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Abstract

We introduce the notion of Gauss-Landau-Hall magnetic field on a Rie-

mannian surface. The corresponding Landau-Hall problem is shown to be

equivalent to the dynamics of a massive boson. This allows one to view that

problem as a globally stated, variational one. In this framework, flowlines

appear as critical points of an action with density depending on the proper

acceleration. Moreover, we can study global stability of flowlines. In this

equivalence, the massless particle model correspond with a limit case obtained

when the force of the Gauss-Landau-Hall increases arbitrarily. We also obtain

new properties related with the completeness of flowlines for a general mag-

netic fields. The paper also contains new results relative to the Landau-Hall

problem associated with a uniform magnetic field. For example, we charac-

terize those revolution surfaces whose parallels are all normal flowlines of a

uniform magnetic field.

1 From a classical picture to a general setting

Classically, the Landau-Hall problem consists of the motion study of a charged
particle in the presence of a static magnetic field, H . In this setting, free of any
electric field, a particle, of charge e and mass m, evolves with velocity v satisfying
the Lorentz force law, [1],

dP

dt
=

e

c
v × H,

where c denotes the light speed, P = (ǫ/c2) v stands for the momentum of the

particle, and ǫ = mc2 [1 − (‖ v ‖2 /c2)]
−1/2

is its energy. Since dP/dt is orthogonal
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to P , then (d/dt)(‖P‖2) = 0. This implies the constancy of both ‖v‖ and ǫ. Assume
H is stationary, i.e., H is a time-independent vector of the Euclidean space R

3.
With the choice of a suitable orthonormal reference system, we may assume that
H = h (0, 0, 1), for some h ∈ R. In this framework, we have

d

dt
v1(t) = ω v2(t),

d

dt
v2(t) = −ω v1(t),

d

dt
v3(t) = 0,

where ω = (ehc)/ǫ is constant. Then

x1(t) = x0
1 + r sin(ωt + α), x2(t) = x0

2 + r cos(ωt + α), x3(t) = x0
3 + v0

3t,

where r = ‖v‖/ω. In particular, if v0
3 = 0, then the particle describes a circle in the

plane x3 = x0
3, with center (x0

1, x
0
2, x

0
3) and radius r. Now, in this plane we consider

the 2-form F defined by F (X, Y ) = ε < X × Y, H >, where ε = ±1 is the sign of
h/ω. It is clear that F is covariantly constant, and therefore it is a constant multiple
of the area element, indeed F = εh dx1 ∧ dx2. Now, consider the metric g on the
plane defined by g := ε(h/ω)g0, where g0 =< , > denotes the Riemannian metric on
the plane induced by the usual one of R

3. Define the operator Φ, g-equivalent to F ,
by g(Φ(X), Y ) = F (X, Y ). Then, the Lorentz force law can be expressed in terms
of this form by

d

dt
v(t) = Φ(v(t)). (1)

This approach to the classical picture can be obviously extended to a more
general setting. In fact, it seems natural to define a magnetic field on a n(≥ 2)-
dimensional Riemannian manifold (M, g), as a closed 2-form F on M . The Lorentz
force of a magnetic background (M, g, F ) is defined to be the skew-symmetric oper-
ator, Φ, given by

g(Φ(X), Y ) = F (X, Y ), (2)

for any couple of vector fields X, Y on M . Let us remark that Φ is metrically
equivalent to F , so no information is lost when Φ is considered instead F . In
classical terminology, it is said that Φ is obtained from F by raising its second
index, and Φ and F are then said to be physically equivalent. On the other hand,
there exists another operator Φ′ defined from F via g in a similar way, namely
g(X, Φ′(Y )) = F (X, Y ), but it is easily seen that Φ′ = −Φ. So, the choice from
among Φ or Φ′ to represent F, using g, is not relevant. Along this paper, we will
use Φ to denote the Lorentz force induced from (M, g, F ).

A (smooth) curve γ in (M, g) is called a flowline of the dynamical system as-
sociated with the magnetic field F (or simply a flowline of F, or a magnetic curve
of (M, g, F )), if its velocity vector field, γ′, satisfies the following (Landau-Hall)
differential equation,

∇γ′γ′ = Φ(γ′), (LH)
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where ∇ is the Levi-Civita connection of g [compare with Eq. (1)].

For the trivial magnetic field, F = 0, the case without the force of a magnetic
field, magnetic curves correspond with the geodesics of (M, g). As it is well known,
they are nicely characterized as critical points of an energy action and so they
represent the trajectories for free fall particles (moving under the influence of only
gravity). In the general case, however, magnetic flows are important examples of
dynamical systems on Riemannian manifolds whose flowlines, being the trajectories
of charged particles in (non trivial) magnetic fields, are not geodesics (Proposition
2.1) but, as we will see later, they are closely related with the Riemannian structure.

Nevertheless, the magnetic curves of (M, g, F ) can be also viewed, at least locally,
as the solutions of a variational principle. In fact, let U be an open subset of M
where F = dω for some potential 1-form ω (this open subset could be the whole M
when H2(M) = 0). For any two fixed points p, q ∈ U , we consider the space Γpq

of smooth curves in U that connect these two points. Now, we choose the action
LH : Γpq → R defined by

LH(γ) =
1

2

∫

γ

g(γ′, γ′)dt −
∫

γ

ω(γ′)dt. (3)

The tangent space of Γpq in γ is made up of the smooth vector fields, V , along γ that
vanish at the end points p, q ∈ U . An standard computation involving integration
by parts allows one to compute the first variation of this action to be

δ(LH)(γ)[V ] = −
∫

γ

g (∇γ′γ′ − Φ(γ′), V ) dt.

As a consequence, we get

δ(LH)(γ)[V ] = 0, for any V ∈ TγΓpq if and only if γ is a solution of (LH).

This argument shows that the differential equation (LH) is indeed the Euler-Lagrange
equation associated with the functional LH.

However, it seems natural to realize the old idea of characterizing magnetic
curves from a global variational principle. In other words, to obtain the magnetic
trajectories of (M, g, F ) as solutions of a variational problem that neither it does
not involves any local potential nor it does not constraint the topology of M . This
is, in general, an interesting open problem. One of the main aim of this paper is
just to solve it for certain magnetic fields on surfaces.

To be precise, we introduce the notion of a Gauss-Landau-Hall magnetic field
(in brief, GMF) on an oriented Riemannian surface (M, g). First, we do it in the
natural context that surfaces are immersed in Euclidean space R

3 using the Gauss
map. However, we notice that the notion of GMF is absolutely intrinsic so it can
be considered on surfaces even if they are not regarded in R

3. Then, we are able
to obtain an amazing result which characterizes the normal flowlines of a GMF as
the solutions of a variational principle globally stated. Therefore, those flowlines
appear as critical points of an action whose Lagrangian density involves the proper
acceleration of particles (relativistic particles with rigidity of order one, in the sense
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of Plyushchay, [2],[3]). A priori, these actions describe a massive relativistic boson.
However, massless particles with arbitrary helicity are obtained as a limit case, just
when the Lorentz force of the GMG increases arbitrarily.

Other details on the paper are the following. We first provide in Section 2 an
analysis of the existence, uniqueness, extendibility and completeness of the magnetic
curves associated with a given (M, g, F ). Section 3 deals with uniform magnetic
fields on Riemannian surfaces, while the particular case when (M, g) is a revolution
surface is studied in Section 4. In Section 5, a one-parameter family Fm of functionals
is considered on an appropriate space of curves Λ in the surface. The Euler-Lagrange
equation associated to the variational problem is then obtained. In Section 6 we
define a Gauss-Landau-Hall magnetic field on a surface, first in R

3, and then in
general. In this section, we obtain the main result, Theorem 6.1, which asserts that
the normal flowlines of a GMF coincide with the critical points of the appropriate
functional Fm. Stability of the field equation solutions is also studied. In Section
7, we show a characterization theorem for those revolution surfaces whose parallels
are all normal magnetic curves associated to a GMF. We close the section studying
some particular examples.

2 Completeness of magnetic curves and more

An early property of the magnetic curves is the following conservation’s law. Parti-
cles evolve with constant speed, and so constant energy, along the magnetic trajec-
tories

d

dt
g(γ′, γ′) = 2g(Φ(γ′), γ′) = 0. (4)

In particular, a magnetic curve γ is said to be normal if it has unit energy, i.e.,
‖γ′‖ 2 ≡ 1.

The existence and uniqueness of geodesics, remains true when one considers mag-
netic curves. Thus, for each p ∈ M and v ∈ TpM there is exactly one inextendible
(i.e., maximal) magnetic curve, γ : (−a, a) −→ M , of (M, g, F ) with γ(0) = p and
γ′(0) = v, (see for instance [4], p. 91). Since the proof of this result does not make
use neither the definiteness of g nor the skew-symmetry of Φ, one has a present
determines the future type result for an indefinite metric, Lorentzian in particular,
and for any smooth operator. Even more, the result also works for solutions of a
differential equation that extends that of Landau-Hall in the following terms [5],

∇γ′γ′ = Φ(γ′) + X ◦ γ,

where X is a vector field on a semi-Riemannian manifold. This setting includes the
important case in Mechanics where X = −∇V , and V standing for smooth function
on M , ([6], Proposition 3.7.4).

Nevertheless, the well known homogeneity result for geodesics, works quite dif-
ferent in non trivial magnetic fields. Therefore, if γ is the inextendible magnetic
curve of (M, g, F ) determined from the initial data (p, v), the curve β, defined by
β(t) = γ(λt), λ ∈ R\{0}, is a magnetic trajectory of (M, g, λF ) and also, when
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λ > 0, of (M, (1/λ) g, F ), in both cases determined from initial data (p, λv). Further-
more, the whole families of magnetic curves of (M, g, F ) and (M, λg, λF ) coincides,
for any constant λ > 0. Consequently, we have

Proposition 2.1 Let F be a non trivial magnetic field on a Riemannian mani-
fold, (M, g). Then, there exists no affine connection on M whose geodesics are the
magnetic curves of (M, g, F ).

A magnetic field (M, g, F ) with Lorentz force Φ, provides, in a similar way as
in [7], Prop. 3.28, with a unique vector field QΦ on the tangent bundle TM . This
is defined to have integral curves being the lifting to TM of the magnetic curves,
that is, t 7→ (γ(t), γ′(t)), where γ is a magnetic curve of (M, g, F ) (compare with
[8]). Certainly this vector field is nothing but the geodesic flow when F = 0. Once
more, neither the definiteness of g nor the skew-symmetry of Φ is needed to define
QΦ, [5]. On the other hand, the fact that any integral curve of QΦ is the velocity
of its projection on M , allows us to think of QΦ as a nice example of the classically
so-called second order differential equation on M . Because the comment previous to
Proposition 2.1, QΦ is not an spray, in general.

A dynamical system with complete trajectories is often thought in Physics to be
persisting eternally. But in many circumstances one has to deal with incompleteness.
So, because of its importance, we next give criteria to assert when it holds true. An
important tool to study the completeness of the inextendible magnetic curves, i.e.,
under what assumptions all the inextendible magnetic curves are defined on all R,
is the vector field QΦ. By using Lemma 1.56 in [7], it is easily seen the following
result.

Proposition 2.2 Let (M, g) be a Riemannian manifold, F a magnetic field on M
and γ : [a, b) −→ M , a < b, a magnetic curve of F . The following are equivalent:

(a) γ is extendible to b as a magnetic curve.

(b) There exists a sequence {tn} −→ b, tn ∈ [a, b) such that the sequence of
velocities {γ′(tn)} converges in TM .

Accordingly, a magnetic curve γ : (a, b) −→ M, a, b ∈ R, a < b, of (M, g, F ) can
be extended to some open interval I, (a, b) ⊂ I, if and only if γ(a, b) is contained in
a compact subset of M . Therefore, we get (compare with Theorem 2.1.18 in [6])

Proposition 2.3 Let γ be an inextendible magnetic curve of (M, g, F ) such that
γ(a, b) lies in a compact subset of M , for every finite interval (a, b) in its domain.
Then, γ must be complete.

In particular, if M is assumed to be compact, then we get that any inextendible
magnetic curve of (M, g, F ) must be complete. This fact can be also obtained as a
consequence of Corollary 2.4, and it will be stated in Remark 2.5 (a), from a different
approach.
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Now, let γ : [a, b) −→ M be a magnetic curve. Its length L(γ) satisfies L(γ) ≤
(b − a)

√
e, where e is the (constant) energy of γ. For each t ∈ [a, b), the distance

between γ(a) and γ(t) satisfies d(γ(a), γ(t)) ≤ L(γ |[a,t]) ≤ (b − a)
√

e, which shows
that γ([a, b)) is contained in the closed metric ball B centered at γ(a) and with
radius (b − a)

√
e. Therefore,

γ′([a, b)) ⊂ {(p, v) ∈ TM : p ∈ B, g(v, v) = e} ⊂ TM.

Then, we have,

Corollary 2.4 Let F be any magnetic field on a geodesically complete Riemannian
manifold (M, g). Then, all the inextendible magnetic curves of (M, g, F ) are com-
plete.

Proof. If (M, g) is assumed to be geodesically complete, then the Hopf-Rinow
theorem implies that B must be compact. Hence {(p, v) ∈ TM : p ∈ B, g(v, v) = e}
is a compact subset of TM . Take now a sequence {tn} −→ b, tn ∈ [a, b), then
{γ′(tn)} lies in a compact subset of TM . So, by passing to a subsequence of {tn},
we are under the assumption (b) of Proposition 2.2, concluding that γ is extendible
to b as a magnetic curve.

Remark 2.5

(a): If M is assumed to be compact (therefore (M, g) is geodesically complete for
any Riemannian metric g on M), then we can give an alternative proof of
Corollary 2.4. In fact, the previous conservation’s law [Eq. (4)] for the length
of velocity vectors of magnetic curves, implies that the vector field QΦ on TM
can be restricted to each spherical tangent bundle UeM = {(p, v) ∈ TM :
g(v, v) = e} ⊂ TM, e > 0. But UeM is compact whenever M is compact, and
hence the restriction of QΦ to UeM is a complete vector field. This proves that
all the inextendible magnetic curves of F are complete.

(b): Proposition 2.1 has shown a remarkable difference between magnetic curves
and geodesics. The following non-connecteness fact complement that result.
Let us consider the unit 2-sphere S

2(1) endowed with its standard round metric
g, and let F be the magnetic field F = µ Ω2, where Ω2 is the area 2-form and
µ ∈ R, µ 6= 0. As we will show later (see the comment after Proposition 3.2),
the associated magnetic curves with energy e are circles on S

2(1) with radius
r = [1 + (µ2/e)]−1/2. Then, as r < 1, any two antipodal points can not be
connected by a magnetic curve of (S2, g, F ). Moreover, for any p ∈ S

2, all the
inextendible magnetic curves γ of (S2 \ {−p}, g, F ) such that γ(0) = p are
complete.

(c): Let (M, g) be a Riemannian manifold where g is an incomplete metric. If F is
a magnetic field on (M, g), then there exists a pointwise conformal metric f 2g
such that the inextendible magnetic curves of (M, f 2g, F ) are complete. In
fact, there exists f ∈ C∞(M), f > 0, such that f 2g is geodesically complete,
[9]. Therefore, Proposition 2.4 gives that the magnetic curves of (M, f 2g, F )
are complete.
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(d): It should be observed that the closedness assumption on the 2-form F in
Proposition 2.4 was not used. On the other hand, the skew-symmetry of
the tensor field F has played a crucial role [recall the conservation’s law
(4)]. In fact, consider the tensor field F = −2x dx2 on the Euclidean plane
(R2, g0 = dx2 + dy2). If Φ denotes the operator defined from F using Eq. (2),
then Φ(∂/∂x) = −2x (∂/∂x) and Φ(∂/∂y) = 0. Therefore, γ(t) = (x(t), y(t))
satisfies Eq. (LH) if and only if x′′(t) + 2 x(t)x′(t) = 0 and y′′(t) = 0. So,
γ(t) = (1/t, t) is an inextendible incomplete trajectory of (R2, g0, F ).

(e): Finally, let us point out that Proposition 2.4 cannot be also extended to
the indefinite case. In fact, consider R

2 endowed with the Lorentzian metric
gL = dx2 − dy2, and define the magnetic field F = −xdx ∧ dy. A curve
(x(t), y(t)) is a magnetic curve of (R2, gL, F ) if and only if it satisfies
x′′(t) = x(t)y′(t), y′′(t) = x(t)x′(t). Then, γ(t) = (2/t,−2/t) is an inex-
tendible magnetic curve which is defined on (0,∞).

3 Uniform magnetic fields

From now on, M will be an oriented Riemannian surface with standard complex
structure J, and area element Ω2 so that Ω2(X, JX) = 1 for any unit vector field X
in M .

Given a curve γ in M such that g(γ′, γ′) = e > 0 is constant, its Frenet apparatus
is {T = (1/

√
e) γ′, N = JT}. If κ denotes the curvature function, we have the

following well-known Frenet equations

∇γ′T = κ
√

e N, ∇γ′N = −κ
√

e T.

Obviously, any magnetic field on a surface, M , is determined from a smooth func-
tion, f (the strength), by F = f Ω2. Therefore, the matrix of Φ in any orthonormal
frame, {X, JX} is given by

(

0 −f
f 0

)

.

In particular, along a magnetic curve γ of (M, g, F ), with energy e, and relative to
its Frenet frame, the Lorentz force is obtained to be

(

0 −κ
√

e
κ
√

e 0

)

.

Therefore, we get,

Proposition 3.1 The curvature of the magnetic curves with energy e is given by
κ = f/

√
e. So, the curvature of the normal magnetics curves completely determines

the Lorentz force, i.e., f = κ along these flowlines.

A parallel magnetic field F , i.e., a magnetic field with constant strength f = µ,
is called a uniform magnetic field. This class of magnetic fields has been extensively
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considered in the literature from different points of view ([8],[10]-[16], etc.). The geo-
metric partner of the Landau-Hall problem, for uniform magnetic fields, is nothing
but the computation of curves with constant curvature. To be precise, we have,

Proposition 3.2 Let F = µ Ω2 be a uniform magnetic field, with constant strength
µ, on a Riemannian surface (M, g). A curve γ in M , with constant energy e, is a
magnetic curve of (M, g, F ) if and only if it has constant curvature κ = µ/

√
e.

On surfaces of constant Gauss curvature, the feature of the normal flowlines of a
non-trivial uniform magnetic field F = µ Ω2 is well-known for any uniform magnetic
field. On the Euclidean plane, R

2, they are circles with radius 1/|µ|. On the 2-sphere
of radius r, S

2(r), flowlines with energy e are circles with radius (r
√

e)/
√

e + r2µ2

(< r). In these two backgrounds, the flowlines are always closed.
On the other hand, the situation in a hyperbolic plane is quite different. Let

H
2(−G) be the upper half-plane (in R

2) endowed with the Lobatchevski metric
of curvature −G, G > 0, that is, the Poincaré plane. We use Proposition 3.2
joint the basic knowledge of the curves of constant curvature in H

2(−G) (see any
basic text of Riemannian geometry) to make trivial the following description of the
flowlines which is due to A. Comtet, [11], and has been mentioned along a large list
of references. The behaviour of normal magnetic curves changes according to the
ratio between the strength, µ, and the curvature of H

2(−G). Namely,

• If |µ|/
√

G > 1, then the trajectories are geodesic circles, and therefore they
are closed curves.

• If |µ|/
√

G ≤ 1, then the trajectories are non-closed curves which intersect
the boundary line, ∂H

2(−G), of the upper half-plane. In particular, they are
tangent to this boundary, and so they are horocycles when |µ| =

√
G.

Remark 3.3

(a): Let γ be a curve with constant geodesic curvature κ 6= 0 in any of the three
previous constant curvature surfaces. Then, for a given uniform magnetic field
F = µ Ω2, a suitable fitting of the constant speed (and hence, the energy) of
γ makes this curve to be a magnetic curve of F.

(b): Let (M, g) be again one of the three above space forms and F = µ Ω2 a uniform
magnetic field on (M, g). Then, any magnetic curve γ with energy e of (M, g, F )
can be then considered as a normal magnetic curve of

(

M, (1/e) g, (1/e) F
)

(see
the comment previous to Proposition 2.1).

4 The Landau-Hall problem in a surface of revo-

lution

Let α(s) = (f(s), h(s)), a < s < b, f(s) > 0, be a parametrization by the arclength
of a curve, C, contained in the {xz}-plane of R

3. We rotate C around the z-axis to
obtain a surface of revolution, say Mα, with canonical parametrization in R

3

X(s, v) = (f(s) cos v, f(s) sin v, h(s)) , 0 ≤ v ≤ 2π. (5)
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Of course we consider that Mα is endowed with the induced metric g of the Euclidean
one of R

3.

Each point of C describes a parallel, γs, which can be parametrized by arclength
in the following way

γs(t) =

(

f(s) cos
t

f(s)
, f(s) sin

t

f(s)
, h(s)

)

,

where 0 ≤ t ≤ 2πf(s).

The curvature, κs, of γs in Mα, is computed to be

κs(t) = ‖∇Ts
Ts‖ =

f ′(s)

f(s)
,

where Ts = γ′

s and ∇ is the Levi-Civita connection of Mα. In particular, κs is
constant along γs, and so this curve is a good candidate to be a flowline of a suitable
uniform magnetic field on Mα.

Let F = µ Ω2 be a uniform magnetic field on Mα with constant strength µ.
Then γs is a normal magnetic flowline of (Mα, g, F = µ Ω2) if and only if κs = µ
(Proposition 3.2). Therefore, the set of magnetic parallels of (Mα, g, F = µ Ω2) can
be identified with the following subset of the interval (a, b)

Γµ = {s ∈ (a, b) : f ′(s) = µf(s)}.
To determine those surfaces of revolution whose parallels are all normal magnetic

curves of a given uniform magnetic field (that is, those with Γµ = (a, b)) we need to
solve the ordinary differential equation

f ′(s) = µf(s).

Obviously, we have two possibilities. The trivial one, corresponding with the case
of a trivial magnetic field (the strength vanishes), the flowlines are then geodesics,
and the surface of revolution is a right circular cylinder. Otherwise, since the Gauss
curvature of a surface of revolution (in the canonical parametrization) is given by

G(s, t) = −f ′′(s)

f(s)
, (6)

we get that G(s, t) = −µ2, an hence the surface has constant negative curvature. In
particular, we have,

Proposition 4.1 The parallels of a surface of revolution, Mα, are all normal mag-
netic flowlines of a uniform magnetic field, F = µ Ω2, if and only if either:

1. Mα is a right circular cylinder (when µ = 0), or

2. Mα is a bugle surface with Gaussian curvature −µ2.
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Let us consider the torus of revolution, T(r, R), obtained by rotating the circle,
C, centered at (R, 0, 0) and with radius r, (R > r), around the z-axis. The circle
can be arclength parametrized by α(s) = (R + r cos(s/r), 0, r sin(s/r)). Therefore,
f(s) = R + r cos(s/r), with 0 ≤ s ≤ 2πr.

Given a uniform magnetic field F = µ Ω2 on T(r, R), the set of normal magnetic
parallels is identified to

Γµ = {s ∈ [0, 2πr] : Hµ(s) = 0},
where

Hµ(s) = Rµ + rµ cos (
s

r
) + sin (

s

r
).

To study Γµ = H−1
µ (0), we use elemental calculus. First, we assume that µ 6= 0,

otherwise Γ0 = H−1
0 (0) is made up of the two parallels that are geodesics in T(r, R).

In this setting, we see that Hµ has exactly two critical points on C (the maximum and
the minimum) which are antipodal. In fact, H ′

µ(s) = 0 if and only if cot(s/r) = rµ
and it happens just in the following two antipodal points

pµ =
(

cos
s

r
, sin

s

r

)

=

(

rµ
√

1 + r2µ2
,

1
√

1 + r2µ2

)

,

qµ =
(

cos
s

r
, sin

s

r

)

= −
(

rµ
√

1 + r2µ2
,

1
√

1 + r2µ2

)

,

The values of Hµ in pµ and qµ are

Hµ(pµ) = Rµ +
√

1 + r2µ2; the maximum of Hµ,

Hµ(qµ) = Rµ −
√

1 + r2µ2; the minimum of Hµ.

We call Dµ the diameter in C determined by pµ and qµ, and let ρ = (R2 − r2)−1/2.
We distinguish two cases.

(A) If µ > 0, then the point pµ, where Hµ gets its maximum, lies in the first
quadrant of the circle C. Since Hµ(pµ) > 0, then Γµ 6= ∅ if and only if Hµ(qµ) ≤ 0
(the minimum is non positive) that is µ ≤ ρ. Certainly if the equality holds, then
Hρ vanishes only at qρ = (−r/R, −1/(ρR)). Otherwise, Hµ vanishes exactly in two
points, say zµ and wµ, which are separated by Dµ so they lie in different half circles.

(B) If µ < 0, then the point pµ, where Hµ gets its maximum, lies in the second
quadrant of the circle C. Since the minimum is negative, Hµ(qµ) < 0, then Γµ 6= ∅
if and only if Hµ(pµ) ≥ 0 and it happens if and only if µ ≥ −ρ. It is clear that
when the equality holds, then Hρ vanishes just at pρ = (−r/R, 1/(ρR)). However,
if µ > −ρ, then Hµ has exactly two zeroes, say z′µ and w′

µ, which are obviously
separated by Dµ so they lie in different half circles.

All this information can be summarized in the following statement,
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Proposition 4.2 Let F = µ Ω2 be a uniform magnetic field on a torus of revolu-
tion, T(r, R). Then (T(r, R), g, µ Ω2) has normal magnetic parallels if and only if
µ ∈ [−ρ, ρ]. Furthermore,

1. If µ = −ρ, then there is one normal magnetic parallel obtained by rotating the
point (R + (r2/R), r/(ρR)) ∈ C.

2. If µ = ρ, then there is one normal magnetic parallel obtained by rotating the
point (R − (r2/R),−r/(ρR)) ∈ C.

3. If µ ∈ (−ρ, ρ), then Hµ has exactly two normal magnetic parallels obtained by
rotating two points of C that are separated by Dµ.

Example 4.3 Let C be the cathenoid generated by revolving the cathenary curve
α(t) = (cosh t, 0, t), t ∈ R around the z-axis. Let F be a uniform magnetic field
with constant strength µ 6= 0, defined on C. Then, it can be shown that there exist
magnetic parallels if and only if µ ∈ [−1/2, 1/2]. Moreover, we have:

1. If µ = 1/2 (resp. µ = −1/2), there exists only a normal magnetic parallel
corresponding to t = ln(1 +

√
2) (resp. t = − ln(1 +

√
2)).

2. If µ ∈ (−1/2, 0) (resp. µ ∈ (0, 1/2)), then C has two normal magnetic parallels
which are located in the region t > 0 (resp. t < 0).

Example 4.4 Let S be the revolution surface obtained by rotating the cycloid curve
α(t) = (a(1 − cos t), 0, a(t − sin t)), t ∈ (0, 2π) around the z-axis. It is easy to see:

1. If µ > 0, then S has only a normal magnetic parallel corresponding to the

parameter value t0 = 2 arccos
[(

−1 +
√

1 + 16a2µ2
)

/(4aµ)
]

.

2. If µ < 0, then S has also only a normal magnetic parallel corresponding to
t1 = 2π − t0.

Example 4.5 Finally, let us consider the cone M generated by the line α(t) =
(at, 0, bt), a2 + b2 = 1, t > 0 around the z-axis. Then, it can be seen that for any
µ > 0, there exists a unique normal magnetic parallel given by t = 1/µ.

5 Relativistic particles with rigidity of order one

The search for Lagrangians describing spinning particles (both massive and massless)
has a long history. An interesting and unconventional approach is to provide the
necessary extra degrees of freedom by actions whose densities depend on higher
order geometrical invariants. In particular, this means that those extra bosonic
variables must be encoded in the geometry of the world trajectories. The simplest
models are those involving density Lagrangians that depend on the curvature, κ,
of the worldlines ([17]-[19], etc.). In particular, actions that depend linearly from
κ ([2],[18]-[22], etc.) will be considered in this section. These models describing a
massive relativistic boson [3].
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Suppose that Λ is a suitable space of curves (closed curves or clamped curves,
for instance) in a Riemannian surface (M, g). Define a one-parameter family of
functionals Fm : Λ → R, m ∈ R, by

Fm(γ) =

∫

γ

(κ + m)ds, (7)

where s stands for the arclength parameter of curves γ ∈ Λ. In order to obtain
the first variation of these actions, we use the following standard machinery (see
for instance [20]). For a curve γ : [0, L] → M , we take variations Θ = Θ(t, r) :
[0, L] × (−ε, ε) → M with Θ(t, 0) = γ(t). Then, we have the variation vector
field W = W (t) = (∂Θ/∂r) (t, 0) along the curve γ. We also put V = V (t, r) =
(∂Θ/∂r) (t, r), W = W (t, r), v = v(t, r) = ‖V (t, r)‖, T = T (t, r), N = N(t, r), with
the obvious meanings. The corresponding reparametrizations will be denoted by
V (s, r), W (s, r) etc. The variations of v and κ in γ, in the direction of W , can be
obtained to be

W (v) = g(∇T W, T ) v, (8)

W (κ) = g(∇2
TW, N) − 2g(∇TW, T )κ + G g(W, N), (9)

here G denotes the Gauss curvature of (M, g) and ∇ its Levi-Civita connection.

Now, we use a standard argument that involves the above formulas so as some
integrations by parts to obtain the first derivative of Fm

δFm(γ)[W ] =

∫

γ

g (Ω(γ), W ) ds + [B(γ, W )]L0 , (10)

where Ω(γ) and B(γ, W ) denote the Euler-Lagrange and the boundary operators
and they are respectively given by

Ω(γ) = (G − m κ)N,

B(γ, W ) = g(∇TW, N) + m g(W, T ).

Proposition 5.1 (Clamped curves) Given points q1, q2 ∈ M and unit vectors x1 ∈
Tq1

M and x2 ∈ Tq2
M , define the space of curves

Λ = {γ : [t1, t2] → M : γ(ti) = qi, T (ti) = xi, N(ti) = Jxi, 1 ≤ i ≤ 2}.

Then, the critical points of the functional Fm : Λ → R are characterized by the
following Euler-Lagrange equation

G |γ= m κ,

where G |γ denotes the Gauss curvature of (M, g) along γ.

12



Proof. Let γ ∈ Λ and W ∈ TγΛ, then W defines a curve in Λ associated with a
variation Θ of γ. We can perform the following computations along Θ

W = dΘ(∂r),

∇T W = f T + dΘ(∂rT ),

where f = ∂r(ln v). We evaluate these formulas along γ by making r = 0 and use
that Θ is a curve in the space Λ to obtain

W (ti) = 0,

∇T W (ti) = f(ti)xi.

As a consequence, [B(γ, W )]t2t1 = 0. So, using Eq. (10), we have that γ is a critical
point of Fm : Λ → R, that is δFm(γ)[W ] = 0 for any W ∈ TγΛ, if and only if
Ω(γ) = 0 which proves the statement.

Similarly, we can obtain the following

Proposition 5.2 (Closed curves) Let C be the space of immersed closed curves in
(M, g). The critical points of the functional Fm : C → R are those closed curves
that are solutions of the following Euler-Lagrange equation

G |γ= m κ.

6 Gaussian magnetic fields

Let M be a surface immersed in the Euclidean three-space, R
3, so the metric, g is

the induced one. We denote by N : M −→ S
2 its Gauss map and dσ2 will stand

for the area element on the unit round sphere S
2. The two form N∗(dσ2) on M can

be used, for example, to measure areas of the spherical images or topological total
charges of solitons in the O(3) non-linear sigma model (see for instance [23], [24]
and references therein). In this section we will consider magnetic fields of the type

F =
1

m
N∗(dσ2),

where m is a non zero constant. We call then Gaussian magnetic fields (GMF). It is
well known that N∗(dσ2) = G Ω2, G denoting the Gaussian curvature of (M, g) and
this, in particular, implies that we can consider these kind of magnetic fields with
no mention to the surrounding space. Namely, a GMF is always of the type

F =
G

m
Ω2. (11)

The Lorentz force of a GMF is computed to be Φ = (G/m) J , where J is the
standard complex structure in M . In particular, for any unit vector field, X, on M ,
the matrix of Φ, in the terminology of Section 3, with respect to an orthonormal
frame {X, JX} is given by
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(

0 −G
m

G
m

0

)

.

In this framework, we can combine Proposition 3.1 and the field equations of
the particle models defined from Fm, see Eq. (7), to obtain the following amazing
relationship between the flow of a GMF and the worldline trajectories of relativistic
particles with order one. To be precise, we have,

Theorem 6.1 Let γ ∈ Λ be a curve (clamped or closed) in (M, g). Then it is a
normal flowline of (M, g, F = (G/m) Ω2) if and only if it is a critical point (world
line) of the action Fm : Λ → R given by

Fm(γ) =

∫

γ

(κ + m) ds.

At this point, we can take advantage of the variational approach to study stability
of the GMF flowlines. Therefore, we need the second derivative of Fm in a critical
point, say γ in a suitable space of curves, Λ (recall closed or clamped curves). After
some long computations (see [17] for details) one can obtain the following expression

δ2Fm(γ)[W ] =

∫

γ

g (W,∇W Ψ) |γ ds, (12)

where Ψ denotes the vector field, along a variation of γ, given by Ψ = (G−m κ) N .
Now, we choose W = Φ N to obtain

g (W,∇WΨ) |γ = Φ2 N(G − m κ),

where the right hand term is restricted to γ. However the variation of κ was given
in Eq. (9); so, in particular, we have N(κ) = κ2 + G. Then, one gets from Eq. (12)

δ2Fm(γ)[W ] =

∫

γ

Φ2

(

N(G) − 1

m
(G2 + m2G)

)

ds.

Hence, we have the following useful test of stability.

Proposition 6.2 A critical point, γ ∈ Λ, of Fm is stable if and only if the function
N(G) − (1/m)(G2 + m2G) is signed along γ.

It should be observed that the previous test has the following geometrical mean-
ing. Put ϕ = G − m κ, then γ ⊂ ϕ−1(0), because it is a critical point of Fm, and
then stability means that γ is made up of regular points of ϕ. Moreover, observe
that this happens if 0 is a regular value of ϕ.

Now, let us use all this information in the following elemental setting. We con-
sider M = S

2(1) the unit round sphere. Then any GMF, F = (G/m) Ω2 = (1/m) Ω2,
is uniform. However, when studying uniform magnetic fields on a round sphere, we
can not talk about stability of magnetic trajectories. This is not the case of our
approach.
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In this setting, the magnetic curves are, according Theorem 6.1, the critical
points of the functional

Fm(γ) =

∫

γ

(κ + m) ds =

∫

γ

κ ds + m L(γ),

and they are nothing but those curves that satisfy 1 = m κ, that is geodesic circles
with geodesic curvature κ = 1/m.

On the other hand, we can use the Gauss-Bonnet formula to see that this varia-
tional problem is equivalent to that associated with the action Dm : D −→ R defined
by

Dm(∆) =

∫

∆

G Ω2 + m

∫

∂∆

ds = Area(∆) + m L(∂∆),

acting on the space (D) of simply-connected domains, ∆ in S
2, with the same

boundary γ = ∂∆. This is nothing but the isoperimetric problem in the round
sphere. The solution is a couple of domains ∆1 and ∆2 (the maximum and the
minimum) with common boundary a geodesic circle, γ, of curvature κ = 1/m. Since
N(G) = 0 then, −(1 + m2)/m has obviously sign for any choice of the coupling
constant m. Consequently, calling to Proposition 6.2, the solutions are stable.

The case where m = 0 deserves a few words. First of all GMF with m = 0
could be considered as a limiting case, however, after our variational approach, it
can be identified with the massless Plyushchay model, [21], which is governed by
the Lagrangian

F0(γ) =

∫

γ

κ ds.

This model has been considered with detail in [18]. For example the sphere does not
admit, non only minima (maxima) for this model but also critical points. However,
an anchor ring has two critical points corresponding to the two parallels of parabolic
points.

7 GMF flowlines on some non-constant Gauss cur-

vature surfaces

In this last section we would like to analyze when certain relevant curves on some
non-constant Gauss curvature surfaces are in fact magnetic.

We recalled the explicit expression of the Gauss curvature, G(s, v), of a surface
of revolution, Mα, see Eq. (6). Consequently, we can assert now that a parallel, γs,
is a normal flowline of the GMF given by (G/m) Ω2 on Mα if and only if

f ′′(s) + m f ′(s) = 0. (13)

Next, we will obtain the surfaces of revolution whose parallels are all normal flowline
of a GMF. In contrast to the case of a uniform magnetic field, where only the bugle
surface appeared as a solution (see Proposition 4.1), now the general solution is

15



made up of a three parameter family of surfaces which includes the bugle surface
too.

Theorem 7.1 The normal flow of a GMF, (G/m) Ω2, in a surface of revolution,
Mα, is invariant under rotations if and only if the profile curve of Mα lies in the
following three parameter family of arclength parametrized plane curves

α(s) =

(

f(s),

∫ s

0

√

1 − f ′(s)2 ds

)

,

where

f(s) =
1

m

(

a + c exp(−m s + b)
)

; a, b, c ∈ R with a > 0.

Observe that the general solution of the ordinary differential equation (13) has
the form f(s) =

(

a + c exp(−m s + b)
)

/m, so the proof of the last result becomes
obvious. Observe also that the above characterized class of surfaces of revolution
includes the bugle surface (a = 0) and the right circular cylinder (c = 0) too.

It should be noticed the following coupling phenomenon in a surface of revolution,
Mα, between the GMF, F1 = (G/m) Ω2 and the uniform magnetic field F2 = −m Ω2,
for some values of the coupling constant m. Suppose, for example, that Mα =
T(r, R) is a torus of revolution and ρ = (R2 − r2)−1/2 (notation as in Section 4).
Then, F1 always has two parallels being normal magnetic curves, no matter the
value of m. Now, we use Proposition 4.2 to obtain the following statement,

Proposition 7.2 If −m ∈ (ρ, ρ), then both F1 and F2 have two normal magnetic
parallels coming from points alternatively placed in the profile circle. Moreover they
collapse when −m goes to −ρ or ρ.

Proof. For any value of m in R, (T(r, R), g, F1) has two normal magnetic parallels
obtained by rotation of the two antipodal points in C, defined by cot (s/r) = −r m.
These two points are just those determining the diameter D−m that separates the
two magnetic parallel of (T(r, R), g, F2) when −m ∈ (−ρ, ρ). The second part of
this statement follows similarly when use points 1 and 2 of Proposition 4.2.

We finish the paper showing several examples.

Example 7.3 Let β(s) be an arclength parametrized curve contained in a plane,
Π (with unit normal vector B0), in R

3. We denote by {T (s), N(s)} a Frenet frame
along β(s), so that T (s)∧N(s) = B0, and κ(s) will stand for its curvature function.
For a suitable r > 0, we define a tube of radius r, say Tβ(r), as the surface given by

X(s, v) = β(s) + r
(

cos(v) N(s) + sin(v) B0

)

.

We denote by Λβ = { γv, : v ∈ [0, 2π] } the family of curves in the tube obtained
when we make v constant. The curvature of these curves in Tβ(r) can be obtained,
from a direct computation, to be
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κv(s) =
κ(s) sin(v)

1 − r κ(s) cos(v)
.

Notice that it is not constant unless β(s) is chosen to be constant curvature.

On the other hand, the Gauss curvature of the tube Tβ(r) is computed to be

G(s, v) = − κ(s) cos(v)

r
(

1 − rκ(s) cos(v)
) .

Now, we can apply these formulas together with the Euler-Lagrange equations asso-
ciated with the GMF, F = (G/m) Ω2 (Propositions 5.1, 5.2), to see that there exist
exactly two curves (clamped or closed) in Λβ that are normal magnetic trajectories.
They are obtained for cot(v) = −r m and this is, formally, the same result that we
have obtained for a torus of revolution (Proposition 4.2) which can be regarded as
a tube around a circle.

Example 7.4 Similarly, for a curve, β(s), in R
3 with Frenet frame {T (s), N(s), B(s)},

curvature κ(s) and torsion τ(s), one can define the tube Tβ(r) by

X(s, v) = β(s) + r
(

cos(v) N(s) + sin(v) B(s)
)

.

In particular, if β(s) is a helix (κ and τ are both constant) then the curvature
function, κv(s) of the curves in Λβ = { γv, : v ∈ [0, 2π] } satisfy

κ2
v =

κ2 sin2(v)
(

1 − r κ cos(v)
)2

+ r2τ 2
.

Now, the curves in Λβ that are normal flowlines of (G/m) Ω2 on the helicoidal tube
Tβ(r) correspond with the zeroes of the function ϑ : S

1 → R defined by

ϑ(v) =
(

1 − r κ cos(v)
)2(

cos2(v) − r2m2 sin2(v)
)

+ r2τ 2 cos2(v).

However, we have

ϑ(0) = ϑ(π) = (1 − r κ)2 + r2τ 2 > 0 and ϑ(
π

2
) = ϑ(

3π

2
) = −r2m2 < 0.

Therefore, there exist four curves of Λβ in the flow of (G/m) Ω2.

Example 7.5 On the cathenoid (Example 4.3), the GMF given by (G/m) Ω2 has
a unique normal magnetic parallel for all m. If m > 0, it is obtained for a t0 < 0. If
m < 0, then it is obtained for a t′0 = −t0 > 0.

Example 7.6 On the hyperboloid of revolution obtained from Eq. (5) by putting
f(t) = cosh t and h(t) = sinh t, the GMF given by (G/m) Ω2 has also a unique
normal magnetic parallel for all m, analogously to the previous case.
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Example 7.7 On the cicloidal surface (Example 4.4), the GMF given by (G/m) Ω2

has a unique normal magnetic parallel for m ∈ (−∞,−1/(4a))
⋃

(1/(4a),∞). If
m > 0, t0 = arccos ((1/(4am)), whereas if m < 0, then t′0 = 2π − t0.

Conclusions

Oriented surfaces, M , in R
3 admit two natural 2-forms. First, the area element,

Ω2, associated with the induced metric, g. Second, the area element, N∗(dσ2), of
its spherical image under the Gauss map, N : M → S

2. It is well known that these
2-forms are nicely related by

N∗(dσ2) = G Ω2,

where G enotes the Gaussian curvature of g. In particular, both 2-forms are intrinsic
and then they are defined once we know a Riemannian metric, g, on M . Associated
with these 2-forms appear two classes of magnetic fields on (M, g),

1. The class made up of the constant multiples of the former one, C1 = {µ Ω2 :
µ ∈ R}, provides that of uniform magnetic fields, with strength µ, on (M, g).
The corresponding Landau-Hall problem has been widely studied along the
literature. Even in this paper, we have obtained some new information relative
to uniform magnetic field essentially in a surface of revolution. For example,
we have characterized right circular cylinders and bugle surfaces as the only
surfaces of revolution whose parallels are all normal magnetic flowlines of a
uniform magnetic fields.

2. The class of the constant multiples of the later one, C2 = {µ N∗(dσ2) : µ ∈ R},
constitutes a class of magnetic fields that in this paper are introduced under
the terminology of Gauss-Landau-Hall magnetic fields (GMF). In this case the
strength is given by µ G and obviously both classes coincide when (M, g) has
constant curvature.

In this paper, we wish to state the importance and nice interest of GMF on sur-
faces. In fact, the chief result of the paper appears when we study the Landau-Hall
problem associated with a GMF (which we call the Gauss-Landau-Hall problem).
Then, we are be able to show that this problem is equivalent to the dynamics of a
massive relativistic boson. This provides an amazing relationship between two, a
priori, quite different physical phenomena.

Therefore, we can use two points of view to study each of the two involved
problems. On one hand, one can study completeness, homogeneity and so on, in the
dynamical study of bosonic worldlines. By the way, we have introduced a section
with new results on these topics. But on the other hand, the Gauss-Landau-Hall
problem can be regarded as a variational problem globally stated. In this setting,
flowlines are critical points of an action which has been used to model relativistic
particles with order one rigidity. In particular, we can talk about, and so we study,
global stability of normal flowlines of a GMF. Say finally that under this equivalence,
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the model to describe a massless particle with arbitrary helicity correspond with a
limit case obtained when the force of the GMF increases arbitrarily.

We believe that this new point of view in the study of GMF is physically re-
markable and it could be extended to other classes of magnetic fields.
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