, UW(ug)) = a(l(u(t)))
a(l(uz))

Moreover, observe that

<0 a.e. t €1, tp) since the function a fulfils (3.32).

D) (Fun), (ult) = us) ) < —(Flua), (u(t) —us)) ace. t € [ o),

since
o (f(uz). (ult) = us)*) > 0 because f € C(R;Ry),

a(l(u(t)))
a(l(uz))

From this, we deduce

< —1a.e. t € [1,tg) since the function a satisfies (3.32).

1d

5 7710 —u2) e Uu(@)) I (w(t) —u2) "Iz < (f (u(t)) = f (u2), (u(t) —u2)™) (3.37)

a.e. t € [1,1p).
In what follows we denote Q3 = {z € Q : u(x,t) > us(z)}. Observe that since f
satisfies (3.30), we have

(f(u(®)) = f(uz), (u(t) —u2)") = / (f(u(z, 1)) = f(ua(2)))(ul, ) = ua(2))d
<am | (u(z,t) — uy(z))’de

< ml|(u(t) — u2)*|l2- (3.38)
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Then, making use of (3.2) and (3.38), from (3.37) we deduce

d
pr (u(t) —uz) 3 <0 ae. t€rto),

whence (3.36) follows.
Now, we will prove

up <ut) ae Q Vte|[rt). (3.39)

Analogously to the previous argument, it satisfies
d

(o (ur = ul®)), v) + a(l(u(t))((w — u(t), v))
i oy AUE@) L allw®) — e,
=~ () 0) + e P w0 + W=D ) o>
Again, using [41, Lemma 11.2, p. 203], we have
1d 112 +112
2y — ) 3+ () o — (1)
_ I alllw®)) o0\ (ur — wl(e))*
— — (7)), (s = )+ G ), = w0
() — o)),
+ (1) (h, (up —u(t))") ae. t>rT.
Taking into account (3.2), together with

, all) —ai(w)

h, (uy —u(t))*) <0ae. telrty),

a(i())
(((( “33) (f ). (e — w())") < (f (). (1 — u())*) e, 1 € [ to),
we deduce
Ly ()4l — w0 < (Flun) — FCul)). (i — u(t)))
2dt 2 2= ! A
a.e. t € [1,1).

Analogously as we argued above,

(f(ur) = flu(®), (wr —u(®)*) < ml|(ur — u(t))*|3:
Therefore, ;

dt
Using the Gronwall Lemma and taking into account that (u; —u(7))™ = 0, we obtain
(3.39). As a result it holds (3.35).

(up —u(t))T3 <0 ae. t€[rto).

Step 2. Let us prove that t5 = oco. We argue by contradiction. Suppose that tq <
oo. Then, since the function [(u(-)) is continuous [observe that u € C'([r, 00); L*(Q2))],
it holds that {(u(ty)) € {l(u1),l(u2)}. Therefore, ty € o = 7, t0).

Assume that [(u(ty)) = l(u1). Then, let us prove that u(ty) = uy a.e. Q. The
relationship between u; and u(ty) is one and only one of the following:
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(i) u(to) = uy a.e. Q.
(i) u(to) > uy a.e. Q and u(ty) Z uy.
(iil) u(to) <wup a.e. Q and u(ty) # uy.

(iv) u(typ) > wy in a non-zero measure subset of © and wu(ty) < uy in a non-zero
measure subset of ().

The relationships (ii) and (iii) are not possible due to (3.31) and I(u(tg) — u1) = 0.
The relationship (iv) is neither possible due to (3.35) and the continuity of the
function u. Then, it satisfies that u(ty) = uy a.e. S

Analogously, if I(u(ty)) = I(uz), then it fulfils that u(ty) = uy a.e. Q.

Therefore, either u(tg) = u; or u(ty) = uy. Taking into account that the problem
(3.1) possesses a unique weak solution and the fact of that u; and uy are stationary
solutions (in the weak sense), it holds that either u(t) = uy or u(t) = wuy for all
t > ty, which contradicts that ty = supo < oo. O

3.3 Existence of pullback attractors in L*())

Although in the previous section we provide some information concerning the exist-
ence and uniqueness of stationary solution and the decay of evolutionary solutions
towards this steady state, the result is for some particular choices of f (cf. Theorem
3.7). In Theorem 3.8, we showed that there might exist multiple nontrivial station-
ary solutions, which in some cases (f independent of u) lead to interesting results
(e.g., cf. [44, 45]) comparing evolutionary solutions on intervals. We have extended
those results to the case f depending on u (cf. Theorem 3.10).

In this section, we get rid of the special (and somehow restrictive assumptions)
imposed in Section 3.2. We aim to obtain more general results concerning the long-
time behaviour of the solutions in the initial setting of Section 3.1. Namely, the
existence of minimal pullback attractors in L?*(f2) is analysed below.

Thanks to Theorem 3.3, we can define a process U : R? x L*(Q) — L*(Q) as

U(t, T)ur = u(t;7,u,) Vur € L*(Q) V7 <t, (3.40)

where u(-; 7, u,) denotes the weak solution to (3.1).
In addition, the following result shows that U is continuous from L?*(f2) into
itself. We omit the proof because it is analogous to the proof of Proposition 2.10.

Proposition 3.11. Assume that the function a is locally Lipschitz and (3.2) holds,
f € C(R) fulfils (3.3) and (3.4), h € L} (R; H1(Q)) and | € L*(2). Then, the

loc
process U is continuous on L*(Q).

To define a suitable tempered universe in P(L*(Q2)) for our purposes, we first
establish the following estimate.
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Lemma 3.12. Under the assumptions made on Proposition 3.11, if u, € L*(Q),
then the solution u to (3.1) satisfies

2k|Q —p ¢
A9, e _1/ em|lh(s)|2ds Vit > T
pAL s

w2 < e Dy |2 +
lu(t)l; < |ur |3 . Y

for any p € (0,2\ym).

Proof. Applying the Cauchy-Schwartz inequality, (3.2) and (3.4) to the energy equal-
ity, we obtain

d
)3+ 2mllu(®); < 2610 + 2RO lu@)]l2 ae. t =7

Now, adding +u|u(t)|3, and using the Poincaré and Cauchy inequalities, we have

1
——— k@) ae t>T.
2m Al

d
()3 + plu(®)l; < 26[Qf + S—
Multiplying by e* and integrating between 7 and ¢, the result follows. O]

Then we are ready to define a suitable tempered universe in P(L?(Q2)).

Definition 3.13. For each p > 0, Dﬁz denotes the class of all families of nonempty
subsets D = {D(t) : t € R} C P(L*(Q)) such that

lim | e’ sup |v|5 | =0.
T——0 veD(T)

From the above estimate, if h fulfils a suitable growth condition (see (3.41)
[compare to (2.32)]), it is straightforward to conclude the existence of an absorbing
family for the tempered universe Df. Namely, we have the following result.

Proposition 3.14. Under the assumptions of Proposition 3.11, if h also satisfies
that there exists some p € (0,2A;m) such that

0
/ e ||h(s)||2ds < oo, (3.41)

— 00

the family Do = {Do(t) : t € R} defined by Do(t) = By2(0, Ri/f(t)), where

2k|Q| et /t 5
Rpa(t) = 1 w111 (s)|12ds,
o) =14 28 0 [ s

is pullback DﬁQ-absorbmg for the process U : R x L*(Q) — L*(Q). Moreover,
ﬁo S DﬁQ
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Proof. Consider fixed ¢ € R and D € DﬁQ. Thanks to Lemma 3.12 and (3.40), we
have

2k|Q et ¢
Ul < e P [ e ls )
1 —00

for all u, € D(7) and 7 < t.
Since D € Dﬁz, there exists 79(D,t) < t such that

~

e My 2 <1 Yu, € D(1) V1 < 19(D,t). (3.43)
Therefore, plugging (3.43) in (3.42), we obtain
U(t,7)D(7) C Do(t) V7 < 70(D,1t).
Finally, using (3.41) it is not difficult to deduce that Dy € DﬁQ. O

Then, to prove the existence of the minimal pullback attractor for the process
U :R2x L*(Q) — L?*(£2), we only need to check the pullback asymptotic compactness
in L?(Q) for the universe Dﬁz. To that end, we firstly establish the following result,
which is the equivalent to Lemma 2.14 in the setting of this chapter. Observe
that the proofs are very close. Nevertheless, we provide the details for the sake of
completeness.

Lemma 3.15. Under the assumptions of Proposition 3.14, for any t € R and D e
DﬁQ, there exists (D, t) <t —2 such that, for any 7 < 7 (D,t) and any u, € D(1),

(

u(rs T, un)f3 < pu(t) Ve €[t —2,4),

r ‘ ) B
[ i) s < paft) e =10, s

/ [u(s; 7, ur) |pds < %pg(t) Vroe [t — 1,1,
\ r—1

where

2k|Q| e~ r(t=2) o
pi) =1+ L e [ o)
1 —0o0

pz(t):%(m(thnmui max / Hh<s)uzds>,

morelt-1t] J,_q
Proof. The first inequality in (3.44) as well as the expression of p; follow by arguing
as in the proof of Lemma 3.12, if 7 < 7(D,t) < t — 2 (far enough pull back in
time) due to our choice of tempered universe, taking into account (3.41). Notice

that indeed this estimate also holds for the Galerkin approximations, which have
already been used in Section 3.1.
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For the other two inequalities in (3.44), we will prove them for the Galerkin
approximations, and then, passing to the limit, we will obtain the same estimates
for the solution.

Multiplying by ¢,; in (3.8), summing from j = 1 to n, and using (3.2), (3.4) and
the Cauchy inequality, we deduce

d 1
Z ()l + mllun(s)ll3 + 2a0lun(s)) < 2612 + —[[A(s)[Z ae. s> 7.

Now, integrating the above expression between r — 1 and r, we have

a4 m [ (o) s + 20z [ fun(s) s
r—1 r—1
1 s
< un(r —1)[3 + 26|10 + E/ |h(s)||2ds (3.45)
r—1

forall 7 <r—1.
Then, from (3.45) we obtain for any n > 1

/ |un(s)|[3ds < po(t) Vre[t—1,t Vu, € D(r) Vr< Tl(ﬁ,t), (3.46)
r—1

where py(t) is given in the statement. Taking inferior limit in (3.46) and using the
well-known fact that u, converge to u(-;7,u,) weakly in L?*(r — 1,7r; H3()) for all
r € [t —1,t] (cf. Theorem 3.3), the second inequality in (3.44) holds.

In addition, from (3.45) we also deduce that for any n > 1

~

/ [un(s)[pds < %pg(t) Vrelt—1,t] Yu, € D(r) V7 <m(D,t).
r—1 2

Now, taking inferior limit in the above expression and bearing in mind that wu,
converge to u(-; 7, u,) weakly in LP(r — 1,r; LP(Q)) for all r € [t — 1,¢] (cf. Theorem
3.3), the last inequality in (3.44) holds. O

Now we will prove that the process U is pullback Df—asymptotically compact
using an energy method with continuous functions analogous to the one used in the
proof of Proposition 2.15.

Proposition 3.16. Under the assumptions of Proposition 3.1/, the process U :
R2 x L*(Q) — L*(Q) is pullback DL’ -asymptotically compact.
Proof. Let us fixed t € R, a family D € Df, a sequence {7,} C (—o0,t—2]
with 7, — —oo, and u,, € D(7,) for all n. Our aim is to prove that the se-
quence {u(t;T,,u,,)} is relatively compact in L*(€2). For short we denote u"() =
u(; T U, )-

Thanks to Lemma 3.15 we know that there exists 7 (D,t) < t — 2 satisfying
that, if n; > 1 is such that 7, < 7 (D,t) for all n > ny, {u"},>n, is bounded
in L°(t — 2,¢; L*(Q)) N L2(t — 2,t; HY(Q)) N LP(t — 2,t; LP(2)). Besides, from this,
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making use of the continuity of the function a and bearing in mind that [ € L*(Q),
{—a(l(u™))Au"},>n, is bounded in L2(t — 2,¢; H*(2)). On the other hand, from
(3.5), using that the sequence {u,} is bounded in LP(t — 2,t; L’(Q2)), we deduce
that {f(u")}n>n, is bounded in L9(t — 2,¢; L9(2)). As a consequence of the above
uniform estimates, it holds that {(u™)'},>,, is bounded in L*(t — 2,t; H () +
Li(t — 2,t; L9(2)). Then, using the Aubin-Lions compactness Lemma, analogously
as in the proof of Theorem 3.3, it holds that there exists u € L>®(t — 2,t; L*(Q)) N
L2t —2,t; HY(Q)) N LP(t — 2, LP(Q)), with v € L*(t —2,t; H1(Q)) + Li(t —
2,t; L9(Q)), such that for a subsequence (relabeled the same) it satisfies

.

u™ = u weakly-star in L®(t — 2,t; L2(9)),
u"” —u weakly in L2(t — 2,t; H3(Q)),
u" — u  weakly in LP(t — 2,t; LP(Q)),

(u") — o' weakly in L*(t — 2,¢; H1(Q)) + Lt — 2,t; LI()),
u” — u strongly in L*(t — 2,t; L*(2)),

u"(s) — u(s) strongly in L*(Q2) a.e. s € (t —2,t),

f(u™) = f(u) weakly in LI(t — 2,t; L9(Q2)),

[ —a(l(u™)Au™ — —a(l(u))Au weakly in L*(t — 2,t; H (),

(3.47)
where the last two convergences have been obtained arguing in the same way as
in the proof of Theorem 2.4. In addition, observe that v € C([t — 2,t]; L*(f2)) and
making use of (3.47), u fulfils (3.6) in the interval (¢t — 2,¢).

From (3.47) we can also deduce that {u"},>,, is equicontinuous in H~'(Q) +

Li(Q) on [t —2,t]. To do this we argue similarly as in the proof of Proposition 2.15.

Moreover, we have that the sequence {u"},>,, is bounded in C([t — 2,t]; L*(Q))

and the embedding L?(Q) < H~Y(Q) + L) is compact. Therefore, applying the

Arzela-Ascoli theorem, we have (for another sequence, relabeled again the same)
that

u" — u  strongly in C([t —2,t]; H () + LYQ)). (3.48)

L

Thanks to the boundedness of {u"},>,, in C([t — 2,t]; L*(2)), for any sequence
{sn} C [t — 2,t] with s, — s, we obtain

u"(s,) — u(s,) weakly in L*(Q), (3.49)

where we have used (3.48) to identify the weak limit.
In this proof, we will show not only that the sequence {u"™(t)},>y, is relatively
compact, but also the stronger convergence

u" — u strongly in C([t — 1,t]; L*(Q)). (3.50)

We argue by contradiction.
On the one hand, suppose that there exist ¢ > 0, a sequence {t,} C [t — 1,],
without loss of generality converging to some t,, with

[u"(ty) —u(ty)]a > e VYn>1. (3.51)
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On the other hand, applying the Cauchy inequality, (3.2) and (3.4) to the energy
equality (3.7), we deduce

1 S
[2(s)]z < |2(r)|2 + 261QU (s — ) + %/ [R(E)[I3dg Vt—2<r<s<t,

where z may be replaced by u or any u”.
Now we define the following functions

1 S

I(5) = () = 2ei0ls = 5 [ ),
1 S

Is) = )l = 2eis = 5 [ )

which are continuous and non-increasing on [t — 2,t]. Moreover, observe that from
(3.47) we obtain
Ja(s) = J(s) a.e. s€(t—2,t).

Therefore, there exists a sequence {t,} C (t — 2,t,) such that ¢, — ¢, when k — oo
and such that the above convergence holds for any .

Then consider an arbitrary value € > 0 fixed. Since the function J is continuous
on [t — 2,t], there exists k(e) > 1 such that

() = ()] < 5 Yk > k(o).
Now consider n(e) > 1 such that
- - - €
t, > tk(g) and |Jn(tk:(e)) — J(tk(e)” < 5 Vn > n(e)

Therefore, as the functions J,, are non-increasing, making use of the previous estim-
ates, we have

Jn(tn) = J(t) < Jultie) — J (L)
< |Julfrie)) — J(ts)]
<N Ju(tri) = I (Er)] + 1T (o) — J(t2)]

<§+§:e Vn > n(e).
Since € > 0 is arbitrary, it yields limsup,,_,. Jn(tn) < J(t.). Therefore, taking into
account the expressions of J and all J,, we deduce that limsup,,_, . [u"(t,)]2 <
|u(t)|]2. Then, from this, together with (3.49), we conclude that u"(t,) converge
to u(t,) strongly in L?(f2), which is contradictory with (3.51). Therefore, (3.50)
holds. O

As a consequence, we have the main result of this section. The proof of this
result is quite close to the proof of Theorem 2.16. We show the details for the sake
of completeness.
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Theorem 3.17. Assume that the function a is locally Lipschitz and (3.2) holds,
f € C(R) satisfies (3.3) and (3.4), h € L (R; H () fulfils condition (3.41)

for some p € (0,2A\ym) and | € L*(2). Then, there exist the minimal pullback
D}L;Z—attmctor .ADLQ and the minimal pullback Df—attmctor App2 for the process
F M

U:R2x L?(Q) — L*(Q). Furthermore, the family ‘ADﬁZ belongs to Dfﬁ and it holds

Apyz (1) C App2(t) C Bya (0, RYZ(t)) VteR.
Besides, if the function h fulfils

sup (e“s/ e“th(r)szr) < 00, (3.52)
s<0 —
then

Proof. The existence of Ap;2, A2 and the first relation between both attractors
W F

is a consequence of Corollary 1.15. Indeed, the continuity of the process (cf. Pro-

position 3.11), the relationship DL Df, the existence of an absorbing family (cf.

Proposition 3.14) and the asymptotic compactness (cf. Proposition 3.16) hold.
The relation between the family A, 12 and lA)O is a direct consequence of Theorem

1.13. In addition, the family A,2> belongs to Df since Dy € DﬁQ, Dy(t) is a closed

subset of L*(Q) for all ¢ € R and the universe DﬁQ is inclusion-closed.

Finally, under assumption (3.52), we deduce that U< Ry2(t) is bounded for each
T € R, where Ry2 is given in Proposition 3.14. Thus, making use of Corollary 1.15,
we deduce that both families of attractors coincide. O

3.4 Existence of pullback attractors in H}(Q)

The goal of this section is to improve the results of the previous one, by establishing
attraction in HJ(2). In addition, we establish relationships between these new
pullback attractors and those analysed in Theorem 3.17.

Under the assumptions made in Section 3.1, namely in Theorem 3.4, we cannot
guarantee the existence of a more regular energy equality for strong solutions (cf.
Definition 3.2) because in general u’ does not belong to L*(7,T; L*()). While in
reaction-diffusion equations, the regularity of v’ can be obtained independently of
the regularity of f(u) (cf. [5, Chapter 2, p. 32]), in nonlocal problems like (3.1), «’
inherits the regularity of f(u), which in general belongs to Li(r,T"; LI(S2)).

To guarantee that f(u) € L?(7,T; L*(f)), it is enough for instance to assume
that [f'(s)| < C for all s € R, thanks to the mean value theorem, having u the
regularity of the weak solutions to (4.1). However, the sublinear case has already
been studied with detail in Chapter 2.

In this chapter, to study the asymptotic behaviour of the solutions making use
of the theory of attractors, we assume

flu) € L*(r,T; L*()) Yu € L*(r,T; H*(Q) N Hy(Q)) N L>(7,T; Hy(2)). (3.53)
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Although not every function satisfying (3.4) fulfils (3.53), there exists a wide range
of functions which do. For instance, consider the function f(s) = s — s® when
N =3 or f(s) = —s|s|” where v € (0,3] when N = 3, v € (0,2) when N = 4,
and v € (0,4/(N — 2)] when N > 5. Observe that using the Sobolev embeddings
and interpolation results [116, Lemma I1.4.1, p. 72|, it can be checked that this last
function also satisfies (3.53). In this case, we can deduce some information about
the growth of f(u), since

Hf(U/)H%Q(T,T;L2( < CfHuHLOO (7, T;HX( ))HUH%Z(T,T;HQ(Q)OH&(Q))? (3.54)

for some b, b, and Cy > 0. Namely, given u belonging to L(r, T; H*(Q) N HL(Q)) N
L>(7,T; Hy(52)), using interpolation [116, Lemma I1.4.1, p. 72] and the Sobolev
embeddings, we deduce that b = (y+1)0 and b = (v + 1)(1 —0), where 0 € [0,1] is
an interpolation exponent between Sobolev spaces, and

[ f(u )||L2(TTL2( Q) = ||u||§,2:/|—32(7—TL2"/+2(Q))
< Nl o a1 g
C 02 2mH1||u||Loo (1, T;HL(Q ||u||L2 7, T;H2(Q)NHL(Q))
= Cf”UHLoo (7, T;HL(Q ”U’HL2 (., T;H2(Q)NHE (Q))

where C'ya is the constant of the continuous embedding L>*(7, T; Hy(Q2)) —

L (7, T; LPNH0)(Q)) and Chnpy 1s the constant of the embedding L*(r, T H*(2)N
HE(Q)) — L(r, T; LPNH*0H5)(Q)). Then, assuming that the non-autonomous term
h € L*(1,T; L*(Q)), we can deduce that v’ € L*(7,T; L*(Q2)) for all T > 7. There-
fore, considering a more regular initial datum u, € H}(f2), the associated strong
solution u € C'([r,00); H3(2)) and the following energy equality holds

lu(®)|3 + 2 /a(l(U(T))H — Au(r)|3dr = |lu(s)[f5 + 2/(f(U(7“)) + h(r), =Au(r))dr,
(3.55)

forall 7 < s <t.

Observe that we can assume (3.54) thanks to the domain €2 is smooth, since
this allows to prove the existence of strong solutions and therefore, we can use
this stronger regularity to make the most of the fact that f(u) € L*(7,T; L*(Q)).
Namely, we can make use of the Sobolev embedding L*(7,T; H*(Q) N H}(Q)) —
L2(7,T; LPINAP0H) () to deal with a wider range of functions f. Without as-
suming any smoothness conditions on the domain 2, as it is analysed in Chapter
4, we need to impose some restrictions on either the reaction term or the dimen-
sion of the domain 2 and the reaction term, to prove the asymptotic behaviour
of the solutions in H}(€). In addition, in Chapter 4, since we do not impose any

smoothness conditions on the domain €2, we cannot use the cited Sobolev embedding
(L*(r, T; H*(Q) N Hy () = L2(7, T; P00 (Q))).
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Observe that thanks to Theorem 3.4, the restriction of U to R2 x H}(2) defines
a process into H}(€2). Since no confusion arises, we will not modify the notation and
continue denoting this process by U.

Actually, this process defined on Hj(€2) as phase-space still fulfils properties to
apply the results of Chapter 1. The following result shows that the process U is
strong-weak continuous in Hj ().

Proposition 3.18. Suppose that the function a is locally Lipschitz and fulfils (5.2),
[ € CHR) satisfies (3.4) and (3.14), h € L (R; L*(Q)) and | € L*(Q). Then, the
process U is strong-weak continuous in Hy(£2).

Proof. Consider (t,7) € R? fixed and let {u*} be a sequence of initial data which
converges to u, strongly in H}(Q).

On the one hand, by Proposition 3.11, the map U(¢,7) is continuous from L?(£2)
into itself. Therefore,

Ult, 7)u? — U(t, 7)u, strongly in L?*(). (3.56)

On the other hand, observe that under the above assumptions we cannot guaran-
tee that f(u) € L%(7,t; L*(Q2)), therefore we cannot use the stronger energy equality
(3.55). Then, to solve this problem, we use the Galerkin approximations and pass
to the limit by compactness arguments.

Multiplying (3.8) by Aj¢,;, summing from j = 1 to n, adding £(f(0), —Au,(t))
and making use of (3.2), we have

%%Hun(S)H%er!—Aun(S)I% < (f(un(s)) = £(0), =Aun(s)) + (f(0) +h(s), =Aun(s))
a.e. s € (1,t).

Integrating by parts and using (3.14) and the Cauchy inequality, we deduce

d 1
£||un(8)||§ < 21l|un(s)|I3 + o5, 1 F(0) + h(s)l; ae. s € ().

Then, integrating between 7 and ¢ and applying the Gronwall lemma, we have

1t By
fun®1 < (10818 + 51 [ 15000+ o)) .

Now, since the sequence {u,,} is bounded in L>®(7,t; H} (2)), un (-7, u¥) — u(-; 7, uk)
weakly in L2(7,t; H:(Q)) and u(-; 7,u*) € C([7,t]; L?(Q)) (cf. Theorem 3.3), taking
into account [100, Lemma 11.2, p. 288], we have

1t B
U (t, 7)ul]l5 < (Huﬁ”%—k%/ 1£(0) + h(s) gds> Q2(t=7)

From this, together with (3.56), we obtain

Ut, 7 )uf — U(t,7)u, weakly in H}(Q).
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The following result, which is analogous to Lemma 2.19, establishes some uniform
estimates of the solutions in more regular norms in a finite-time interval up to time
t when the initial datum is shifted pullback far enough. To prove it, we will require
not only assumption (3.53) but also a specific information of the growth of f(u),
namely (3.54) as pointed out above.

Furthermore, to simplify the statement, let us firstly introduce the following two
quantities

, 2wl et
) =1+ = e [ e e
1 —00

(3.57)
1 1 '
o) = (pixt(t) + 26000+ - max, /7»_1 Hh(ﬁ)l!idi) :

m re[t—2,t

Lemma 3.19. Under the assumptions of Proposition 3.18, if [ also fulfils (3.54)
and h satisfies (3.41) for some p € (0,2 \ym), then, for any t € R and D€ DﬁQ,
there exists 75(D,t) < t — 3 such that for any 7 < 15(D,t) and any u, € D(7), the
following estimates hold

;

lu(ry 7 un)l3 < pi(t) ¥r e[t —2.4),

J [ 1-auenubas < Vel 559

/ Tl (€57 ) 2E < Fult) Ve [t — 1,1,

with
Pu(t) = (L4 20)p5™ (1) + ~ max / " 15(0) + h(e)de
2 m reft—2,4 J,_4 27
_ e . 1 "
lt) = o (00 + 20570+ - [ 1700) 4 h(€)Ba )

Falt) = 300 Ba(0) + 3Cs 0 (0 + 3 maxe [ Ih(e) e,

reft—1,t

where Z;, I~), Cy and M ewt(ry1) are positive constants.

Proof. Let us firstly observe that, analogously as we argued in Lemma 3.15, we
may obtain uniform estimates for solutions in a longer time-interval (useful for our

purposes). Namely, there exists 75(D,t) < ¢ — 3 such that for any 7 < (D, t) and
any u, € D(7), we have

lu(r; T,ur)|a < p$H(t) Vre [t — 3,1, (3.59)

/ (€ 7|36 < p5(8) Vi € [t — 2,1,
r—1
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where {pf*'};_1 o are given in (3.57). Observe that these estimates also hold for the
Galerkin approximations wu,(+; 7, u.), which have already been used in Section 3.1.
In addition, from the continuity of the function a, the fact that € L*(2) and the
first inequality in (3.59), we deduce that there exits a positive constant M e ()
such that
a(l(un(r))) < Miperiyyy Vr €[t —3,t] Yn>1. (3.60)

Similarly to the proof of Lemma 3.15, we will prove the inequalities in (3.58) for
the Galerkin approximations and then, passing to the limit, for the solutions.

Multiplying by A;¢y,; in (3.8), summing from j = 1 to n and making use of (3.2),
(3.14), and the Cauchy inequality, we deduce

d
(1B + m| = Al < 2nlun(©I + 170+ MO ae. € > 7. (36D

Integrating between r and s with 7 <r —1 < s < r, we obtain in particular

T 1 T
()1 < eI+ 20 | un(©lade + - [ 10)+ hi)s

Integrating the last inequality w.r.t. s between r — 1 and r, we have

T 1 T
Jun(r)IB < (14 20) [ Jun)lBds + - [ 170)+ h(©) g
r—1 r—1
forall m <r—1.
Therefore, from the estimate on the solutions by p5* given above, one deduces

that for any n > 1
(77, un) |2 < p1(t) Vr e[t —2,4] Yu, € D(r) V7 < (D, 1), (3.62)

where p;(t) is given in the statement. Now, taking inferior limit in (3.62) and using
the well-known fact that u, converge to u(-;7,u,) € C([t — 2,t]; H}()) weakly-star
in L=(t — 2,t; H} () (cf. Theorem 3.4), the first inequality in (3.58) holds.

Now, integrating between r — 1 and r in (3.61), we obtain in particular

1= suiops
1 " 1 [
<o (o= DI+ 20 [ @B+ - [ 17000+ hie)iac
for all 7 < r — 1. Then, for any n > 1
/T | — Au, (O)2dE < pa(t) Vreft—1,4 Yu, € D(r) Vr <7(D,t), (3.63)
r—1

where po(t) is given in the statement. Then, taking inferior limit in (3.63) and
bearing in mind the well-known fact that u, converge to u(-; 7, u,) weakly in L*(r —
1,r H3(Q) N H(Q)) for all r € [t — 1,¢] (cf. Theorem 3.4), the second inequality in
(3.58) holds.
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Now, taking into account that f satisfies (3.54) and the previous estimates, we
have

/Tl f(ua(€)2de < (i) (Ba(t))? Vr € [t—1,4] Vu, € D(7) V1 < m(D,t).
- (3.64)

Finally, since for all 7 <r —1

JICAGEE
<3 [ 1= alllu©)u e +3 [

from (3.60), (3.63) and (3.64), we obtain for any n > 1

(@i +3 [ [hie)iae,

1

~

/r W (€)2dE < J5(t) Vrelt—1,4 Yu, € D(r) V7 < m(D,t),
r—1

where p3 is given in the statement. Then, taking inferior limit in the above expression
and taking into account that u/, converge to u/(-; 7,u,) weakly in L?(r — 1,7; L?(2))
for all r € [t — 1,t], we obtain the last inequality in (3.58). O

Now, we introduce new universes which involve more regularity.

Definition 3.20. For each p > 0, DﬁQ’H‘% denotes the class of all families of
nonempty subsets Dy = {D(t) N Hy(Q) : t € R}, where D = {D(t) : t € R} € DY

As a direct consequence of the regularising effect of the equation when the func-
tion h € L? (R;L*(Q)) (cf. Theorem 3.4) and the existence of a family pullback

loc
Dﬁz—absorbing (cf. Proposition 3.14), the existence of an absorbing family in the

2 1
universe Dﬁ 0 also holds. We omit the proof because it is identical to the proof of
Proposition 2.21.

Proposition 3.21. Suppose that the function a is locally Lipschitz and (3.2) holds,
f € CYR) fulfils (3.4) and (3.14), h € L; (R; L*(Q)) satisfies condition (3.41) for
some € (0,2\1m) and I € L*(Q)). Then, the family Doy = {§L2<0,R2/22(t)) N
H}(Q):teR} e D£2’H‘% and for anyt € R and D € Df, there exists T3(D,t) < t
such that R

U(t,7)D(T) C DQH& (t) V1 <13(D,t).

In particular, the family ZA?O,H(% 18 pullback Dﬁz’Hé—absorbmg for the process U : RZ x
Hy(€2) — Hp(92).

Now, to prove the pullback asymptotic compactness of U in H{(£2) for the uni-

2 1
verse Dﬁ ’HO, we apply an energy method similar to the one use to prove Proposition
2.22.

Proposition 3.22. Under the assumptions of Lemma 3.19, the process U : R? x
2 1
HY(Q) — HY(Q) is pullback D ™ -asymptotically compact.
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Proof. The proof of this result is analogous to the proof of Proposition 2.22. In this
case we need to use the estimates (3.58) which appear in the statement of Proposition
3.19. In addition, we have to consider the continuous and non-increasing functions

D) =@ =20 [ ol - 5 / 1)l
95) = (o) =20 [ futr) e = 5 [ 170)+ bio)

]

As a consequence of the previous results, we obtain the main result of this section.
The proof of this result is very close to the proof of Theorem 2.23. We show the
details for the sake of completeness.

Theorem 3.23. Assume that the function a is locally Lipschitz and (3.2) holds, f €
CHR) fulfils (3.4), (5.14) and (3.54), h € L} (R; L*(Q)) satisfies condition (3.41)

1

for some p € (0,2X\ym) and | € L*(Q). Then, there exist the minimal pullback Dgo -

attractor A Hé and the minimal pullback D —attmctor ADL;HOl for the process

m
U:R2x Hl(Q) — H}(Q). Furthermore, it fulfils

A (1) € Apga(t) € Apga(t) = A e (1) Vi € R (3.65)

F

In particular, for any D e Dﬁz, the following pullback attraction result in Hy ()
holds
lim distg (U(¢,7)D(7), Api2 (1)) =0 Vi €R. (3.66)

T——00

Finally, if the function h also satisfies

sup (e_’“/ e’“|h(7")|2d7") < 00, (3.67)

s<0

then
AD?% (t) = AD%Q (t) = .Apﬁz (t) = ADﬁQ’H5 (t) VteR. (3.68)
Furthermore,
lim _distyy (U(t,7)B, App2(t) =0 VE€R VBe DL (3.69)

Proof. The existence of AD i and AD 1241 18 a consequence of Corollary 1.15, since
F W

U is strong-weak continuous in H}(Q) (cf. Proposition 3.18), it holds D 0 DL HO

there exists an absorbing family in DE’H‘% (cf. Proposition 3.21) and the process U
2 1
is pullback Dﬁ ’Ho-asymptotically compact (cf. Proposition 3.22).
The chain of inclusions (3.65) follows from Corollary 1.15 and Theorem 1.16.

Actually, the equality statement is due to the second part of Theorem 1.16, by using
Proposition 3.21. Then, (3.66) is straightforward.
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If moreover h satisfies (3.52), we have already proved in Theorem 3.17 the

equality Ap.2(t) = Ap2(t) for all £ € R. Now, in order to obtain (3.68), we as-
F 3

sume (3.67), which is a stronger requirement than (3.52). Therefore, the equality

ADH(l) (t) = Ap.2(t) is again a consequence of Theorem 1.16. Indeed, the solutions
Ja F
are coming into a bounded subset of H{(£2) due to the first estimate in Lemma 3.19

by pi1(t) [recall that, analogously as in Remark 2.17 (i), here (3.67) is equivalent to
sup,<q [, |h(r)[?dr < oo]. Then, (3.69) obviously holds. O

An immediate consequence of Theorem 3.23 is an improvement in the regularity
of the attractor in an autonomous framework. Namely, we have the following

Corollary 3.24. Suppose that h = 0 in (3.1). Under the assumptions made on
Theorem 3.23, there exist the global attractors Arz and AH01 for the associated
autonomous dynamical system in L*(Q) and H}(Q) respectively, and they coincide.
Furthermore,

1/p
o < (ai) Vu € Aps. (3.70)
2

Proof. From Theorem 3.23, we deduce the existence of global attractors. In addition,
Apz = Ay, thanks to the regularising effect of the equation (cf. Theorem 3.4).
Finally, the estimate (3.70) follows arguing as in [100, Theorem 11.6, p. 292]. [

Remark 3.25. Under additional conditions, we may restrict ourselves to study the
problem in C, (L?*(QQ)), the positive cone of L*(Q). We would redefine suitably new
classes of (tempered and non-tempered) families. Observe that assuming that h is a
positive function and f € C(R;R,), a Mazimum Principle holds (cf. Theorem 3.5).
Therefore, U is well-defined from C'(L*(S2)) into itself, which is important if one is
dealing with a biological model. Then, all the results from Sections 3.3 and 3.4 can
be obtained again analogously, by rearranging the assumptions within this setting.






Chapter 4

A monotone iterative approach for
nonlocal reaction-diffusion
equations

This chapter is a natural continuation of Chapter 3 with a different approach since
in this case no assumption of smoothness is imposed on the domain 2 C R". The
elimination of this assumption allows to model real phenomena with more accuracy
since they tend to be posed in nonsmooth domains (see [68] for more details).
First, we show the existence and uniqueness of weak solutions making use of
the monotonicity method (cf. [85, Chapitre 2|), which has already been used in
the reaction-diffusion framework (see [7]), combined with an iterative procedure.
Namely in this chapter this method is applied to the local reaction-diffusion equa-
tions
ou™
ot

where u° = 0, fulfilled with homogeneous boundary Dirichlet conditions. Then,
making use of compactness arguments, we prove that the limit of the sequence of
solutions {u"} is a weak solution to the nonlocal reaction-diffusion problem studied
in the previous chapter. Observe that this result is an improvement with regard to
the one appearing in Chapter 3 (cf. Theorem 3.3), because without imposing any
smoothness on the domain (2, the existence of weak solutions can be proved. The
uniqueness is guaranteed assuming additional requirements on the function a.

—a(l(u" "))Au" = f(u™) + h(t) Vn>1,

Furthermore, the existence of strong solutions and the regularising effect of the
equation are also analysed. In this case, since we are not assuming any smoothness
restriction on the domain 2 as in Chapter 3, requirements on either the dimension
of the domain €2 or the reaction term, or even both of them, are made to prove this
result (cf. Theorems 4.8 and 4.10, and Corollary 4.11, respectively).

Our next aim is to study the asymptotic behaviour of the solutions making use
of the theory of non-autonomous dynamical systems, namely we study the existence
of pullback attractors in the framework of universes in L*(Q) and H}(2). Although
these results are not new in this PhD project, because the existence of these families
has been proved in Chapter 3 (see Theorems 3.17 and 3.23), the methods applied
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to prove the asymptotic compactness are. Namely, in the L?-context we apply the
energy method used by Rosa in [101] with some variations due to the presence of the
nonlocal operator in the diffusion term. To end this chapter, the pullback asymp-
totic compactness in H}(f2) is analysed applying the flattening property, which was
coined by Kloeden & Langa in [77] (for more details see [77, 78, 33, 65]). Again,
the assumptions made on the dimension of the domain €2 and the reaction term
are imposed in the H'-context since the domain Q does not fulfil any smoothness
condition as in Chapter 3.

The results of this chapter can be found in [25].

4.1 Statement of the problem. Existence results

In this chapter, we consider the nonlocal reaction-diffusion equation

?)_1; —a(l(u))Au = f(u) + h(t) in Q x (7,00),

u=0 on JdQ x (1,00), (4.1)
u(z,7) = us(x) in €Q,

where Q C R” is a bounded open set, 7 € R and the function a € C(R;R,) and

there exists a positive constant m such that

0<m<a(s) VseR. (4.2)

Furthermore, [ € £(L*(Q),R), the function f € C(R) and there exist positive
constants oy, as, 7, kK and p > 2 such that

(f(s) = frD(s—r) <mls—71)* Vs,r €R, (4.3)
—k—oq|sP < f(s)s <k —asls|’ VseR. (4.4)

From (4.4) we can deduce that there exists § > 0 such that
[f(s) < B(IsP~"+1) VseR. (4.5)

Analogously to Chapter 3, we continue assuming that u, € L*(€) and the non-
autonomous term h € L2 (R; H~'(Q)). In what follows, we identify L?(Q2) with its
dual. Then, we have the chain of dense and compact embeddings Hj(Q2) C L*(Q2) C
H=1(Q). As a consequence of the previous identification, the operator [ acting on u

must be understood as (I, u), but along this chapter will be denoted by I(u).

Observe that in the setting of problem (4.1), we have not imposed any smoothness
condition on the domain {2 unlike what happened in Chapter 3.

Definition 4.1. A weak solution to (4.1) is a function u € L>(7,T; L*(2))N
L*(7,T; H}(Q)) N LP(7,T; LP(Q)) for all T > 7, with u(T) = u,, such that for all
v e HH(Q)NLP(Q)
d
(), v) + all(u(t)((u(t), v)) = (f(u(t)), v) + (h(t), v), (4.6)
where the previous equation must be understood in the sense of D'(T, 00).
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Analogously as in Chapter 3, when wu is a weak solution to (4.1) it can be
proved, taking into account the continuity of a, I € L*(2), (4.5) and (4.6), that
u € C([r,00); L?(Q)) and it holds

t

() 342 / (1 (u(r))) () [2dr = [u(s)2+2 / (f(u(r)), u(r))dr+2 / (h(r), u(r))dr

(4.7)
for all T < s <t.

Definition 4.2. A strong solution to (4.1) is a weak solution u to (4.1) such that
uw e L>(7,T; Hy(Q)) N L*(1,T; D(—A)) for all T > 7.

In this section we will prove the existence of weak solution to (4.1) combining
an iterative procedure and the monotonicity method for solving nonlinear PDEs.
Due to the presence of the nonlocal term, we cannot use directly the monotonicity
method. We apply this method to a non-autonomous reaction-diffusion equation
in which the diffusion term has a viscosity which depends on time, but it does not
depend on the unknown. Then through iterations and appropriate estimates, we can
prove the existence and uniqueness of weak solutions to (4.1). In the weak-solutions
framework, this chapter provides an improvement with regard to the previous one
since () does not need to fulfil smoothness conditions to guarantee the existence and
uniqueness of weak solutions to (4.1). However, in the strong-solutions framework,
since € is not smooth, we impose additional requirements on either the dimension of
Q) or the reaction term or both of them, to guarantee the existence and uniqueness
of strong solutions as well as the regularising effect of the equation.

4.1.1 The monotonicity method for solving nonlinear PDEs

In this section we briefly recall the requirements to apply the monotonicity method
for solving nonlinear PDEs (see [85, Chapitre 2| for more details).

Consider a separable Hilbert space H, whose norm is denoted by |- |. Moreover,
suppose given V;, i = 1,...,m, with m > 1, separable and reflexive Banach spaces,
such that UZZI V, C H, ﬂfll V; is dense in H, and V; C H with continuous injection
foralli=1,...,m.

Foralli=1,...,m, ||-||; and || - ||, denote the norms in V; and V; respectively.
By V' we represent the space (),_, V;. In addition, (-,-) denotes the duality product
between V; and V; for all ¢ = 1,...,m. Finally, H is identified with its topological
dual H’ using the Riesz theorem.

Consider T' € (7,00) fixed and let B; : (7,7) x V; — V/ be, for i = 1,...,m,
operators, in general nonlinear, such that

A1) The application t € (7,T) — B;(t,v) € V/ is measurable for each v € V.
A2) Each operator B; is hemicontinuous, i.e. for all ¢t € (7,7) and for all u,v,w €
Vi, the application 0 € (1,T") — (B;(t,u + 0v), w) € R is continuous.

Suppose also that there exist 1 < p; < 00, i =1,...,m, at least one of them greater
than or equal to 2, constants ¢ > 0, & > 0 and A > 0, and a non-negative function
C € LY(7,T), such that for all t € (7,7 it satisfies
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A3) B;(t,-) is bounded in V| i.e.

1Bs(t, v)||s, < (14 [[o]™") Yo e V.

A4) B(t,-) is monotone, i.e.

(Bi(t,v) — Bi(t,w),v —w) + Av —w|* >0 VYov,w €V,

A5) B;(t,-) is coercive, i.e.

(Bi(t,v),v) + Av|? + C(t) > a|jv||?" Yo €V,

%

Suppose given functions h; € L (1, T;V/) for i = 1,...,m, and an initial datum
ur€H.
In what follows we denote

m

B(t,v) => Bi(t,v) YveV,
h(t) = Zhi(t).

Now we consider the following problem

u € ﬁL’”(T,T;W) VT > 7,
u'(t)ljrl B(t,u(t)) = h(t) inD(r,T;V"), (4.8)
u(T) = ur.

Then we have the following result (see [85, Théoreme 1.4, p. 168]).

Theorem 4.3. Under the above assumptions there exists a unique solution u to

(4.8). In addition, this solution fulfils
weC([r,ThH) and ' €Y LM(r,T;V)).
i—1

Remark 4.4. To prove Theorem 4.3, it can be used any numerable family formed
by linearly independent elements such that the vector space generated by this family
1s dense in V.

4.1.2 Existence and uniqueness of weak solutions

In this section we are going to apply the method stated in Section 4.1.1 to a non-
autonomous reaction-diffusion equation whose diffusion term is composed by the
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Laplacian and a viscosity term which depends only on time. Namely, for each
n > 1, we denote by u" the weak solution to

we L*(r,T; HY(Q)) N LP(r, T; LP () N C([r, T); L*(Q)),

(Pa) {2 (u(e) ) + ali(e ) ((u(0) 0)) = (F((©) 0) + (h(2),v),

u(T) = u,,

where u® = 0 and u" is the solution to (P,) if n > 1. Observe that the equation in
(P,,) must be understood in the sense of D'(7,00) for all v € H}(Q) N LP(Q).

Theorem 4.5. Suppose that the function a € C(R;R,) satisfies (4.2), [ € C(R)
fulfils (4.3) and (4.4), h € L} (R; H1(Q)) and | € L*(Q). Then, for any u, € L*(Q)
there exists a unique weak solution u™ to (P,) for alln > 1.

Proof. The existence and uniqueness of solution to problem (P,,) is due to Theorem
4.3. Namely, take H = L*(Q), Vi = Hj(Q), p1 = 2, Vo = LP(Q) and p; = p, and
define

(t,v) = —a(l(u"*(t)))Av Vv € Hy(Q) Vte (r,T),
By(t,v) = —f(v) Yve LP(Q) Vte (r,T),
) ) Vte (r,T),
)

Then, making use of the fact that a € C(R;R,) satisfies (4.2) and | € L?(Q2), we
have that B; fulfils A1)-A5). Analogously, using f € C(R) fulfils (4.3) and (4.4), it
is not difficult to check that B, satisfies A1)-A5). As a result, there exists a unique
solution to (P,) for all n > 1. O

Now we are ready to prove the existence of weak solutions to (4.1). Observe
that this result has been proved without assuming any smoothness condition on the
domain 2.

Theorem 4.6. Suppose that the function a is locally Lipschitz and satisfies (4.2),
[ € C(R) fulfils (4.3) and (4.4), h € L} (R; H1(Q)) and | € L*(Q2). Then, for each
u, € L*(Q), there exists a unique weak solution to problem (4.1), which is denoted
by u(-) = u(-;7,u;). Moreover, this solution behaves continuously in L*(Q) w.r.t.

inatial data.

Proof. We split the proof into two steps.

Step 1. Existence of weak solution. Consider u° = 0, and defining u" the
solution to (P,) (cf. Theorem 4.5), we have

%%!un(t)@ +a(l(w" )" @)z = (f@" (), u" (1)) + (b(t), u"(t)) ae. t € (7,T).
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Now, making use of (4.2) and (4.4), we obtain

d 1
S (O + mlla Ol + 20 " () < 26100 + —[BOI ac. t€ (7.T).

Integrating between 7 and t € [r,T],

|u™(t ]ﬁ—m/Hu H2d5+2042/|u )bds < |[ur |5+ 2K|Q(T—7) / |h(s)]|2ds.

Therefore, the sequence {u"} is bounded in L>(7,T; L*(Q)) N L*(7, T; H}(Q)) N
LP(7,T; LP(2)). From this, we deduce that there exists a positive constant Cy, such
that

[u(t)]s < Cx Vte[r,T] Vn>1

Then, using that the function a € C(R;R,) and | € L*(Q), there exists a positive
constant M¢_ such that

a(l(u" (1)) < M, Vte[r,T] ¥n>1.

Therefore, {—a(l(u"'))Au"} is bounded in L*(7,T; H*(Q2)). Moreover, making
use of the boundedness of {u,} in LP(7,T; L*(Q2)) and (4.5), we obtain that the
sequence { f(u")} is bounded in Li(1,T; L%(Q2)) (where p and ¢ are conjugate expo-
nents). Taking this into account, we deduce that the sequence {(u™)'} is bounded
in L2(1,T; HY(Q)) + LY(7,T; LY(Q)).

Therefore, using the Aubin-Lions lemma, there exist a subsequence of {u"} (re-
labeled the same), a function u € L>(7,T; L*(2)) NL*(7, T; Hy (Q))NLF (1, T; LP(Q))
with v’ € L3(r,T; H1(Q)) + L(7,T; L)) such that

/

u" = u  weakly-star in L°°(1,T; L*()),
u" —u  weakly in L*(7,T; Hy(Q)),
u" — u  weakly in LP(7,T; LP(Q)),
u" — u strongly in L*(7, T; L*(Q)),
(u™) — ' weakly in L*(7,T; H*(Q)) + L7, T; LY(Q)),
f™) = f(u) weakly in LI(r,T; LY(£2)),
—a(l(u™ ")) Au™ = —a(l(v))Au  weakly in L*(7,T; H (1)),

(4.9)

\

where the limits of the sequences {f(u™)} and {—a(l(u™))Au"} have been obtained
applying [85, Lemme 1.3, p. 12] (see Theorem 2.4 for more details).

Thereupon, we will show that u fulfils (4.6) for all v € H}(Q) N LP(£2). Consider
fixed T'> 7 and ¢ € D(7,T). Since u" is a solution to (P,,), it satisfies for all n > 1

T

/ (u"(t), 0) g (£)dt+ / a(1(u" ™ (£)))(— D™ (1), v) o (1) di = / (F(a(£)) 4+ h(t), vy ()dt.

Taking limit when n — oo in the previous expression and making use of (4.9), (4.6)
holds.
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Finally, to prove the existence of a weak solution to (4.1), we only need to
check that u(7) = wu,. Observe that this equality makes complete sense since u €
C([ ,T; L2(Q2)) (cf. [56, Théoreme 2, p. 575]). To do this, consider fixed v €

H}(Q) NLP(Q) and v € HY(7,T), with o(T) = 0 and (1) # 0. Since u™ is a weak
solutlon to (P,), it holds

%(U"(t),’v) +a(l(w" (0)((W"(1),v) = (f(u"(®),v) + (h(t),v) ae. te(r,T).

Now, multiplying by ¢ in the previous expression and integrating between 7 and T,
we have

~(unoholr) + [ el (0, o)) ()
= [ e vede+ [ no, e

Thereupon, taking limit when n — oo and considering (4.9), we obtain

—umwaﬂ+/ammmmmmwmww
= [ ) e+ [ b (4.10)

Otherwise, we deduce from (4.6)

— () 0hplr) + [ alllule))(ult), 0)o(e)e
= [ o) e [ b

Comparing this with (4.10), we deduce that (u(7),v)e(7) = (ur,v)e(7). Finally,
since (1) # 0 and H}(Q) N LP(Q) is dense in L*(2), the equality u(7) = u, holds.

Step 2. Uniqueness of weak solution and continuity w.r.t. initial data.
This has already been proved in Theorem 3.3, namely Step 2. O]

Remark 4.7. (i) Thanks to the uniqueness of weak solution to (4.1), if fulfils that
the whole sequence {u"} converges to u weakly in L*(7,T; H3(Q2)) N LP(7,T; LP(Q))
and weakly-star in L>(7,T; L*()). Analogously, the whole sequence {(u™)'} con-
verges to u' weakly in L*(t,T; H-'(Q)) + Li(7, T; LY(Q)).
(i) The previous result can be extended to more general diffusion terms like
a(l(u))Au, where A = Z” 1 dw <bij(x)a%j>, with bj; € L>*(Q) foralli,j=1...N

and Zi,j:l bij()&&; > CIE|?, where ¢ > 0.
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4.1.3 Strong solutions and regularising effect

In this section, the existence and uniqueness of strong solutions and the regularising
effect of the equation are proved without assuming any smoothness condition on the
domain 2 as in Chapter 3. To do this, it will not be enough to assume u, € Hj ()
and h € L? (R; L*(Q)) like in Chapter 2. To prove the existence of strong solutions
to (4.1), we do not take an arbitrary Hilbert basis of L*(Q) dense in H}(Q) N LP(Q),
we use the eigenfunctions of —A in H}(Q), denoted by {w;}, to make the most of the
compactness arguments. To that end, since we are not assuming that 2 is regular,
we impose some requirements on the dimension N of the domain 2. Namely, we
assume that 5
N< P (4.11)
p—2

Then, the continuous embedding H}(Q) < LP(Q) holds. Therefore, the eigenfunc-
tions of —A in H}(€) can be used as a basis to prove the existence of weak solutions
to (4.1).

Now we denote V,, = span|wy, ..., w,| for all n > 1 and for each integer n > 1,
we represent by u,(t) = wu,(t;7,u,) the Galerkin approximation of the solution
u(t, 7;u,) to (4.1), which is given by

up(t) = Z Pnj(t)wy,

and it is the local solution to

%(un(t%wj)+a(l(un(t)))((un(t)7wj)) = (f(un(t)), w;) + (A1), w;), t € (7, 00),

(un (1), wj) = (ur,w;), j=1,...,n.
(4.12)
Then we are ready to establish the existence of strong solutions and the regu-
larising effect of the equation. We omit the proof because it is identical to that of
Theorem 3.4.

Theorem 4.8. Suppose that Q) is a bounded open subset of RN with N fulfilling
(4.11), the function a is locally Lipschitz and satisfies (4.2), f € C*(R) fulfils (4.3)
and (4.4), h € L} (R; L*(Q)) and | € L*(Q?). Then for each u, € L*(Q), there exists
a unique weak solution u to problem (4.1) which belongs to L*(1T +¢,T; D(—A)) N
C((,T]; H} () for every e > 0 and T > 7 + e. In addition, if u, € H}(Q), the

existence of a strong solution u to (4.1) is guaranteed with u' € LI(7,T; L(£2)).

Another possible choice to prove the regularising effect of the equation and the
existence of strong solutions without supposing either requirements on the domain
Q2 (cf. Chapter 3) or restrictions on the dimension of the domain, like in the previous
result, is to assume restrictive conditions on the function f which guarantee that
f(u) € L*(7,T; L*(Q2)) for all uw € L>(r,T; L*()) N L*(7, T; Hi(R2)). To that end,
we assume that f € C(R) such that

1f(s)] < C(1+|s|"™) Vs eR, (4.13)
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where v = 2/N if N > 3. The fact that f(u) € L*(r,T;L*(Q)) is obtained

applying interpolation results (cf. [116, Lemma II1.4.1, p. 72]) to the Sobolev

spaces L®(7,T; L*(Q)) and L?(7,T; H}(2)). Namely, when u € L>®(r,T; L*(Q))N
L*(1,T; Hl(Q)) we obtain

/ /|f u(z,t))| dxdt<2/ / (C?+|u(z, t)[P?) dzdt (4.14)

<2C2 QT =) +2C |l P 1200 ||U||2b2 D)

<2C2[|U(T =)+ (CrN )P P20 ||u||L27TH1<m>],

where b = (1 —0)(y + 1), b = 0(y + 1), C;(N) is the constant of the continuous
embedding of Hj(f2) into LP-spaces and 6 € [0,1]. Observe that it is not necessary

to impose smoothness conditions on the domain {2 to make use of the cited Sobolev
embeddings (cf. [20, Remarque 21, p.173]).

Remark 4.9. (i) When N = 1,2, v can be any positive value since the solution
uw € L1, T; HY(Q)) < L*(7,T; L*(Q)) with s = co when N = 1 and s < oo when
N = 2. Therefore, the norm of u in L*Y*2(7,T; L**2(Q)) can be bounded making
use of the more regular spaces L>°(1,T; L>(Q) or L*(t,T; L*(Q)) with s < cc.

(ii) Observe that there exist functz’ons which are not all sublinear that fulfil (4.13).
For example, it can be considered f(s) = —s\/_ when N = 4.

Theorem 4.10. Suppose that the functzon a is locally Lipschitz and satisfies (4.2),
f € CR) fulfils (4.8), (4.4) and (4.13), h € L2 (R; L*(Q)) and | € L*(Q). Then
for each u, € L*(Q), there exists a unique weak solution u to problem (4.1) which
belongs to L*(1 +&,T; D(=A)) N C((7,T); HX(Q)) for everye >0 and T > 7 + €.
In addition, if u, € H}(Y), the existence of a strong solution u to (4.1) holds. In
addition, u € C([r,00); H}(Q)) and it fulfils the energy equality

||U(t)||§+2/ a(l(u(r)))] = Au(r)|3dr = ||U(8)||§+2/ (f(u(r)) + h(r), —Au(r))dr
) ’ (4.15)
forall T < s <t.

Proof. We split the proof into two steps. In the first one, we will show the regular-
ising effect of the equation. Finally, in the second step, we will prove the existence
of strong solutions together with the strong energy equality (4.15).

Step 1. Regularising effect. Analogously to what it was done in The-
orem 2.4, it proves that the sequence {u,}, which is bounded in L*(7,T; H}(Q)) N
L=(r,T; L*(2)) N LP(1,T; LP(R2)), converges to u, the weak solution to (4.1). In
this case, we have to take into account that thanks to (4.13), {f(u,)} is bounded
in L(1,T; L?(Q)) (see (4.14) above). Thereupon, we will prove that u belongs to
L*(t+&,T; D(-=A)NC((r,T); H}(Q)) for al T > 7+ & > 7.

Multiplying by ¢,; in (4.12) and summing from j = 1 to n, we obtain

|un ()15 + a(l(un () [un (I3 = (f (a(t)), un(t)) + (h(t), un(t))  ae. t € (r,T).
(4.16)

1d
2dt
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Applying (4.2) together with

(f (un (1)), un(t)) < [€2],

(1l6),ua 1)) < 55— IHO + 5 a0

Integrating between 7 and 7', in particular we obtain

r 26|Q(T — 7) I 1
2 2 2
/T lun(®) 3t < == — + 1 / OB+ —furl3.(417)

Multiplying by A;¢,; in (4.12), summing from j = 1 to n, and making use of
(4.2) and the Cauchy inequality (cf. [57, Appendix B, p. 622]), we obtain

d
a3+ ml — AR < 1f (DB + S |AOE ae t€ (R T). (419

Now integrating this expression between s and ¢, where 7 < s <t < T, we have

t 9 T ) T
Jan(1 +m0 [ = Bun(r)dr < [un(E+ = [ 7Bt = [ [hir)ar
(4.19)
In particular,

Jan O < i+ - [ \Fan(rD B+~ [ )

Integrating the previous expression w.r.t. s between 7 and ¢, bearing in mind that
{f(u,)} is bounded in L*(,T; L*(Q)) (cf. (4.14)) and (4.17), we obtain that {u,}
is bounded in L®(7 +¢,T; H}(Q)) with € > 0. Taking s = 7+¢ and t = T in (4.19),
we deduce that {u,} is bounded in L*(7 +¢,T; D(—A)), thanks to the boundedness
of {u,} in L>(7 +¢,T; H}(2)). As a consequence, it is not difficult to prove that
{u,} is bounded in L*(7 + &,T; L*(2)). Therefore, thanks to the uniqueness of a
weak solution, we deduce

u, —u weakly in L*(1 +¢,T; D(—A)),

u — ' weakly in L*(1 +¢,T; L*(Q)).
Then, since u € L*(7+¢,T; D(—A)) and v/ € L*(7 + &,T; L*(Q)) for any ¢ €
(0,T — 7), it satisfies that u € C((7,T]; H3()).

Step 2. Strong solutions. Now, assuming that u, € H}(f2), we will prove
that the weak solution u belongs to L?(7, T; D(—A))NC([r, T); Hj (2)). Multiplying
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by Aj¢y; in (4.12), summing from j = 1 to n, using (4.2) and the Cauchy inequality,
we deduce (4.18). Integrating between 7 and t € |7, T, we have

t 9 T ) T
Jan(I +m [ = Bun(o)ds < url+ - [ un(s)Bds + [ Ih(s)s.

Since {f(u,)} is bounded in L?(7,T;L*()), the sequence {u,} is bounded in
L=(7,T; HY(Q)NLA(1,T; D(—A)). As a consequence, we have that {—a(l(u,,))Au, }
is bounded in L?(7,T; L*(Q)).

Now, we define the projection operator

P,: L*(Q) — V,
0 — Z?:ﬂﬁbawj)wj'

Since {w; : j > 1} is a special basis, P, is non-expansive in L?({2). Therefore, { P,h}
and {P, f(u,)} are bounded in L*(7,T; L*(Q2)). As a consequence, the sequence {u/ }
is bounded in L?(7,T; L?(Q2)). Hence, as the weak solution is unique, it holds

u, —u weakly in L?(7,T; D(—A)),
ul — ' weakly in L*(7,T; L*(Q2)).

Then, since v € L*(1,T; D(—A)) and o' € L*(7,T; L*(2)), it satisfies that u €
C([r,T]; Hy(2)) and (4.15) ([100, Theorem 7.2, p. 191]) . O

Corollary 4.11. The thesis of Theorem 4.10 also holds when the assumption (4.153)
is weakened by taking v = 2/(N — 2) in (4.13) as long as f € CY(R) and the
dimension of Q fulfils 3 < N <2p/(p — 2).

4.2 Pullback attraction in L2-norm

This section is devoted to studying the asymptotic behaviour of the solutions of
(4.1). Namely, under the assumptions made on Section 4.1.2, we prove the exist-
ence of pullback attractors in the phase space L?(Q2). Although this result is not
new in this PhD project, since the existence of these families has been proved in
Theorem 3.17, the method applied to prove the pullback asymptotic compactness
is, since until now we have used energy methods that make use of continuous and
non-increasing functions (see Propositions 2.15, 2.22, 3.16 and 3.22 for more details).
Now, in this chapter we apply the energy method used by Rosa in [101] with some
variations due to the presence of the nonlocal operator in the diffusion term.

Thanks to Theorem 4.6, we can define a process U : Rfl X LQ(Q) — L2(Q) as
Ut, 7 u, = u(t;7,u,) Yu, € L*(Q) VY7 <t,

where u(-; 7, u,) denotes the weak solution to (4.1).

Now, we show that the process U is continuous on L?(Q2). We omit the proof
because it is straightforward, since the solution behaves continuously in L*(2) w.r.t.
initial data (cf. Theorem 4.6).
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Proposition 4.12. Suppose that the function a is locally Lipschitz and fulfils (4.2),
f € C(R) satisfies (4.3) and (4.4), h € L} (R, H () and | € L*(Q). Then, for

any pair (t,7) € R2, the map U(t,T) is continuous from L*() into itself.

Then we have the following result, which will be essential to build a suitable
tempered universe in P(L?*(€2)). Observe that this result has already been proved
in Lemma 3.12.

Lemma 4.13. Under the assumptions of Proposition 4.12, if the initial datum .,
belongs to L*(RY), the solution u to (4.1) fulfils for all p € (0,2mA;)

2|02 —pt t
"/L ’+2m€_M_1/ s ||h(s)|2ds VE>T.  (4.20)
1 T

[ut)f3 < e ucf; +

Now, we define the following tempered universe in P(L?*(Q)).

Definition 4.14. The class of all families of nonempty subsets D = {D(t) : t €
R} € P(L*(2)) such that

T veD(T)

lim (e’” sup |v|§> =0 (4.21)

15 denoted by Df for all > 0.

Again, according to the notation in Chapter 1, we denote by DIQQ the universe
of families (parameterized in time but constant for all ¢ € R) of fixed nonempty
bounded subsets of L?(2).

Now, if h fulfils a suitable growth condition, the existence of an absorbing family
is guaranteed. This result has already been proved in Proposition 3.14.

Proposition 4.15. Under the assumptions of Proposition 4.12, if for some u €
(0,2mA\,) the function h € L2 (R; H=*(Q)) also fulfils

loc

0
/ e’ ||h(s)]|2ds < oo, (4.22)

—00

the family Do = {Dq(t) : t € R} defined by Do(t) = By2(0, le:/f(t)), where

2k|92 et / ! 5
Ri2(t) =1+ + "2 h(s)||5ds,
LQ( ) Iu 2m—/,L>\171 7006 || (S)H S
is pullback DL’ -absorbing for the process U : R3 x L*(Q) — L*() and belongs to
L2
D,
Then, to prove the existence of minimal pullback attractors in L?(£2), we only

need to check that the process U is pullback Dﬁ2—asymptotically compact. First, we
prove the following continuity result.
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Proposition 4.16. Under the assumptions of Proposition 4.12, if {u"} C L*(Q)
satisfies that u™ — u, weakly in L*(Q), then for all T > T

( Ut,T)ul =~ U(t,7)u, weakly in L*(Q) Vt € [1,T],
U, m)ul = U, 7)u,  weakly in L*(7, T;H} (),
U, m)ul = U(-, T)u, weakly in LP(1,T;LP(Q)),
U(,m)ul— U(-,T)u,  strongly in L*(7, T;L*(2)),
a(l(U (-, )up VU (- T)ur = a(UU (-, 7)ur))U (-, T)u, weakly in L*(7,T:Hg (),
Va(l(U (-, )ur)U (- 1)u = a(l(U (-, 7)u VU (-, 7)ur weakly in L2(r, T;HE (),

L fUC,nu)— f(U(,7)u,)  weakly in L1, T;LI()).

T

(4.23)

Proof. Consider (T, 7) € R2 fixed. For short, we denote by u"(t) = U(t, 7)u” and
u(t) = U(t,7)u,. Then, from the energy equality (4.7), applying (4.2), (4.4) and
the Cauchy inequality, we obtain

lu™(t |2—|—m/||u ||2dr+2a2/|u |pdr < |u”|2+2/£|Q| T—7) / lh(r) ||2d7"

Therefore, {u"} is bounded in L*(7,T; Hy(Q)) N LP(7, T; LP()) N C([r, T]; L*(2))
for all T" > 7. From this we deduce that there exists a positive constant C, such
that

W (#)]s < Coe VEE[r,T] Vn>1.

Then, using that the function a € C'(R;Ry) and [ € L?(Q), there exists a positive
constant M¢, such that

a(l(u™(t))) < Mg, Vte[r,T] Vn>1. (4.24)

Therefore, {\/a(l(u™))u"} and {a(l(u"™))u"} are bounded in L*(7,T; H}(Q2)). On
the other hand, using (4.5) and taking into account the boundedness of {u"} in
LP(1,T; LP(S?)), it satisfies that {f(u™)} is bounded in L9(7,T; L9(f2)). Besides,
{u™(T)} is bounded in L*(€2). Therefore, as a consequence of the previous estimates
and using the Aubin-Lions Lemma, there exist a subsequence of {u"} (relabeled

the same) and functions v € L>(7,T;L*(Q))NL*(t,T; H}(Q))NLP(7,T; LP(Q)),
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£ e L*(Q), x3 € LY(7,T; L)), and x; and xo € L*(7,T; H}(€2)), such that

(

u" v weakly-star in L®(7, T; L*(9)),
u" — v weakly in L*(1,T; H} (D)),
u" — v weakly in LP(7,T; LP(Q)),
u"(T) — & weakly in L*(Q), (4.25)
a(l(u™)u™ — x1  weakly in L*(1,T; H} (D)),
a(l(u™))u™ — xo weakly in L*(1,T; Hy(Q)),
(7, T L(Q2)).

\ f(u™) = x3 weakly in L4
From this, taking into account the following equality

(t) =a(l(u"(t))Au™(t) + f(u™(t)) + h(t) in H Q)+ LIQ) ae. te(r,T),
(4.26)

it is a standard matter to prove that we can pick an element in the equivalence class
of v satisfying

v(t) = u, +/ (Ax1(r) +x3(r) + h(r))dr in HY(Q)+ LY(Q) Vte[r,T]. (4.27)

To prove that £ = v(T), x1 = a(l(v))v, x2 = Va(l(v))v and x3 = f(v), we will
argue similarly to [101, 7]. Consider w € HJ(2) N LP(Q) fixed. From (4.26) we
deduce

(w"(T), w) = (v, w) +/ (a(l(™ (@) Au"(t) + f(u"(t)) + h(t), w)dt.

Taking limit when n — oo in the previous expression and using (4.25), we have

(& w) = (ur,w) + / (Ax1(t) + x3(t) + h(t),w)dt.

Then, from the above expression and (4.27), we obtain that & = v(7T).
Now, from (4.6) we deduce

%(U"(t),w) = —a(l(u" () ((u" (1), w)) + (f(u"(t), w) + (h(t), w) ae. te(r,T).

Integrating the previous equality between ¢ and t+b, with b € (0, T—7),t € (7,T—0),
and using (4.24) and the Holder inequality, we have

(u™(t+b) —u"(t),w)

t+b t+b
< Me., / e (r) sl lladr+ / £ () golydr / 1) o ffwlladr
t t t

< U2 wllo (Mo 6™ 2 r g Vol 22 rizizr-2 @)+ lwl | f ()| ogrizacen)-
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Since {u"} is bounded in L?(7, T; Hj(2)) and { f(u™)} is bounded in L%(7,T; L9(£2)),
there exists a positive constant C' such that

(W (t +b) — u"(t), w) < COY2 + 0P)(|Jwlls + [w],) V€ (7, T — b).

Taking in the previous inequality w = u"(t + b) — u™(t) € HL(Q) N LP(Q) a.e.
t € (r,T —b), we obtain

[u(t +0) — u"(t)[5 < OO+ BYP)(Ju (t +b) — u (&) ]2 + u" (¢ +b) — u"(1)])

a.e. t € (1,T —0).
Now, integrating between 7 and 7" — b, we have

/TT_b W (t + b) — w(t)|2dt < 2C(bY? + b'/P) (/TT [ (2)||odt + /TT Iu”(t)lpdt> :

Thereupon, using the Holder inequality,

T—b
/ |u™(t + b) — u"(t)|3dt
< 20(bV/? 4 bU/7) ((T — )2 2 rrsm ) + (T — T)l/q|IU"||LP<T,T;LP<Q>>> :

We conclude that there exists a positive constant C(T') such that
T—b -
/ Ju(t +b) — u"(t)|2dt < C(T)(B> +0?) ¥Yn>1 VYbe (0,T —7).

Therefore,

T—b
lim sup / (4 b) — (42t = . (4.28)

b—0
In addition, taking into account that {u"} is bounded in L*°(7,T; L*(f2)), it
satisfies

T+b T
lim sup (/ |u"™(t)|3dt +/ |u”(t)|§dt> = 0. (4.29)
b=0 T T—b

n

Then, since the embedding HJ () < L?(Q2) is compact and taking into account
(4.28) and (4.29), applying [110, Theorem 13.2, p. 97] and [110, Remark 13.1, p.
100], we obtain that the sequence {u™} is relatively compact in L*(7,T; L*(Q)).
Then, making use of [85, Lemme 1.3, p. 12], it holds

a(l(u™)u™ — a(l(v))v weakly in L*(,T; H}(Q)),

Vva(l(um)u® = y/a(l(v))v  weakly in L*(,T; Hi(9)),

fu") — f(v) weakly in L(7,T; LI(Q2)).

Therefore, by the uniqueness of the limit, x; = a(l(v))v, x2 = /a(l(v))v and
xs = f(v).
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Then, from (4.27), we deduce

v(t) = u, +/ (a(l(v(s)))Av(s) + f(v(s)) + h(s))ds Vt € [r,T].

As a consequence, since the weak solution to (4.1) is unique, v(¢) = u(t) holds for
all t € [1,T]. Therefore, (4.23) holds for the whole sequence {u”}. O

Now, we are ready to prove the pullback asymptotic compactness.

Proposition 4.17. Under the assumptions of Proposition 4.15, the process U is
pullback Df—asymptotically compact.

Proof. We will argue similarly to [7, 101].

Let us fix t € R, a family D € Dﬁz, a sequence {7,} C (—oo,t] with 7, = —o0,
and u,, € D(r,) for all n. Let us prove that {U(¢, 7,,)ur, } is relatively compact in
L3 ().

As the family lA)O is pullback DﬁQ—absorbing, for each integer k > 0, there exists
a 7(D, k) <t — k such that

Ut — k,7)D(7) C Do(t — k) V7 < 7(D, k). (4.30)

By a diagonal procedure, it is not difficult to conclude from (4.30) that there
exist {(7,ur )} C {(7n,ur,)} and {v;, : & > 0} C L*(Q2) such that for all k£ > 0,
v € Do(t — k) and

Ut — k,Tw)u, , — v, weakly in L*(1). (4.31)
From this we deduce
[vole < linr/rl}ioréf \U(t, T )r, |2-
If we prove that
limsup |U(t, 7 )ur , |2 < |vol2, (4.32)

n’—o0
then we will have proved that the sequence {U(t, 7,s)u ,} converges to vy strongly
in L2(Q).
Observe that

U7 Yurl} 4+ 200U 1 7Y
— 2(F(U(t,T)ur), U(t, 7)us) + 2(h(t), U(t, 7)us)

a.e. t>T.
Thereupon, multiplying by e! and integrating between 7 and ¢, we obtain

Ut m)ul3
t

¢
= e_(t_7)|u7|§ + /e_(t_r)|U(r7 T)UT|§dT — 2/6_(t_r)a(l(U(r, T)u)||U (7, T)u7||§dr

+2 /te(t’")(f(U(r, T)uz), U(r, T)u, )dr + 2 /te(tr)<h(r), U(r,T)uz)dr. (4.33)
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Taking into account the previous equality, we have for all £ > 0 and all 7,,, <t —k

\U(t, Tn’)“mz ’g
= |U(t,t —k)U(t — k, Tn/)uTn,@

t
O R Y R / DUt — YUt — by s, [2dr
t—k

t
— 2/ e_(t_r)a(l(U(T,t —k)U(t — k, Tn’)UTn,))||U(7”7 t—k)U(t—k, Tn/)uTn, ||§d7’
t—k

t
+ 2/ e_(t_r)(f(U(r, t—k)U(t -k, Tn/)uw), U(r,t —k)U(t — k, Tn/)uTn,)dr
t—k

t
+ 2/ eI h(r), U(r,t — k)U(t — k, Tot JUr, )T (4.34)
t—k

Now, all the terms in the right hand side will be estimated.
From (4.30), we deduce
limsup(e *|U(t — k, T )u, ,[3) < e "Rpa(t — k) Vk >0,
n/—o0
where R;» is given in the statement of Proposition 4.15.
On the other hand, since e=*=)h € L2(t — k,t; H~'(f2)), using (4.23) and (4.31)
we deduce

t t
lim [ e " (h(r),U(r,t—k)U(t—k, Tot Jlr, )T :/ e~ h(r), U(r, t—k)vg)dr.
t

n'—=oo Ji 1 —k
Again, considering (4.23) and (4.31), we obtain
t

t
lim [ e " NU@rt—k)U(t—k,m)u, ,|5dr = / e INU (r, t— k)| 3dr-.
t—

n/—o00 t—k k

Next, we will prove

t
imsup =2 | a(l(U (1t (= ki), DU =K (=, ), [
t—k

n/—o00

t
< —2/ e~ a(U(U (r,t—k)op)) || U (r, t—k)vg | 3dr.
t—k

Indeed, observe that the sequence {\/a(l(U(-,t —k)U(t — k, 7 )u, ,))U(-,t —
k)U(t — k, 7 )u, , } converges to \/a(l(U(-,t — k)vg))U (-, t — k)vy weakly in L2(t —
k,t; Hy(Q)) thanks to (4.23) and (4.31). Therefore, using the lower semicontinuity
of the norm, we have

t
2 / e aU(U(r, t=k)vp) |U (r, t—k)vg|3dr
K

t
< liminf2 / e~ a(U(U (r, t—k)U (t — by 7 Yur, WU (s t— kYU (£ — K, 7o Yy ||2dr
t

n/—oo —k
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Finally, we will prove

t
lim sup/ eI (F(Urt = KU =k, mo)u, ), Ulr,t — k)U(t =k, T )u,, )dr
t—k

n/—oo

gl/ﬁ e FU (= ko), Ulr, t — k)og)dr.
t—k

For short, analogously to [7], we denote

Ap (1) = U(r,t = kB)U(t — k, 7 )ur ,,
Bi(r) :=U(r,t — k)vg.

Then, it satisfies

t

lirp inf — e*(H)(f(Ak,n' (1)), Ag (r))dr
n'—oo t—k

> lirp inf/ 6_(t_r)(f(Bk(7“)) — f(Akn (1)), Ak (1) — B(r))dr
n'—oo t—k

+ lim inf — /tk e~ (F(Br(r)), Ag (1))dr

n/—oo

[ B B
+ lim inf — /tk e~ (F(Apw (1), Br(r))dr.

n/—oo

Using (4.3), it follows

lim inf — /tl€ ei(tir) (f(Ak,n’ (T))a Ak,n/ (T))dT’
t—

> liminf —p / tke<”>|Ak,n/(r) — By(r)|2dr
A A
H@m_/;tﬂmmmw%wmr
R A
+ [ B, B
+mm&-/letWﬂMnH%&wWh
.

n/—oo

Taking into account (4.23) and (4.31), from the above inequality

liminf—/tke (= T)(f(A;m( 1)), A (1))dr > —/tk e~ (f(By(r)), By(r))dr.

n —oo
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Then, applying the previous estimates to (4.34), we deduce

t
limsup |U(t, 7 )usr |5 < e "Rpa(t — k) + / eI U (rt — k)| 2dr
t—k

n/—o00

¢
- 2/ e Ea(U(U(r,t — K)o |U (r,t — E)vg|3dr
t—k
¢
42 / e FU (= k)on), U(r £ — k)og)dr
t—k
¢
+2 / e~ R(r), U(r, t — k)vg)dr. (4.35)
t—k
Observe that taking into account the first convergence of (4.23) and (4.31), we
obtain
vy = weak-lUm U (t, 7, )u, ,

n/—o00

= weak-lim U (t,t — k)U(t — k, 7/ )u,,

n/—00
=U(t,t — k) Wergli—ogim Ut —k, Tn/)uTn,>
=U(t,t — k).
Now, from this and (4.33), we deduce
[vol =|U (.t = k)vil;

=e |2 + /tk e ENU (r,t — k)| 2dr
tf

- Q/tk e a (LU (ryt — k)up)||U (7, t — kg ||2dr
t—

+2 /tk e (F(U(r t — ko), U(r, t — k)vg)dr
t_

L2 / tk e h(r), U(r, £ — )og)dr.
t_

Then, comparing the above expression with (4.35), we deduce

limsup [U (¢, 7 )ur, |3 < Rpz(t — k)e™ + [vgl3 — e 7" |ugf3
n’/—o0

< Rpa(t —Ek)e ™ + |vol3,
for all k£ > 0. As a result, (4.32) holds. O

Now we can establish the main result of this section. We omit the proof because
it is analogous to those of Theorems 2.16 and 3.17.

Theorem 4.18. Assume that the function a is locally Lipschitz and (4.2) holds,
f € C(R) satisfies (4.3) and (4.4), h € L} (R; H1(Q)) fulfils condition (4.22)

loc
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for some p € (0,2m\;) and | € L*(QY). Then, there exist the minimal pullback
D{;Q-attmctor Aprz and the minimal pullback DﬁQ—attmctor Ap2 for the process
F H

U:RIx L*(Q) — L*(Q). Besides, the family Ay, belongs to Dﬁg, and the following
relationships hold

Apiz (1) C Ape2(t) C Bz (0, RYZ(t) VteR.

In addition, if h also satisfies

sup (e“s/ e’“”Hh(r)szr) < 00,
s<0 — 0

then both attractors coincide, i.e. Ap2(t) = Apr2(t) for allt € R.
F I

4.3 Pullback attraction in H'-norm

In this section, we will improve the results given in the previous section by proving
attraction in H}(Q) and establish relationships amongst these new pullback attract-
ors and those given in Section 4.2 without assuming any condition of regularity on
the domain €2 as done in Chapter 3. To do this, we state the results in the setting of
Theorem 4.10. Observe that although it is possible to prove the existence of strong
solutions assuming that N < 2p/(p — 2) and without making any additional require-
ment on f (cf. Theorem 4.8), to study the asymptotic behaviour of the solution in
H'-norm, we need to make use of stronger energy equalities and the continuity of
the solution v in H(€2). To that end, we need that u' € L*(7,T; L*(2)). Due to the
nonlinearity created by the nonlocal operator in the diffusion term, we cannot ana-
lyse the regularity of «’ directly (multiplying the equation by «’), but v’ inherits the
regularity of a(l(u))Au+ f(u) + h. Therefore, f(u) must belong to L*(,T; L*(Q)).
To that end, it is essential in this section to assume (4.13).

Observe that the main result of this section, the existence of pullback attract-
ors in Hg(Q), is not new in this PhD project, since the existence of these families
has been proved in Theorem 3.23 under different assumptions. Nevertheless, the
energy method applied here to prove the pullback asymptotic compactness is, since
we make use of the flattening property.

In the setting of Theorem 4.10, the restriction of U to R x HJ () defines a
process into H} (). Since no confusion arises, we will not modify the notation and
continue denoting this process by U.

Making use of the results studied in Chapter 1, we prove the existence of pullback
attractors in Hy(Q). First of all, the process U is strong-weak in HJ ().

Proposition 4.19. Assume that the function a is locally Lipschitz and (4.2) holds,
f € CR) fulfils (4.3), (4.4) and (4.13), h € L} (R; L*(Q)) and | € L*(Q). Then,

loc
the process U is strong-weak continuous in Hg ().
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Proof. Consider (t,7) € R? fixed. Let {u"} C H}(Q) be a sequence which converges
to u, strongly in Hj(Q).
By Proposition 4.12, the map U(t, ) is continuous from L?*(€2) into itself, there-
fore
U(t,7)u? = U(t,7)u, strongly in L?(2).

On the other hand, from (4.7) using (4.2), (4.4) and the Cauchy inequality, we
obtain
n 1 n
1T, T)UT”%oo(T,t;L?(Q)) < 2x|Q[(t —7) + )\l_mHhH%?(-r,t;L?(Q)) + [u]3,

t " 26|Q(t — 1) 1 1, .,
[ Wi mtas < ZEED b g  + ol

Now, applying (4.2), the Cauchy inequality, (4.13) and interpolation results (see
(4.14)) to the energy equality (4.15), we deduce

(2, 7)ull3
2C2(Q|(T — 7)

m

n 1
< M lls + —[1llze () +

2C%(C(N))2 .,
B L /SN 7/ i S

where C7(N) is the constant of the continuous embedding of Hj(Q) into LP-spaces,
b=(1—0)(y+1)and b=0(y+ 1), with v = 2/N when N >3 and 6 € [0,1].

Then, thanks to the previous estimates, {U(t, 7)u”} is bounded in H}(Q2). Thus,
by the uniqueness of the limit, we obtain

Ut,7)ul’ = U(t,7)u, weakly in H}(Q).
O]

The following lemma is essential to prove the pullback flattening property. We
establish uniform estimates of the solutions in a finite-time interval up to ¢ when the
initial datum is shifted pullback far enough. The idea of the proof is similar to the
proofs of Lemmas 3.15 and 3.19. We provide the details for the sake of completeness.

Lemma 4.20. Under the assumptions of Proposition 4.19, if h € LlOC(R L3(2))
satisfies (4.22) for some p € (0,2X\ym), then for any t € R and D e DL there
exists T(D, t) < t — 2 such that for any 7 < 71(D,t) and any u, € D(7)

(

u(r; 7, ur)l3 < po(t) Vr e[t — 2,1,

| It lde < patt) e efi—1.4, (436
r—1

( lu(rs 7 ur)ll; < ps(t)  Vre[t—1,1],
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where

2K e HE=2) t
po) =1+ 2B o [ o e
1 —0o0

2k} 1 "
palt) = 22 i)+ max [ e
02 Q 02 C 2b R 5 r
pu(t) = pa(t) + 2 o 2O b+ e [ i)l

where b = (1 — 0)(y + 1), b = 0(y + 1), Cr(N) is the constant of the continuous
embedding of Hg () into LP-spaces and 6 € [0,1].

Proof. From (4.21) we deduce that there exists 7 (D, t) < t — 2 such that
ey 2 <1 Yu, € D(r) V7 < (D, 1).

The first inequality of (4.36) follows directly from (4.20) using the previous estim-
ate. Making use of this estimate together with the energy equality (4.7), the second
inequality follows arguing analogously as it was done in Lemma 3.15. Observe that
these two estimates also holds for the Galerkin approximations. R

Finally, we will prove the third inequality of (4.36). Consider fixed 7 < 7 (D, t)
and u, € D(7). From (4.15) for the Galerkin approximations, making use of (4.2)
and the Cauchy inequality, we deduce

1 s
) < s ) [ 7 (n@DBs+ o [ b

withr<r—1<s<r.
Integrating the previous inequality w.r.t. s on [r — 1,r]| and taking into account
(4.14), we obtain

" 20210
bntriru s [ i tias 2 7 s+ 225

| 2CC )

Jun (57, UT)HLow 1,mL2%( ))”Un( 7 UT)HL2r 1, HL(Q))

forall m <r —1.
Now, applying the two first inequalities of (4.36) to the previous expression we

have
lun(rs 7 un)ll3 < ps(t) Vr €[t =11,
where p3(t) is given in the statement. Taking inferior limit in the above expression

and using the well-known fact that w, converge to u(-; 7, u,) weakly-star in L>(t —
1,t; H3(2)) (cf. Theorem 4.10), the third inequality of (4.36) holds. O

Thereupon, we introduce the following universe in P(H;(2)).
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Definition 4.21. For each p > 0, D 5 denotes the class of all families of
nonempty subsets DH1 ={D(t)N Hl(Q) t € R}, where D = {D(t) : t € R} € Dfﬁ.

2 1
Observe that Dy, Hy DL 5 and Dﬁ M0 ig inclusion-closed.

The existence of a pullback D52’Hé-absorbing family follows directly from the
regularising effect of the equation (cf. Theorem 4.10) and the existence of a pullback
Dﬁz—absorbing family (cf. Proposition 4.15). We omit the proof of this result because
it is identical to that of Proposition 2.21.

Proposition 4.22. Under the assumptions of Proposition 4.19, if h € L2 _(R; L*(2))
also fulfils condition (4.22) for some u € (0,2\ym), then, the family

Doy = {B12(0, RS (£)) N HY() : t € R}

belongs to DﬁQ’H& and for any t € R and any De DﬁQ, there exists 7'2(13, t) <t such
that R
U(t,7)D(T) C Do pi(t) V1 < 7a(D,t).

In particular, the family ﬁaH& 15 pullback Dﬁg’Hé-absorbmg for the process U : R% x
H; () — Hy ().

Thereupon, we will prove that the process U : R% x H}(Q) — Hj () satisfies the
pullback Dy, Hl—ﬂattening property. In fact, we will prove that U fulfils the pullback

2 1
DH1 flattening property for any DH1 € DL Ho

We will also use the following result Whose proof is analogous to that of [78,
Lemma 12].

Lemma 4.23. If h € L} (R; L*(Q))) satisfies condition

/0 e"*|h(s)]?ds < oo (4.37)

for some pe (0,2mA,), then for any t € R
¢
lim e_pt/ e”*|h(s)|5ds = 0.

p—00 o

Then we have the following result (the idea of the proof is close to that in [65,
Proposition 31}).

Proposition 4.24. Under the assumptions of Proposition 4.19, if h € L2 _(R; L*(2))
also fulfils (4.37) for some p(0,2X\ym), then, for any e > 0 and t € R, there exists
n(e,t) € N such that for any D € DﬁQ, the projection P, : H} () — V,, satisfies

a) {PUt,7)D(1) : 7 < Tl(ﬁ,t)} is bounded in H}(Q),

b) for all 7 < 1 (D,t) and u. € D(7), it fulfils that ||(I — P)U(t, T)u.|2 < ¢,
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where 7'1([3, t) is given in Lemma 4.20.

In particular, the process U on HY(QY) satisfies the pullback ZADH(% -flattening prop-

~ L2 Hl
erty for any Dy € Dy °.

Proof. Let us fix e > 0, ¢t € R and De Df.

The first property given in the statement follows directly from the fact that P,
is non-expansive in H}(2), since {w; : j > 1} is a special basis (see Section 4.1.3)
for more details) and the third inequality of (4.36).

Thereupon, we will prove the second property. To that end consider fixed 7 <
71(D,t), u, € D(7), and define u(r) := U(r, 7)u, and g,(r) := u(r) — P,u(r). Then,
using (4.2) and the Cauchy inequality, from (4.15) we deduce for each n > 1

d 2 2
(Il +ml = Aga(r)ls < —[f(u(r))z + —|h(r)5 ae. re(t—11).

Since | — Ag, ()3 > N\it1]|gn(r)]|3, from the above inequality we deduce

d 2 2
5”%(?‘)”3 +Anrimllga(r)]13 < Elf(ﬂ(r))lg + Elh(r)@ ae. re(t—1,1). (4.38)

Now multiplying by e™»+1" in (4.38), integrating between t — 1 and ¢, making
use of (4.13) and (4.36), we have

92 t
"1l gn (1|3 <emAn T Y]lg, (t — DH%JFE/ AT | () [3dr
t—1

402 em)\n+1t

0 2 )0+
o [+ (C) )

) t
< gy [

—00
402 em)\n+1t

m? )‘n—i-l

[192/+(CRps(t)) 0]

where Cly is the constant of the continuous embedding of Hj () into L*7+2(Q2), with
v =2/N when N > 3.

Then, applying Lemma 4.23 and taking into account that \, — oo as n — oo,
there exists n = n(e,t) € N such that the second property holds. O

From the above result, the asymptotic compactness in the H'-norm yields (see
Proposition 1.18 for more details).

Proposition 4.25. Under the assumptions of Proposition 4.24, the process U on
2 1
H(Q) is pullback Dﬁ Ho -asymptotically compact.

As a consequence of the previous results, we obtain the existence of minimal
pullback attractors for the process U on Hj(2). Relationships amongst these new
attractors and those given in Theorem 4.18 are also established. We omit the proof
because it is similar to those of Theorems 2.23 and 3.23.
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Theorem 4.26. Assume that the function a is locally Lipschitz and (4.2) holds,
[ € C(R) satisfies (4.3), (4.4) and (4.13), h € L2, .(R; L*(Q)) fulfils condition (4.57)

for some p € (0,2A\ym) and l € L*(Q). Then, there exist the minimal pullback DH&

attractor A Hé and the minimal pullback D “Ho O_attractor A L2 n for the process

U:R2x Hl(Q) — Hy(Q). In addition, the following relatwnsths holds

A Hl (t) C ‘AD? (t) C AD{}Z (t) = ADLQ’Hé (t) Vt € R,

Dp

where Ap 2 and Ap2 are respectively the minimal pullback Dﬁz—attmctor and the
F W

manimal pullback Dﬁg-attmctorfor the process U : R2x L*(Q) — L*(Q), whose exist-
ence s guaranteed by Theorem 4.18. In particular, the following pullback attraction
result holds

lim disty: (U(t, 7)D(7), Aps2(t) =0 Vt€R VD e DL

T——00

Finally, if h also satisfies

sup (e‘“s/ e’“’|h(r)|§dr) < 00,
s<0 —c0

Ay () = Ay () = Apga () = A_pa iy (t) VEER.

then

0
F “ m

Furthermore, in this case, for any B € DIL,Q

lim disty (U(t,7)B, A

T——00

() =0 VteR.

DL’

As a consequence of the previous result and as a complement of Corollary 4.11,
we have the following result.

Corollary 4.27. Assume that the function a is locally Lipschitz and (4.2) holds,
[ € CYR) satisfies (4.3), (4.4) and (4.13) withy = 2/(N—2) if3 < N < 2p/(p—2),
h € L2 (R; L*(2)) fulfils condition (4.37) for some u € (0,2\;ym) and | € L*(Q).
Then, the thesis of Theorem 4.26 holds.

Remark 4.28. Observe that if N = 1,2, Corollary 4.27 holds without assuming any
restriction on the positive value vy (see Remark 4.9 (i) for more details).






Chapter 5

Abstract results on the theory of
multi-valued processes and
pullback attractors

In the last few decades, many authors have been interested in analysing problems
without uniqueness of solution because it allows to weaken the assumptions on the
nonlinear functions which appears in the equation.

In addition, for a wide range of problems, such as differential inclusions, vari-
ational inequalities, control infinite-dimensional systems and some partial differential
equations such as the three-dimensional Navier-Stokes equations, the uniqueness of
solution is not guaranteed. It is interesting to analyse what the asymptotic beha-
viour of the solutions of this type of problems is and to do it, many authors make
use of the theory of multi-valued dynamical systems. For instance, in [96] Melnik &
Valero study the existence of the compact global attractor for differential inclusions
in Hilbert spaces. In [6], Anguiano et al. analyse the existence of pullback attractors
for non-autonomous reaction-diffusion equations in some unbounded domains. For
problems where terms with delay appear there exist also papers in this multi-valued
framework. For example, in [89] Marin-Rubio studies the existence of attractors
corresponding to a general class of parameterized delay differential equations posed
in potentially different state spaces.

In this chapter, we briefly recall some abstract results on multi-valued non-
autonomous dynamical systems. Concepts such as multi-valued process, pullback
absorbing family for a universe D or pullback asymptotic compactness, amongst
others, are recalled. In addition, some properties of the omega-limit set are ana-
lysed in this new framework together with a result which guarantees the existence
of minimal pullback attractors. Besides, relationships between these families are
established.

All the results of this chapter can be found in [96, 89, 27, 94, 6, 5].

135
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5.1 Basic concepts

Let (X,dx) be a metric space.

Definition 5.1. A multi-valued process (also called multi-valued non-autonomous
dynamical system) U on X is a family of mappings U(t,7) : X — P(X) for any
pair (t,7) € R2, such that

(i) U(r,7)x ={x} VreR VzelX.

(i) Ut,7)e CU(t,s)(U(s,7)r) V71 <s<t VoelX, where

Ut,r)W = | U(t, )y VW C X.

yeW

Observe that if the relationship given in (ii) is an equality instead of an inclusion,
the multi-valued process U is called strict.

Definition 5.2. A multi-valued process U on X is upper semicontinuous if the
mapping U(t,T) is upper semicontinuous from X into P(X) for all (t,7) € R?, i.e.
for any x € X and for every neighborhood N in X of the set U(t,T)x, there exists
a value € > 0 such that U(t,7)y C N provided that dx(z,y) < .

Consider a family of nonempty sets Dy = {Dy(t) : t € R} € P(X).

Definition 5.3. A multi-valued process U on X s pullback ﬁo-asymptotz'cally com-
pact if for any t € R and any sequences {1,} C (—o0o,t] and {z,} C X such that
T, = —o0 and x, € Do(t,) for all n, it fulfils that any sequence {y,} is relatively
compact in X, where y,, € U(t, ,)x, for all n.

__ Again, analogously as in Chapter 1, we denote the omega-limit set of the family
Dy by

A(Do.t) = U(t,T)DO(T)X Vvt € R.

s<t1<s

Lemma 5.4 (Sequential characterisation of the omega-limit set). It holds
that y € A(Dy,t) if and only if there ezist sequences {7,} C (—o0,t] and {y,} C X
such that 7, — —00, y, € U(t, 7,,)Do(1,) for all n € N, and lim,, o0 Yy = y.

The following lemma will be very helpful to prove the existence of a pullback
D-attractor for a multi-valued process U in Section 5.2. This result was proved in
[5, Lemma 3.9] and it is a generalization of [29, Theorem 6, Lemma 8]. We will show
the proof for the sake of completeness.

Lemma 5.5. If the multi-valued process U is pullback ﬁo—asymptotz'cally compact,
then the omega-limit set A(Dy,t) is nonempty, compact and

lim disty(U(t,7)Do(7), A(Do,t)) =0 Vt € R. (5.1)

T——00
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In addition, the family {A(lA)O, t) : t € R} is minimal in the sense that if there exists
a family of closed sets C' = {C(t) : t € R} which fulfils

li):r_n distx (U(t, 7)Do(7),C(t)) =0,
then A(lA?O, t) C C(t) for all t € R. Moreover, if the multi-valued process U is upper
semicontinuous with closed values, it holds

A(Dy,t) C U(t,7)A(Dy,7) V(t,7) € R2. (5.2)

Proof. Consider t € R fixed. R

First of all, we will check that the set A(Dg,t) is nonempty. This is straight-
forward. Let {y,} be a sequence such that y, € U(t,7,)Dy(7,) for all n € N
and {7,} C (—o0,t] converging to —oo. As the multi-valued process U is pull-
back ﬁo—asymptotically compact, there exists a convergent subsequence of {y,}, i.e.
Yny =Y E A(lA?O, t). Therefore, A(lA)O, t) is nonempty.

Now, we will show that the set A(lA)o,t) is compact. Since it is closed, we only
need to check that it is relatively compact. To do this, consider given a sequence
{yn} C A(Dy,t). Making use of Lemma 5.4, for each y, € A(Dp,t), there exist
T, — —oo and z, € U(t,7,)Doy(7,), such that

1
dx (Yn, 2n) < e (5.3)

Then, as the process U is pullback ﬁo—asymptotically compact, there exists a con-
vergent subsequence of {z,}. Therefore, making use of (5.3), the sequence {y,} is
relatively compact.

The next step consists in proving (5.1). To do this, we argue by contradiction.
Assume that there exist € > 0 and a sequence {y,} with y,, € U(¢, 7,)Do(7,) for all
n € N and {7,} C (—o0,t] converging to —oo, such that

dx (yn, A(Dyg, 1)) > ¢ Vn €N, (5.4)

Now, since the multi-valued process U is pullback ﬁg—asymptotically compact, there
exists a subsequence of {y,} (relabeled the same) such that y, — y € A(Do,t) (see
Lemma 5.4), which is a contradiction with (5.4).

In addition, the family {A(Dy,t) : t € R} is minimal. Assume that C' = {C(t) :
t € R} is a family of closed sets which fulfils

Tgmoo distx (U(t, 7)Do(1),C(t)) = 0. (5.5)

Consider given y € A(Dy,t), we will show that y € C(t). On the one hand, from
Lemma 5.4, we deduce that there exist sequences {7,} C (—o0,t] and {y,} C X
with 7, = —oo0 and y, € U(t,7,)Do(7,) for all n € N, such that y,, — y. On the
other hand, from (5.5) we deduce

lim distx (U(t, 7,,) Do (1), C(t)) = 0.

n—oo
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Therefore, y € C(t) since C(t) is a closed subset of X.

Finally, assuming that the multi-valued process U is upper semicontinuous with
closed values, (5.2) is proved. Consider (t,7) € R? fixed. Given y € A(Do,t),
there exists a sequence {y,} C X with vy, € U(t,7, + 7)x, for all n € N, where
x, € Do(7, + 7) and 7, C (—00,0] with 7,, = —o0, such that y,, — y. Observe that
U(t, 7n+7)x, C U, T)U(T, Tn+T)Ty, therefore, y, € U(t, 7)z,, where 2z, € U(t, 7, +
7)x, for all n. Then, as the multi-valued process U is pullback ﬁg—asymptotically
compact, there exists a subsequence of {z,} (relabeled the same) such that

2y — 2 € A(ﬁO,T).

Finally, using that the multi-valued process U is upper semicontinuous with closed
values, we deduce that y € U(t,7)z C U(t, 7)A(Dy, 7). O

From now on, consider a universe D, that is a nonempty class of families para-
meterized in time D = {D(t) : t € R} C P(X).

Definition 5.6. A universe D is inclusion-closed if given D€ D and D' = {D'(t) :
t € R} C P(X) with D'(t) C D(t) for allt € R, it holds that D" € D.

Definition 5.7. The family Do = {Do(t) : t € R} is said to be pullback D-absorbing

for a multi-valued process U if for every t € R and De D, there exists T(D t) <t
such that R
U(t,7)D(t) C Do(t) V7 <7(D,t).

Proposition 5.8. If the family Dy = {Do(t) : t € R} C P(X) is pullback D-
absorbing for the multi-valued process U, then

A(D,t) C A(Dy,t) YDeD ViteR.
In addition, if the family lA)o € D, then
A(Do,t) C Do(t)" VteR. (5.6)

Proof. Consider fixed a family D € D, t € R and y € A(D, ). Making use of Lemma
5.4, there exist two sequences {7,,} C (—o0,t] and {y,} C X, such that 7,, - —oo0,
yn € U(t, 7,)D(7,) for all n € N, and y,, — y.

Taking into account that the family lA)D is pullback D-absorbing for the multi-
valued process U, for any k € N, there exists 7, € {7,} with 7,,, <t — k such that
U(t — k,Tn,)D(7n,) C Do(t — k). Then, since

Y € U(t, 70, )D(1,) C Ut t — BYU(t — k, 7, ) D(7,) € U(t,t — k) Do(t — k),

and y,, — vy, by Lemma 5.4, y € A(ﬁo,t).
Finally, to prove (5.6), assume that Dy € D and consider ¢ € R fixed. Making
use of Lemma 5.4, it holds that given y € A(Dy,t), there exist {r,,} C (—o0,t] and
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{yn} C X such that 7,, = —o0, y, € U(t, 7,,)Do(7y,) for all n € N, and y,, — y. Then,
taking into account that the family Dy is pullback D-absorbing for the multi-valued
process U, there exists ny € N such that y, € Dg(t) for all n > n;. Therefore,

(TR Do(t) . ]

Proposition 5.9. Assume that the family Do = {Do(t) : t € R} C P(X) is pullback
D-absorbing and the multi-valued process U is pullback ﬁo—asymptotically . Then,
the multi-valued process U is pullback ﬁ—asymptotically compact for any De D, i.e.
U is pullback D-asymptotically compact.

Proof. Consider fixed D € D, t € R, {r,} C (—o0,#] and {y,} C X, such that
T, — —oo and y, € U(t,7,)D(7,) for all n € N. Our aim is to prove that the
sequence {y,} is relatively compact in X.

Since the family ﬁo is pullback D-absorbing, for any k € N, there exists 7, €
{7a} such that 7,,, <t —k and U(t — k,7,,)D(7,,,) C Do(t — k). Then, bearing this
in mind together with item (ii) of Definition 5.1, we have

Ynp € U(t, T, ) D(10,,) CU(t,t — k)U(t — k, 70, ) D(7,) C ULt — k) Do(t — k).

Finally, taking into account that the process U is pullback ﬁo—asymptotically com-
pact, we deduce that there exists a convergent subsequence of {yy, }. ]

5.2 Existence and relationships between pullback
attractors
Definition 5.10. A pullback D-attractor for a multi-valued process U on X is a
Jamily Ap = {Ap(t) : t € R} C P(X) such that
1. for any t € R, Ap(t) is a nonempty compact subset of X;
2. Ap is pullback D-attracting, i.e.
lim_distx (U(t,7)D(r), Ap (1)) = 0 VDeD VteR,

T—
3. Ap is negatively invariant, i.e.

Ap(t) C U(t,7)Ap(T) V(t,7) € RZ

A pullback D-attractor Ap is said to be minimal if it satisfies that if there exists
another family of closed sets C' = {C(t) : t € R} such that it is pullback D-attracting,
then Ap(t) C C(t) for allt € R.

Observe that pullback attractors are not unique in general (cf. [93]); however,
the minimal pullback attractor is. Therefore, in the sense of minimality, one recovers
uniqueness of pullback attractor.

The following result ensures the existence of a pullback D-attractor for a multi-
valued process U (see also [27, 94, 5]).
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Theorem 5.11. Assume that U is an upper semicontinuous multi-valued process
with closed values, Dy = {Dy(t) : t € R} C P(X) is a pullback D-absorbing family
and also suppose that the process U is pullback Dy-asymptotically compact. Then,
the family Ap = {Ap(t) : t € R} given by

——X
Ap(t)= | J A(D,t)  VtER

Dep

is the manimal pullback D-attractor. In addition, when Dy € D, Ap(t) C Do(t)X for
allt € R. Finally, if Ap € D and U is strict, Ap is invariant under the multi-valued
process U, 1.e.

Ap(t) = U(t,7)Ap(r) V(t,7) € R:

Proof. First of all, we will show that for any ¢ € R, the set Ap(t) is a nonempty
compact subset of X. Since the family 130 is pullback D-absorbing and the process
U is pullback DO asymptotically compact, making use of Proposition 5.9, it holds
that the process U is pullback D- asymptotically compact for any DeD. Therefore,
from Lemma 5.5, we deduce that the set A(D t) is nonempty and compact for any
D €D and for all t € R. Now, applying Lemma 5.8, we have

L A(D,t) € A(Dy, 1).

Dep

Since the set A(Dp, t) is compact (see Lemma 5.5), the set Ap(t) is nonempty and
compact for all t € R.

The family Ap = {Ap(t) : t € R} is pullback D-attracting, since (5.1) holds for
all D € D. In addition, it is minimal as a consequence of Lemma 5.5.

Finally, to prove the existence of the minimal pullback D-attractor, we only need
to check the negative invariance of the family Ap. To do this, we will use that the
multi-valued process U is upper semicontinuos with closed values. Namely, from
Lemma 5.5, using (5.2), we deduce

UAaD.yc | Juwnab, =) |J Ut
DeD DeD DeD xoeA(D,r)
= |J  Utnm=Ut7 |JAD7).

20€Upcp AD,7) Dep

Therefore, Ap(t) C U(t,7)Ap(7) for all (t,7) € R Then, the existence of the
minimal pullback D-attractor is guaranteed.

In addition, if the family Dy € D, then Ap(t) C mx for all ¢ € R thanks to
(5.6).

Finally, we will check that the family Ap is invariant. Consider (t,r) € R2
fixed. Since Ap € D and Ap is pullback D-attracting, given € > 0, there exists
T(e,t,r) < 0 such that

distx (U(t,r + 7)Ap(r+7), Ap(t)) <e V7 <T(e,t,r).
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Observe that using that the multi-valued process U is strict, we have
Ut,r)Ap(r) CU(t,r)U(r,r +71)Ap(r +7) =U(t,r + 7)Ap(r+7) V7 <O0.

Therefore,
diStX(U(t, T’)AD(T), Ap(t>) <e Ve>0.

]

Remark 5.12. (i) If Dy € D, the set Dy(t) is closed for allt € R and the universe
D is inclusion-closed, then the family Ap belongs to D.

(i1) If Ap € D, it is the unique family of closed subsets in D that fulfils properties
1-8 in Definition 5.10.

Again, analogously as in Chapter 1, we denote by D¥ the universe of fixed
nonempty bounded subsets of X, i.e. the class of all families D of the form D =
{D(t) = B : t € R}, where B is a fixed nonempty bounded subset of X.

Now, we establish some relationships between pullback attractors (for more de-
tails see [94, Corollaries 2 and 3]).

Corollary 5.13. Under the assumptions of Theorem 5.11, if Dy C D, then .Apfg =
{Apx(t) : t € R}, where

X
Apx(t)= | J ABt) VteR,
B bounded

is the minimal pullback D3 -attractor for the multi-valued process U and the following
relationship holds
Ang (t) C Ap(t) VteR.

In addition, if there exists T' € R such that the set | J,., Do(t) is bounded in X, then
Apx(t) = Ap(t) Vt<T.

Analogously as in Theorem 1.16, we have the following result which allows to
compare two attractors for a process. We omit the proof because it is very close to
that of Theorem 1.16.

Theorem 5.14. Assume that {(X;,dx,)}i=12 are two metric spaces such that X, C
Xy with continuous injection, D; is a uniwverse in P(X;) for i = 1,2, and Dy C Ds.
Suppose that U is a multi-valued map that acts as a multi-valued process in both
cases, i.e. U : R2 x X; — P(X;) fori = 1,2 is a multi-valued process. For each
teR,

- = X

Aty ={J M(Dit)  i=1,2

D;eD;
where the subscript i in the symbol of the omega-limit set A; is used to denote the
dependence on the respective topology. Then, A;(t) C As(t) for all t € R.

In addition, if
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(i) Ai(t) is a compact subset of X for allt € R,

(ii) for any Dy €Dy and t € R, there exist a family Dy €D and a t%l such that

U s pullback ﬁl—asymptotically compact, and for any s < t*ﬁl there exists a
T, < § such that
U(s,7)Do(T) C Di(s) V71 < 75,

then Ay (t) = As(t) for allt € R.



Chapter 6

Nonlocal reaction-diffusion
equations without uniqueness

In Chapters 2, 3 and 4 we have analysed nonlocal problems with uniqueness of
solution. Namely, we have studied the non-autonomous nonlocal parabolic equation

ou
yri a(l(u))Au = f(u) + h(t),

fulfilled with zero Dirichlet boundary conditions. To guarantee the uniqueness of
solution we have assumed the function a is locally Lipschitz. In this chapter we get
rid of this assumption to deal with nonlocal problems in a multi-valued framework.

Our main goal is to show the existence of minimal pullback attractors in the phase
spaces L*(Q2) and H}(€). Since the uniqueness of a solution is not guaranteed, to
analyse the asymptotic behaviour of the solutions of the evolution problem we will
use the abstract results of the theory of non-autonomous multi-valued dynamical
systems analysed in Chapter 5.

In addition to proving the existence of attractors, we will study their upper
semicontinuous behaviour in L? and H'-norms. Many authors have been interested
in studying this robustness property in different frameworks. For instance, in the
random context, it is studied by Caraballo et al. in [30]. There, the upper semi-
continuity w.r.t. a parameter is proved for two problems, reaction-diffusion and
Navier-Stokes equations, both with a small random perturbation involving additive
noise. In [34], the study of this property allows Carvalho et al. prove that dif-
fusively coupled abstract semilinear parabolic systems synchronize. Later, Arrieta
et al. prove in [13] the upper semicontinuity for attractors associated to a nonlin-
ear second-order parabolic equation for which the diffusion coefficient was large in
a subdomain of Q. In a multi-valued framework, in [89] the upper semicontinu-
ous behaviour of a family of attractors related to a general class of parameterized
delay differential equations posed in potentially different state spaces is studied by
Marin-Rubio.

The results of this chapter can be found in [22] and [26].
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6.1 Setting of the problem and existence result

Let Q € RY be a nonempty bounded open set and 7 € R. Then, we consider the
following perturbed non-autonomous nonlocal reaction-diffusion problem

% — (1 - &)a(i(u)Au = f(u) + ch(t) in Q x (r,00),

(F) w=0 ondQ x (r,00),

w(z,7) = u () in Q,

where ¢ € [0,1), the function a € C'(R;R) and there exists a positive constant m
such that
0<m<a(s) VseR, (6.1)

and [ € L(L*(Q),R). The function f € C(R) and fulfils
—k—aq|sfP < f(s)s <k — ag|s]P Vs €R, (6.2)

where a1, as and k are positive constants and p > 2.
Observe that from (6.2), it follows that there exists a constant 8 > 0 such that

[f(s) < B(IsP~"+1) VseR. (6.3)
Analogously to Chapter 4, u, € L*(Q2) and h € L? (R; H'(Q)). From now on,

loc
we identify L?(2) with its dual. Therefore, the chain of compact and dense em-

bedding H}(2) C L*(Q) € H~1(Q) holds. Observe that as a result of the previous
identification, I(u) is understood as (I, u), but for short it is denoted by I(u).

Now we are going to analyse the existence of weak solutions to (Px).

Definition 6.1. A weak solution to the problem (P:) is a function u that belongs to
L=(r,T; LA(Q)) N L2(7,T; HY () N LP(7,T; LP(Q)) for all T > 7, with u(t) = u,,
and such that for all v € H}(Q) N LP(Q)

%(U(t% v) + (1 = e)all(u(®))((u(t), v)) = (f(u(t),v) + e(h(t), v), (6.4)

where the previous equation must be understood in the sense of D'(T, 0).

When u is a weak solution to (P.), making use of the continuity of a, | € L*(),
(6.3) and (6.4), we deduce that v’ € L*(7,T; H ' (Q))+L(7,T; L)) forany T > T
(where p and ¢ are conjugate exponents). Therefore, u € C([1,00); L*(2)) and the
initial datum in (P.) makes sense. Furthermore, the following energy equality holds

u(t) 3+ 2(1 — ) / a1 (u(r)) Ju(r)|2dr (6.5)
— Ju(s)3 +2 / (F (), u(r))dr + 2 / (W), u(r))dr

forall 7 <s<t.
Now, the existence of weak solution to (P.) is proved. It is worth noting that no
assumption of smoothness on 2 is imposed.
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Theorem 6.2. Assume that the function a € C(R;Ry) fulfils (6.1), ¢ € [0,1),
f € C(R) satisfies (6.2), h € L} (R; H () and | € L*(Q). Then, for any 7 € R
and any u, € L*(Q), there exists at least one weak solution to (P.).

Proof. To prove this result we use the Galerkin approximations. Let {w; : j >
1} € Hy() N LP(Q) be a Hilbert basis of L*(Q2) such that (J, .y Vi, where V, :=
span{wy, ..., w,}, is dense in HJ(2) N LP(Q). Now, consider T' > 7 fixed. For each
integer n > 1, we denote by wu,(t;7,u,) = > 7| pn;(t)w; (for short denoted by
un(t)) a local solution to

%(Un(t)awj)+(1—€)a(l(un(t)))((un(t)7wj))=<f(un(t))+€h(t)awj> t € (r,00),
(un (1), w;) = (ur, wy), j=1,...,n,

(6.6)
Multiplying (6.6) by ¢,,(t), summing from j = 1 to n and making use of (6.1),
we obtain

=L O+ (1= )mllun (O3 < (F(un(8)), un(®)) + £lh(), un(t)) ae. ¢ € (rt,),

2dt
(6.7)

where (7,t,) is an interval of existence of solutions to (6.6) by the Carathéodory
Theorem (cf. [52, Theorem 1.1, p. 43]).

From (6.2),

(f (un(t)), un(t)) < K[Q] = aslun(t)[5.

On the other hand, using the Cauchy inequality and taking into account that

e €[0,1), we have

(0 1a(0) < g2 IHOIE + S a1

Therefore, applying these two inequalities to (6.7) we obtain

d
—lun ()2 + (1 = e)mllun ()3 + 202]ua(t)]; < 2619 +

13
h(t)]?
7 mll ()]l

(1-¢)

a.e. t € (1,t,). Now, integrating between 7 and t € (7,t,), we deduce
t t
n(OB + (1= 2)m [ (5) s + 20 | Jun(s) s
T ) . 7'
<l + 26T =)+ = [ ().

From the above a priori estimate, we deduce that solutions to (6.6) are defined in
the whole interval [7,T] and the sequence {u,} is bounded in L>®(7,T; L*(Q2)) N
L*(r,T; Hy(Q)) N LP(7,T; L*(2)). From this, bearing in mind that for all n € N
each u,, € C[r,T]; L*(Q2), it holds that there exists a positive constant C, > 0 such
that

[up(t)|]s < C VEte[r,T] Vn>1.
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Now making use of the continuity of the function a and [ € L*(f2), we deduce that
there exists a positive constant Mq__ > 0 such that

a(l(un(t))) < Mc,, Vte[r,T] VYn> 1. (6.8)

Taking this into account together with the boundedness of {u, } in L*(,T; H3(Q)),
we obtain that the sequence {—a(l(u,))Au,} is bounded in L*(7,T; H 1(Q)).

On the other hand, using (6.3) and the boundedness of {u,} in LP(7,T'; L*(Q2)),
we deduce that {f(u,)} is bounded in L9(7, T; L9(2)).

Thus, we deduce that there exist a function u € L (7, T; L*(Q))NLA(7, T; H(Q))
NLP(7,T; LP (), & € Li(r,T; L1(Q)), & € L*(r, T; H1(Q)) and a subsequence of
{u,} (relabeled the same) such that

;

u, —u  weakly-star in L=(r, T; L*(Q0)),

u, —u weakly in L?(1,T; H}(%)),

up, — u weakly in LP(1,T; LP(Q)), (6.9)
flup) = & weakly in L4(7,T; L9(Q)),
| —a(l(un))Au, — & weakly in L*(7,T; H'(Q2)).

To prove that & = f(u) and & = —a(l(u))Au, we will use similar arguments to the
ones used in the proof of Proposition 4.16. Consider w € V,, fixed. Integrating in
(6.6) between ¢ and t + b, with b € (0,7 —7) and t € (7,7 —b), and using (6.8) and
the Holder inequality, we obtain

(un(t +b) — up(t), w)
t+b

t+b t+b
<Moo llwlladsre [ W lwlads+ [ un()lhulds

< b3 [(1 —&)Me NunllL2(rma ) + €||h||L2(T,T;H*1<Q>>]
+ b P [wlp || f ()| Lo im0 ()

Since {u,} is bounded in L?(7, T; H}(2)) and { f(u,)} is bounded in Li(7,T; L9(£2)),
there exists C. > 0 such that

(tn(t +b) = un(t),w) < C(02 +bYP)(||w]la + w],)-
Then, taking in the previous inequality w = w,(t + b) — u,(t), we have
|un(t +0) — un(t”g < Os(bl/Q + bl/p)(”un(t +0) — un(t)|l2 + |un(t +b) — un(t)]p)

a.e. t € (1,7 —0).
Now, integrating between 7 and 7" — b, we have

T—b T T
/ |un(t +0) — un(t)lgdt < 205(51/2 + bl/p) (/ |t ()] 2dr + / ]un(r)\pdr> )
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Then, applying the Holder inequality in the previous expression, we obtain

T—b
/ (£ + B) — 1 (1) 2d
< 2C.(b'/? +b'/7) <(T — )2 | 2z ) + (T — T)l/qHunHLP(T,T;LP(Q))> -

As a result of the previous estimates, there exists C.(7) > 0 such that

T—b
/ |t (t +b) — u, (t)|2dt < C(T)DY? +b/P) Yn>1 VYbe (0,7 —1).

Therefore,

T—b
lim sup/ |t (t + ) — u, () [5dt = 0. (6.10)

b—=0

In addition, taking into account that {u,} is bounded in L>(7,T; L*(f2)), it is
not difficult to check that

T+b T
lim sup </ \un(t)|§dt+/ yun(t)gdt) 0. (6.11)

b—=0

Then, since the embedding Hj(Q) — L?*(f2) is compact and taking into account
(6.10) and (6.11), applying [110, Theorem 13.2, p. 97] and [110, Remark 13.1, p.
100], we obtain that the sequence {u,} is relatively compact in L?(7, T; L*(©2)). From
this, making use of [85, Lemme 1.3, p. 12] and arguing as in the proof of Theorem
2.4, we identify & and & in (6.9). Namely, it has

f(un) = f(u) weakly in L9(7,T; LI(Q2)), (6.12)
a(l(up))u, — a(l(u))u  weakly in L*(1,T; Hy(Q)). (6.13)

Now, we are ready to prove (6.4). Consider fixed n, ¢ € D(7,T) and w € V,
Then, integrating (6.6) between 7 and T, for all u > n we obtain

-/ (), w0 + (1 — ) / )~ Duy (), whp eyt

-/ (), @) 0yt +2 / {h(e), whe(t)d.
Taking limit when y — oo, making use of (6.9), (6.12) and (6.13), it yields
-/ (ut), w) (e + (1 - ¢) / " a1((e)) - Au(t), whe(0)dt

-/ (e, wholtde + e / (o), wye(t

for all w € Hy(Q) N LP(Q), since U,y Vo is dense in Hg(Q) N LP(Q2). Therefore,
(6.4) holds.
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In addition, as a result of the previous equality,

(1~ Jall()Au = [w) +eh in D, T H Q) + L)),

and thanks to the regularity of f(u), —a(l(u))Au and h, we deduce that v’ €
L3(7,T; H Q) + L7, T; LY()). As a consequence, u € C([r,T]; L*(R?)) and it
makes complete sense to check that u(7) = u,.

On the one hand, consider fixed n, o € H'(7,T) such that o(T') = 0 and o(7) # 0
and w € V,,. From (6.6), we deduce for all u > n

~ (up w)ip(r) — / (uy (1), w) ! (1)t + (1 — ) / a1 (1)) (1 (1), ) o 2)
— [ (o) wppde += [ (b w)elt)ar

Now, taking limit when u — oo, we obtain
~(unwplr) = [ (O 0@+ (1= 2) [ alllu) (), )
= / (f(u(t)),w)p(t)dt + 5/ (h(t), w)p(t)dt. (6.14)

On the other hand, in light of (6.4) we have
~ (ulr)wier) - [ () wheOde+ (1= &) [ Q) (ult)w))e(e)i
= [ Gt weis = [ w0, v

Then, comparing (6.14) with this last expression, (u,,w)p(T) = (u(7),w)p(T)
holds. Therefore, since ¢(7) # 0 and {w,} is a Hilbert basis of L*(§2), we deduce
that u(r) = u,.

We have obtained a weak solution on an arbitrary finite time interval [r, 7.
Now, we may repeat this argument on an interval of the form [T, T + 1], then on
[T+ 1,T + 2], etcetera. This way, concatenating these solutions we finally obtain a
weak solution well-defined globally in time. O]

6.2 Minimal pullback attractors in L?(())

In this section, we want to study the long-time behaviour of the solutions to (P.) in
L*(Q) making use of the results of pullback attractors analysed in Chapter 5.

In what follows, ®°(7, u,) denotes the set of weak solutions to (FP:) in |7, 00) with
initial datum wu, € L*(9).

Now, we define the multi-valued map U® : R2 x L?(Q) — P(L*(Q)) by

Us(t,T)u, = {u(t) : u € ®°(r,u;)} Vu, € L*() Vr <t
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Firstly, we show that the multi-valued map U*® is a strict multi-valued process.
Roughly speaking, this is a consequence of the translation and concatenation prop-
erties of the weak solutions. We will show the proof for the sake of completeness.

Lemma 6.3. Assume that the function a € C(R;R) and (6.1) holds, £ € [0,1),
f € C(R) satisfies (6.2), h € L2 (R; HY(Q)) andl € L*(Q). Then, the multi-valued

map U® is a strict multi-valued process on L*(Q) for all € € [0,1).

Proof. Consider ¢ € [0,1) fixed. The multi-valued map U¢ is well-defined because
every weak solution u belongs to C'([r,T]; L*(Q)) (cf. Theorem 6.2).

In addition, observe that U (7, 7)u, = {u(7) : u € (7, u,)}. Therefore, accord-
ing to Definition 5.1, to prove that U¢ is a multi-valued process we only need to
check

Us(t, T u, C U(t,s)U(s,T)u, V7 <s<t Vu, € L*(Q). (6.15)

Consider fixed (¢,7) € R? and u, € L*(Q). Given ¢ € US(t,7)u,, there exists
u € P°(7,u,) such that u(t) = ¢. Observe that when s > 7, u(s) € U*(s, T)u,.
Then, since U¢(t, s)u(s) = {z(t) : z € (s, u(s))}, we have

o =u(t) € U(t,s)u(s) C U(t,s)U(s, T)ur.

Therefore, (6.15) holds.

Finally, we will check that in fact the multi-valued process U*® is strict. To do
this, consider given ¢ € U¢(t, s)U%(s, 7)u,. Then, there exists a solution u to (P.)
such that u(t) = ¢ and u(s) = z(s), where z is another solution to (P.) which fulfils
that z(7) = u,.

Now, we define

z(r) if 7<r<s,
y(r) = .
u(r) if s<r<t.

First of all, we will show that the function y is a weak solution to (P.). Taking into
account the regularity of z and w, it holds that y € LP(r, T; LP(Q))NL%(7, T; HY(Q))
NC([r,T]; L*(Q)). Therefore, it makes complete sense to define its distributional
derivative as follows

, Z(r) if 7<r<s,
Yy =9 00
u(r) if s<r<t.

Now, fix v € H}(Q) N LP(Q) and » € D(r,t). Then, it holds

(Y (r), (1) Dt (r,t:1-1.(Q) + L9(€)). D(r,t) V)

= [ yneiar
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Then, y' € L*(r,T; H*(Q)) + L7, T; LY(Q)). Finally, we need to check that the
function y fulfils (6.4), i.e. given ¢ € D(7,t), we need to prove that

- [0 )is +(1-9) [Catue)(0etds 0.1
= [ orelds + = [ (hts).0pe(s)as

Observe that if supp(p) C (7, s), (6.16) holds since z is a weak solution to (P.) in
(7, s). Analogously, if supp(y) C (s, t), it satisfies (6.16) because u is a weak solution
to (P.) in (s,t). Let us prove (6.16) when supp(y) ¢ (7,s) and supp(p) & (s,t).
Consider ¢ € D(7,t) fixed.

On the one hand, since u is a weak solution to (P:) in (s,t), u fulfils (6.4) in
D'(s,t). Then, since ¢ € D(7,t), we have

~ (uls), 0)o(s) — / (u(r), ) (r)dr + (1 — &) / a1 (u(r))) (ulr), v)yo(r)dr
- / (F(u(r)), 0)p(r)dr + ¢ / (h(r), v)plr)dr.

Analogously, as z is a weak solution to (P.) in (7,s), z satisfies (6.4) in D'(7, s).
Therefore, making use of the fact that ¢ € D(7, 1), it yields

(51 006() = [ 000 e+ (1=2) [ a0 0)pr)ds
=[G oendr e [ i) opar

On the other hand, u(s) = z(s) holds.
Then, taking this into account, (6.16) holds. Therefore, the multi-valued process
U*® is strict. O

Remark 6.4. When e =0, Ut,7) = S(t — 1) for all (t,7) € R, where S is the
multi-valued semiflow associated to the weak solutions of the autonomous problem
(Py). In what follows, we also keep the notation ®° for the set of solutions to ().

The following result is crucial to show that the multi-valued process U® is upper
semicontinuous with closed values for all € € [0, 1). To prove this continuity result,
we use the energy method applied in Propositions 2.15 and 3.16 to analyse the
pullback asymptotic compactness.

Proposition 6.5. Under the assumptions of Lemma 6.3, consider a sequence {u”}
C L*(Q) such that u — w, strongly in L*(Y). Then for any sequence {u"} with
u™ € (7, ul) for all n > 1, there exist a subsequence of {u"} (relabeled the same)
and u € ®°(1,u,) such that

u”(t) — u(t) strongly in L*(Q) Vt > 7. (6.17)
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Proof. Consider 7 < T fixed. In view of the energy equality and (6.1), we deduce

L2 R+ (1= i (O3 < (F@(©),u(0) + =h(B), 0 (1) ae. e (1.T).
Then, bearing in mind
(f(u"(t),u"(t) < &[Q| — azlu" ()]},

e(h(t),u"(t)) < 26<1||fi(72)|l; n (1 —2€)m

[l (B)]13,

52

—[u" ()53 + (1 —e)m|lu™(t)||3 + 2a|u” (t)[5 < 2k[Q + m”h(t)”f a.e. t>T.

Integrating between 7 and t € (7,71,
t t
(OB + (= )m [ (s) s + 20z [ u(s) s

. 82 T
< 2+ 20197 =)+ o [ ).

From the previous inequality, we obtain that the sequence {u"} is bounded in
L=(7,T; LA(Q)) N L(7,T; H} () N LP(7,T; LP(Q)). Taking this into account to-
gether with the fact that each u™ € C([r,T]; L*(Q2)), we deduce that there exists a
positive constant C, > 0 such that

W (t)]s < Coe VEE[r,T] VYn > 1.

Now, since the function a € C(R; R ) and [ € L*((2), there exists a positive constant
Me,, > 0 such that
a(l(u™(t))) < M¢,, Yte[r,T] Vn>1.

Therefore, as the sequence {u,} is bounded in L*(7,T; H}(Q)), we deduce that
the sequence {—a(l(u"))Au"} is bounded in L*(7,T; H~'(€2)). In addition, the se-
quence {f(u™)} is bounded in L4(7,T; L(2)), thanks to (6.3) and the boundedness
of {u"} in LP(r,T; L*(Q2)). As a consequence, the sequence {(u")'} is bounded in
L*(r, T; H(Q))+ L7, T; LY(f2)). Then, applying the Aubin-Lions lemma, there ex-
ist a subsequence of {u"} (relabeled the same) and an element u € L>®(7, T; L*(Q))N
L*(r,T; HY(Q)NLP (7, T; LP(Q)) with u' € L*(r,T; HY(Q)) + L(7,T; LY(f2)), such
that

( u" > u  weakly-star in L=(1, T; L*(Q0)),
u" — u  weakly in L*(,T; H}(9)),
u" —u  weakly in LP(1,T; LP(Q)),
u” — u strongly in L?(7,T; L*(Q)),
u"(s) — u(s) strongly in L*(Q) a.e. (1,7),
(u™) — ' weakly in L*(r,T; H Y(Q)) + L7, T; LY()),
f(u™) = f(u) weakly in L9(7,T; L9(Q)),
—a(l(u™)Au™ — —a(l(u))Au  weakly in L*(7,T; H1(Q)),

(6.18)

\



152 6.2. Minimal pullback attractors in L?({)

where the limits of the last two convergences have been obtained applying [85,
Lemme 1.3, p. 12], as done in the proof of Theorem 2.4.

From (6.18), we deduce that u fulfils (6.4) in the interval (7,7T"). Moreover, since
u € C([r,T]; L*()), a similar argument to the one used in the proof of Theorem
6.2 yields u(7) = u,. Therefore, u € (7, u,).

Finally, we will show the convergence (6.17). First of all, we have that the se-
quence {u"} is equicontinuous in H~(Q) + L4(2) on [r, T], thanks to the bounded-
ness of {(u")'} in L*(7, T; H-(Q))+ L(7, T; L%(2)). Then, since the sequence {u"}
is bounded in C'([r, T]; L*(€2)) and the embedding L?(Q) — H ' (Q)+ L() is com-
pact, the Arzela-Ascoli theorem implies (for another subsequence, relabeled again
the same) the following convergence

u" — u  strongly in C([r,T]; H () + LY(Q)). (6.19)
Now, making use of the boundedness of {u"} in C([r,T]; L*(2)), we deduce
u"(t) — u(t) weakly in L*(Q) Vt € [r,T], (6.20)

where we have used (6.19) to identify the weak limit.
On the other hand, making use of (6.5), the following estimate holds

2 t
(0 < () + 20100t =) + g [ MO0 ¥r<s<e<T,
(6.21)
with z replaced by either u or any u".
Now, we define the following functions

I(t) = (O = 26190 = gt [ )
I6) = fult) = 2x190t = 5= [ o)l

As a result of the regularity of w and all ", the functions J and all J,, are
continuous on [7,T]. Further, it is not difficult to check using (6.21) that these
functions are non-increasing on [7, T]. In addition, from (6.18), we deduce

Jo(t) = J(t) ae. te(r,T).
In fact, it can be proved
Jo(t) = J(t) Vter,T). (6.22)

To do this, consider ty, € (7,7 fixed. Let {t;,}m>1 C (7,7) be a sequence such
that J,(t,) — J(tn) for all m > 1 and t,, 1 to. Now, fix € > 0. Then, there exist
m(e) > 1 and n(e) > 1 such that

|[J(tm) = J(to)] < 5 Vm =m(e),

[ Jn(tme) = J(tme)| < 5 ¥n = n(e).

NN ™
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Taking this into account together with the non-increasing character of all J, on
[7,T], we obtain

Jn(to) = J(to) = Ju(to) = Ju(timee)) + Jn(tim(e)) = J(tine)) + I (b)) — I (to)
< N In(tme) = (b)) + [ (b)) — S (to)]
<e Vn>n(e).

Then, bearing in mind the definitions of J and .J,,, we deduce

lim sup |u" (to)[3 < Ju(to)[3-
n—o0
From this and (6.20) in ¢t = #;, not only does (6.22) hold, but also (6.17) in [, T].
Successive repetitions of this procedure in [7,T + 1], [7,T + 2|, and so on, and a
diagonal argument, yield (6.17) for all ¢ > 7 for a suitable subsequence. O

The following result establishes that the multi-valued process U€ is upper-semi-
continuous with closed values for all € € [0, 1).

Proposition 6.6. Under the assumptions of Lemma 6.3, the multi-valued process
U¢ is upper semicontinuous with closed values for all € € [0, 1).

Proof. Fix € € [0,1).

Firstly, we will show that the multi-valued process U* is upper semicontinuous.

To prove it, we argue by contradiction. Suppose that there exist t > 7, u, € L?(Q),
a neighbourhood N of U®(t,7)u,, and a sequence {y,} such that y, € Us(t, 7)uZ,
where u” — u, in L*(Q2) and y,, € N for all n > 1.
Observe that since y,, € U=(t, 7)u?, there exists u™ € ®°(7,u?) such that u™(t) = y,.
In addition, making use of Proposition 6.5, since u” — u, strongly in L*(Q), there
exist a subsequence of {u"} (relabeled the same) and u € ®°(7, u,) such that (6.17)
holds. Therefore, there exists a subsequence of {y,} (relabeled the same) such that
yn — u(t) strongly in L?(Q2), which contradicts the fact that y, ¢ N for all n € N.
Then, the multi-valued process U*® is upper semicontinuous.

Finally, we will show that the multi-valued process U® has closed values, i.e. the
set U(t, T)u, is closed in L*(Q) for any u, € L*(Q) and (¢,7) € R2. Fix (t,7) € R?
and u, € L*(Q). Consider a sequence {u"(t)} C U?(t,7)u, converging strongly
in L*(Q). Then, u"(7) = u, for all n € N. Since u"(7) — u, strongly in L*(Q),
making use of Proposition 6.5, we deduce that there exists a subsequence of {u"(t)}
(relabeled the same) such that u™(t) — u(t) € U(t, 7)u, strongly in L*(2). This
concludes the proof. O

The next result will be used to define a universe in P(L*(2)) that will be appro-
priate for our purposes. The idea of the proof is close to those of Lemmas 2.11 and
3.12.

Proposition 6.7. Under the assumptions of Lemma 6.3, if u, € L*(Q), then every
solution u to (P.) fulfils

2k|9| g2eret
fe 2(1 —&)m — A\ pe

t
()2 < e, 2 4 / e \lh(s)|Pds V> T

(6.23)
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for any p. € (0,2(1 —e)A\ym).
Proof. Using (6.1) and (6.2) in the energy equality, we obtain
d
alu(t)g +2(1 — &)yml|u(t) |5 < 26[Q| + 2e[|h(t)||«||u(t)]]2s ae. t > T.

Adding -y |u(t)]3, multiplying by e*<!, and using the Cauchy inequality, we deduce

g2etet

h
2(1 — &)ym — pA;? |

d
— (e u(t)[3) < 26[Qfet" +

Hl? ae. t> 7.
7 O ae t>7

Integrating the previous expression between 7 and ¢, (6.23) holds. O
We are now able to define a suitable tempered universe in P(L?*(2)).

Definition 6.8. For each pu > 0, Dﬁz denotes the class of all families of nonempty
subsets D = {D(t) : t € R} C P(L*(Q)) such that

lim | e sup |v]3 | =0.
T veD(T)

The following result shows the existence of a pullback absorbing family. For that,
we need to assume that there exist ey € (0,1) and p., € (0,2(1 —g9)Aym) such that
the function A fulfils o

/ <o [ h(s)||2ds < oo, (6.24)
Actually, once that such a couple (go, p.,) exists, then for any ¢ € [0, &¢) it is possible
to obtain the previous estimate for some p. € (0,2(1 —e)A;m). Indeed, it is enough
to use pe = g,

Observe that the proof of this result is very close to those of Propositions 2.13
and 3.14.

Proposition 6.9. Under the assumptions of Lemma 6.3, if the function h also
fulfils condition (6.24) for some g € (0,1) and pe, € (0,2(1—g9)A\im), then for any
e € (0,20, the family D = {Dg(t) : t € R} defined by D§(t) = Bp2(0, (R5.(1))Y?),
where

2k g2eHet Lo
() =1+ 2 S [ o
€ 1 5] —00

is pullback DL -absorbing for the multi-valued process U® : R2 x L*(Q) — P(L*()).
Moreover, 1/58 € Dﬁ:

Proof. Fix ¢ € [0,g], t € R and D € Dﬁz. From Proposition 6.7, taking into
account condition (6.24), we obtain

2K|Q gleHet ¢
) < e+ 2 —— [ et s
He 20 =e)m = Ay e J-oo
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for all u € ®*(7,u,), ur € D(7) and 7 < t.
Now, since D € Dﬁj, there exists 19(D, t) < t such that

~

ety 2 <1 VYu, € D(r) V7 < 70(D,1).

Therefore, taking this into account, we deduce

~

lu(t)]3 < R5.(t) Yu € ®°(1,u,) Yu, € D(r) VY7 < 79(D, 1),
where the expression of R7, is given in the statement. [

Finally, we only need to check the pullback Dﬁf—asymptotic compactness. To
that end, we firstly establish the following result, which is the equivalent to Lemmas
2.14 and 3.15 in the setting of this chapter. Observe that the proofs are very close.
Nevertheless, we provide the details for the sake of completeness.

Lemma 6.10. Under the assumptions of Proposition 6.9, for any € € [0,g¢], t € R,
and D € Dﬁj, there exists (D, t) <t — 2, such that for any 7 < 7(D,t) and any
u, € D(7), the solutions to (P.) satisfy
( lu(r; T, u.)|3 < p5(t) Vr e[t —2,1,
/T1 |u(s; 7, ur)||3ds < p5(t) Vr e[t — 1,1, (6.25)

(1—e)m

p;(t) Vr € [t - 17t]7

T
/ lu(s; T, uT)lgds <
\ r—1

where

pi(t) =1+

2610 2 ,—pe(t—2) t
il | etnozas

e 21 —&)ym — A\ e J oo

m(,ﬁ(t)mmmui max / ||h(s)||zds).

(=
1) =
,02( ) (1 — 5)m reft—14 J,_1

Proof. Let 71(D,t) < t — 2 such that

~

e MDDty |2 <1 Vu, € D(t) V7 < 1(D,t).

Consider fixed 7 < 71(D, t) and u, € D(7).

The first inequality of (6.25) follows from (6.23), (6.24) and the increasing char-
acter of the exponential.

Now, we will prove the two last inequalities simultaneously. Using the energy
equality and (6.1), we have

57+ (L =e)mllu(s)llz < (f(uls)), uls)) +elhls),u(s)) ae. s>
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Applying (6.2) and the Cauchy inequality,

g 5
m”h<8)H* a.e. s> T.

(1—-¢)

Then, integrating between r — 1 and r with r € [t — 1,¢], it holds

d
)z + (1= e)mluls)]l3 + 2asfu(s)} < 260 +

)+ (=2 [ o) s + 200 [ Jutolds

1

g2 r
< fulr = DB+ 26000 + = [ )]s

In particular, from above and the first inequality in (6.25), we conclude the proof. [

In the following result, making use of the previous estimates (cf. (6.25)), we
show that the multi-valued process U* is pullback Dﬁ:—asymptotically compact for
any ¢ small enough (namely, for ¢ < eq, after (6.24)). To do it, we make use of
continuous and non-increasing functions, in a similar way to which it is done in the
proof of Proposition 6.5.

Proposition 6.11. Under the assumptions of Proposition 6.9, for any e € [0, &),
the multi-valued process U* is pullback Dﬁj—asymptotically compact.

Proof. We omit the proof of this result because it is analogous to the proofs of
Propositions 2.15 and 3.16. The main difference is that in this case we need to use
these continuous and non-increasing functions on [t — 2,¢] :

() = (5) = 2l = = [ )

(5) = fu(s)ff = 20105 = == [ o)

O

As a consequence of above results, we obtain the existence of minimal pullback
attractors for the multi-valued process U¢ : R? x L*(Q2) — P(L*(Q)) [compare to
Theorems 2.16 and 3.17].

Theorem 6.12. Assume that the function a € C(R;R,) and (6.1) holds, f € C(R)
fulfils (6.2), h € L2 (R; H1(Q)) satisfies condition (6.24) for some gy € (0,1) and

loc

tey € (0,2(1 — go)A\im), and | € L*(Q). Then, for all the multi-valued processes
U® with € € (0,e0], there exist the minimal pullback DE -attractor A2 and the
F

minimal pullback Dﬁ:—attmctor AED which s U®-invariant.

L2)
He

Furthermore, the family .A%LQ belongs to Dﬁ: and it holds
He

AD%} (t) C AE,DLz (t) C ELQ(O, (Riz (t))l/Q) VieR Vee (0,50].
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Moreover, if there ezists some g, for some gy € (0,&0] such that h fulfils

sup (e“gos/ e“EOGHh(G)Hde) < 00, (6.26)
s<0 —0
then

ADlez (t) =A% ,2(t) VteR Vee(0,&). (6.27)

L2
DI»‘«E

Proof. The existence of the minimal pullback DL2—attract0r AED ,» and the minimal

He

pullback DL -attractor ADL2 and the relationship between them are guaranteed
thanks to Corollary 5.13. Namely, the upper semicontinuity of the multi-valued
process with closed values (cf. Proposition 6.6), the relation DL C Dﬁs, the ex-
istence of a pullback Dﬁ:—absorbing family (cf. Proposition 6.9) and the pullback

DLz—asymptotic compactness in the L?>-norm (cf. Proposition 6.11) hold.
2

Further, as a consequence of Theorem 5.11, the relationship AS . (t) C Dg(t )L
holds for all ¢ € R. In fact, taking this relation into account together with the
facts that D€ € DL , the set D§(t) is closed for all ¢ € R and the universe Dﬁg

inclusion-closed, it fulﬁls that the family A° D1 € DL In addition, from this, and

bearing in mind that U® is a strict multi- valued process (cf. Lemma 6.3), we deduce
that the family A° D12 is invariant under the multi-valued process U*®.

Finally, observe that thanks to (6.26), for each € € (0,&p) and T" € R the set
Ui<rR32(t) is bounded, where RS, given in the statement of Proposition 6.9. Then,
from Corollary 5.13, (6.27) follows. O

Remark 6.13. The above results also holds for the autonomous problem (Pp).
Namely, the global compact attractor A9, in L*(Q) for the multi-valued semiflow
S (c¢f. Remark 6.4) exists and it can be seen as pullback attractor not only for the
universe DL2 but also for the tempered universe Dﬁj with po = 2X\ym (c¢f. Proposi-
tions 6.7 and 6.9). Indeed, ADLQ( ) =A%, forallt € R.

6.3 Upper semicontinuous behaviour of attractors
in L°-norm

In this section, we will study the upper semicontinuous behaviour of the attractors
—2(t) as e = 0 for all ¢ € R. Namely, we will show that this family of attract-
He

ors converges upper semicontinuously to the global compact attractor A9, of the
multi-valued semiflow S associated to problem (F). To do this, we will argue by
contradiction and make use of the following sequential continuity result in the spirit
of [9, Theorem 7).

Theorem 6.14. Assume that the function a € C(R;R,) and (6.1) holds, f € C(R)
satisfies (6.2), h € LZOC(R; H7YQ)) and I € L*(Q2). Consider also sequences {,} C
(0,1) with lim, e, = 0 and {u”} C L*(Q) such that u* — wu, weakly in L*(9).
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Then, there exist a subsequence of {ul} (relabeled the same), a sequence {us"} with
um € & (1, u"), and v’ € ®°(7,u,) such that for all T > T

( u S u® weakly-star in L (1, T; L*(Q)),
u —u’  weakly in L*(1,T; H}(Q)),
u™ —u’  weakly in LP(7, T; LP(2)),
u — u®  strongly in L?(7,T; L*(2)),
fu) = f(u®)  weakly in LY(7,T; LY(Q)),
—a(l(u))Au — —a(l(u®))Au®  weakly in L*(1,T; H'(Q)),
(u) — (u°)  weakly in L*(r,T; HY(Q)) + LI(7, T; L)),
u™(t) — u’(t)  strongly in L*() for all t > 7.

(6.28)

\

Proof. We split the proof into two steps. In the first one, we will show all the con-
vergences in (6.28) except the last one, which will be proved in Step 2.

Step 1. Let {u"} be a sequence such that u” — u, weakly in L*(2). We will
prove the convergences in the interval (7,7 4 1). Using the exact same arguments,
the convergences can be proved in intervals of the form (7, 7+2), (7, 7+3), etcetera.
A diagonal argument then shows that all the convergences (but the last one) hold
in the interval (7,7T), for all T' > 7.

Since each u®" is a weak solution to (P., ) in [7,7 + 1], making use of the energy
equality and (6.1), we obtain

1 d &€ &€ 3 &€ 3
5| O+ (= en)mlfu™ ()3 < (f(u™ (), u (1)) + enfh(t), u™ (1)
a.e. ter,7+1].
Now, define v := max,{e,} € (0,1). Then, taking this into account together
with (6.2) and the Cauchy inequality, we have

exllh(@®)]I2
(1 —=7)m

Therefore, the sequence {u"} is bounded in L (7, 7 + 1; L*(Q))NLA(1, 7+1; H} (2))
NLP(r, 7+ 1; LP(2)). In addition, using the boundedness of {u®"} in L*(1,7 +
1; L?(Q2)) and the fact that v € C([r, 7 + 1]; L*(Q2)) for all n, it holds

d £ £ £
—|u ()3 + (1 =7)mlu= (&) [3+200]u™ (1)) < 2x[Q+

7 ae. ter,7+1].

lu™(t)]s < Co Vte[r,7+1] VYn>1,

where C, is a positive constant independent of ¢,. Now, since [ € L*() and
a € C(R;R,), there exists Mo > 0 such that

a(l(u™(t))) < M¢,, Vte|r,7+1] ¥n>1.
This, together with the fact that {u"} is bounded in L?(7, 7+1; Hg(£2)), implies that

{—a(l(u*"))Au"} is bounded in L*(7,7 + 1; H*(2)). Finally, from (6.3) and the
boundedness of {u®} in LP(7, 7+ 1; LP(2)), we deduce that {f(u®")} is bounded in
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Li(7,741; L9(Q2)). Finally, bearing in mind the previous estimates and the following
equality
our
ot
we obtain that {(u®")’} is bounded in L?(7,7 + 1; H1(Q)) + L7, 7 + 1; LI()).
Using the Aubin-Lions lemma, there exist a subsequence of {u®"} (relabeled
the same), u® € L*(7,7 + 1; H}(Q)) N LP (7,7 + 1; LP(Q)) N L>°(7, 7 + 1; L*(Q2)) with
(W) € L*(r, 7+ 1; HY(Q))+ L7, 7+ 1; L)), such that

;

= (1 —ep)al(w™)Au" + f(u™) +e,h in D'(7,7+ 1; H 1(Q) + LYQ)),

u™ = u’  weakly-star in L®(7, 7 4+ 1; L2(Q)),
u™ —u’  weakly in L?(7,7 + 1; H}(Q)),
u —u’  weakly in LP(7,7 + 1; LP(Q)),
u™ — u®  strongly in L%(7, 7 + 1; L3(Q2)),
(u) — (u®)  weakly in L?(7,7 + 1; H*(Q)) + Li(7, 7 + 1; LI(Q)),
fu™) = f(u®) weakly in Li(1,7 + 1; L9(Q)),
—a(l(u™))Au — —a(l(u®))Au’®  weakly in L2(1,7 + 1; H-1(Q)),

\

(6.29)
where the limits of the last two convergences have been obtained applying [85,
Lemme 1.3, p. 12]. In addition, since u®» — u® strongly in L*(7, 7 +1; L*(Q)), there
exists a subsequence of {u°"} (relabeled the same) such that

u (t) — u’(t) strongly in L?*(Q) a.e. t € (1,7 + 1). (6.30)

Let us show now that u°(t) € U°(t, 7)u, for t € [r,7 + 1].
Consider fixed v € HJ(Q2) N LP(QQ) and ¢ € D(r,7 + 1). Then, since u*" is a
weak solution to (P, ), we have

—/Taﬁ®wwww+a—mjwawwmeﬁwmw@ﬁ
= [ @y e e [T 0wt

Using (6.29) and the fact that €, — 0 as n — oo, we obtain

1/Xw@mwwﬁf/_ww%mmmmmwmﬁ:/Tuw%»wwmw

Therefore, u” fulfils (6.4) when ¢ = 0. To prove that u° is a weak solution to (P,) we
only need to check that u°(7) = u,. To do this we argue as in the proof of Theorem
6.2. Consider fixed v € H}(Q)NLP(Q) and ¢ € H (1,7 + 1), with (7 +1) = 0 and
(1) # 0, as test elements in the problems (FP.,) in [, 7 + 1]. Then, after passing to
the limit, considering (6.29) and the fact that u” — wu, weakly in L?*($2), we deduce

T+1 T+1
—mwwm—/ w%mw&w+/ a(1(u()) (u(2), v))pt)dlt
=/Tcmﬂmmwmw
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On the other hand, the same test element vy in (F), after integration between 7
and 7 + 1, yields

- (). 0elr) - | (), o) (1)t + / AU ) (8, ) ()t
T+1
- / (1)), v) ()t

Comparing both expressions, since (1) # 0 and H}(2) N LP(Q) is dense in L*(Q),
u®(7) = u, holds.

Step 2: In this step we complete the proof by showing the last convergence in
(6.28).

Consider ¢t > 7 fixed. Then, the energy equality (6.5), making use of (6.1), (6.2)
and the Cauchy inequality, implies

2 s
o (9 < o (1) + 201905 = 1)+ g [ O V<o <s <t

Analogously, u° satisfies
1WO(s)|5 < [ul(r)]3 +26]Q(s —7) Vr<r<s<t

Then, we have the following continuous and non-increasing functions on [, ¢|

2 s
T.o(s) = () = 2019203 = g2 [ o)
Jo(s) = [u’(s)]5 — 2K|Qs.

On the one hand, making use of (6.30), it can be proved analogously as in the
proof of Proposition 6.5 the following convergence

J., (s) = Jo(s) Vs e (T,t].
From this, we deduce

lim |u(s)|3 = [u°(s)|3 Vs € (7,1]. (6.31)

n—o0

On the other hand, taking into account the sequences {u®"} and {(u")'} are
bounded in C([r,t]; L*(Q?)) and L*(r,t; HY(Q)) + L(7,t; LI(2)) respectively, and
the compactness of the embedding L?(Q) — H1(Q) + L4(f), the Arzela-Ascoli
theorem implies that

u™ — u”  strongly in C([r,t]; H1(Q) + L(Q)). (6.32)
Since {u"} is bounded in C([r,t]; L*(£2)), we obtain
u(s) — u’(s) weakly in L2(Q) Vs € [7, 1],

where (6.32) has been used to identify the weak limit. The previous expression,
combined with (6.31), concludes the proof. O
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Now, we are ready to prove the upper semicontinuous convergence of the attract-
ors A2 ,(t) to AY, ase — 0 for all t € R.

Df2
Theorem 6.15. Assume that the function a € C(R;R™") and (6.1) holds, f € C(R)
satisfies (6.2), there exist g € (0,1) and pe, € (0,2(1 — g9)A\ym) such that h €

L (R H-H(Q)) fulfils (6.24) and 1 € L*(Q). Then, the family {AS,(t)}ee(0.)
converges upper semicontinuously to A%z as € — 0, i.e. )
lim dist 2 2 (t),A%.) =0 VteR. (6.33)

Proof. The convergence (6.33) will be proved arguing by contradiction. Assume
that
diStLZ(A;LLQ (t),A%Q) >0 Vn>1,

Hen
for some § > 0, t € R, and some sequence {&, },>1 C (0, o] with lim,, &, = 0.
From above, taking into account the negative invariance of the pullback attract-
ors, there exists {u®"}, a sequence of such solutions to (P.,) with u(t) € A", (1),

DL?
which fulfils !
dra(u(t), A%:) > § Vn > 1. (6.34)

(t) € Dgr(t) for all n and ¢t € R (cf. Theorem 6.12),
and Dg"(t) C Dg°(t) (Whensn,ugn = U, ) for all n, we have

To () CDP(t) VEeR Vn>1. (6.35)

Hen,

Observe that since ;LLQ

On the other hand, the pullback DﬁQ -absorbing family lA?go belongs to DL
£0 1
(since e, < 2A1m). Therefore, there exists 7(t, Di’, d) < t such that

dist 2 (U°(t, 7) D5 (1), A%,) < g vr < 7(t, D, 6). (6.36)

From the uniform boundedness of all the pullback attractors at time 7(¢, D, §)
(cf. (6.35)), the sequence {u®(7(t, Dg°,0))} is bounded and satisfies (up to sub-
sequence) that

u(7(t, Dg’,0)) — u, weakly in L?(2).
Theorem 6.14 then shows the existence of v’ € ®°(7,u,) and a subsequence of

{€,}n>1 (relabeled the same) such that (6.28) holds in (7 (¢, D, 8),t). In particular,
the last convergence in (6.28) at time ¢ implies that there exists ng > 1 such that

lus (t) —u’(t)| < g Vn > ny. (6.37)

However, in light of (6.36) and (6.37), we deduce

dpz(u (1), Ape) < dpz(u (t), u’(t)) + dpe (u°(t), A72)
)
§§+§:5 Vn > no,

which results in contradiction with (6.34). O
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6.4 Regularity results

All the results analysed along this chapter can be improved by establishing the
existence of strong solutions as well as attraction in Hg(£2). To that end, we make
the same assumptions as in Chapter 3. First of all, we assume that () is an open
bounded set of class C*, with k > 2 such that k > N(p —2)/(2p). In addition, we
also suppose that the function f € C'(R) fulfils

fl(s)<n VseR, (6.38)

where n > 0.
Then, we have the following definition.

Definition 6.16. A strong solution to (P.) is a weak solution u to (P.) such that
we L>®(r,T; HY(Q)) N L3(7,T; D(—A)) for all T > 7.

Observe that analogously as it was done in Chapter 3, it fulfils that D(—A) =
H?(Q) N H}(Q), thanks to the assumptions made on the domain 2. Therefore, in
what follows we will use either the norm of D(—A) of the norm of H*(Q) N Hy ().

Now we will show the regularising effect of the equation and the existence of
strong solutions to (P.) making use of an argument of a posteriori regularity.

Theorem 6.17. Assume that the function a € C(R;R.) and (6.1) holds, the func-
tion f € CY(R) fulfils (6.2) and (6.38), h € L}, .(R; L*(Q)) and | € L*(2). Then, for
any u, € L*(Q), each weak solution u to (P. )satisfies thatu € L™(7 + €, T; H}(Q))N
L*(1+¢€,T; HX(Q) N Hy () for every e > 0 and T > T+e¢. In addition, if the initial

datum u, € H}(Q), then the weak solutions to (P.) are in fact strong solutions.

Proof. Fix a weak solution u € ®°(7,u,) to (P.). Then, we consider the problem

— — (L=¢)a(l(u)Ay = f(y) +eh(t) nQx (7,00
(Pew) y=0 on dQ x (1,00)
y(z,7) = u-(r) in Q.

Observe that there exists a unique solution to (P.,) thanks to the monotonicity of
the Laplacian and the assumption (6.38) made on f (cf. [85, Chapitre II]). Thus,
more regular (a posteriori) estimates as well as using the Galerkin approximations
make complete sense. Moreover, it holds that y = u, since u is a solution to (P.)
and (P.,) possesses a unique solution.

Now, making use of spectral theory, consider a sequence {w; };>1 of eigenfunctions
of —A in HJ(£2), which is a Hilbert basis of L?(£2). For each integer n > 1, we define
the function u, (t; 7, u,) = > 27, ¢nj(t)w; (un(t) for short), which is the local solution
to

%(un(t),wj)+(1—e)a(l(U(t)))((un(t),wj))Z(f(un(t))Jréh(t),wj) t € (7,00),

(un<7-)>wj) = (UT,IU]-), 7=1,...,n.

(6.39)
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Multiplying (6.39) by ¢n;(t) and summing from j = 1 until n, we deduce

%%Iun(t)@ + (1= g)allw®)lun(®)ll2 = (f (un(t)), un(t)) + e(h(t), un(t))

a.e. t € (1,7).

Integrating the previous expression between 7 and 7', and making use of (6.1)
and (6.2), we obtain

T T
(7B +201 =y [ ()3 < furB+ 27 = 1) + 2 [ (10 w0
Using the Cauchy inequality,
2(T — 7)k|Q| 1

[ o)l < e+ S e [ @) (640

On the other hand, multiplying (6.39) by Ajp,;(t), summing from j = 1 until n
and using (6.1), we have

1d
5 g 1Oz + (1 = e)m| = Aun(B)[5 < (f (un(t)), =Aun(t)) + e(h(t), —Aun(t))
a.e. te (r,T).
Applying (6.38) and the Cauchy inequality, it holds
d f(0) + eh(t)|?
Sl + (1 = | = (015 < 2l () + L0
a.e. t € (r,7T).

Integrating between s and ¢, with 7 < s <t < T, we obtain

lun(®)[2 4 (1 — £)m / | = Au(r)2dr

<o)+ 20 [ o) r + = [ 1O eI (64)

Now, integrating w.r.t. s between 7 and ¢, we have in particular
T—-1

T | O+ et

(t =D ua @5 < (1 +20(T - 7)) / e (r) 13 +

for all t € [e+ 7,T] with e € (0,7 — 7).

Then, using (6.40), we deduce that the sequence {u,} is bounded in L*(7 +
e,T; Hy(Q)). Now, taking s = 74¢ and ¢t = T in (6.41), it holds that sequence {u,}
is bounded in L*(7 +¢,T; H*(Q) N H}(Q)). Therefore, by the uniqueness of weak
solution to (P.,), it fulfils

u, —u weakly-star in L=(1 +¢,T; H}()),
u, = u weakly in L*(1 +¢,T; H*(Q) N H}(Q)).

In addition, if u, € HJ (L), it fulfils that in fact u is a strong solution to (P.). O
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Observe that analogously as it was done in Chapter 3, if we also assume that
flu) € L*(r,T; L*(Q)) Yu € L®(7,T; Hy (Q)) N L*(7,T; H* () N HY(2)). (6.42)

Then, since v’ € L*(1,T;L*(Q)), v € C([r,T]; H;(2)) and the following energy
equality holds

a1+ 201~ ) [ all(ur))] - Autr)ar
—u(s) B +2 [ (£(u(r)) + =h(r), ~Bu(r))dr

forall m < s <t

Thanks to Theorem 6.17, the restriction of U® to R3 x Hj () defines a multi-
valued process into P(HJ(f2)). Since no confusion arises, we will not modify the
notation and continue denoting this process by U*.

However, to prove the existence of pullback attractors in H{(£2), it is not enough
for f to fulfil (6.42), but also, it is necessary to assume

Hf(u>H%2(7—,T;L2(Q)) < Cf”“”%boo(fr,T;Hé(Q))||u||%b2(7—,T;H2(Q)ﬂH&(Q))7 (6.43)

where b = (v 4+ 1)(1 —6), b = (y + 1), 6 € [0,1], f(s) = —s|s|” where v € (0,3]
when N =3, v € (0,2) when N =4, and v € (0,4/(N —2)] when N > 5, and C}
is a positive constant related to the constants of the continuos embedding used to
obtain this estimate. Observe that this assumption has been made in Section 3.4,
using the regularity of the strong solutions together with interpolation results (cf.
[116, Lemma I1.4.1, p. 72]).

The first requirement to show the existence of attractors is to prove that the
multi-valued process U¢ is upper semicontinuous with closed values in H}(Q). To
that end, we use the following result.

Proposition 6.18. Under the assumptions of Theorem 6.17, if f also fulfils (6.43)
and {u"} C Hy(Q) is a sequence of initial data such that u” — wu, strongly in
H (), then, for any sequence {u™} with u™ € ®°(1,u”) for all n > 1, there exist a
subsequence of {u"} (relabeled the same) and w € ®°(1,u,) such that

u™(t) — u(t) strongly in Hy(Q) Vt > .

Proof. The proof of this result is similar to the one of Proposition 6.5. In this case
we need to consider the continuous and non-increasing functions in [r, 7]

S 1 S
Jn(s) = ||u"(s 2—277/ u"(r)||2dr — ————
@ =@ =20 [ el - oo |

1) = (o) =20 | o) e = 5= [ 110) + ho) i

—e)m Ji_o

|£(0) + eh(r) zdr,
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Now, we have the following result (see Proposition 6.6 for a similar proof).

Proposition 6.19. Under the assumptions of Proposition 6.18, the multi-valued
process U : R2 x HY(Q) — H(Q) is upper semicontinuous with closed values for
all e €10,1).

As a consequence of the regularising effect of the equation (cf. Theorem 6.17)
and the existence of a pullback Dﬁj—absorbing family (cf. Proposition 6.9), the

existence of a pullback Dﬁj ’H&—absorbing family is guaranteed (cf. Proposition 2.21
for a proof).

Proposition 6.20. Under the assumptions of Theorem 6.17, if f also fulfils (6.42)
and h € L2 (R; L*(Q)) satisfies condition (6.24) for some gy € [0,1) and p., €

loc

(0,2(1 —eg)A\ym), then, the family 138 = {Br2(0, (R, (1)) N HLQ) : t e R} €
Dﬁ:’H‘% and for any t € R and D € Dﬁ:, there exists 7'2(13,75) <t such that

~

Us(t,7)D(T) C Dg}Hé(t) V1 < (D, t).

In particular, the family ﬁg 1 48 pullback Dﬁj’Hé—absorbing for the process U®
g
R2 x Hy(Q) — HY (D).

To prove that the process U : RS x H}(2) — H(Q) is pullback asymptotically
compact, we previously establish some uniform estimates of the solutions in a finite-
time interval up to ¢ when the initial datum is shifted pullback far enough.

To clarify the statement of the following result, we introduce the next two
amounts:

[(P)(t) = 1+

ekes

h(s)|lds,

2k|Q| g2 He(t=3) /t
+
He 2(1 —&)ym — A\ e J oo

6316 = = o (60700 + 26000+ = mox [ IGolEds).

(1—¢) (1 —e)m reft—24 J,_4
(6.44)

Then, we are ready for the following result. The idea of the proof is close to the
proofs of Lemmas 2.19 and 3.19.

Lemma 6.21. Under the assumptions of Theorem 6.17, if f also fulfils (6.43) and
h e L2 (R; L*(2)) satisfies condition (6.24) for some ¢ € [0,1) and p., € (0,2(1 —
g0)A\im), then, for any e € [0,2), t € R and D € Dﬁj, there exists 75(D,t) <t — 3
such that for any T < Tg(ﬁ,t) and any u, € D(7), the following estimates hold

(

lu(r; 7ur)ll; < pi(E) Vr € [t —2,1],

/ | — Au(s; 7, u,)|3ds < p5(t) Vr e[t — 1,1,
r—1

/ |u' (557, u,)|3ds < p5(t) Yrelt—1,t,
r—1
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where, taking into account {[(pF)**"|}iz12 from (6.44), the terms {5 }iz12.3 are given
by

R0 = (4 20+ max [ 170) bl s,

(1 —e)mreft-24 J,_4

1

pa(t) = ﬁ

(A28 0+ = max, [ 17O +eh(s)ds).

1—e)mret-14 J,_4

P5(1) = 3(Mi(p)e=i0)*(1 = €)*A5(8) +3C (51 (1)) (75(1))" +3¢” max / [h(s)[2ds,

relt—1,t] J,._1

with b b, Cy and M((pe)est)(r),1), positive constants.

Now, to prove the pullback asymptotic compactness of U¢ in HJ () for the uni-

2 1
verse Dﬁs ’HO, we apply an energy method similar to the one use to prove Proposition
6.11.

Proposition 6.22. Under the assumptions of Lemma 6.21, the multi-valued process
2 1
U :R2 x H}(Q) — P(HY(Q)) is pullback DﬁE’HO—asymptotically compact.

Proof. The proof of this result is analogous to that of Proposition 2.22. The main
differences are that in this case we need to use the estimates which appear in the
statement of Proposition 6.21. Furthermore, we have to make use of the continuous
and non-increasing functions

1) =@ =20 [ el = 5= [ 170+ et
1) = (o) =20 [ ot e = 5= / 0) -+ eh() 3.

]

The following result shows the existence of pullback attractors in H}(Q) as well
as some relationships between them. We omit the proof because it is similar to the
ones done in Theorems 2.23 and 3.23.

Theorem 6.23. Assume that the function a is locally Lipschitz and (6.1) holds, f €
CHR) fulfils (6.2), (6.38) and (6.43), h € L} .(R; L*(Q?)) and there exist €y € (0,1)
and i, € (0,2(1 — eo)Alm) such that (6.24) holds, and | € L*(). Then there exist

the minimal pullback Dy o -attractor A o and the minimal pullback D -attmctor

F
A L2y Jor the multi-valued process U® - R2 x HY(Q) — P(HY(Q)). Furthermore,
D#E’
it fulfils

A (t) C ADLz( ) C ADL2( Y=A° 5, ,1(t) VteR Ve e (0,e). (6.45)
DO D, 70

P Ke
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In particular, for any D e Dﬁ:, the following pullback attraction result in H} ()
holds
lim disty (US(t, 7)D(7), A2(t)) =0 Vt€R.

T——00

Finally, if there exists some pgz, for some €y € (0,e0| such that h fulfils

sup (e‘“gos/ 6“50’”|h(r)]2d7’) < 00
s<0 —00

A (6) = Apga(t) = Apya(t) = A oy (1) VEER Ve € (0,5

DL?
DF H m

then

In addition, again a result of pullback attraction holds

lim disty(US(t,7)B, Ap2(t) =0 VteR VB eDf.

L2
T——00 D

Remark 6.24. The case ¢ = 0 can be deduced from the above results, but more
simply because when € = 0 the problem (Py) is autonomous. Therefore, there exists
the compact global attractor AO 1 in HY(Q), which can be seen as pullback attractor

for the universes DF and DMO 5 with oy = 2X\im. Namely, A° D Hl( ) = A%’é for
all t € R. o

Finally, the upper semicontinuous behaviour of the attractors {ADLQ( ) }ec(0,c0]

as € — 0 for all £ € R is analysed. Analogously as it was done in Section 6. 3, to
prove this property we need the following continuity result.

Theorem 6.25. Assume that the function a € C(R;R,) and (6.1) holds, f € C*(R)
fulfils (6.2), (6.38) and (6.43), h € L% (R; L*(Q)) and | € L*(Q). Consider also
sequences {e,} C (0,1) with lim, e, = 0 and {u"} C L*(Q) such that u" — u,
weakly in L*(Y). Then, there exist a subsequence of {u™} (relabeled the same), a
sequence {u} with ue™ € ®* (1, u"), and u°® € ®°(7,u,) such that

u™(t) — u’(t)  strongly in HL () for all t > T.

Proof. The proof of this result is analogous to the proof of Proposition 6.14. The
main difference is that in this case we need to use the regularising effect of the equa-
tion (cf. Theorem 6.17) and the following continuous and non-increasing functions
in [7+09,T] with 6 >0:

Ios) = =20 [ e = = [ 1500+ o)
Jols) = (I3 - 2n / (e — LOPINs = (749
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Then, we are ready to prove the upper semicontinuous behaviour of attractors

in H}(Q).

Theorem 6.26. Assume that the function a is locally Lipschitz and (6.1) holds,
f € CYR) fulfils (6.2), (6.38) and (6.43), h € L2 (R; L*(Q)) and there exist ey €
(0,1) and ., € (0,2(1 — o) A\ym) such that (6.24), and | € L*(Y). Then, the family
{AEDﬁ: (t)}ee(0,00) COnUETgEs upper semicontinuously to A%, in Hy(Q) ase — 0, i.e.

lim dist g (A7, (1), A%)=0 VteR.
Proof. The proof of this result is analogous to the proof of Proposition 6.15. In this
case, we have to make use of the regularising effect of the equation (cf. Theorem

6.17) and the fact that A%Q = .,4?{1 thanks to the cited effect. 0
0

Corollary 6.27. As a consequence of Theorem 6.17, Theorem 6.23 (namely the
chain of inclusions (6.45)) and Theorem 6.26, it also holds

lim dist ) (A;ﬁ,,é (), Apy) =0 VteR.

Remark 6.28. All the results analysed in this chapter hold for the more general
family of equations

du

=~ 91(e)all(w)Au = gao(€) f(u) + gs()R (D),

where g1, g2 and gs are continuous functions with values in [0,1] and such that
lim. 0 g3(¢) = 0, lim.0¢g1(e) = lim._,092(¢) = 1. Other generalisations are also
possible, like replacing the continuity assumption on g1, go and g3 given above by
monotonicity.



Chapter 7

A nomnlocal p-Laplacian equation

In Chapters 2, 3, 4 and 6, we have analysed nonlocal parabolic problems in which the
Laplacian belongs to the diffusion term. In this chapter, we are going to generalise
the diffusion making use of the p-Laplacian.

The p-Laplacian operator appears in wide range of scientific fields, for instance, in
Fluid Dynamics (e.g. flow through porous media), Nonlinear Elasticity, Glaciology
and Image Restoration (cf. [102, 39, 4, 103]).

In [47], Chipot & Savistka have analysed a nonlocal problem for the p-Laplacian,
studying the existence and uniqueness of weak solutions as well as the existence of
global minimizers associated to an energy functional. On the other hand, in the
last decade several authors have been interested in proving the existence of global
attractors for the local p-Laplacian problem (for more detail cf. [118, 121, 99, 107]).

In this chapter, we will combine these two features. Namely, we prove the exist-
ence of the global attractor for a nonlocal problem for the p-Laplacian. Firstly, we
analyse the existence of weak solutions arguing in the same line as done in [47] by
Chipot & Savistka, making use of a change of variable and compactness arguments.
Next, we study the asymptotic behaviour of the solutions. We prove the existence
of the global attractor in the phase space L?(f2) in a multi-valued framework, since
under the assumptions made on the function a we cannot guarantee the uniqueness
of a weak solution. The main difficulty in proving the existence of this object, the
global attractor, relies on showing the asymptotic compactness. To that end, we
prove the existence of an absorbing set in VVO1 P(Q2) and use the compact embedding
WyP(Q) — L*(Q). Observe that the reason why the study has been done in the
autonomous framework is to avoid complex notation and make clearer the idea of
how to combine the already used techniques with a change of variables that removes
the nonlocal term from the diffusion. However, the same ideas can be extended to
deal with the non-autonomous case.

The results of this chapter can be found in [24].

169
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7.1 Statement of the problem. Existence result

Let © C RY be a bounded open set. Consider the following problem for a nonlocal
p-Laplacian equation

% —a(l(u))Apu=f 1in Q x (0,00),
u=0 on dQ x (0,00), (7.1)

u(z,0) = ug(x) in Q,
where p > 2 and the function a € C(R; R ) fulfils
0<m<a(s) VseR. (7.2)

Moreover, [ € L(L*(Q2),R), f € W=14(Q) (where g is the conjugate exponent of p)
and the initial datum uy € L*(Q).

From now on, we identify L?*(2) with its dual. Therefore, the chain of compact
and dense embedding W, () C L*(Q) € W—59(Q) holds. Observe that thanks to
the previous identification, I(u) is in fact (I, u). However, we keep the notation used
along this thesis I(u).

Before analysing the existence of weak solutions, we would like to recall that the
p-Laplacian operator is a one-to-one mapping from VVO1 P(Q) into W~14(Q), given
by

(=Apu,v) = ([VulP2Vu, Vo) Yu,v € WyP(Q),

where for short we are denoting (|Vu[P™2Vu, Vv) = Zij\il(|8¢u|p*26¢u, ;).

Definition 7.1. A weak solution to (7.1) is a function v € L*>(0,T;L*(Q)) N
LP(0,T; Wy P () for all T > 0, with u(0) = ug, such that

%(U(t%v) +a(l(w(®))(~Apu(t),v) = (f,v) Yve Wy"(Q), (7.3)

where the previous equation must be understood in the sense of D'(0,00).

Observe that if u is a weak solution to (7.1), making use of the continuity of a,
| € L?(Q), and (7.3), it is straightforward to check that «/ € L4(0,T; W=24(Q)) for
any T > 0, and therefore, u € C([0,00); L*(2)). Then, the initial datum in (7.1)
makes complete sense and the following energy equality holds

IU(t)I§+2/ al(u(r)))[Ju(r)|pdr = IU(S)|§+2/ (f;ulr))dr (7.4)

forall0 < s <t

Now, the existence of weak solutions to (7.1) is analysed. To do it, we use the
Galerkin approximations, a change of variable (see (7.8) below) which has been
already used by Chipot and his collaborators (cf. [49, 47]) and compactness ar-
guments. Furthermore, in this result we also study a regularising property of the
solutions to (7.1).
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Theorem 7.2. Assume that the function a € C(R;R,) fulfils (7.2), f € W=14(Q)
and | € L*(Q). Then, for each ug € L*(Q), there exists at least a weak solution to
(7.1).

Furthermore, if f € L*(Q), for every ¢ > 0 and T > &, any solution u fulfils
that u € Cy([e, T]; Wy?(Q)). In fact, if the initial condition uy € W, P(Q), then
ue Cu((0,T), W ().

Proof. We split the proof into two steps. In Step 1, we will prove the existence of
weak solutions to (7.1). Next, the regularizing property will be analysed in Step 2.

Step 1. Existence of weak solutions. N

We will prove the existence of a weak solution to (7.1) in an interval [0, 7] (to
be specified later). An inductive concatenation procedure will provide the desired
global solution. We split the proof into three steps.

Step 1.1: Galerkin approximations, a priori estimates and compactness
arguments.

Consider a special basis of L*(Q) composed by elements {w;} C H(2) with
s > (2p+ N(p — 2))/(2p) in the sense of [85, p. 161]. Therefore, thanks to the
assumption made on s, H5(Q) C W, ().

In what follows, we denote by V,, := span|wy,...,w,]. Observe that the set
U,.en Vo is dense in W, 7(Q).

Consider an arbitrary positive value T > 0 fixed. For each n € N, the function
U (t;0,u0) = 71 ¢nj(t)w; (for short denoted u,(t)), is a local solution to

%(un(t),wj) + a(l(un (1) (| Vn () P72 Vun (1), Vo) = (f,w;), t € (0,7),
(un(0), wy) = (uo, wy), i=1,...,n,

(7.5)
in some interval [0,t,), thanks to the Caratheodory theorem [52;, Theorem 1.1, p.
43]. Our aim is to prove the existence of global solution.
Multiplying in (7.5) by ¢,;(t), summing from j = 1 to n and using (7.2), we
obtain

%%]un(t)lg +mllun(IE < (frun(t))  ae. t € (0,t,). (7.6)

Observe that using the Young inequality, we deduce

1/ 2\ m
(o) < 11Ol < 2 () 151+ S a0l
Taking this into account, from (7.6) we obtain

d ) ,_2( 2\
— <Z(= 7 g.e. .
dtlun(t)lfrm“un(t)llp_q(mp> IfIIE a.e. te(0,t)

Now, integrating between 0 and ¢ < t,,, we obtain

t OT [ 2 \»
25 W(8)|1Bds < Jugl? + — [ — 9.
|u ()|2+m/0 l|un(s)][Pds < [uol3 + . (mp) | £1I2
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Therefore, the Gronwall lemma implies that {u,} is well-defined and bounded in
L>(0,T; L*(Q)) N LP(0, T; Wy P(Q)). Bearing this in mind, the sequence {—Aju,}
is bounded in L(0,T; W~14((Q2)).

Now, we define

P,: HZQ) — V,
£ o= Buf =300 wilf w) nes mg,

which is the continuous extension of the projector P, defined as

P,: L*(Q) — V,
/ — Z?:l(fv wj)w]"

Then,

ouy,

ot
Therefore, the sequence {u)} is bounded in L7(0,7; H *(2)). Moreover, taking
into account the fact that a € C'(R;R,) fulfils (7.2), we deduce that the sequence
{f/a(l(u,))} is bounded in L>(0,T; W~14(Q)).

Thus, making use of the Aubin-Lions lemma and the Dominated Convergence
theorem, there exist a subsequence of {u,, } (relabeled the same), u € L>(0,T; L*(2))
NLP(0,T; Wy P(Q)) with o/ € L0, T; H5(Q)) and & € L0, T; W~149(Q)), such
that

= a(l(uy))Apu,, + P f in D'(0,T; H*(Q2)).

( u, —u weakly-star in L>(0,T; L*(2)),
u, — u weakly in LP(0,T; W, (Q)),
u, — u strongly in LP(0,T; LP(Q)),
a(l(uy)) = a(l(u)) weakly-star in L>(0,T), (7.7)
—Apu, — & weakly in L4(0,T; W~-11(Q)),
u, —u  weakly in L1(0,T; H*(Q)),
f f
%
Ca(l(un))  a(l(u))
With these convergences, we cannot obtain directly the existence of weak solutions
to (7.1) due to the presence of the nonlocal operator in front of the p-Laplacian. The
main reason is that the p-Laplacian is not a linear operator. Unlike what happens
with the Laplacian in the previous chapters, in this case it is not enough to use [85,
Lemme 1.3, p. 12] to deal with the nonlinear term. In this chapter, we are going

to remove the nonlocal term in front of the p-Laplacian and apply monotonicity
arguments (cf. [85]) to identify £ with —A,u.

strongly in L*(0,T; W~19(Q)) Vs € [1,00).

Step 1.2: Local diffusion problems through a change of variable.
As it was done in [49, 47], we can obtain formally a local diffusion problem by
rescaling the time. Namely, we put

alt) = /0 a(l(u(s)))ds, (7.8)
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where u is formally the solution to (7.1). Then, the change of variable u(z,t) =
w(z, a(t)) leads to the problem

ws(a(t)) — Ayw(al(t)) = aUad)) in Q x (0,7),
w=0 ondx(0,7T),

w(z,a(0)) = up(z) in Q.

Observe that the previous problem can be rewritten as follows

—L in €2 % «
wt_pr_a(l(w)) Q x (0,a(T)),

w=20 ondN x (0,a(T)),
w(z,0) = ug(x) in Q.

(7.9)

To deal with this problem not only formally but rigorously, we consider a se-
quence of the Galerkin approximation problems associated to (7.5) and the corres-
ponding rescaled times

an(t) :—/0 a(l(uy(s)))ds.

The new unknown w,(t) = > 7, n;j(t)w; satisfies that w,(z, a,(t)) = un(r,t) and
solves

Do ()00 4+ (—Aor (£). 10y = L 05) o
dt( TL(t)? ]) + < AP TL(t)? ]> a(l(wn(t)))7 te (07 n(T>>7
(wn(0), w;) = (uo, wy), j=1,...,n

(7.10)
Observe that problems (7.10) can be set in common time-interval (0, mT) for
all n thanks to (7.2). Moreover, if ¢ € D(0,mT), then ¢ € D(0,,(T)) and
o(an () € WaP(0,T) for all n.
From (7.5), we deduce

/OT (/Q —un(:v,t)v(:c)dx> o' (an (t))a(l(u,(t)))dt
v ! ([ [Vt 0. 09 (01 )t
-/ vl (t)) (7.11)

for all v € V,,.
Since {u,} is bounded in L>(0,T; L*(Q)) and each u, € C([0,T]; L*(Q2)), there
exists a positive constant Cy, > 0 such that

un(t)]s < Coe VEE[0,T] VYn > 1.

From this, bearing in mind that a € C(R;R,) fulfils (7.2) and [ € L?(2), there
exists a positive constant M¢_ > 0 such that

0<m<all(u,(t))) < Mg, Vtel[0,T] Vn>1.
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Now, replacing u,(z,t) by wy,(z, an(t)) in (7.11) and using [49, Lemma 2.2], it

holds
/0“”(T> < /Q —tn(z, tﬁf(w)da:) ¢ (t)dt

+ /0 e ( /Q \an(x,t)|p_2an(x,t)Vv(x)dx> S(t)dt

™ ()
= sty

for all v € V,,.

Since supp(¢) C (0,mT) and 0 < mT < a,(T) for all n > 1, all integrals above
can be considered in (0, mT). Then, taking limit when n — oo and bearing in mind
(7.7), we deduce

" e @) dwa s [ i = [ L
[ ) | L sy

where
Ez,alt)) =&(x,t) ae. te(0,a (mT)).
Therefore,
! () = / in W-1q a.e m
W)+ &(t) = IO W-4(Q) ae. t € (0,mT). (7.12)

Step 1.3: Monotonicity argument for the limiting equation.
In this step, we are going to check that £ coincides with —A,w making use of
monotonicity and compactness arguments applied to (7.10).

Making use of (7.12), the following energy equality holds
(f,w(®))
a(l(w(t)))
Therefore, integrating in the previous expression between 0 and m71', we have
™ " (fw(t) w03 |w(mT)[3
E(t), w(t dt:/ ~ Tt - 2 _ 2, 7.13
|, Gt = [ 2 719

Claim 1: The equality w(0) = up holds.
Consider fixed ¢ € W'?(0,mT) with ¢(0) # 0 and @(mT) =0, and v € V,.
On the one hand, from (7.12), we obtain

1d

S Zll0) + E() (1) = ac. £ € (0,mD).

~@(0).0)00)- | " wlt), o) ()t / " E) et = / : %w)dt.
(7.14)
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On the other hand, from (7.10), multiplying by ¢ and integrating between 0 and
m1’, we deduce

~ (utoy 0)ip(0) / " (wn®), 0) (1) + / (V)P 2V (t), To)plt)de

T )
‘/o al(an(n)) PO

for all v € V,,.
Now, taking limit when n — oo in the previous expression and making use of
(7.7), bearing in mind (7.14), we deduce w(0) = uy.

Claim 2: It fulfils
wn(mT) = w(mT) weakly in L?(2). (7.15)

Integrating (7.12) between 0 and mT', we obtain

w(mT) = w(0) + /0 " (E(t) + ﬁ) gt in WLe(Q).

a(l(w
On the other hand, from (7.10), integrating between 0 and mT', we have
mT
_ f
wan,v—u,v—l—/ [antPQant,Vv—l——,v dt,
(o)) = o)+ [ | (Va9 (090 + (s

for all v € V},. Then, taking limit when n — oo and making use of (7.7), (7.15) holds.

Claim 3: Identification of E as —Ayw.
Multiplying (7.10) by @,;(t), summing from j = 1 until n, and integrating
between 0 and mT', we obtain

|wn(mT) 5 mr » |uo 3 T (fwa (1))
Ll 0l +/0 et = 1 +/0 PuEROn

Taking limit when n — oo in the previous expression, making use of (7.7) and (7.15),
we deduce

i sup /0 " (02t < /O : a<<J;’(;"((g)>)dt+ '“;'2 _ ""(”;T”?. (7.16)

Now, consider v € LP(0,mT; WyP(Q)). Then, from the well-known inequality

/Om /Q(\an(tﬂpszn(t) — [Vo(t)[P2 V(1) V(wa(t) — v(t))dzdt > 0,

combined with (7.7) and (7.16), it yields
)

") g, el oD e
/0 a(z(w(t)))d” 2 5 /0 (€(t), v(t))dt

- /0 " /Q Vo) P2 V(6 V (w(t) — v(t))dedt > 0.
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Then, taking into account (7.13), from the previous inequality we deduce for all
v € LP(0,mT; W, 7(Q))

| [t = o) - (900 P 2900, Tw(t) ~ vo)] dt > 0,

Then, taking v = w — §z with 6 > 0 and z € LP(0, mT; W, *(Q)), we conclude

mT
/ (€(t) = V- [V(w(t) = 62(0) ">V (w(t) — 82(8), 2(t))dt > 0.
0

Since 6 > 0 is arbitrary, we deduce that g(a:,t) = —Ayw(z,t) ae. t € (0,mT)
(in particular &(z,t) = —Ayu(z,t) a.e. t € (0,7 (mT))). Thus, w solves (7.9) in
(0,mT). Then, u(x,t) = w(z, a(t)) is a solution to (7.1) in [O,T] with T = o~ (mT).
Applying the same arguments to intervals of the form [ki (k+ 1)TV] with £ € N and
concatenation, we obtain a global solution to (7.1).

Step 2. Regularising effect. Assume that f € L?*(), and consider fixed an
arbitrary value 7" > 0 and a solution to (7.1) denoted by u(+;0,ug). Observe that

the problem
% —a(l(u)Ayy =f inQx(0,7),
(Fu) y=0 ondQx (0,7,

y(z,0) = up(z) in Q,

possesses a unique solution because of the monotonicity of the p-Laplacian (cf. [85,

Chapitre II]). Therefore, more regular (a posteriori) estimates as well as using the

Galerkin approximations make complete sense. In addition, observe that since u is

a solution to (7.1), by the uniqueness of solution to (P,), it follows that y = u.
Then, we consider the Galerkin formulation associated to problem (P,)

%(’&n(t),wj) +a(l(w)) (Vi (0P Via(t), Vuy) = (f,w))  ae. t € (0,T),
(4, (0), w;) = (ug, wy), j=1,...,n,
(7.17)
with @, (t;0,u0) = > _7_; Pn;(t)w;, which is denoted by @, (t) in what follows.

Multiplying (7.17) by &,,(t), summing from j = 1 until n» and making use of
(7.2), we have

d
S iR+ mlan (Ol < (F.a(0) ae. t € (0.T).

Using the Young inequality, we deduce

1/ 2\
(o) < 710l < ()7 151+ Zantol

mp
Taking this into account,

d, . X
— Nt (0)]3 + mn ()]} <

2\ »
— 7 a.e. T).
g (2) 15l ve.te @1

P

=N
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Integrating between 0 and 7', we obtain in particular
T wl2 2T [ 2\
[ itz < 1By 2 (2 (7.18)
0 m gm \mp
Now, multiplying (7.17) by &,,;(t)/a(l(u(t
we have ,
a(l(U(t))) pdt! " a(1u (1))
(7.2

Then, making use of the Cauchy inequality and

1d :
)l < 'j'? ae. t€(0,7T).

))) and summing from j = 1 until n,

Now, integrating between s and ¢, with 0 < s <t < T,

N N T .o
lan (@5 < Nlan(s)llp + 71 fla-

Integrating w.r.t. s between 0 and ¢,

i@l < [ Nanlpds + 5111

Therefore,
. IR pT? .,
i1 < 2 [ an(o) s + T 71

for all t € [¢,T] with € € (0,T). From this, taking into account (7.18), we deduce
that the sequence {i,} is bounded in L*®(e,T;W,"(Q)). By the uniqueness of
solution, the whole sequence

U, = u  weakly-star in L>(e, T; W, P(Q)).

In addition, since u € C([0,T]; L*(2)), it holds that u € Cy([e,T]; Wy ?(Q)) (cf.
[108, Theorem 2.1, p. 544] or [111, Lemma 3.3, p. 74]).

The case in which the initial datum uy belongs to VVO1 P(Q2) allows to simplify the
above estimates in a standard way and the solution u € C,, ([0, T]; Wy (). O

Now, we have an equivalent result to Theorem 7.2 when the operator [ is allowed
to belong to a less regular space, namely L?(€2), and the function a fulfils an addi-
tional restriction. The proof is analogous to the previous one with minor changes,
therefore it is omitted.

Corollary 7.3. Assume that the function a € C(R;Ry) fulfils
0<m<a(s) <M VseR, (7.19)

where M is a positive constant, f € W14(Q) and | € LI(). Then, for each uy €
L*(Q), there exists at least a weak solution to (7.1). In addition, when f € L*(Q),
for every e > 0 and T > e, any solution u fulfils that u € Cy([e, T]; WyP(Q)). In
fact, if the initial condition ug € Wol’p(Q), the above regularity holds for e = 0.
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7.2 Compact global attractor in L*(Q)

In Chapters 2, 3, 4 and 6, we have applied the theory of attractors, which has been
analysed in Chapters 1 and 5, to non-autonomous problems to prove the existence
of minimal pullback attractors. In this chapter we are studying a problem in an
autonomous setting. In this more straightforward framework, we are going to use
results analysed in Chapter 5, since the theory of non-autonomous dynamical sys-
tems is a generalisation of the abstract results on autonomous dynamical systems (cf.
for more details [96, 74, 75], cf. [28] in a random setting). While in non-autonomous
problems, the concept of attraction is understood making the initial time go to —oo,
in the autonomous context this concept is understood making the current time go
to oo.

The main goal of this section is to study the asymptotic behaviour of the solu-
tions to (7.1) analysing the existence of the compact global attractor in L*(€). To
guarantee the existence of this object, we need to prove that the multi-valued semi-
flow S is asymptotically compact amongst other requirements (for more detail cf.
Theorem 5.11). To do this, we build an absorbing set in W, (Q) (cf. Proposition
7.8) and make use of the compact embedding W, () — L2(Q).

In what follows, analogously as it was done in Chapter 6, we denote by ®(ug)
the set of solutions to (7.1) in [0, 00) with initial datum wug € L*().

Now, thanks to Theorem 7.2, we can define a multi-valued map S : R, x L*(Q) —
P(L*(Q)) as

S(t)ug = {u(t) 1 u € ®lug)} Vug € L*(Q) Vt > 0. (7.20)

Then we have the following result, whose proof is analogous to the one given for
Lemma 6.3, taking into account that S(t) = U(t,0) for all t € R,.

Lemma 7.4. Assume that the function a € C(R;R.) fulfils (7.2), f € W=14(Q) and
[ € L*(Q). Then, the multi-valued map S defined in (7.20) is a strict multi-valued
semiflow in L*(£2).

Now, to study more properties of the multi-valued semiflow S, we need the
following result. To prove it, we argue as in the proof of Proposition 6.5, using the
continuity of the solutions and energy equalities.

Lemma 7.5. Under the assumptions of Lemma 7.4, consider a sequence of initial
data {uy} C L*(Q) such that u — g strongly in L*(Y). Then, for any sequence
{u"} where u™ € ®(uy), there exist a subsequence of {u™} (relabeled the same) and
u € P(ug), such that

u"(t) = u(t) strongly in L*(Q) Vit > 0. (7.21)

Proof. Consider T' > 0 fixed. Applying (7.2) to the energy equality, it holds

——|u™(t)|5 + mllu"(t)|F < (f,u"(t)) ae. te(0,T).
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Using the Young inequality, we deduce

ey <5 () 1A+ Sl ol

Therefore,

2

d 9 »
—u™(t)[3 "r <= — ¢ ae te(0,7)
dt|u()|2+m|\u()Hp_q(mp) 1f]12 ae. te(0,T)

Integrating the previous expression between 0 and ¢t € (0,7'), we have

t o7 [ 2 \»
)] "(s)|[Pds < |ugls + — | — .
|u ()|2+m/0 [u"(s)lIpds < |uols + . (mp) [l

Thus, the sequence {u"} is bounded in L>®(0,T; L*(Q)) N LP(0, T; W, *(Q)). Taking
into account the boundedness of {u™} in C([0,T]; L*(2)), there exists a positive
constant C, > 0 such that

[u"(t)]s < Cx VYt €[0,T] Vn>1.

From this, making use of the continuity of the function a and the fact that [ € L?(2),
there exists a positive constant M. > 0 such that

a(l(u™(t))) < M. Vte[0,T] ¥n>1.

Then, taking this into account together with the boundedness of the sequence {u"}
in LP(0, T;Wy(Q)), we deduce that the sequence {—a(l(u"))A,u"} is bounded in
L0, T; W=14(Q)). Therefore, {(u™)'} is bounded in L(0,T; W~1(Q)). Now, ap-
plying the Aubin Lions lemma, there exist a subsequence of {u"} (relabeled the
same) and u € L>(0,T; L*(Q)) N LP(0,T; Wy P(R)) with ' € L0, T; W=149(Q)),
such that
( u™ = u  weakly-star in L>®(0,T; L?(
u" —u  weakly in LP(0, T; W, *(Q))
u” — u  strongly in L*(0,T; L*(Q)),
u™(t) — u(t) strongly in L*(Q) a.e. t € (0,7),
(u™) —u'  weakly in L2(0,T; W~14(Q)),
[ —a(l(u™)Apu™ = —a(l(u))Apu  weakly in L9(0, T; W—14(Q)),

),

Y

where the last convergence has been obtained arguing as in the proof of the existence
of solution (cf. Theorem 7.2). Indeed, in that way we deduce that u solves (7.1)
with u(0) = wo.

The next goal will be to prove (7.21). We split the proof into two steps.

Step 1. Our aim is to prove that

u™(t) — u(t) weakly in L2(Q2) Vt € [0,T]. (7.22)
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To that end, we apply the Arzela-Ascoli theorem. Observe that the sequence
{u"} is equicontinuous in W=14(Q) on [0, 7] thanks to the boundedness of {(u")’}
in L2(0,T; W~14(Q)). Namely, fixed £ > 0 and considering s1, so € [0, 7], it holds

([ oy

S1

[u”(s2) — u"(s1)]|« < sup
vEWEP(Q)/[[v]lp=1

</ ) .do

< @) a0y ls2 = s M.
In addition, since the sequence {u"} is bounded in C([0,T]; L*(Q2)) and the
embedding L*(Q) — W~14(Q) is compact, by the Arzela-Ascoli theorem,

u" — u strongly in C([0,T]; W~59(Q)).

Taking this into account together with the fact that the sequence {u™} is bounded
in C([0,T); L*(Q)), (7.22) holds.
Step 2. The aim of this step is to prove

limsup [u"(t)]2 < [u(t)]z Vt € [0,T]. (7.23)

n—o0

From the energy equality (7.4), using (7.2) and the Young inequality, we obtain

2/ 1\r
2(t)5 < 252+t—s—<—) 7 V0<s<t<T,
[2(8)]z < [2(s)]3 + ( )q mp il

where z is replaced by u or any u".
Now, we define the following continuous and non-increasing functions on [0, 7]

Tt) = () — 2 (i)z 11

q \mp
2 (1 \*
a6 = el - 2 () e

Observe that since
u™(t) — u(t) strongly in L*(Q) a.e. t € (0,7),

we have

Jo(t) = J(t) ae. t€(0,7T). (7.24)
In fact, making use of the continuity of the functional J on [0, T, the non-increasing
character of the function J, on [0, 7], together with (7.24), we obtain

Jo(t) = J(t) Vte (0,T).
Therefore, (7.23) holds.

Then, from (7.22) and (7.23) we deduce
u"(t) — u(t) Vtelo,T].

A diagonal procedure allows now to conclude (7.21). O
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Now, we are ready to prove that the multi-valued semiflow S is upper-semiconti-
nuous with closed values.

Proposition 7.6. Under the assumptions of Lemma 7.4, the multi-valued semiflow
S is upper semicontinuous with closed values.

Proof. The proof of this result is analogous to that of Proposition 6.6. We reproduce
it in the autonomous framework for the sake of completeness.

First, we will prove that the multi-valued semiflow § is upper semicontinuous. To
that end, we argue by contradiction. Suppose that there exist t € R, ug € L*(Q2), a
neighbourhood N of §(t)ug, and a sequence {y,, } which fulfils that each y,, € S(¢)ug,
where u? — g strongly in L?(Q) and y,, € N for all n > 1.

Since y, € S(t)uy for all n, there exists u" € ®(uy) such that y, = u"(¢).
In addition, as uf — wg strongly in L?*(Q), applying Lemma 7.5, there exists a
subsequence of {u™(t)} (relabeled the same) which converges to u(t) € S(t)ug. This
is contradictory because y, € N for all n > 1.

Finally, using again Lemma 7.5, it is straightforward to check that the multi-
valued semiflow S has closed values. O

Now, we show the existence of an absorbing set in L*((2).

Proposition 7.7. Under the assumptions of Lemma 7.4, the set B2(0, Ry), where

2 q
p—2 [20°\72 1 op »
R§=1+—(—I t— o) Il
p p g \p(2m — i)

is an absorbing set for the multi-valued semiflow & : Ry x L*(2) — P(L*()),
where C; is the constant of the continuous embedding Wy *(Q) < L*(Q) and p, =
(21m) (g + 27).

Proof. Consider fixed a nonempty bounded subset B of L*(Q), up € B and u €
®(up). Observe, there exists b > 0 such that B C By2(0,b).
Our aim is to prove that there exists ¢(B) > 0 such that

lu(t)]le < Ry Vt > t(B), (7.25)

where R? is given in the statement.
From the energy equality, making use of (7.2), we have

%|u(t)|§ + 2ml|u(t)||) < 2(f,u(t)) ae. t>0.

Now, adding +pu|u(t)|* (with p € (0,2m)), multiplying by e and making use of

rWMS@‘”@%yzﬂwwp

we deduce
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where C; is the constant of the continuous embedding Wy () < L*(Q).
Integrating between 0 and ¢, we obtain

2 q

—2) 207\ 1 2P v
u(®))? < |ug|2e ™ + =2 (—1) + (—) £, 7.26
u(t) < Juol — (5 i Gy e

where p, = (2°7'm)/(q + 2P).
Observe that there exists ¢(B) := max{0, % Inb} such that

luglze™ <1Vt >t(B).

Therefore, taking this into account, from (7.26), (7.25) holds. O

Now, assuming that f is more regular, we make the most of the additional
regularity of any solution to (7.1) (cf. Theorem 7.2) and the existence of an absorbing

set in I/VO1 P(Q) for S is established. As a consequence, the asymptotic compactness
of the multi-valued semiflow S : R, x L?(Q) — P(L*(2)) follows.

Proposition 7.8. Under the assumptions of Lemma 7.4, if [ € L*(Q), the set
BW&,p(O,RQ), where

R 2 [ 2\» »
p__ 2o, 2 2 g Y yr2
= 2 (Z) e+ i
is an absorbing set for the multi-valued semiflow S : Ry x L*(Q2) — P(L*(Q)), where
Ry is given in Proposition 7.7.

Proof. Consider fixed a nonempty bounded subset B of L?(), ugp € B and u €
@(UO)
Our aim is to prove that there exists ¢'(B) > 0 such that

Ju(t)|l, < RVt >1(B), (7.27)

where RY is given in the statement.

To that end, we argue as in the proof of Theorem 7.2, namely as it was done in
Step 2. We use the Galerkin formulation associated to problem (P, ), whose unique
solution is u, and prove (7.27) for the Galerkin approximations ,. Then, applying
compactness arguments, (7.27) is shown for the solution u to (P,).

Multiplying (7.17) by @,;(t) and summing from j = 1 to n, making use of (7.2)
and the Young inequality, we deduce

d. . ) 2/ 2\7r
iz mla0r <2 (Z) 11l ac >0

Now, integrating between ¢ — 1 and ¢,

¢ 2/ 92 \»
ant2+m/ i, (8)|[Pds < ant—12+—(—> fle. 7.28
|in (1) HH (s)[[pds < [an(t —1)[3 <\ 171l (7.28)
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Observe that similarly to it was done in the proof of Proposition 7.7, it holds

where R; and t(B) are given in Proposition 7.7. Then, taking this into account,
from (7.28), we have

m  mq \'mp

/t [ (5)||Pds < = B 2 (i)p I£1¢ Vt>t(B):=t(B)+1.  (7.29)

On the other hand, multiplying (7.17) by &],;(t)/a(l(u(t))) and summing from
j = 1 until n, it holds

@B L 1d,
a@u0)) " pa Dl = )

~

a.e. t>0.

Applying the Cauchy inequality and (7.2) to the above expression, it holds

1d \f!%

Now, integrating between r and t, with ¢t — 1 < r <,
(@)l < ()15 + 2= |13,
P P Am
Then, integrating w.r.t. r between ¢ — 1 and ¢, we have
' p
Uy (1)|]2 < i (1) |[Pdr + =] f|2.
[in(B)]I} < /t1 Van (r)lipdr + 1 fl2
Making use of (7.29), from the previous expression we deduce
(DIl < Ry Vt=1(B).

Therefore, the sequence {a,} is bounded in L>(t'(B), oo; Wy *(2)). In particu-
Lp(t’(B),T; W,y P (Q)), since
),

lar, for any 7' > t/(B), {4} converges to u weakly in
u is the unique solution to (P,). As u € C([t'(B),00); L*(£2)), making use of [100,
Lemma 11.2], (7.27) holds. O

To conclude, we have the main result of this section, the existence of the compact
global attractor in L*((2).

Theorem 7.9. Assume that the function a € C(R;Ry) fulfils (7.2), and both f
and [ belong to L*(Y). Then, there exists the compact global attractor A, which is
mvariant and is given by

A=UJS6)By10(0, Ry). (7.30)

t>0 s>t
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Proof. The multi-valued semiflow & is upper semicontinuous with closed values
thanks to Proposition 7.6. In addition, the existence of an absorbing set in L*(Q)
is guaranteed by Proposition 7.7. Therefore, according to Theorem 5.11, to prove
the existence of the compact global attractor, we only need to check that the multi-
valued semiflow S is asymptotically compact. This is immediate thanks to Pro-
position 7.8 and the compactness of the embedding W, 7(Q) < L?(Q). Therefore,
by Theorem 5.11, the existence of the compact global attractor A, given by (7.30),
holds.

In addition, since the multi-valued semiflow S is strict (cf. Lemma 7.4), A is
invariant (cf. Theorem 5.11). O

As a straightforward consequence, we obtain the following generalised result
ensuring the existence of attractor under a weaker assumption on .

Corollary 7.10. Assume that the function a € C(R;R,) fulfils (7.19), f € L*(Q)
and | € L1(QY). Then, the thesis of Theorem 7.9 hold.



Current and future research

This PhD project has focused on variational techniques that have been applied to
parabolic problems with nonlocal diffusion.

Along this process, some improvements have been obtained as well as some
weakenings of the assumptions on certain terms of the problem in return of some
restrictions or stronger conditions in other parts.

During this study, we have encountered some technical difficulties and some un-
finished projects whose analysis most certainly will be of great interest to us in the
future.

Below we show a brief non-exhaustive list of some of these questions and open
problems that we find interesting.

The study of parabolic problems with nonlocal diffusion in unbounded domains is
still an open problem. We have already proved the existence and uniqueness of weak
solutions for nonlocal reaction-diffusion equations in this kind of domains. In fact,
we have obtained the existence of a pullback absorbing family in L?(Q2). However,
several difficulties arise when we try to prove the pullback asymptotic compactness
in order to show the existence of pullback attractors in L?*(€2). For instance, when
we try to apply the method used in [101], we cannot build the scalar product that
plays the essential role in the proof of this property due to the fact that the nonlocal
operator appears in the diffusion term.

In Chapters 6 and 7, we have analysed multivalued problems. An interesting
feature that we would like to study is the Kneser property, which consists in prov-
ing that the set of values reached by the solutions at each instant is compact and
connected (see [112, 71, 72] for more details). It would be even more enriching to
study this property for nonlocal reaction-diffusion equations in unbounded domains
as it was done for local reaction-diffusion systems in [98] by Morillas & Valero or in
[10] by Anguiano, Morillas and Valero.

Furthermore, we also want to analyse nonlocal problems with delay terms be-
cause of their importance in real applications (cf. [86, 117]). From a biological point
of view, they can help to study the behaviour of species better because we take into
account not only the present but also the history of the population.
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In the framework of attractors, we plan to prove the existence of uniform at-
tractors associated to the nonlocal problems analysed during this PhD project as a
different approach to study the asymptotic behaviour of the solutions.

In addition to dealing with new problems, we want to improve the current results.
For instance, we are determined to continue working on the elliptic problem

{ —a(l(u))Au = f(u) in Q,
u=0 on 0.

During a stay with Prof. Chipot at the Zurich University, we analysed interesting
results related to the above problem and we would like to make more progress in
that line because there is not much known about the possible relations between
the solution to the evolution problem associated to the above one and the station-
ary solutions. In this complex elliptic framework, we also intend to study stationary
problems with more than one nonlocal term like the one analysed by Alves and Covei
[1], in which the existence of solutions is proved making use of the sub-supersolution
method.

Furthermore, we want to weaken the assumptions made on f in Chapters 3 and
4 that guarantee that f(u) € L*(7,T; L*(2)) (cf. (3.54) and (4.13) respectively).

We would also like to extend our results to more general operators as done in
Chapter 7. In addition, we also plan to study the asymptotic behaviour of the
solutions associated to local nonlocal problems (cf. [2, 3]).
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