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1 Introduction

Let A and X be nonempty, bounded and closed subsets of a metric space (E, d). The mini-
mization (resp. maximization) problem denoted by min(A,X) (resp. max(A,X)) consists in
finding (a0, x0) ∈ A × X such that d(a0, x0) = inf {d(a, x) : a ∈ A, x ∈ X} (resp. d(a0, x0) =
sup {d(a, x) : a ∈ A, x ∈ X}). Here we give generic results on the well-posedness of these problems
in different geodesic spaces and under different conditions considering the set A fixed. Besides, we
analyze the situations when one set or both sets are compact and give some specific results for
CAT(0) spaces. We also state a variant of the Drop Theorem in Busemann convex geodesic spaces
and apply it to obtain an optimization result for convex functions. The proofs of these results can
be found in [11, 19].

For A ∈ Pcl(E) (resp. A ∈ Pb,cl(E)) and x ∈ E \ A, the nearest point problem (resp. farthest
point problem) of x to A consists in finding a point a0 ∈ A (the solution of the problem) such that
d(x, a0) = dist(x,A) (resp. d(x, a0) = Dist(x,A)). Stečkin [23] was one of the first who realized
that in case E is a Banach space, geometric properties like strict convexity, uniform convexity,
reflexivity and others play an important role in the study of nearest and farthest point problems.
His work triggered a series of results so-called “in the spirit of Stečkin” because the ideas he used
were adapted again and again by different authors to various contexts (see, for example, [7, 8, 18]).
In [23], Stečkin proved, in particular, that for each nonempty and closed subset A of a uniformly
convex Banach space, the complement of the set of all points x ∈ E for which the nearest point
problem of x to A has a unique solution is of first Baire category. One of the results also given in
[23] and later improved by De Blasi, Myjak and Papini in [7] was going to become a key tool in
proving best approximation results and was called Stečkin’s Lens Lemma.

In [8], De Blasi, Myjak and Papini studied more general problems than the ones of nearest and
farthest points. Namely, they considered the problem of finding two points which minimize (resp.
maximize) the distance between two subsets of a Banach space. They focused on the well-posedness
of the problem which consists in showing the uniqueness of the solution and that any approximating
sequence of the problem must actually converge to the solution (see Section 4 for details). The
authors proved that if A is a nonempty, bounded and closed subset of a uniformly convex Banach
space E, the family of sets in Pb,cl,cv(E) for which the maximization problem, max(A,X), is well-
posed is a dense Gδ-set in the family Pb,cl,cv(E) endowed with the Pompeiu-Hausdorff distance. For
the minimization problem, min(A,X), a similar result is proved where X belongs to a particular
subspace of Pb,cl,cv(E). A nice synthesis of issues concerning nearest and farthest point problems
in connection with geometric properties of Banach spaces and some extensions of these problems
can be found in [4].
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Zamfirescu initiated in [24] the investigation of this kind of problems in the context of geodesic
spaces. Later on, researchers have focused on adapting the ideas of Stečkin [23] into the geodesic
setting. In particular, Zamfirescu [25] proved that, in a complete geodesic space E without bi-
furcating geodesics, having a fixed compact set A, the set of points x ∈ E for which the nearest
point problem of x to A has a single solution is a set of second Baire category. Motivated by this
result, Kaewcharoen and Kirk [16] showed that if E is a complete CAT(0) space with the geodesic
extension property and with curvature bounded below globally, for any fixed closed set A, the set
of points x ∈ E for which the nearest point problem of x to A has a unique solution is a set of
second Baire category. A similar result was proved for the farthest point problem. Very recent
results in the context of spaces with curvature bounded below globally were obtained in [10] where
the authors proved a variant of Stečkin’s Lemma that allowed them to give some porosity theorems
which are stronger results than the ones in [16].

Here we are also concerned with the geometric result known as the Drop Theorem. The original
version of this theorem was proved by Daneš [5] and is a very useful tool in nonlinear analysis.
Moreover, it is equivalent to the Ekeland Variational Principle and the Flower Petal Theorem [20].
In [12], generalized versions of the Drop Theorem are proved and afterwards used in the proofs of
various minimization problems. For more details see also [15].

We study in the context of geodesic metric spaces the problem of minimizing (resp. maximizing)
the distance between two sets, originally considered by De Blasi, Myjak and Papini in [8] for
uniformly convex Banach spaces. The given results rely on a property of the convex hull of the
union of a convex set with a point in Busemann convex spaces, Lemma 4.4, which is given at the
beginning of Section 4.1. We show that if E is a Busemann convex geodesic space with curvature
bounded below and the geodesic extension property, the family of sets in Pb,cl,cv(E) for which
max(A,X) is well-posed is a dense Gδ-set in Pb,cl,cv(E). A similar result is given for the minimizing
problem, min(A,X), with no need of the geodesic extension property. These results give natural
counterparts to those obtained by De Blasi et al. in [8]. After this we focus on the case of CAT(0)
spaces, where the rich geometry of these spaces will be used to relax certain conditions in relation
to the well-posedness problem. Then, in Section 4.2, we show that the boundedness condition on
the curvature of the space is no longer needed if we impose compactness conditions on the sets.
Both minimization and maximization problems are discussed in this context where we replace the
condition on the curvature by that of not having bifurcating geodesics introduced by Zamfirescu in
[25]. Finally, in our last section, we consider the Drop Theorem in geodesic spaces. With the aid
of the Strong Flower Petal Theorem we derive a version of the Drop Theorem in our context which
is used to study an optimization problem for convex and continuous real-valued functions defined
on geodesic spaces.

2 Preliminaries

Let (E, d) be a metric space. A geodesic in E is an isometry from R into E (we may also refer to
the image of this isometry as a geodesic). A geodesic path from x to y is a mapping c : [0, l]→ E,
where [0, l] ⊆ R, such that c(0) = x, c(l) = y and d (c(t), c(t′)) = |t− t′| for every t, t′ ∈ [0, l]. The
image c ([0, l]) of c forms a geodesic segment which joins x and y. Note that the geodesic segment
from x to y is not necessarily unique. If no confusion arises, we will use [x, y] to denote a geodesic
segment joining x and y. (E, d) is a geodesic space if every two points x, y ∈ E can be joined by
a geodesic path. A point z ∈ E belongs to the geodesic segment [x, y] if and only if there exists
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t ∈ [0, 1] such that d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y), and we will write z = (1− t)x+ ty
for simplicity. This, too, may not be unique. (E, d) has the geodesic extension property if each
geodesic segment is contained in a geodesic. For a very comprehensive treatment of geodesic metric
spaces the reader may check [1].

The geodesic space (E, d) is Busemann convex if given any pair of geodesic paths c1 : [0, l1]→ E
and c2 : [0, l2]→ E with c1(0) = c2(0) one has

d(c1(tl1), c2(tl2)) ≤ td(c1(l1), c2(l2)) for all t ∈ [0, 1].

A subset X of E is convex if any geodesic segment that joins every two points of X is contained
in X. Let G1(X) denote the union of all geodesics segments with endpoints in X. Notice that X
is convex if and only if G1(X) = X. Recursively, for n ≥ 2 we set Gn(X) = G1(Gn−1(X)). Then
the convex hull of X will be

co(X) =
⋃
n∈N

Gn(X).

By co(X) we shall denote the closure of the convex hull. It is easy to see that in a Busemann
convex geodesic space, the closure of the convex hull will be convex and hence it is the smallest
closed convex set containing X.

Let κ ∈ R and n ∈ N. The classical model spaces Mn
κ are defined in the following way: if

κ > 0, Mn
κ is obtained from the spherical space Sn by multiplying the spherical distance with

1/
√
κ; if κ = 0, Mn

0 is the n-dimensional Euclidean space Rn; and if κ < 0, Mn
κ is obtained from

the hyperbolic space Hn by multiplying the hyperbolic distance with 1/
√
−κ. For more details

about these spaces and related topics one can consult [1, 13].
A geodesic triangle ∆(x1, x2, x3) consists of three points x1, x2 and x3 in X (the vertices of the

triangle) and three geodesic segments corresponding to each pair of points (the edges of the triangle).
For the geodesic triangle ∆=∆(x1, x2, x3), a κ-comparison triangle is a triangle ∆̄ = ∆(x̄1, x̄2, x̄3)
in M2

κ such that d(xi, xj) = dM2
κ
(x̄i, x̄j) for i, j ∈ {1, 2, 3}. For κ fixed, κ-comparison triangles of

geodesic triangles (having perimeter less than 2π/
√
κ if κ > 0) always exist and are unique up to

isometry (see [1, Lemma 2.14]).
A geodesic triangle ∆ satisfies the CAT(κ) (resp. reversed CAT(κ)) inequality if for every

κ-comparison triangle ∆̄ of ∆ and for every x, y ∈ ∆ we have

d(x, y) ≤ dM2
κ
(x̄, ȳ) (resp. d(x, y) ≥ dM2

κ
(x̄, ȳ)),

where x̄, ȳ ∈ ∆̄ are the corresponding points of x and y, i.e., if x = (1 − t)xi + txj then x̄ =
(1− t)x̄i + tx̄j .

If κ ≤ 0, a CAT(κ) space (also known as a space of bounded curvature in the sense of Gromov)
is a geodesic space for which every geodesic triangle satisfies the CAT(κ) inequality. If κ > 0,
a metric space is called a CAT(κ) space if every two points at distance less than π/

√
κ can be

joined by a geodesic path and every geodesic triangle having perimeter less then 2π/
√
κ satisfies

the CAT(κ) inequality.
A geodesic metric space is said to have curvature bounded below if there exists κ < 0 such that

every geodesic triangle satisfies the reversed CAT(κ) inequality. Other properties of spaces with
curvature bounded below and equivalent definitions can be found in [3].

CAT(0) spaces are a particular class of CAT(κ) spaces which has called the attention of a
large number of researchers in the last decades due to its rich geometry and relevance in different
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problems. The fact that a CAT(0) space is Busemann convex has a great impact on the geometry
of the space, but we must mention that being Busemann convex is a weaker property than being
CAT(0).

We say that the geodesic space (E, d) is reflexive if every descending sequence of nonempty,
bounded, closed and convex subsets of E has nonempty intersection. A simple example of a reflexive
metric space is a reflexive Banach space. Other examples include complete CAT(0) spaces, complete
uniformly convex metric spaces with a monotone or a lower semi-continuous from the right modulus
of uniform convexity, and others.

Let (E, d) be a metric space. Taking z ∈ E and r > 0 we denote the open (resp. closed) ball
centered at z with radius r by B(z, r) (resp. B̃(z, r)). Given X a nonempty subset of E, we define
the distance of a point z ∈ E to X by dist(z,X) = inf{d(z, x) : x ∈ X}. The metric projection (or
nearest point mapping) PX onto X is the mapping

PX(y) = {x ∈ X : d(x, y) = dist(y,X)}, for every y ∈ E.

The closure of the set X will be denoted as X.
If X is additionally bounded, the diameter of X is given by diam X = sup{d(x, y) : x, y ∈ X} and
the remotal distance of a point z ∈ E to X is defined by Dist(z,X) = sup{d(z, x) : x ∈ X}. The
farthest point mapping FX onto X is given by

FX(y) = {x ∈ X : d(x, y) = Dist(y,X)}, for every y ∈ E.

From now on, if nothing else is mentioned, E will stand for a geodesic metric space. We consider
the following families of sets

Pcl(E) = {X ⊆ E : X is nonempty and closed} ,

Pb,cl(E) = {X ⊆ E : X is nonempty, bounded and closed} ,

Pb,cl,cv(E) = {X ⊆ E : X is nonempty, bounded, closed and convex} ,

Pcp(E) = {X ⊆ E : X is nonempty and compact} ,

Pcp,cv(E) = {X ⊆ E : X is nonempty, compact and convex} .

If E is complete, then Pb,cl(E) and Pcp(E) are complete under the Pompeiu-Hausdorff distance. If,
additionally, E is Busemann convex, then, by an easy adaptation of the argument in the Banach
space context, one can prove that Pb,cl,cv(E) and Pcp,cv(E) are also complete with respect to the
Pompeiu-Hausdorff distance.

3 Nearest and farthest point problems

We give in the sequel some existence and well-posedness results for nearest and farthest point
problems. We recall first the notion of well-posedness for such problems. The results we include in
this section hold in the framework of Banach or complete geodesic spaces. This is why we consider
next E to be a complete geodesic space although the definitions given below can be stated in the
general setting of metric spaces.
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For A ∈ Pcl(E) (resp. A ∈ Pb,cl(E)) and x ∈ E, denote by min(x,A) (resp. max(x,A)) the
nearest point problem of x to A. A sequence (an) ⊆ A is called a minimizing (resp. maximiz-
ing) sequence if limn→∞ d(x, an) = dist(x,A) (resp. limn→∞ d(x, an) = Dist(x,A)). The problem
min(x,A) (resp. max(x,A)) is said to be well-posed if it has a unique solution a0 ∈ A and every
minimizing (resp. maximizing) sequence converges to a0.

We introduce next two sets that are used below to characterize the well-posedness of nearest
and farthest point problems:

LA(σ) = {a ∈ A : d(x, a) ≤ dist(x,A) + σ},

MA(σ) = {a ∈ A : d(x, a) ≥ Dist(x,A)− σ}.

Using the definitions one can check that for A closed, the problem min(x,A) is well-posed if and
only if limσ↘0 diam(LA(σ)) = 0. Likewise, if A is bounded and closed, then max(x,A) is well-posed
if and only if limσ↘0 diam(MA(σ)) = 0

Let us consider the following special set. For

x ∈ E, r > 0, y ∈ B(x, r/2) \ {x} and 0 ≤ σ ≤ 2d(x, y),

set
D(x, y; r, σ) = B̃(y, r − d(x, y) + σ) \B(x, r).

Because of its shape in R3 this set was called a lens in [7].
Stečkin [23] studied nearest point problems in normed spaces and proved results that inspired

many mathematicians to consider nearest and farthest point problems in various settings. One of the
key tools proved by Stečkin [23] states that in uniformly convex Banach spaces, diam(D(x, y; r, σ))
converges to 0 as σ ↘ 0 uniformly with respect to y ∈ B(x, r/2), y 6= x such that d(x, y) is constant.
Using this property, Stečkin [23] proved the following result in uniformly convex Banach spaces.

Theorem 3.1 (Stečkin [23]). Let E be a uniformly convex Banach space and A ∈ Pcl(E). Then
the set

E \ {x ∈ E : min(x,A) is well-posed}

is of first Baire category.

De Blasi, Myjak and Papini gave in [7] an estimation of the diameter of the lens and called this
result Stečkin’s Lens Lemma. To this end, for E a uniformly convex Banach space with modulus
of convexity δE and for 0 < σ ≤ 1, set

δ∗(σ) = sup{ε : 0 < ε ≤ 2 and δE(ε) ≤ σ}.

Lemma 3.2 (De Blasi, Myjak, Papini [7]). Let E be a uniformly convex Banach space, x ∈ E,
r > 0, y ∈ B(x, r/2), y 6= x. Then, for every 0 < σ ≤ 2‖y − x‖,

diam(D(x, y; r, σ)) ≤ 2σ + 2(r − ‖y − x‖)δ∗
(

σ

2‖y − x‖

)
.

Using the above lemma, the same authors proved in [8] the following uniform version of a result
given by Stečkin [23].
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Proposition 3.3 (De Blasi, Myjak, Papini [8]). Let E be a uniformly convex Banach space. Suppose
ε > 0, r, r0 > 0 with r < r0. Then there exists 0 < σ0 < r such that for every x, y ∈ E with
‖x− y‖ = r and for every r < r′ ≤ r0 and 0 < σ ≤ σ0,

diam(D(x, y; r′, σ)) < ε.

In the context of geodesic metric spaces, the property of not having bifurcating geodesics defined
in [25] has been proved to play a significant role in the study of nearest and farthest point problems.
A geodesic metric space is said to be without bifurcating geodesics if for any two geodesic segments
with the same initial point and having another common point (different from the initial one), this
second point is a common endpoint of both or one segment contains the other. From the definitions
it can be seen that a space with curvature bounded below globally cannot have bifurcating geodesics.
Using this property, Zamfirescu [25] proved the next result.

Theorem 3.4 (Zamfirescu [25]). Let E be a complete geodesic space without bifurcating geodesics
and A ∈ Pcp(E). Then PA is singlevalued on a set of second Baire category.

Kaewcharoen and Kirk [16] studied nearest and farthest point problems in complete CAT(0)
spaces with curvature bounded below globally by κ ≤ 0 and with the geodesic extension property.
The proofs of these results rely closely on the uniform convexity of CAT(0) spaces.

Theorem 3.5 (Kaewcharoen, Kirk [16]). Let E be a complete CAT(0) space with curvature bounded
below globally by κ ≤ 0 and with the geodesic extension property. Suppose A ∈ Pcl(E). Then PA is
well-defined and singlevalued on a set of second Baire category.

Theorem 3.6 (Kaewcharoen, Kirk [16]). Let E be a complete CAT(0) space with curvature bounded
below globally by κ ≤ 0 and with the geodesic extension property. Suppose A ∈ Pb,cl(E). Then FA
is well-defined and singlevalued on a dense subset of E.

In the same paper it is shown (see [16, Example 3.9]) that the condition that the curvature is
bounded below globally cannot be dropped in the above results.

Example 3.7 (Kaewcharoen, Kirk [16]). Consider in `2 the sets

Li = {tei : t ∈ R},

where ei is the standard ith unit basis vector. Let E =
⋃
i∈N Li with the shortest path metric. This

is a complete R-tree. Take the closed sets

A1 =

{
tei : t ≥ 1 +

1

i
, i ∈ N

}
,

A2 =

{
tei : 0 ≤ t ≤ 1− 1

i
, i ∈ N

}
.

Set U = {(u, 0, 0, . . .) : u < 0}. Then any point in U has neither a nearest point in A1, nor a
farthest point in A2.
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Recent results in the context of spaces with curvature bounded below globally were obtained in
[10] where the authors proved a variant of Stečkin’s Lemma and extended the results given in [16].
We include below some results obtained in [10] that constitute key tools in proving our results.
Following [10], for κ ∈ (−∞, 0), define the real function Fκ on R3

+ by

Fκ(d, r, σ) = 2√
−κ arccosh

(
cosh2(

√
−κ (r − d+ σ))− sinh(

√
−κ (r − d+ σ))

sinh(
√
−κ d)

·
[
cosh(

√
−κ r)− cosh(

√
−κ d) cosh(

√
−κ (r − d+ σ))

])
for each (d, r, σ) ∈ R3

+.
In [10], the authors proved the following properties of the function Fκ and gave an estimation

of the diameter of the lens D(x, y; r, σ). This estimation yielded a variant of Stečkin’s Lemma for
spaces of curvature bounded below globally.

Proposition 3.8 (Esṕınola, Li, López [10]). The function Fκ is continuous on R3
+ and for any

d ≥ 0 and r ≥ 0, we have that Fκ(d, r, 0) = 0.

Proposition 3.9 (Esṕınola, Li, López [10]). Let E be a geodesic space of curvature bounded below
globally by κ and let x ∈ E, r > 0, y ∈ B(x, r/2) \ {x} and 0 ≤ σ ≤ 2d(x, y). Suppose there exists
u ∈ E in a geodesic passing through x and y such that d(x, u) = r and d(y, u) = r− d(x, y). Then,

diam(D(x, y; r, σ)) ≤ Fκ(d(x, y), r, σ) + 2σ.

We include below some of the results proved in [10] with the remark that the main results are
much stronger and involve porosity concepts which we do not discuss in this work.

Theorem 3.10 (Esṕınola, Li, López [10]). Let E be a complete geodesic metric space with curvature
bounded below globally by κ < 0 and A ∈ Pcl(E). Then,

{x ∈ E \A : min(x,A) is well-posed}

is a dense Gδ-set in E \A.

Theorem 3.11 (Esṕınola, Li, López [10]). Let E be a compete geodesic metric space with curvature
bounded below globally by κ < 0 and with the geodesic extension property. Suppose A ∈ Pb,cl(E).
Then,

{x ∈ E : max(x,A) is well-posed}

is a dense Gδ-set in E.

4 Minimization and maximization problems between two sets

In [8], De Blasi, Myjak and Papini studied the problem of finding two points which minimize
(resp. maximize) the distance between two subsets of a Banach space. Although the next notions
and the proposition below were originally given in the setting of Banach spaces they can be also
introduced in the framework of geodesic metric spaces (or even general metric spaces). In this
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section, if nothing else is mentioned, E denotes a complete geodesic metric space. Following [8],
for X,Y ∈ Pb,cl(E) and σ > 0, we set

λXY = inf {d(x, y) : x ∈ X, y ∈ Y } , µXY = sup {d(x, y) : x ∈ X, y ∈ Y } ,

LXY (σ) = {x ∈ X : dist(x, Y ) ≤ λXY + σ} ,

MXY (σ) = {x ∈ X : Dist(x, Y ) ≥ µXY − σ} .

The minimization (resp. maximization) problem denoted by min(X,Y ) (resp. max(X,Y )) consists
in finding (x0, y0) ∈ X×Y (the solution of the problem) such that d(x0, y0) = λXY (resp. d(x0, y0) =
µXY ). A sequence (xn, yn) in X × Y such that d(xn, yn)→ λXY (resp. d(xn, yn)→ µXY ) is called
a minimizing (resp. maximizing) sequence. The problem min(X,Y ) (resp. max(X,Y )) is said to be
well-posed if it has a unique solution (x0, y0) ∈ X×Y and for every minimizing (resp. maximizing)
sequence (xn, yn) we have xn → x0 and yn → y0. In the following we give a characterization
of the well-posedness of min(X,Y ) (resp. max(X,Y )) which can be proved by a straightforward
verification of the above definitions.

Proposition 4.1 (De Blasi, Myjak, Papini [8]). Let (E, d) be a complete geodesic metric space and
X,Y ∈ Pb,cl(E). The problem min(X,Y ) (resp. max(X,Y )) is well-posed if and only if

inf
σ>0

diam (LXY (σ)) = 0 and inf
σ>0

diam (LY X(σ)) = 0,

(resp. inf
σ>0

diam (MXY (σ)) = 0 and inf
σ>0

diam (MY X(σ)) = 0).

In order to state the results proved in [8], consider E a uniformly convex Banach space, A ∈
Pb,cl(E) and denote

PAb,cl,cv(E) = {X ∈ Pb,cl,cv(E) : λAX > 0}.

Then, (PAb,cl,cv(E), H) is a complete metric space. The following minimization and maximization
results are given in [8].

Theorem 4.2 (De Blasi, Myjak, Papini [8]). Let E be a uniformly convex Banach space and
A ∈ Pb,cl(E). Then,

{X ∈ PAb,cl,cv(E) : min(A,X) is well-posed}

is a dense Gδ-set in PAb,cl,cv(E).

Theorem 4.3 (De Blasi, Myjak, Papini [8]). Let E be a uniformly convex Banach space and
A ∈ Pb,cl(E). Then,

{X ∈ Pb,cl,cv(E) : max(A,X) is well-posed}

is a dense Gδ-set in Pb,cl,cv(E).

In the next two subsections we study minimization and maximization problems between sets in
particular geodesic metric spaces.
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4.1 Results in Busemann convex spaces with curvature bounded below globally

We begin this subsection by giving an estimation for dist(y,X), where X ∈ Pb,cv(E), x′ ∈ E such
that dist(x′, X) > 0 and y ∈ co (X ∪ {x′}). It is easy to see that in a Busemann convex geodesic
metric space, dist(y,X) < dist(x′, X) for every y ∈ co (X ∪ {x′}) with y 6= x′. We sharpen this
upper bound in the following way.

Lemma 4.4. Let E be a Busemann convex metric space and X ∈ Pb,cv(E). Suppose x′ ∈ E such
that dist(x′, X) > 0. Then, for every y ∈ co (X ∪ {x′}),

dist(y,X) ≤ dist(x′, X)− dist(x′, X)

dist(x′, X) + diam(X)
d(x′, y). (1)

We give next a property of Banach spaces which was used in [8] to prove minimization and
maximization problems between two sets in Banach spaces.

Proposition 4.5 (De Blasi, Myjak, Papini [8]). Let E be a Banach space, X ∈ Pb,cl,cv(E) and
ε, r > 0. Then there exists 0 < τ0 < r such that for every u ∈ E with dist(u,X) ≥ r and for every
0 < τ ≤ τ0 we have

diam(CX,u(τ)) < ε,

where
CX,u(τ) = [co(X ∪ {u})] \ [X + (dist(u,X)− τ)B(0, 1)].

The following lemma is an analogue in the metric setting of the above proposition. Its proof
uses Lemma 4.4.

Lemma 4.6. Let E be a Busemann convex metric space and X ∈ Pb,cv(E). For r > 0, x′ ∈ E
with dist(x′, X) ≥ r and n ∈ N with 1/n < r define

Cn = co
(
X ∪ {x′}

)
\
⋃
x∈X

B(x, dist(x′, X)− 1/n).

Then, the sequence (diam(Cn)) converges to 0 uniformly with respect to x′ ∈ E such that dist(x′, X) ≥
r.

In order to state our main results, we introduce the following notations. Let A ∈ Pb,cl(E) be
fixed. Then, we denote λX = λXA and µX = µXA for X ∈ Pb,cl(E). Following [8], set

PAb,cl,cv(E) = {X ∈ Pb,cl,cv(E) : λX > 0}.

Endowed with the Pompeiu-Hausdorff distance, PAb,cl,cv(E) is a complete metric space if E is Buse-
mann convex.
For p ∈ N define

Lp =

{
X ∈ PAb,cl,cv(E) : inf

σ>0
diam (LXA(σ)) <

1

p
and inf

σ>0
diam (LAX(σ)) <

1

p

}
and

Mp =

{
X ∈ Pb,cl,cv(E) : inf

σ>0
diam (MXA(σ)) <

1

p
and inf

σ>0
diam (MAX(σ)) <

1

p

}
.

We state next the two main results of this subsection, which are counterparts in the geodesic
case of Theorems 4.2 and 4.3 respectively. The proofs of these results rely on Lemma 4.6.

9



Theorem 4.7. Let E be a complete Busemann convex metric space with curvature bounded below
globally by κ < 0. Suppose A ∈ Pb,cl(E). Then,

Wmin =
{
X ∈ PAb,cl,cv(E) : min(A,X) is well-posed

}
is a dense Gδ-set in PAb,cl,cv(E).

Theorem 4.8. Let E be a complete Busemann convex metric space with the geodesic extension
property and curvature bounded below globally by κ < 0. Suppose A ∈ Pb,cl(E). Then,

Wmax = {X ∈ Pb,cl,cv(E) : max(A,X) is well-posed}

is a dense Gδ-set in Pb,cl,cv(E).

We conclude this subsection by giving a characterization of the well-posedness of the minimiza-
tion problem min(X,Y ) in complete CAT(0) spaces which shows that in the following particular
context, the conditions in Proposition 4.1 can be relaxed.

Proposition 4.9. Let E be a complete CAT(0) space, X ∈ Pb,cl,cv(E) and Y ∈ Pb,cl(E). The
problem min(X,Y ) is well-posed if and only if

inf
σ>0

diam (LY X(σ)) = 0.

4.2 Results involving compactness

In this subsection we study the same problems but we modify conditions we imposed in our results.
More particularly, we focus on the situation in which the set A is compact. We show that under
this stronger assumption on the set we can weaken the condition on the geodesic space from being
of curvature bounded below globally to not having bifurcating geodesics. However, in the first
theorem we need to add the reflexivity condition on the space. Before stating the theorem we give
the following property of reflexive Busemann convex geodesic spaces.

Lemma 4.10. Let (E, d) be a reflexive Busemann convex metric space. Then E is complete.

Theorem 4.11. Let E be a reflexive Busemann convex metric space with no bifurcating geodesics.
Suppose A ∈ Pcp(E). Then,

Wmin =
{
X ∈ PAb,cl,cv(E) : min(A,X) is well-posed

}
is a dense Gδ-set in PAb,cl,cv(E).

The following is a particular case of the above result.

Corollary 4.12. Let E be a complete CAT(0) space with no bifurcating geodesics. Suppose A ∈
Pcp(E). Then,

Wmin =
{
X ∈ PAb,cl,cv(E) : min(A,X) is well-posed

}
is a dense Gδ-set in PAb,cl,cv(E).
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Remark 4.13. The proof of Theorem 4.11 relies on the fact that min(A,X) always has a solution.
In fact, the reflexivity of the space is mainly used to ensure this condition. Therefore, it is natural
to ask whether it is possible to drop the condition that the problem has a solution.

Next we focus on the maximization problem for A compact. In order to follow the same line
of argument as in the previous result we need the fact that the problem max(A,X) has a solution.
However, in [22], it is proved that in a reflexive Banach space, the remotal distance from a point
to a bounded, closed and convex set is guaranteed to be reached if and only if the space is finite
dimensional. This is why it is natural to impose the compactness condition on the set X in our
next result.

Theorem 4.14. Let E be a complete geodesic space with no bifurcating geodesics and the geodesic
extension property. Suppose A ∈ Pcp(E). Then,

Wmax = {X ∈ Pcp(E) : max(A,X) is well-posed}

is a dense Gδ-set in Pcp(E).

Remark 4.15. Regarding the problem max(A,X), where the fixed set A is compact, we raise the
following question: is

Wmax = {X ∈ Pcp,cv(E) : max(A,X) is well-posed}

a dense Gδ-set in Pcp,cv(E)? The Hopf-Rinow Theorem (see [1, Chapter I.3, Proposition 3.7]) states
that if E is complete and locally compact, then it is proper. Hence, if the space is additionally
locally compact and Busemann convex then we can answer the question in the positive by taking
in the above proof the set Y = co (X ∪ {x′}), which is a compact and convex set.

5 The Drop Theorem in Busemann convex spaces

In [5], Daneš proved the following geometric result known as the Drop Theorem.

Theorem 5.1 (Drop Theorem). Let (E, ‖ · ‖) be a Banach space and A ∈ Pcl(E) be such that
inf{‖x‖ : x ∈ A} > 1. Then there exists a ∈ A such that

co (B(0, 1) ∪ {a}) ∩A = {a}.

The name of this theorem has its origin in the fact that the set co (B(0, 1) ∪ {a}) was called a
drop. Equivalences of this result or of its generalized versions with other fundamental theorems in
nonlinear analysis and various areas of their applications are discussed, for instance, in [12, 20].

In this section we give a variant of the Drop Theorem in the setting of Busemann convex metric
spaces. We derive this result from the following theorem called the Strong Flower Petal Theorem.
For a proof of this theorem see [12, Proposition 2.5]. This result uses the following extension of the
definition of a petal given in [20]: having a metric space (E, d) and a function f : E → R, we say
that the set

Pα,δ(x0, f) = {x ∈ E : f(x) ≤ f(x0)− αd(x, x0) + δ}

is the petal associated to δ ≥ 0, α > 0, x0 ∈ E and f .
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Theorem 5.2 (Strong Flower Petal Theorem). Let (E, d) be a complete metric space, A ∈ Pcl(E)
and f : E → R a Lipschitz function bounded below on A. Suppose δ > 0, α > 0 and x0 ∈ A. Then
there exists a point a ∈ A ∩ Pα,δ(x0, f) such that

(i) Pα,0(a, f) ∩A = {a};

(ii) xn → a for every sequence (xn) in Pα,0(a, f) with dist(xn, A)→ 0.

The following is a variant of the Drop Theorem in Busemann convex geodesic spaces.

Theorem 5.3. Let (E, d) be a complete Busemann convex metric space and let A ∈ Pcl(E) and
B ∈ Pb,cl,cv(E) be such that λAB > 0. Suppose ε > 0. Then there exists a ∈ A such that

(i) dist(a,B) < λAB + ε;

(ii) co (B ∪ {a}) ∩A = {a};

(iii) xn → a for every sequence (xn) in co (B ∪ {a}) with dist(xn, A)→ 0.

As an application of this version of the Drop Theorem we obtain an analogue of an optimization
result proved by Georgiev [12, Theorem 4.2] in the context of Banach spaces. In order to state this
result we need to briefly introduce some notions which can also be found in [12].

Let (E, d) be a complete metric space, f : E → R a lower semi-continuous function which is
bounded below, and A ∈ Pb,cl(E). The minimization problem denoted by min(A, f) consists in
finding x0 ∈ A (the solution of the problem) such that f(x0) = inf{f(x) : x ∈ A}.
For σ > 0, let

LA,f (σ) =

{
x ∈ E : f(x) ≤ inf

y∈A
f(y) + σ and dist(x,A) ≤ σ

}
.

The problem min(A, f) is well-posed in the sense of Levitin-Polyak (see [9, 17, 21]) if

inf
σ>0

diam (LA,f (σ)) = 0.

This is equivalent to requesting that it has a unique solution x0 ∈ A and every sequence (xn) in E
converges to x0 provided f(xn)→ f(x0) and dist(xn, A)→ 0.

The following lemma is the counterpart of [12, Lemma 4.1] for geodesic metric spaces.

Lemma 5.4. Let E be a geodesic space, X ∈ Pb(E) and f : E → R continuous and convex. For
c ∈ R, let A = {x ∈ E : f(x) ≤ c}. Suppose there exists z ∈ E such that f(z) < c. Then for every
ε > 0 there exists δ > 0 such that dist(x,A) < ε for each x ∈ X with f(x) < c+ δ.

Before stating the optimization result we define, for p ∈ N and E a geodesic space, the set

Lp =

{
X ∈ Pb,cl,cv(E) : inf

σ>0
diam (LX,f (σ)) <

1

p

}
.

Theorem 5.5. Let E be a complete Busemann convex metric space and let f : E → R be continu-
ous, convex, bounded below on bounded sets and satisfying one of the following conditions:

(i) infx∈E f(x) = −∞;

12



(ii) there exists z0 ∈ E such that f(z0) = infx∈E f(x) and every sequence (xn) in E converges to
z0 if f(xn)→ f(z0).

Then,

Wmin = {X ∈ Pb,cl,cv(E) : min(X, f) is well-posed in the sense of Levitin-Polyak}

is a dense Gδ-set in Pb,cl,cv(E).

Remark 5.6. If f is a continuous function, then the problem min(A, f) is well-posed in the sense
of Levitin-Polyak if and only if it is well-posed in the sense of Hadamard (see [21] for definition
and proof). Hence, in the above result we can substitute the well-posedness in the sense of Levitin-
Polyak by the one in the sense of Hadamard.

Theorem 5.5 is not only interesting by itself, but it is also important because several best
approximation results follow as simple consequences thereof. We finish our exposition by deriving
such a consequence which is, in fact, an extension of a result proved in [6].

Corollary 5.7. Let E be a complete Busemann convex metric space and suppose y ∈ E. Then,

Wmin = {X ∈ Pb,cl,cv(E) : min(y,X) is well-posed}

is a dense Gδ-set in Pb,cl,cv(E).
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