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Abstrat

In this paper we present a survey on the \Favard theorem" and its extensions.
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1 Introdution.

Given a sequene fP

n

g

1

n=0

of moni polynomials satisfying a ertain reurrene

relation, we are interested in �nding a general inner produt, if one exists, suh

that the sequene fP

n

g

1

n=0

is orthogonal with respet to it.

The original \lassial" result in this diretion is due to J. Favard [10℄ even

though his result seems to be known by di�erent mathematiians. The �rst

who obtained a similar result was Stieltjes in 1894 [23℄. In fat, from the

point of view of J�ontinued frations obtained from the ontration of an

S�ontinued fration with positive oeÆients, Stieltjes proved the existene

of a positive linear funtional suh that the denominators of the approximants

are orthogonal with respet to it [23, x11℄. Later on, Stone gave another ap-

proah using the spetral resolution of a self-adjoint operator assoiated to a

Jaobi matrix [24, Th. 10.23℄. In his paper [21, page 454℄ Shohat laims \We
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have been in possession of this proof for several years. Reently J. Favard pub-

lished an idential proof in the Comptes Rendus". Also I. P. Natanson in his

book [17, page 167℄ said \This theorem was also disovered (independent of

Favard) by the author (Natanson) in the year 1935 and was presented by him

in a seminar led by S. N. Bernstein. He then did not publish the result sine

the work of Favard appeared in the meantime". The \same" theorem was also

obtained by Perron [19℄, Wintner [28℄ and Sherman [20℄, among others.

The Favard's result essenially means that if a sequene of moni polynomials

fP

n

g

1

n=0

satis�es a three-term reurrene relation

xP

n

(x) = P

n+1

(x) + a

n

P

n

(x) + b

n

P

n�1

(x); (1.1)

with a

n

; b

n

2 R, b

n

> 0, then there exists a positive Borel measure � suh

that fP

n

g

1

n=0

is orthogonal with respet to the inner produt

hp; qi =

Z

R

p q d�: (1.2)

This formulation is equivalent to the following: Given the linear operator t :

P ! P, p(t) ! tp(t), haraterize an inner produt suh that the operator t

is Hermitian with respet to the inner produt.

A �rst extension of this problem is due to Chihara [5℄. If fP

n

g

1

n=0

satis�es

a three-term reurrene relation like (1.1) with a

n

; b

n

2 C , b

n

6= 0, �nd a

linear funtional L de�ned on P, the linear spae of polynomials with omplex

oeÆients, suh that fP

n

g

1

n=0

is orthogonal with respet to the general inner

produt hp; qi = L[pq℄, where p; q 2 P. Notie that in the ase analyzed by

Favard [10℄ the linear funtional has an integral representation

L[p℄ =

Z

R

p d�:

Favard's Theorem is an inverse problem in the sense that from information

about polynomials we an dedue what kind of inner produt indues orthog-

onality for suh polynomials. The aim of this ontribution is to survey some

extensions of the Favard Theorem when a sequene of moni polynomials

fP

n

g

1

n=0

satis�es reurrene relations of a di�erent form than (1.1).

In the �rst plae, in [8℄ a similar problem is studied relating to polynomials

orthogonal with respet to a positive Borel measure � supported on the unit

irle, whih satisfy a reurrene relation

�

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z); j�

n

(0)j < 1; (1.3)
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where �

�

n

(z) = z

n

�

n

(1=z).

Thus, a Favard Theorem means, in this ase, if we an identify an inner prod-

ut in P suh that f�

n

g

1

n=0

satisfying (1.3) is the orresponding sequene of

orthogonal polynomials.

The struture of the paper is as follows. In Setion 2 we present a survey

of results surrounding the Favard Theorem when a sequene of polynomials

satis�es a linear relation like (1.1). In partiular, we show that the interlaing

property for the zeros of two onseutive polynomials gives basi information

about the preeding ones in the sequene of polynomials.

In Setion 3, an analogous approah is presented in the ase of the unit irle

in a more general situation when j�

n

(0)j 6= 1. Furthermore, an integral repre-

sentation for the orresponding inner produt is given. The onnetion with

the trigonometri moment problem is stated when we assume that the nth

polynomial �

n

is oprime with �

�

n

.

In Setion 4, we present some reent results about a natural extension of the

above Favard theorems taking into aount their interpretation in terms of

operator theory. Indeed, the multipliation by t is a Hermitian operator with

respet to (1.2) and a unitary operator with respet to the inner produt

hp; qi =

Z

R

p(e

i�

)q(e

i�

) d�(�): (1.4)

Thus we are interested in haraterizing inner produts suh that the mul-

tipliation by a �xed polynomial is a Hermitian or a unitary operator. The

onnetion with matrix orthogonal polynomials is stated, and some examples

relating to Sobolev inner produts are given.

2 The Favard theorem on the real line.

2.1 Preliminaries.

In this subsetion we summarize some de�nitions and preliminary results that

will be useful throughout the work. Most of them an be found in [5℄.

De�nition 2.1 Let f�

n

g

1

n=0

be a sequene of omplex numbers (moment se-

quene) and L a funtional ating on the linear spae of polynomials P with

omplex oeÆients. We say that L is a moment funtional assoiated with

f�

n

g

1

n=0

if L is linear, i.e., for all polynomials �

1

and �

2

and any omplex

3



numbers �

1

and �

2

L[�

1

�

1

+ �

2

�

2

℄ = �

1

L[�

1

℄ + �

2

L[�

2

℄; and L[x

n

℄ = �

n

; n = 0; 1; 2; ::: :

De�nition 2.2 Given a sequene of polynomials fP

n

g

1

n=0

, we say that fP

n

g

1

n=0

is a sequene of orthogonal polynomials (SOP) with respet to a moment fun-

tional L if for all nonnegative integers n and m the following onditions hold:

(1) P

n

is a polynomial of exat degree n,

(2) L[P

n

P

m

℄ = 0; m 6= n,

(3) L[P

2

n

℄ 6= 0.

Usually, the last two onditions are replaed by

L[x

m

P

n

(x)℄ = K

n

Æ

nm

; K

n

6= 0 ; 0 � m � n ;

where Æ

nm

is the Kroneker symbol.

The next theorems are diret onsequenes of the above de�nition [5, Chapter

I, x2,3, pages 8-17℄.

Theorem 2.1 Let L be a moment funtional and fP

n

g

1

n=0

a sequene of poly-

nomials. Then the following are equivalent:

(1) fP

n

g

1

n=0

is an SOP with respet to L.

(2) L[�P

n

℄ = 0 for all polynomials � of degree m < n, while L[�P

n

℄ 6= 0 if

the degree of � is n .

(3) L[x

m

P

n

(x)℄ = K

n

Æ

nm

, where K

n

6= 0, for m = 0; 1; :::; n.

Theorem 2.2 Let fP

n

g

1

n=0

be an SOP with respet to L. Then, for every

polynomial � of degree n

�(x) =

n

X

k=0

d

k

P

k

(x); where d

k

=

L[�P

k

℄

L[P

2

k

℄

; k = 0; 1; :::; n: (2.1)

A simple onsequene of the above theorem is that an SOP is uniquely deter-

mined if we impose an additional ondition that �xes the leading oeÆient

k

n

of the polynomials (P

n

(x) = k

n

x

n

+ lower order terms). When k

n

= 1 for

all n = 0; 1; 2; ::: the orresponding SOP is alled a moni SOP (MSOP). If

we hoose k

n

= (L[P

2

n

℄)

�

1

2

, the SOP is alled an orthonormal SOP (SONP).
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The next question whih obviously arises is the existene of an SOP. To answer

this question, it is neessary to introdue the Hankel determinants �

n

,

�

n

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

1

�

2

� � � �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

� � � �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

Theorem 2.3 Let L be a moment funtional assoiated with the sequene of

moments f�

n

g

1

n=0

. Then, the sequene of polynomials fP

n

g

1

n=0

is an SOP with

respet to L if and only if �

n

6= 0 for all nonnegative n. Moreover, the leading

oeÆient k

n

of the polynomial P

n

is given by k

n

=

K

n

�

n�1

�

n

.

De�nition 2.3 A moment funtional L is alled positive de�nite if for every

nonzero and nonnegative real polynomial �, L[�℄ > 0.

The following theorem haraterizes the positive de�nite funtionals in terms

of the moment sequenes f�

n

g

1

n=0

. The proof is straightforward.

Theorem 2.4 A moment funtional L is positive de�nite if and only if their

moments are real and �

n

> 0 for all n � 0.

Using the above theorem, we an de�ne a positive de�nite moment funtional

L entirely in terms of the determinants �

n

. In other words, a moment fun-

tional L is alled positive de�nite if all its moments are real and �

n

> 0 for all

n � 0. Notie also that for a MSOP, it is equivalent to say that K

n

> 0 for all

n � 0. This, and the fat that an SOP exists if and only if �

n

6= 0, leads us to

de�ne more general moment funtionals: the so-alled quasi-de�nite moment

funtionals.

De�nition 2.4 A moment funtional L is said to be quasi-de�nite if and only

if �

n

6= 0 for all n � 0.

We an write the expliit expression of the MOP in terms of the moments of

the orresponding funtional:

P

n

(x) =

1

�

n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

1

�

2

� � � �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n�1

�

n

� � � �

2n�1

1 x � � � x

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; �

�1

� 1; n = 0; 1; 2; ::: : (2.2)
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One of the simplest harateristis of orthogonal polynomials is the so-alled

three-term reurrene relation (TTRR) that onnets every three onseutive

polynomials of the SOP.

Theorem 2.5 If fP

n

g

1

n=0

is a MSOP with respet to a quasi-de�nite moment

funtional, then the polynomials P

n

satisfy a three-term reurrene relation

P

n

(x) = (x� 

n

)P

n�1

(x)� �

n

P

n�2

(x); n = 1; 2; 3; ::: ; (2.3)

where f

n

g

1

n=0

and f�

n

g

1

n=0

are given by



n

=

L[xP

2

n�1

℄

L[P

2

n�1

℄

; n � 1; and �

n

=

L[xP

n�1

P

n�2

℄

L[P

2

n�2

℄

=

L[P

2

n�1

℄

L[P

2

n�2

℄

; n � 2 ;

respetively, and P

�1

(x) � 0, P

0

(x) � 1.

The proof of the above theorem is a simple onsequene of the orthogonality

of the polynomials and Theorem 2.2. A straightforward alulation shows that

(�

1

= L[1℄)

�

n+1

=

K

n

K

n�1

=

�

n�2

�

n

�

2

n�1

; n = 1; 2; 3; :::;

and �

�1

� 1. From Theorem 2.4 and De�nition 2.4 it follows that, if �

n

6= 0,

then L is quasi-de�nite whereas, if �

n

> 0, then L is positive de�nite. Notie

also that from the above expression we an obtain the square normK

n

� L[P

2

n

℄

of the polynomial P

n

as

K

n

� L[P

2

n

℄ = �

1

�

2

� � ��

n+1

: (2.4)

A useful onsequene of Theorem 2.5 are the Christo�el-Darboux identities.

Theorem 2.6 Let fP

n

g

1

n=0

be a MSOP whih satis�es (2.3) with �

n

6= 0 for

all nonnegative n. Then

n

X

m=0

P

m

(x)P

m

(y)

K

m

=

1

K

n

P

n+1

(x)P

n

(y)� P

n+1

(y)P

n

(x)

x� y

; n � 0 ; (2.5)

and

n

X

m=0

P

2

m

(x)

K

m

=

1

K

n

[P

0

n+1

(x)P

n

(x)� P

n+1

(x)P

0

n

(x)℄; n � 0 : (2.6)

For an arbitrary normalization (not neessarily the moni one) of the polyno-

mials P

n

, the three-term reurrene relation beomes

xP

n�1

(x) = �

n

P

n

(x) + �

n

P

n�1

(x) + 

n

P

n�2

(x): (2.7)
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In this ase, the oeÆients �

n

and �

n

an be obtained omparing the oef-

�ients of x

n

and x

n�1

, respetively, in both sides of (2.7) and 

n

is given by

L[xP

n�1

P

n�2

℄

L[P

2

n�2

℄

. This leads to

�

n

=

k

n�1

k

n

; �

n

=

b

n�1

k

n�1

�

b

n

k

n

; 

n

=

k

n�2

k

n�1

K

n�1

K

n�2

; (2.8)

where k

n

is the leading oeÆient of P

n

and b

n

denotes the oeÆient of x

n�1

in P

n

, i.e., P

n

(x) = k

n

x

n

+ b

n

x

n�1

+ � � � . Notie also that knowing two of the

oeÆients �

n

, �

n

, and 

n

, one an �nd the third one using (2.7) provided, for

example, that P

n

(x

0

) 6= 0 for some x

0

(usually x

0

= 0) and for all n = 1; 2; 3; :::.

The above TTRR (2.7) an be written in matrix form,

xP

n�1

= J

n

P

n�1

+ �

n

P

n

(x)e

n

; (2.9)

where

P

n�1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

0

(x)

P

1

(x)

P

2

(x)

.

.

.

P

n�2

(x)

P

n�1

(x)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; J

n

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

1

�

1

0 : : : 0 0



2

�

2

�

2

: : : 0 0

0 

3

�

3

: : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : �

n�1

�

n�1

0 0 0 : : : 

n

�

n

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; e

n

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

0

0

.

.

.

0

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:(2.10)

Denoting by fx

n;j

g

1�j�n

the zeros of the polynomial P

n

, we see from (2.9) that

eah x

n;j

is an eigenvalue of the orresponding tridiagonal matrix of order n

and [P

0

(x

n;j

); :::; P

n�1

(x

n;j

)℄

T

is the assoiated eigenvetor. From the above

representation many useful properties of zeros of orthogonal polynomials an

be found.

2.2 The zeros of orthogonal polynomials.

De�nition 2.5 Let L be a moment funtional. The support of the funtional

L is the largest interval (a; b) � R where L is positive de�nite.

The following theorem holds.

Theorem 2.7 Let (a; b) be the support of the positive de�nite funtional L,

and let fP

n

g

1

n=0

be the MSOP assoiated with L. Then,

7



(1) All zeros of P

n

are real, simple, and loated inside (a; b).

(2) Two onseutive polynomials P

n

and P

n+1

have no ommon zeros.

(3) Let fx

n;j

g

n

j=1

denote the zeros of the polynomial P

n

, with x

n;1

< x

n;2

<

� � � < x

n;n

. Then,

x

n+1;j

< x

n;j

< x

n+1;j+1

; j = 1; 2; 3; :::; n :

The last property is usually alled the interlaing property.

Proof: Notie that, in the ase when the SOP is an SNOP, i.e, K

n

= 1 for all

n, then the matrix J

n

is a symmetri real matrix (J

n

= J

T

n

, where J

T

n

denotes

the transposed matrix of J

n

). So its eigenvalues, and thus, the zeros of the

orthogonal polynomials are real. To prove that all zeros are simple, we an

use the Christo�el-Darboux identity (2.6). Let x

k

be a multiple zero of P

n

,

i.e., P

n

(x

k

) = P

0

n

(x

k

) = 0. Then (2.6) gives

0 <

n

X

m=0

P

2

m

(x

k

)

K

m

=

1

K

n

[P

0

n+1

(x

k

)P

n

(x

k

)� P

n+1

(x

k

)P

0

n

(x

k

)℄ = 0 :

This ontradition proves the statement. Let fx

k

g

p

k=1

be the zeros of P

n

inside (a; b). Then, P

n

(x)

Q

p

k=1

(x � x

k

) does not hange sign in (a; b) and

L[P

n

(x)

Q

p

k=1

(x � x

k

)℄ 6= 0, so p = n, i.e., all the zeros of P

n

are inside (a; b).

Thus, the statement 1 is proved. To prove 2, we use the TTRR. In fat, if x

k

is

a zero of P

n

and P

n+1

, then it must be a zero of P

n�1

. Continuing this proess

by indution, we get that x

k

must be a zero of P

0

(x) � 1, whih is a ontra-

dition. Before proving the interlaing property 3 we will prove a theorem due

to Cauhy [22, page 197℄.

Theorem 2.8 Let B be a prinipal (n � 1) � (n � 1) submatrix of a real

symmetri n � n matrix A, with eigenvalues �

1

� �

2

� � � � � �

n�1

. Then, if

�

1

� �

2

� � � � � �

n

are the eigenvalues of A,

�

1

� �

1

� �

2

� � � � � �

n�1

� �

n

:

Proof: Let A be the n� n matrix

A =

0

B

�

B a

a

T

b

1

C

A

;

and assume that the theorem is not true, i.e., �

i

> �

i

or �

i+1

> �

i

(sine the

matrix A is real symmetri, all its eigenvalues are real). Let i be the �rst suh

index. If �

i

> �

i

(the other ase is similar), there exists a real number � suh

that �

i

> � > �

i

. Then, B��I

n�1

, where I

k

denotes the identity k�k matrix,

8



is nonsingular (det(B � �I

n�1

) 6= 0), and the matrix

H =

0

B

�

B � �I

n�1

0

0 b� � � a

T

(B � �I

n�1

)

�1

a

1

C

A

=

0

B

�

I

n�1

0

�a

T

(B � �I

n�1

)

�1

1

1

C

A

0

B

�

B � �I

n�1

a

a

T

b� �

1

C

A

0

B

�

I �(B � �I

n�1

)

�1

a

0 1

1

C

A

;

is ongruent to A� �I

n

. Then, by the inertia theorem, the matrix H has the

same number of positive eigenvalues as A� �I

n

, i.e., i� 1. But H has at least

as many positive eigenvalues as B � �I

n�1

, i.e., i. The ontradition proves

the theorem.

Obviously, the interlaing property 3 an be obtained as a simple orollary of

the Cauhy Theorem, sine the matrix J

n

assoiated with the SONP is a real

symmetri matrix and we an hoose as A the matrix J

n+1

whose zeros are

the zeros of the polynomial P

n+1

and then, the prinipal submatrix B is the

matrix J

n

whose eigenvalues oinide with the zeros of P

n

. This ompletes the

proof of Theorem 2.7.

2.3 The Favard Theorem and some appliations.

In this subsetion we will prove the so-alled Favard Theorem.

Theorem 2.9 Let f

n

g

1

n=0

and f�

n

g

1

n=0

be two arbitrary sequenes of omplex

numbers, and let fP

n

g

1

n=0

be a sequene of polynomials de�ned by the relation

P

n

(x) = (x� 

n

)P

n�1

(x)� �

n

P

n�2

(x); n = 1; 2; 3; ::: ; (2.11)

where P

�1

(x) = 0 and P

0

(x) = 1. Then, there exists a unique moment fun-

tional L suh that

L[1℄ = �

1

; L[P

n

P

m

℄ = 0 if n 6= m:

Moreover, L is quasi-de�nite and fP

n

g

1

n=0

is the orresponding MSOP if and

only if �

n

6= 0, and L is positive de�nite if and only if 

n

are real numbers

and �

n

> 0 for all n = 1; 2; 3; ::: .

Proof: To prove the theorem, we will de�ne the funtional L by indution on

P

n

, the linear subspae of polynomials with degree at most n. We put

L[1℄ = �

0

= �

1

; L[P

n

℄ = 0; n = 1; 2; 3; ::: : (2.12)

9



So, using the three-term reurrene relation (2.11), we an �nd all the moments

in the following way: Sine L[P

n

℄ = 0, the TTRR gives

0 = L[P

1

℄ = L[x� 

1

℄ = �

1

� 

1

�

1

; then �

1

= 

1

�

1

;

0 = L[P

2

℄ = L[(x� 

2

)P

1

� �

2

P

0

℄ = �

2

� (

1

+ 

2

)�

1

+ (

1



2

� �

2

)�

1

;

then we an �nd �

2

, et. Continuing this proess, we an �nd, reursively, �

n+1

by using the TTRR, and they are uniquely determined. Next, using (2.11) and

(2.12), we dedue that

x

k

P

n

(x) =

n+k

X

i=n�k

d

n;i

P

i

(x) :

Then, L[x

k

P

n

℄ = 0 for all k = 0; 1; 2; :::; n� 1. Finally,

L[x

n

P

n

℄ = L[x

n�1

(P

n+1

+ 

n+1

P

n

+ �

n+1

P

n�1

)℄ = �

n+1

L[x

n�1

P

n�1

℄;

so, L[x

n

P

n

℄ = �

n+1

�

n

� � ��

1

.

Moreover, L is quasi-de�nite and fP

n

g

1

n=0

is the orresponding MSOP if and

only if for all n � 1, �

n

6= 0, while L is positive de�nite and fP

n

g

1

n=0

is the

orresponding MSOP if and only if for all n � 1, 

n

2 R and �

n

> 0.

Next, we will disuss some results dealing with the zeros of orthogonal poly-

nomials.

The following theorem is due to Wendro� [27℄ (for a di�erent point of view

using the B�ezoutian matrix see [2℄).

Theorem 2.10 (Wendro� [27℄)

Let P

n

and P

n�1

be two moni polynomials of degree n and n�1, respetively. If

a < x

1

< x

2

< � � � < x

n

< b are the real zeros of P

n

and y

1

< y

2

< � � � < y

n�1

are the real zeros of P

n�1

, and they satisfy the interlaing property, i.e.,

x

i

< y

i

< x

i+1

; i = 1; 2; 3; :::; n� 1;

then there exists a family of polynomials fP

k

g

n

k=0

orthogonal on [a; b℄ suh that

the above polynomials P

n

and P

n�1

belong to it.

Proof: Let 

n

= x

1

+x

2

+ � � �+x

n

�y

1

�y

2

�� � ��y

n�1

. Then, the polynomial

P

n

(x) � (x� 

n

)P

n�1

(x) is a polynomial of degree at most n� 2, i.e.,

P

n

(x)� (x� 

n

)P

n�1

(x) � ��

n

R(x);

where R is a moni polynomial of degree r at most n� 2. Sine

x

1

� 

n

= (y

1

� x

2

) + � � �+ (y

n�1

� x

n

) < 0;

10



and P

n�1

(x

1

) 6= 0 (this is a onsequene of the interlaing property), then

�

n

6= 0 and R(x

1

) 6= 0. Moreover, P

n

(y

i

) = ��

n

R(y

i

). Now, using the fat that

P

n

(y

i

)P

n

(y

i+1

) < 0 (again this is a onsequene of the interlaing property),

we onlude that also R(y

i

)R(y

i+1

) < 0, and this immediately implies that R

has exatly n�2 real zeros and they satisfy y

i

< z

i

< y

i+1

for i = 1; 2; :::; n�2.

If we now de�ne the polynomial P

n�2

of degree exatly n � 2, P

n�2

� R,

whose zeros interlae with the zeros of P

n�1

, we an onstrut, just repeating

the above proedure, a polynomial of degree n� 3 whose zeros interlae with

the ones of P

n�2

, et. So we an �nd all polynomials P

k

for k = 1; 2; :::; n.

Notie also that, by onstrution,

P

n

(x) = (x� 

n

)P

n�1

(x)� �

n

P

n�2

(x);

so

�

n

=

(x

1

� 

n

)P

n�1

(x

1

)

P

n�2

(x

1

)

> 0;

beause signP

n�1

(x

1

) = (�1)

n�1

and signP

n�2

(x

1

) = (�1)

n�2

, whih is a

onsequene of the interlaing property x

1

< y

1

< z

1

.

We point out here that it is possible to omplete the family fP

k

g

n

k=0

to obtain

a MSOP. To do this, we an de�ne the polynomials P

k

for k = n+ 1; n+2; :::

reursively by the expression

P

n+j

(x) = (x� 

n+j

)P

n+j�1

(x)� �

n+j

P

n+j�2

(x); j = 1; 2; 3; ::: ;

where 

n+j

and �

n+j

are real numbers hosen suh that �

n+j

> 0 and the zeros

of P

n+j

lie on (a; b). Notie also that, in suh a way, we have de�ned, from

two given polynomials P

n�1

and P

n

, a sequene of polynomials satisfying a

three-term reurrene relation of the form (2.11). So Theorem 2.9 states that

the orresponding sequene is an orthogonal polynomial sequene with respet

to a quasi-de�nite funtional. Moreover, sine the oeÆients in (2.11) are real

and �

n+j

> 0, the orresponding funtional is positive de�nite.

Theorem 2.11 (Vinuesa & Guadalupe [26℄, Nevai & Totik [18℄)

Let fx

n

g

1

n=1

and fy

n

g

1

n=1

be two sequenes of real numbers suh that

� � � < x

3

< x

2

< x

1

= y

1

< y

2

< y

3

< � � � :

Then there exists a unique system of moni polynomials fP

n

g

1

n=0

orthogonal

with respet to a positive de�nite funtional on the real line suh that P

n

(x

n

) =

P

n

(y

n

) = 0 and P

n

(t) 6= 0 for t =2 [x

n

; y

n

℄, n = 1; 2; ::: .
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Proof: Set P

0

= 1, �

0

= 0 and 

0

= x

1

. De�ne fP

n

g

1

n=1

, f

n

g

1

n=1

and f�

n

g

1

n=1

by

P

n

(x) = (x� 

n

)P

n�1

(x)� �

n

P

n�2

(x); n � 1;

�

n

= (x

n

� y

n

)

"

P

n�2

(x

n

)

P

n�1

(x

n

)

�

P

n�2

(y

n

)

P

n�1

(y

n

)

#

�1

; 

n

= x

n

� �

n

P

n�2

(x

n

)

P

n�1

(x

n

)

:

(2.13)

The above two formulas ome from the TTRR and from the requirement

P

n

(x

n

) = P

n

(y

n

) = 0. By indution one an show that P

n

(x) 6= 0 if x =2 [x

n

; y

n

℄,

P

n

(x

n

) = P

n

(y

n

) = 0 and �

n+1

> 0 for n = 0; 1; 2; :::. Then, from Theorem 2.9

fP

n

g

1

n=0

is a MSOP with respet to a positive de�nite moment funtional.

Notie that, in the ase x

n

= �y

n

, for n = 1; 2; 3; :::, the expression (2.13) for

�

n

and 

n

redues to

�

n

= x

n

P

n�2

(x

n

)

P

n�1

(x

n

)

; 

n

= 0:

3 The Favard Theorem on the unit irle.

3.1 Preliminaries.

In this subsetion we will summarize some de�nitions and results relating to

orthogonal polynomials on the unit irle T = fjzj = 1; z 2 C g.

De�nition 3.1 Let f�

n

g

n2Z

be a bisequene of omplex numbers (moment

sequene) suh that �

�n

= �

n

and L be a funtional on the linear spae of

Laurent polynomials � = Spanfz

k

g

k2Z

. We say that L is a moment funtional

assoiated with f�

n

g if L is linear and L(x

n

) = �

n

, n 2 Z.

De�nition 3.2 Given a sequene of polynomials f�

n

g

1

n=0

we say that f�

n

g

1

n=0

is a sequene of orthogonal polynomials (SOP) with respet to a moment fun-

tional L if

(i) �

n

is a polynomial of exat degree n,

(ii) L(�

n

(z) � z

�m

) = 0, if 0 � m � n� 1,

L(�

n

(z) � z

�n

) = S

n

6= 0, for every n = 0; 1; 2; ::: .

12



For suh a linear funtional L we an de�ne a Hermitian bilinear form in P

(the linear spae of polynomials with omplex oeÆients) as follows:

hp(z); q(z)i = L(p(z) � q(1=z)); (3.1)

where q(z) denotes the omplex onjugate of the polynomial q(z).

Notie that De�nition 3.2 means that f�

n

g

1

n=0

is an SOP with respet to the

above bilinear form, and thus the idea of orthogonality appears, as usual, in

the framework of Hermitian bilinear forms. Furthermore,

hzp(z); zq(z)i = hp(z); q(z)i ; (3.2)

i.e., the shift operator is unitary with respet to the bilinear form (3.1). In

partiular, the Gram matrix for the anonial basis fz

n

g

1

n=0

is a strutured

matrix of Toeplitz type, i.e.,

hz

m

; z

n

i =

D

z

m�n

; 1

E

=

D

1; z

n�m

E

= �

m�n

; m; n 2 N :

In this ase the entries (m;n) of the Gram matrix depend of the di�erene

m� n.

In the following we will denote T

n

= [�

k�j

℄

n

k;j=0

.

Now we will dedue some reurrene relations for the respetive sequene of

moni orthogonal polynomials.

Theorem 3.1 Let L be a moment funtional assoiated with the bisequene

f�

n

g

n2Z

. The sequene of polynomials f�

n

g

1

n=0

is an SOP with respet to L

if and only if detT

n

6= 0 for every n = 0; 1; 2; :::. Furthermore, the leading

oeÆient of �

n

is s

n

=

detT

n�1

det T

n

.

De�nition 3.3 L is said to be a positive de�nite moment funtional if for

every Laurent polynomial q(z) = p(z)p(1=z), L(q) > 0.

Theorem 3.2 L is a positive de�nite funtional if and only if detT

n

> 0 for

every n = 0; 1; 2; :::.

De�nition 3.4 L is said to be a quasi-de�nite moment funtional if detT

n

6=

0 for every n = 0; 1; 2; :::.

Remark: Compare the above de�nitions with those of Subsetion 2.1.

In the following we will assume that the SOP f�

n

g

1

n=0

is normalized using

the fat that the leading oeÆient is one, i.e., we have a sequene of moni
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orthogonal polynomials (MSOP) given by (n = 0; 1; 2; :::)

�

n

(x) =

1

detT

n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

�1

�

0

� � � �

n�1

.

.

.

.

.

.

.

.

.

.

.

.

�

�n+1

�

�n+2

� � � �

1

1 z � � � z

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; detT

�1

� 1 : (3.3)

Unless stated otherwise, we will suppose the linear funtional L is quasi-

de�nite.

Theorem 3.3 (Geronimus [11℄) If f�

n

g

1

n=0

is an MSOP with respet to a

quasi-de�nite moment funtional, it satis�es two reurrene relations:

(i) �

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z), �

0

(z) = 1 (forward reurrene rela-

tion),

(ii) �

n

(z) = (1 � j�

n

(0)j

2

)z�

n�1

(z) + �

n

(0)�

�

n

(z), �

0

(z) = 1 (bakward re-

urrene relation),

where �

�

n

(z) = z

n

�

n

(1=z) is alled the reiproal polynomial of �

n

.

Proof:

(i) Let R

n�1

(z) = �

n

(z)� z �

n�1

(z). Thus, from orthogonality and (3.2)

D

R

n�1

(z); z

k

E

= L(z

k

�
R

n�1

(1=z)
) = L(z

k�n+1

� z

n�1

R

n�1

(1=z)
) = 0;

for k = 1; 2; :::; n� 1, and L(z

�j

� z

n�1

R

n�1

(1=z)) = 0, j = 0; 1; :::; n� 2.

This means that the polynomial of degree at most n� 1, z

n�1

R

n�1

(1=z), with

leading oeÆient �

n

(0), is orthogonal to P

n�2

, i.e.,

z

n�1

R

n�1

(1=z) = �

n

(0)�

n�1

(z):

Thus, R

n�1

(z) = �

n

(0)�

�

n�1

(z).

(ii) From (i) we dedue

�

�

n

(z) = �

�

n�1

(z) + �

n

(0)z�

n�1

(z):

Then, the substitution of �

�

n�1

(z) in (i), using the above expression, leads to

(ii).

Remark: Notie that, if we multiply both sides of (ii) by 1=z

n

, use the or-

thogonality of �

n

as well as the expliit expression (3.3), we get the following
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identity:

det T

n

detT

n�1

= (1� j�

n

(0)j

2

)

det T

n�1

det T

n�2

: (3.4)

The values f�

n

(0)g

1

n=1

are alled reetion oeÆients or Shur parameters

for the MSOP. Notie that the main di�erene with the reurrene relation

analyzed in Setion 2 is that here only two onseutive polynomials are in-

volved and the reiproal polynomial is needed. On the other hand, the basi

parameters whih appear in these reurrene relations are the value at zero of

the orthogonal polynomial.

Theorem 3.4 L is a quasi-de�nite moment funtional if and only if j�

n

(0)j 6=

1 for every n = 1; 2; 3; :::.

Proof: If L is quasi-de�nite the orresponding MSOP satis�es both (i) and

(ii). If for some n 2 N , j�

n

(0)j = 1, then from (ii), �

n

(z) = �

n

(0)�

�

n

(z). Thus,

h�

n

(z); z

n

i = �

n

(0) h�

�

n

(z); z

n

i = �

n

(0)

D

z

n

�

n

(1=z); z

n

E

= �

n

(0)

D

�

n

(1=z); 1

E

= �

n

(0) h1;�

n

(z)i = 0;

whih is a ontradition with the fat that f�

n

g

1

n=1

is a MSOP.

Assume now that a sequene of polynomials is de�ned by (i) with j�

n

(0)j 6= 1.

We will prove by indution that there exists a moment funtional L whih is

quasi-de�nite and suh that f�

n

g

1

n=1

is the orresponding sequene of MOP.

Let �

1

(z) = z+�

1

(0). We de�ne �

1

= L(z) = ��

1

(0)�

0

. Thus T

1

=

0

B

�

�

0

�

1

�

1

�

0

1

C

A

is suh that det T

1

= �

2

0

(1� j�

1

(0)j

2

) 6= 0.

Furthermore,

h�

1

(z); zi = L(�

1

(z) � 1=z) = �

0

+ �

1

(0)�

1

= �

0

(1� j�

1

(0)j

2

) 6= 0;

i.e., �

1

is a moni polynomial of degree 1 suh that h�

1

(z); 1i = �

1

+�

1

(0)�

0

=

0, i.e., is orthogonal to P

0

.

Assume f�

0

;�

1

; :::;�

n�1

g are moni and orthogonal. Let a

n

= �

n

(0), ja

n

j 6= 1,

and onstrut a polynomial �

n

of degree n suh that

�

n

(z) = z�

n�1

(z) + �

n

(0)

| {z }

a

n

�

�

n�1

(z):
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If �

n

(z) = z

n

+ 

n;1

z

n�1

+ � � �+ 

n;n�1

z+ a

n

, we de�ne �

n

= �

n;1

�

n�1

� � � ��



n;n�1

�

1

� a

n

�

0

. Notie that this means that h�

1

(z); 1i = 0.

On the other hand, for 1 � k � n� 1, using the reurrene relation (i)

D

�

n

(z); z

k

E

=

D

�

n�1

(z); z

k�1

E

+ a

n

D

�

�

n�1

(z); z

k

E

= 0;

where the last term in the above sum vanishes sine

D

�

�

n�1

(z); z

k

E

=

D

z

n�k�1

;�

n�1

(z)

E

:

Finally, using (3.4), we have

h�

n

(z); z

n

i =

detT

n

detT

n�1

= (1� j�

n

(0)j

2

)

detT

n�1

detT

n�2

;

and thus, beause of the indution hypothesis, h�

n

(z); z

n

i 6= 0.

Corollary 3.1 The funtional L is positive de�nite if and only if j�

n

(0)j < 1,

for n = 1; 2; ::: .

3.2 The zeros of the orthogonal polynomials.

In the following we will analyze the existene of an integral representation

for a moment funtional.

First, we will onsider the ase of positive de�niteness.

Proposition 3.1 [12℄ If � is a zero of �

n

(z), then j�j < 1.

Proof: Let �

n

(z) = (z��)q

n�1

(z), where q

n�1

is a polynomial of degree n�1.

Then,

0 < h�

n

(z);�

n

(z)i = h(z � �)q

n�1

(z);�

n

(z)i = hz q

n�1

(z);�

n

(z)i

= hz q

n�1

(z); z q

n�1

(z)� �q

n�1

(z)i = hq

n�1

(z); q

n�1

(z)i � � hz q

n�1

(z); q

n�1

(z)i

= hq

n�1

(z); q

n�1

(z)i � � [h�

n

(z); q

n�1

(z)i + � hq

n�1

(z); q

n�1

(z)i℄

= (1� j�j

2

) hq

n�1

(z); q

n�1

(z)i ;

and the result follows.

Corollary 3.2 (Montaner & Alfaro [16℄) If � is a zero of �

�

n

(z), then j�j >

1.
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Remark: Notie that, in the quasi-de�nite ase, we only an guarantee that

j�j 6= 1.

Next, we will de�ne an absolutely ontinuous measure suh that the indued

inner produt in P

n

agrees with the restrition to P

n

of our inner produt

assoiated with the positive de�nite linear funtional. In order to do this, we

need some preliminary result.

Lemma 3.1 [8℄ Let �

n

be the nth orthonormal polynomial with respet to a

positive de�nite linear funtional. Then,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

j;k

; 0 � j � k � n <1:

Proof: Notie that

1

2�

2�

Z

0

�

n

(e

i�

)�

n

(e

i�

)

d�

j�

n

(e

i�

)j

2

= 1; (3.5)

and, for j < n,

1

2�

2�

Z

0

�

n

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

=

1

2�

2�

Z

0

"

�

j

(e

i�

)

�

n

(e

i�

)

#

d�

=

1

2�

2�

Z

0

e

i(n�j)�

�

�

j

(e

i�

)

�

�

n

(e

i�

)

d�

=

1

2� i

Z

T

z

n�j�1

�

�

j

(z)

�

�

n

(z)

d z = 0;

(3.6)

beause of the analytiity of the funtion in the last integral (see Corollary 3.2).

Then, �

n

(z) is the nth orthonormal polynomial with respet to both, a positive

linear funtional and the absolutely ontinuous measure d�

n

=

d�

j�

n

(e

i�

)j

2

. Us-

ing the bakward reurrene relation (Theorem 3.3, (ii)) for the orthonormal

ase, the polynomials f�

j

g

n�1

j=0

, whih are uniquely de�ned by this reurrene

relation, are orthogonal with respet to both, the linear funtional and the

measure d �

n

. Thus, the result follows.

Remark: In [8℄, an indution argument is used in order to prove the previous

17



result. Indeed, assuming that for a �xed k � n,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

jk

; 0 � j � k;

they proved that

1

2�

2�

Z

0

�

k�1

(e

i�

)�

l

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

k�1 l

; 0 � l � k � 1:

Notie that the nth orthogonal polynomial de�nes in a unique way the previous

ones; thus, the proof of the seond statement (the indution) is not neessary.

Of ourse, here we need not do this sine we are using the bakward reurrene

relation for the orthogonal polynomials �

n

.

Notie also that the measure d�

n

=

d�

j�

n

(e

i�

)j

2

de�nes a MSOP f	

n

g

1

n=0

suh

that 	

m

(z) = z

m�n

�

n

(z), for m � n, where �

n

is the moni polynomial orre-

sponding to �

n

. Moreover, the sequene of reetion oeÆients orresponding

to this MSOP f	

n

g

1

n=0

is f�

1

(0); :::;�

n

(0); 0; 0; :::g. Usually, in the literature

of orthogonal polynomials, this measure d�

n

is alled a Bernstein-Szeg�o mea-

sure (see [25℄).

In Setion 2, Theorem 2.10, we proved that the interlaing property for the

zeros of two polynomials P

n�1

and P

n

of degree n � 1 and n, respetively,

means that they are the (n�1)st and nth orthogonal polynomials of a MSOP.

Indeed, the three-term reurrene relation for a MSOP plays a entral role in

the proof. In the ase of the unit irle, we have an analogous result, whih is

known in the literature as the Shur-Cohn-Jury riterion [4℄.

Theorem 3.5 A moni polynomial p of degree n has its n zeros inside the unit

irle if and only if the family of parameters fa

k

g

n

k=0

de�ned by the following

bakward algorithm

q

n

(z) = p(z); q

n

(0) = a

n

;

q

k

(z) =

q

k+1

(z)� a

k+1

q

�

k+1

(z)

z(1� ja

k+1

j

2

)

; a

k

= q

k

(0); k = n� 1; n� 2; :::; 0;

satis�es ja

k

j < 1, k = 1; 2; :::; n:

Proof: Notie that the polynomials fq

k

g

n

k=1

, q

0

= 1, satisfy a bakward re-

urrene relation like the polynomials orthogonal on the unit irle with trun-

ated Shur parameters fa

k

g

1

k=1

. Beause fa

1

; a

2

; :::; a

n

; 0; 0; :::g is indued by
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the measure d �

n

=

d�

jq

n

(e

i�

)j

2

=

d�

jp(e

i�

)j

2

, up to a onstant fator, then p = q

n

(z)

is the nth moni orthogonal polynomial with respet to the measure d �

n

. A-

ording to Proposition 3.1 its zeros are loated inside the unit disk.

Conversely, if the polynomial p has its zeros inside the unit disk, then ja

n

j =

jq

n

(0)j < 1. On the other hand, sine

q

n�1

(z) =

q

n

(z)� a

n

q

�

n

(z)

z(1� ja

n

j

2

)

;

if � is a zero of q

n�1

with j�j � 1, then q

n

(�) = a

n

q

�

n

(�), and 0 < jq

n

(�)j <

jq

�

n

(�)j. This means that

�

�

�

�

�

q

n

(�)

q

�

n

(�)

�

�

�

�

�

< 1, but this is in ontradition with the

fat that the zeros of q

n

(z) are inside the unit disk and thus, by the maximum

modulus priniple,

�

�

�

�

�

q

n

(z)

q

�

n

(z)

�

�

�

�

�

� 1 if jzj < 1, whih is equivalent to

�

�

�

�

�

q

n

(z)

q

�

n

(z)

�

�

�

�

�

� 1

for jzj � 1. The same proedure applied to all 1 � k � n � 2 leads to the

result.

Remark: The above riterion is a very useful qualitative result in the sta-

bility theory for disrete linear systems [4℄. In fat, given the harateristi

polynomial of the matrix of a linear system, we do not need to alulate its

zeros (the eigenvalues of the matrix) in order to prove that they are loated

inside the unit disk, and then to prove the stability of the system.

3.3 The trigonometri moment problem revisited.

Next, we an state our main result.

Theorem 3.6 [8℄ Let fa

n

g

1

n=1

be a sequene of omplex numbers suh that

ja

n

j < 1, n = 1; 2; ::: . Let

�

0

(z) = 1; �

n

(z) = z �

n�1

(z) + a

n

�

�

n�1

(z); n � 1:

Then, there exists a unique positive and �nite Borel measure � supported on

T suh that f�

n

g

1

n=0

is the orresponding MSOP. In other words, the positive

de�nite linear funtional assoiated with the reetion oeÆients fa

n

g

1

n=0

an

be represented as

L[p(z)℄ =

2�

Z

0

p(e

i�

) d�(�):
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Proof: Let

�

n

(�) =

�

Z

0

d�

n

(t) =

�

Z

0

d t

j�

n

(e

i t

)j

2

;

where �

n

denotes the nth orthonormal polynomial with respet to L. The

funtion �

n

is monotoni inreasing in [0; 2�℄ and aording to Lemma 3.1,

j�

n

(�)j �

2�

Z

0

d�

j�

n

(e

i�

)j

2

� 2�d

0

< +1 8n 2 N ; � 2 [0; 2�℄:

FromHelly's seletion priniple (see e.g. [5℄) there exists a subsequene f�

n

k

g

1

n

k

=0

and a monotoni inreasing funtion � suh that lim

n

k

!1

�

n

k

(�) = �(�). Further-

more, for every ontinuous funtion f on T,

lim

n

k

!1

1

2�

2�

Z

0

f(e

i�

)d�

n

k

(�) =

1

2�

2�

Z

0

f(e

i�

)d�(�):

Finally,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)d�(�) = lim

n

l

!1

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)d�

n

l

(�) = Æ

j;k

;

taking n

l

> maxfk; jg.

To onlude the study of the positive de�nite ase, we will show an analog of

Theorem 2.11 of Setion 2 in the following sense.

Theorem 3.7 [1℄ Let fz

n

g

1

n=1

be a sequene of omplex numbers suh that

jz

n

j < 1. Then, there exists a unique sequene of moni polynomials �

n

orthog-

onal with respet to a positive de�nite moment funtional suh that �

n

(z

n

) = 0.

Proof: Sine �

1

(z) = z +�

1

(0) = z � z

1

, then �

1

(0) = �z

1

, and j�

1

(0)j < 1.

Using indution, assume that z

n�1

is a zero of �

n�1

and j�

n�1

(0)j < 1. Let

�

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z), for n > 1, and z

n

be a zero of �

n

. Then,

substituting z

n

in the above expression, we dedue

z

n

�

n�1

(z

n

) = ��

n

(0)�

�

n�1

(z

n

):

But �

�

n�1

(z

n

) 6= 0 (otherwise z

n

would be a zero of �

n�1

, whih is a ontra-

dition). Thus,

�

n

(0) = �z

n

�

n�1

(z

n

)

�

�

n�1

(z

n

)

; but then j�

n

(0)j = jz

n

j

�

�

�

�

�

�

n�1

(z

n

)

�

�

n�1

(z

n

)

�

�

�

�

�

< jz

n

j < 1;

sine

�

�

�

�

�

n�1

(z

n

)

�

�

n�1

(z

n

)

�

�

�

�

< 1 by the maximum modulus priniple (see the proof of

Theorem 3.5). Then, the sequene fz

n

g

1

n=1

de�nes uniquely a sequene of
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omplex numbers fa

n

g

1

n=1

, with a

n

= �

n

(0), and this sequene, aording to

Theorem 3.6, uniquely de�nes a sequene of orthogonal polynomials f�

n

g

1

n=0

with reetion parameters a

n

suh that �

n

(z

n

) = 0.

In the quasi-de�nite ase, as we already pointed out after Proposition 3.1, if

�

n

is the nth orthonormal polynomial with respet to a quasi-de�nite moment

funtional L, then the polynomials z�

n

(z) and �

�

n

(z) have no zeros in ommon.

They are oprime, and by the B�ezout identity [4℄, there exist polynomials r(z)

and s(z) suh that

z r(z)�

n

(z) + s(z)�

�

n

(z) = 1;

or, equivalently, if u(z) = z r(z), i.e., u(0) = 0,

u(z)�

n

(z) + s(z)�

�

n

(z) = 1:

The next result is analogous to that stated in Lemma 3.1.

Theorem 3.8 [3℄ There exists a unique real trigonometri polynomial f(�)

of degree at most n, suh that

1

2�

2�

Z

0

�

n

(e

i�

)e

�ik�

f(�)d� = 0; 0 � k � n� 1; (3.7)

1

2�

2�

Z

0

�

�

��

n

(e

i�

)

�

�

�

2

f(�)d� = 1; (3.8)

if and only if there exist u; v 2 P

n

, with u(0) = 0, suh that u(z)�

n

(z) +

v(z)�

�

n

(z) = 1. Furthermore,

f(�) = ju(e

i�

)j

2

� jv(e

i�

)j

2

:

Proof: If f satis�es (3.7) and (3.8), onsider the funtion g(�) = f(�)�

n

(e

i�

),

whih is a trigonometri polynomial of degree at most 2n. The onditions mean

that the Fourier oeÆients ĝ(k) of g(�) are ĝ(j) = 0, j = 0; 1; :::; n� 1, and

ĝ(n)�

�

n

(0) = 1. Then, there exist polynomials u; v 2 P

n

, suh that u(0) = 0,

v(0))�

�

n

(0) = 1 and g(�) = e

in�

v(e

i�

)� u(e

i�

). In fat,

u(z) = �

n

X

j=1

ĝ(�j)z

j

and v(z) =

n

X

j=0

ĝ(j + n)z

j

:

Now we introdue the trigonometri polynomial of degree at most 3n, h(�) =

�

n

(e

i�

)f(�)�

n

(e

i�

). Notie that

h(�) = �

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

);
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and h is a real-valued funtion. Then,

�

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

) = �

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

);

or, equivalently,

s(�) = u(e

i�

)�

n

(e

i�

) + v(e

i�

)�

�

n

(e

i�

) 2 R:

This means that the algebrai polynomial of degree at most 2n,

q(z) = u(z)�

n

(z) + v(z)�

�

n

(z);

is real-valued on the unit irle, and thus q̂(j) = q̂(�j) = 0, i.e.,

q(z) = q(0) = u(0)�

n

(0) + v(0)�

�

n

(0) = 1:

This yields our result.

Conversely, assume there exist polynomials u; v 2 P

n

with u(0) = 0, suh that

u(z)�

n

(z) + v(z)�

�

n

(z) = 1: (3.9)

Let f(�) = v(e

i�

)v(e

i�

)� u(e

i�

)u(e

i�

), a trigonometri polynomial of degree at

most n. We will prove that the orthogonality onditions (3.7) and (3.8) hold.

Indeed, let g(�) = f(�)�

n

(e

i�

). Taking into aount (3.9), we have

u(e

i�

)�

n

(e

i�

)+v(e

i�

)e

�in�

�

n

(e

i�

) = 1; i.e.; e

in�

= u(e

i�

)�

�

n

(e

i�

)+v(e

i�

)�

n

(e

i�

):

Then, using (3.9) as well as the last expression, we obtain

g(�) = �

n

(e

i�

)

h

v(e

i�

)v(e

i�

)� u(e

i�

)u(e

i�

)

i

= e

in�

v(e

i�

)� u(e

i�

); (3.10)

whih yields our orthogonality onditions

ĝ(j) = 0; j = 0; 1; :::; n� 1; and ĝ(n)�

�

n

(0) = 1:

In order to prove uniqueness of f , notie that if u; v 2 P

n

, satisfy (3.9) together

with u(0) = 0, then f(�) = u(e

i�

)�

n

(e

i�

)f(�) + v(e

i�

)�

�

n

(e

i�

)f(�). By (3.10),

we get

f(�)�

n

(e

i�

) = e

in�

v(e

i�

)� u(e

i�

);

and

f(�)�

�

n

(e

i�

) = v(e

i�

)� e

in�

u(e

i�

):

Thus, f(�) = jv(e

i�

)j

2

�ju(e

i�

)j

2

. The uniqueness of f follows from the unique-

ness of u; v.
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To onlude this setion, we will show with two simple examples how to �nd

the funtion f expliitly.

Example 3.1 Let �

3

(z) = 2z

3

+ 1. Notie that beause the zeros are inside

the unit irle, we are in a positive de�nite ase. Moreover, �

�

3

(z) = z

3

+ 2.

Using the Eulidean algorithm for z�

3

(z) and �

�

3

(z), we �nd

2z

4

+ z = 2z(z

3

+ 2)� 3z; and z

3

+ 2 = �3z(�

1

3

z

2

) + 2:

Thus,

1

6

z

2

(2z

4

+ z) + (z

3

+ 2)(

1

2

�

1

3

z

3

) = 1; and u(z) =

1

6

z

3

; v(z) =

1

2

�

1

3

z

3

:

Then

f(�) =

�

�

�

1

2

�

1

3

e

3i�

�

�

�

2

�

1

36

=

1

3

(1� os 3�) =

1

6

�

�

�e

3i�

� 1

�

�

�

2

� 0:

Example 3.2 Let �

3

(z) = z(z

2

+ 4). Notie that now there are two zeros

outside the unit irle. In this ase, �

�

3

(z) = 4z

2

+ 1. An analogous proedure

leads to

z�

3

(z) = z

4

+ 4z

2

=

1

4

z

2

(4z

2

+ 1) +

15

4

z

2

; �

�

3

(z) =

16

15

(

15

4

z

2

) + 1:

Thus

�

16

15

z

2

(z

2

+ 4) + (

4

15

z

2

+ 1)(4z

2

+ 1) = 1; u(z) = �

16

15

z

2

; v(z) =

4

15

z

2

+ 1;

so

f(�) =

�

�

�

4

15

e

2i�

� 1

�

�

�

2

�

256

225

= �

1

15

(1 + 8 os 2�);

whih gives rise to a nonpositive ase, i.e., to a signed measure on [��; �℄.

4 The Favard Theorem for nonstandard inner produts.

To onlude this work, we will survey some very reent results onerning the

Favard theorem for Sobolev-type orthogonal polynomials.

First of all, we want to point out that the Favard Theorem on the real line

an be be onsidered in a funtional-analyti framework as follows.

Theorem 4.1 (Duran [6℄) Let P be the linear spae of real polynomials and

B an inner produt on P. Then, the following onditions are equivalent:

(1) The multipliation operator t, i.e., the operator t : P ! P, p(t)! t p(t),

is Hermitian for B, that is, B(t f; g) = B(f; t g) for every polynomial f ,

g.
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(2) There exists a nondisrete positive measure � suh that B(f; g) =

R

f(t)g(t)d�(t).

(3) For any set of orthonormal polynomials (q

n

) with respet to B the follow-

ing three-term reurrene holds:

tq

n

(t) = a

n+1

q

n+1

(t) + b

n

q

n

(t) + a

n

q

n�1

(t); n � 0; (4.1)

with q

�1

(t) = 0, q

0

(t) = 1 and fa

n

g

1

n=0

, fb

n

g

1

n=0

real sequenes suh that

a

n

> 0 for all n.

Notie that from the three-term reurrene relation (4.1) we get

t

2

q

n

(x) = a

n+2

a

n+1

q

n+2

(t) + (b

n+1

a

n+1

+ b

n

a

n+1

)q

n+1

(t)

+(a

2

n+1

+ a

2

n

+ b

2

n

)q

n

(t) + (a

n

b

n

+ a

n

b

n�1

)q

n�1

(t) + a

n

a

n�1

q

n�2

(t);

i.e., the sequene fq

n

g

1

n=0

satis�es a �ve-term reurrene relation, whih is a

simple onsequene of the symmetry of the operator t

2

� t � t.

Here we are interested in the onverse problem, whih is a natural extension of

the Favard Theorem: To haraterize the real symmetri bilinear forms suh

that the operator t

2

is a Hermitian operator. A nonstandard example of suh

an inner produts is

B(f; g) =

Z

f(t)g(t)d�(t) +Mf

0

(0)g

0

(0); f; g 2 P;

for whih t

2

is Hermitian, i.e., B(t

2

f; g) = B(f; t

2

g).

Theorem 4.2 Let B be a real symmetri bilinear form on the linear spae P.

Then the following onditions are equivalent:

(1) The operator t

2

is Hermitian for B, that is, B(t

2

f; g) = B(f; t

2

g) for

every polynomial f , g.

(2) There exist two funtions � and � suh that

B(f; g) =

Z

f(t)g(t)d�(t) + 4

Z

f

0

(t)g

0

(t)d�(t); (4.2)

where f

0

and g

0

denote the odd omponents of f and g, respetively, i.e.,

f

0

(t) =

f(t)� f(�t)

2

; g

0

(t) =

g(t)� g(�t)

2

:

Moreover, if we put �

n

=

R

t

n

d�(t) and �

n

= 4

R

t

n

d�(t), then the matrix

a

n;k

=

8

>

<

>

:

�

n+k

if n or k are even;

�

n+k

+ �

n+k

otherwise;
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is positive de�nite if and only if B is an inner produt. In this ase the set

of orthonormal polynomials with respet to an inner produt of the form (4.2)

satis�es a �ve-term reurrene relation

t

2

q

n

(x) = A

n+2

q

n+2

(t) +B

n+1

q

n+1

(t) + C

n

q

n

(t)

+B

n

q

n�1

(t) + A

n

q

n�2

(t); n � 0;

(4.3)

where fA

n

g

1

n=0

, fB

n

g

1

n=0

, and fC

n

g

1

n=0

are real sequenes suh that A

n

6= 0

for all n.

Also we get a generalization of the Favard Theorem.

Theorem 4.3 Let fq

n

g

1

n=0

be a set of polynomials satisfying the initial on-

ditions q

�1

(t) = q

�2

(t) = 0, q

0

(t) = 1 and the �ve-term reurrene relation

(4.3). Then, there exist two funtions � and � suh that the bilinear form (4.2)

is an inner produt and the polynomials fq

n

g

1

n=0

are orthonormal with respet

to B.

Remark: The above theorem does not guarantee the positivity of the mea-

sures � and �. In fat in [6℄ some examples of inner produts of type (4.2)

where both measures annot be hosen to be positive, or � is positive and �

annot be hosen to be positive, are shown.

All the previous results an be extended to real symmetri bilinear forms suh

that the operator \multipliation by h(t)", where h is a �xed polynomial, is

Hermitian for B, i.e., B(h f; g) = B(f; h g).

The basi idea onsists in the hoie of an adequate basis of P whih is

assoiated with the polynomial h. Assume that deg h = N , and let E

h

=

span[1; h; h

2

; :::℄; then

P = E

h

� t E

h

� � � � � t

N�1

E

h

:

If �

k

denotes the projetor operator in t

k

E

h

, then �

k

(p) = t

k

q[h(t)℄. We intro-

due a new operator ~�

k

: P ! P, p ! q, where q denotes a polynomial suh

that �

k

(p) = t

k

q[h(t)℄. Then we obtain the following extension of Theorem

4.2:

Theorem 4.4 Let B be a real symmetri bilinear form in P. Then the follow-

ing statements are equivalent:

(1) The operator \multipliation by h" is Hermitian for B, i.e., B(h f; g)

= B(f; h g) for every polynomial f , g, where h is a polynomial of degree

N .
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(2) There exist funtions �

m;m

0

for 0 � m � m

0

� N � 1 suh that B is

de�ned as follows:

B(f; g) =

Z

(�

0

(f); :::; �

N�1

(f))

0

B

B

B

B

B

�

d�

0;0

� � � d�

0;N�1

.

.

.

.

.

.

.

.

.

d�

N�1;0

� � � d�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

0

(g)

.

.

.

�

N�1

(g)

1

C

C

C

C

C

A

:

(3) There exist funtions �

0

and �

m;m

0

for 1 � m � m

0

� N � 1 suh that B

is de�ned as follows:

B(f; g) =

Z

f gd�

0

+

Z

(�

1

(f); :::; �

N�1

(f))

0

B

B

B

B

B

�

d�

1;1

� � � d�

1;N�1

.

.

.

.

.

.

.

.

.

d�

N�1;1

� � � d�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

1

(g)

.

.

.

�

N�1

(g)

1

C

C

C

C

C

A

:

(4) There exist funtions ~�

m;m

0

for 0 � m � m

0

� N � 1 suh that B is

de�ned as follows:

B(f; g) =

Z

(~�

0

(f); :::; ~�

N�1

(f))

0

B

B

B

B

B

�

d~�

0,0

� � � d~�

0;N�1

.

.

.

.

.

.

.

.

.

d~�

N�1;0

� � � d~�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

~�

0

(g)

.

.

.

~�

N�1

(g)

1

C

C

C

C

C

A

:

(5) There exist funtions ~�

0

and ~�

m;m

0

for 1 � m � m

0

� N � 1 suh that B

is de�ned as follows:

B(f; g) =

Z

f gd~�

0

+

Z

(~�

1

(f); :::; ~�

N�1

(f))

0

B

B

B

B

B

�

d~�

1;1

� � � d~�

1;N�1

.

.

.

.

.

.

.

.

.

d~�

N�1;1

� � � d~�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

~�

1

(g)

.

.

.

~�

N�1

(g)

1

C

C

C

C

C

A

:

Proof: The equivalene 1 () 2 () 3 was proved in [6℄. 4 and 5 are a

straightforward reformulation of the above statements 2 and 3, respetively.

In a natural way, matrix measures appear in onnetion with this extension of

the Favard Theorem. This fat was pointed out in [7, Setion 2℄. Even more,

if B is an inner produt of Sobolev type,

B(f; g) =

Z

f(t) g(t)d�(t) +

N

X

i=1

Z

f

(i)

(t)g

(i)

(t)d�

i

(t); (4.4)

26



where f�

i

g

N

i=1

are atomi measures, it is straightforward to prove that there

exists a polynomial h of degree depending on N and mass points suh that h

indues a Hermitian operator with respet to B. As an immediate onsequene

we get a higher-order reurrene relation of type

h(t)q

n

(t) = 

n;0

q

n

(t) +

M

X

k=1

[

n;k

q

n�k

(t) + 

n+k;k

q

n+k

(t)℄ ; (4.5)

where M is the degree of h and fq

n

g

1

n=0

is the sequene of orthogonal polyno-

mials relative to B.

Furthermore, extra information about the measures f�

i

g

N

i=1

in (4.4) is obtained

in [9℄ when the orresponding sequene of orthonormal polynomials satis�es a

reurrene relation like (4.5).

Theorem 4.5 Assume that there exists a polynomial h of deg h � 1 suh that

B(h f; g) = B(f; h g), where B is de�ned by (4.4). Then the measures f�

i

g

N

i=1

are neessarily of the form

�

i

(t) =

j(i)

X

k=1

�

i;k

Æ(t� t

i;k

);

for some positive integers j(i), where

(1) �

i;k

� 0, k = 1; 2; :::; j(i), i = 1; 2; :::; N .

(2) R

i

= ft

i;k

g

j(i)

k=1

6= ; are the distint real zeros of h

(i)

, i = 1; 2; :::; N .

(3) supp�

i

�

i

\

k=1

R

k

, k = 1; 2; :::; N .

(4) The degree of h is at least N + 1 and there exists a unique polynomial H

of minimal degree m(H) satisfying H(0) = 0 and B(H f; g) = B(f;H g).

The above situation orresponds to the so-alled diagonal ase for Sobolev-

type orthogonal polynomials.

Finally, we state a more general result, whih was obtained in [6℄.

Theorem 4.6 Let P be the spae of real polynomials and B a real symmetri

bilinear form de�ned on P. If h(t) = (t � t

1

)

n

1

� � � (t � t

k

)

n

k

and N = deg h,

then the following statements are equivalent:

(1) The operator \multipliation by h" is Hermitian for B and B(h f; t g) =

B(t f; h g), i.e., the operators \multipliation by h" and \multipliation

by t" ommute with respet to B.

(2) There exist a funtion � and onstant real numbers M

i;j;l;l

0

with 0 � i �
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n

l

� 1, 0 � j � n

l

0

� 1, 1 � l; l

0

� k and M

i;j;l;l

0

=M

j;i;l

0

;l

, suh that

B(f; g) =

Z

f(t) g(t)d�(t) +

k

X

l;l

0

=1

n

l

�1

X

i=0

n

l

0

�1

X

j=0

M

i;j;l;l

0

f

(i)

(t

l

)g

(i)

(t

l

0

):

To onlude, in view of the fat that the operator \multipliation by h" is

Hermitian with respet to the omplex inner produt

hf; gi =

Z

�

f(z)g(z)d�(z); (4.6)

where � is a harmoni algebrai urve de�ned by =h(z) = 0 and h a omplex

polynomial (see [15℄), it seems natural to ask:

Problem 1 To haraterize the sesquilinear forms B : P � P ! C suh that

the operator \multipliation by h" satis�es B(h f; g) = B(f; h g) for every

polynomial f , g 2 P, the linear spae of polynomials with omplex oeÆients.

In the same way (see [14℄), given an inner produt like (4.6), if � is an equipo-

tential urve jh(z)j = 1, where h is a omplex polynomial, then the operator

\multipliation by h" is isometri with respet to (4.6). Thus, it is natural to

formulate

Problem 2 To haraterize the sesquilinear forms B : P � P ! C suh that

the operator \multipliation by h" satis�es B(h f; h g) = B(f; g) for every

polynomial f , g 2 P, the linear spae of polynomials with omplex oeÆients.

The onnetion between these problems and matrix polynomials orthogonal

with respet to matrix measures supported on the real line and on the unit

irle, respetively, has been shown in [15℄ and [14℄.
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