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In this paper we present a survey on the \Favard theorem" and its extensions.
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1 Introdu
tion.

Given a sequen
e fP

n

g

1

n=0

of moni
 polynomials satisfying a 
ertain re
urren
e

relation, we are interested in �nding a general inner produ
t, if one exists, su
h

that the sequen
e fP

n

g

1

n=0

is orthogonal with respe
t to it.

The original \
lassi
al" result in this dire
tion is due to J. Favard [10℄ even

though his result seems to be known by di�erent mathemati
ians. The �rst

who obtained a similar result was Stieltjes in 1894 [23℄. In fa
t, from the

point of view of J�
ontinued fra
tions obtained from the 
ontra
tion of an

S�
ontinued fra
tion with positive 
oeÆ
ients, Stieltjes proved the existen
e

of a positive linear fun
tional su
h that the denominators of the approximants

are orthogonal with respe
t to it [23, x11℄. Later on, Stone gave another ap-

proa
h using the spe
tral resolution of a self-adjoint operator asso
iated to a

Ja
obi matrix [24, Th. 10.23℄. In his paper [21, page 454℄ Shohat 
laims \We
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have been in possession of this proof for several years. Re
ently J. Favard pub-

lished an identi
al proof in the Comptes Rendus". Also I. P. Natanson in his

book [17, page 167℄ said \This theorem was also dis
overed (independent of

Favard) by the author (Natanson) in the year 1935 and was presented by him

in a seminar led by S. N. Bernstein. He then did not publish the result sin
e

the work of Favard appeared in the meantime". The \same" theorem was also

obtained by Perron [19℄, Wintner [28℄ and Sherman [20℄, among others.

The Favard's result essen
ially means that if a sequen
e of moni
 polynomials

fP

n

g

1

n=0

satis�es a three-term re
urren
e relation

xP

n

(x) = P

n+1

(x) + a

n

P

n

(x) + b

n

P

n�1

(x); (1.1)

with a

n

; b

n

2 R, b

n

> 0, then there exists a positive Borel measure � su
h

that fP

n

g

1

n=0

is orthogonal with respe
t to the inner produ
t

hp; qi =

Z

R

p q d�: (1.2)

This formulation is equivalent to the following: Given the linear operator t :

P ! P, p(t) ! tp(t), 
hara
terize an inner produ
t su
h that the operator t

is Hermitian with respe
t to the inner produ
t.

A �rst extension of this problem is due to Chihara [5℄. If fP

n

g

1

n=0

satis�es

a three-term re
urren
e relation like (1.1) with a

n

; b

n

2 C , b

n

6= 0, �nd a

linear fun
tional L de�ned on P, the linear spa
e of polynomials with 
omplex


oeÆ
ients, su
h that fP

n

g

1

n=0

is orthogonal with respe
t to the general inner

produ
t hp; qi = L[pq℄, where p; q 2 P. Noti
e that in the 
ase analyzed by

Favard [10℄ the linear fun
tional has an integral representation

L[p℄ =

Z

R

p d�:

Favard's Theorem is an inverse problem in the sense that from information

about polynomials we 
an dedu
e what kind of inner produ
t indu
es orthog-

onality for su
h polynomials. The aim of this 
ontribution is to survey some

extensions of the Favard Theorem when a sequen
e of moni
 polynomials

fP

n

g

1

n=0

satis�es re
urren
e relations of a di�erent form than (1.1).

In the �rst pla
e, in [8℄ a similar problem is studied relating to polynomials

orthogonal with respe
t to a positive Borel measure � supported on the unit


ir
le, whi
h satisfy a re
urren
e relation

�

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z); j�

n

(0)j < 1; (1.3)
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where �

�

n

(z) = z

n

�

n

(1=z).

Thus, a Favard Theorem means, in this 
ase, if we 
an identify an inner prod-

u
t in P su
h that f�

n

g

1

n=0

satisfying (1.3) is the 
orresponding sequen
e of

orthogonal polynomials.

The stru
ture of the paper is as follows. In Se
tion 2 we present a survey

of results surrounding the Favard Theorem when a sequen
e of polynomials

satis�es a linear relation like (1.1). In parti
ular, we show that the interla
ing

property for the zeros of two 
onse
utive polynomials gives basi
 information

about the pre
eding ones in the sequen
e of polynomials.

In Se
tion 3, an analogous approa
h is presented in the 
ase of the unit 
ir
le

in a more general situation when j�

n

(0)j 6= 1. Furthermore, an integral repre-

sentation for the 
orresponding inner produ
t is given. The 
onne
tion with

the trigonometri
 moment problem is stated when we assume that the nth

polynomial �

n

is 
oprime with �

�

n

.

In Se
tion 4, we present some re
ent results about a natural extension of the

above Favard theorems taking into a

ount their interpretation in terms of

operator theory. Indeed, the multipli
ation by t is a Hermitian operator with

respe
t to (1.2) and a unitary operator with respe
t to the inner produ
t

hp; qi =

Z

R

p(e

i�

)q(e

i�

) d�(�): (1.4)

Thus we are interested in 
hara
terizing inner produ
ts su
h that the mul-

tipli
ation by a �xed polynomial is a Hermitian or a unitary operator. The


onne
tion with matrix orthogonal polynomials is stated, and some examples

relating to Sobolev inner produ
ts are given.

2 The Favard theorem on the real line.

2.1 Preliminaries.

In this subse
tion we summarize some de�nitions and preliminary results that

will be useful throughout the work. Most of them 
an be found in [5℄.

De�nition 2.1 Let f�

n

g

1

n=0

be a sequen
e of 
omplex numbers (moment se-

quen
e) and L a fun
tional a
ting on the linear spa
e of polynomials P with


omplex 
oeÆ
ients. We say that L is a moment fun
tional asso
iated with

f�

n

g

1

n=0

if L is linear, i.e., for all polynomials �

1

and �

2

and any 
omplex

3



numbers �

1

and �

2

L[�

1

�

1

+ �

2

�

2

℄ = �

1

L[�

1

℄ + �

2

L[�

2

℄; and L[x

n

℄ = �

n

; n = 0; 1; 2; ::: :

De�nition 2.2 Given a sequen
e of polynomials fP

n

g

1

n=0

, we say that fP

n

g

1

n=0

is a sequen
e of orthogonal polynomials (SOP) with respe
t to a moment fun
-

tional L if for all nonnegative integers n and m the following 
onditions hold:

(1) P

n

is a polynomial of exa
t degree n,

(2) L[P

n

P

m

℄ = 0; m 6= n,

(3) L[P

2

n

℄ 6= 0.

Usually, the last two 
onditions are repla
ed by

L[x

m

P

n

(x)℄ = K

n

Æ

nm

; K

n

6= 0 ; 0 � m � n ;

where Æ

nm

is the Krone
ker symbol.

The next theorems are dire
t 
onsequen
es of the above de�nition [5, Chapter

I, x2,3, pages 8-17℄.

Theorem 2.1 Let L be a moment fun
tional and fP

n

g

1

n=0

a sequen
e of poly-

nomials. Then the following are equivalent:

(1) fP

n

g

1

n=0

is an SOP with respe
t to L.

(2) L[�P

n

℄ = 0 for all polynomials � of degree m < n, while L[�P

n

℄ 6= 0 if

the degree of � is n .

(3) L[x

m

P

n

(x)℄ = K

n

Æ

nm

, where K

n

6= 0, for m = 0; 1; :::; n.

Theorem 2.2 Let fP

n

g

1

n=0

be an SOP with respe
t to L. Then, for every

polynomial � of degree n

�(x) =

n

X

k=0

d

k

P

k

(x); where d

k

=

L[�P

k

℄

L[P

2

k

℄

; k = 0; 1; :::; n: (2.1)

A simple 
onsequen
e of the above theorem is that an SOP is uniquely deter-

mined if we impose an additional 
ondition that �xes the leading 
oeÆ
ient

k

n

of the polynomials (P

n

(x) = k

n

x

n

+ lower order terms). When k

n

= 1 for

all n = 0; 1; 2; ::: the 
orresponding SOP is 
alled a moni
 SOP (MSOP). If

we 
hoose k

n

= (L[P

2

n

℄)

�

1

2

, the SOP is 
alled an orthonormal SOP (SONP).
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The next question whi
h obviously arises is the existen
e of an SOP. To answer

this question, it is ne
essary to introdu
e the Hankel determinants �

n

,

�

n

=

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

1

�

2

� � � �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n

�

n+1

� � � �

2n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

Theorem 2.3 Let L be a moment fun
tional asso
iated with the sequen
e of

moments f�

n

g

1

n=0

. Then, the sequen
e of polynomials fP

n

g

1

n=0

is an SOP with

respe
t to L if and only if �

n

6= 0 for all nonnegative n. Moreover, the leading


oeÆ
ient k

n

of the polynomial P

n

is given by k

n

=

K

n

�

n�1

�

n

.

De�nition 2.3 A moment fun
tional L is 
alled positive de�nite if for every

nonzero and nonnegative real polynomial �, L[�℄ > 0.

The following theorem 
hara
terizes the positive de�nite fun
tionals in terms

of the moment sequen
es f�

n

g

1

n=0

. The proof is straightforward.

Theorem 2.4 A moment fun
tional L is positive de�nite if and only if their

moments are real and �

n

> 0 for all n � 0.

Using the above theorem, we 
an de�ne a positive de�nite moment fun
tional

L entirely in terms of the determinants �

n

. In other words, a moment fun
-

tional L is 
alled positive de�nite if all its moments are real and �

n

> 0 for all

n � 0. Noti
e also that for a MSOP, it is equivalent to say that K

n

> 0 for all

n � 0. This, and the fa
t that an SOP exists if and only if �

n

6= 0, leads us to

de�ne more general moment fun
tionals: the so-
alled quasi-de�nite moment

fun
tionals.

De�nition 2.4 A moment fun
tional L is said to be quasi-de�nite if and only

if �

n

6= 0 for all n � 0.

We 
an write the expli
it expression of the MOP in terms of the moments of

the 
orresponding fun
tional:

P

n

(x) =

1

�

n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

1

�

2

� � � �

n+1

.

.

.

.

.

.

.

.

.

.

.

.

�

n�1

�

n

� � � �

2n�1

1 x � � � x

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; �

�1

� 1; n = 0; 1; 2; ::: : (2.2)
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One of the simplest 
hara
teristi
s of orthogonal polynomials is the so-
alled

three-term re
urren
e relation (TTRR) that 
onne
ts every three 
onse
utive

polynomials of the SOP.

Theorem 2.5 If fP

n

g

1

n=0

is a MSOP with respe
t to a quasi-de�nite moment

fun
tional, then the polynomials P

n

satisfy a three-term re
urren
e relation

P

n

(x) = (x� 


n

)P

n�1

(x)� �

n

P

n�2

(x); n = 1; 2; 3; ::: ; (2.3)

where f


n

g

1

n=0

and f�

n

g

1

n=0

are given by




n

=

L[xP

2

n�1

℄

L[P

2

n�1

℄

; n � 1; and �

n

=

L[xP

n�1

P

n�2

℄

L[P

2

n�2

℄

=

L[P

2

n�1

℄

L[P

2

n�2

℄

; n � 2 ;

respe
tively, and P

�1

(x) � 0, P

0

(x) � 1.

The proof of the above theorem is a simple 
onsequen
e of the orthogonality

of the polynomials and Theorem 2.2. A straightforward 
al
ulation shows that

(�

1

= L[1℄)

�

n+1

=

K

n

K

n�1

=

�

n�2

�

n

�

2

n�1

; n = 1; 2; 3; :::;

and �

�1

� 1. From Theorem 2.4 and De�nition 2.4 it follows that, if �

n

6= 0,

then L is quasi-de�nite whereas, if �

n

> 0, then L is positive de�nite. Noti
e

also that from the above expression we 
an obtain the square normK

n

� L[P

2

n

℄

of the polynomial P

n

as

K

n

� L[P

2

n

℄ = �

1

�

2

� � ��

n+1

: (2.4)

A useful 
onsequen
e of Theorem 2.5 are the Christo�el-Darboux identities.

Theorem 2.6 Let fP

n

g

1

n=0

be a MSOP whi
h satis�es (2.3) with �

n

6= 0 for

all nonnegative n. Then

n

X

m=0

P

m

(x)P

m

(y)

K

m

=

1

K

n

P

n+1

(x)P

n

(y)� P

n+1

(y)P

n

(x)

x� y

; n � 0 ; (2.5)

and

n

X

m=0

P

2

m

(x)

K

m

=

1

K

n

[P

0

n+1

(x)P

n

(x)� P

n+1

(x)P

0

n

(x)℄; n � 0 : (2.6)

For an arbitrary normalization (not ne
essarily the moni
 one) of the polyno-

mials P

n

, the three-term re
urren
e relation be
omes

xP

n�1

(x) = �

n

P

n

(x) + �

n

P

n�1

(x) + 


n

P

n�2

(x): (2.7)
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In this 
ase, the 
oeÆ
ients �

n

and �

n


an be obtained 
omparing the 
oef-

�
ients of x

n

and x

n�1

, respe
tively, in both sides of (2.7) and 


n

is given by

L[xP

n�1

P

n�2

℄

L[P

2

n�2

℄

. This leads to

�

n

=

k

n�1

k

n

; �

n

=

b

n�1

k

n�1

�

b

n

k

n

; 


n

=

k

n�2

k

n�1

K

n�1

K

n�2

; (2.8)

where k

n

is the leading 
oeÆ
ient of P

n

and b

n

denotes the 
oeÆ
ient of x

n�1

in P

n

, i.e., P

n

(x) = k

n

x

n

+ b

n

x

n�1

+ � � � . Noti
e also that knowing two of the


oeÆ
ients �

n

, �

n

, and 


n

, one 
an �nd the third one using (2.7) provided, for

example, that P

n

(x

0

) 6= 0 for some x

0

(usually x

0

= 0) and for all n = 1; 2; 3; :::.

The above TTRR (2.7) 
an be written in matrix form,

xP

n�1

= J

n

P

n�1

+ �

n

P

n

(x)e

n

; (2.9)

where

P

n�1

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

P

0

(x)

P

1

(x)

P

2

(x)

.

.

.

P

n�2

(x)

P

n�1

(x)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; J

n

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

1

�

1

0 : : : 0 0




2

�

2

�

2

: : : 0 0

0 


3

�

3

: : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : �

n�1

�

n�1

0 0 0 : : : 


n

�

n

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; e

n

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

0

0

.

.

.

0

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:(2.10)

Denoting by fx

n;j

g

1�j�n

the zeros of the polynomial P

n

, we see from (2.9) that

ea
h x

n;j

is an eigenvalue of the 
orresponding tridiagonal matrix of order n

and [P

0

(x

n;j

); :::; P

n�1

(x

n;j

)℄

T

is the asso
iated eigenve
tor. From the above

representation many useful properties of zeros of orthogonal polynomials 
an

be found.

2.2 The zeros of orthogonal polynomials.

De�nition 2.5 Let L be a moment fun
tional. The support of the fun
tional

L is the largest interval (a; b) � R where L is positive de�nite.

The following theorem holds.

Theorem 2.7 Let (a; b) be the support of the positive de�nite fun
tional L,

and let fP

n

g

1

n=0

be the MSOP asso
iated with L. Then,

7



(1) All zeros of P

n

are real, simple, and lo
ated inside (a; b).

(2) Two 
onse
utive polynomials P

n

and P

n+1

have no 
ommon zeros.

(3) Let fx

n;j

g

n

j=1

denote the zeros of the polynomial P

n

, with x

n;1

< x

n;2

<

� � � < x

n;n

. Then,

x

n+1;j

< x

n;j

< x

n+1;j+1

; j = 1; 2; 3; :::; n :

The last property is usually 
alled the interla
ing property.

Proof: Noti
e that, in the 
ase when the SOP is an SNOP, i.e, K

n

= 1 for all

n, then the matrix J

n

is a symmetri
 real matrix (J

n

= J

T

n

, where J

T

n

denotes

the transposed matrix of J

n

). So its eigenvalues, and thus, the zeros of the

orthogonal polynomials are real. To prove that all zeros are simple, we 
an

use the Christo�el-Darboux identity (2.6). Let x

k

be a multiple zero of P

n

,

i.e., P

n

(x

k

) = P

0

n

(x

k

) = 0. Then (2.6) gives

0 <

n

X

m=0

P

2

m

(x

k

)

K

m

=

1

K

n

[P

0

n+1

(x

k

)P

n

(x

k

)� P

n+1

(x

k

)P

0

n

(x

k

)℄ = 0 :

This 
ontradi
tion proves the statement. Let fx

k

g

p

k=1

be the zeros of P

n

inside (a; b). Then, P

n

(x)

Q

p

k=1

(x � x

k

) does not 
hange sign in (a; b) and

L[P

n

(x)

Q

p

k=1

(x � x

k

)℄ 6= 0, so p = n, i.e., all the zeros of P

n

are inside (a; b).

Thus, the statement 1 is proved. To prove 2, we use the TTRR. In fa
t, if x

k

is

a zero of P

n

and P

n+1

, then it must be a zero of P

n�1

. Continuing this pro
ess

by indu
tion, we get that x

k

must be a zero of P

0

(x) � 1, whi
h is a 
ontra-

di
tion. Before proving the interla
ing property 3 we will prove a theorem due

to Cau
hy [22, page 197℄.

Theorem 2.8 Let B be a prin
ipal (n � 1) � (n � 1) submatrix of a real

symmetri
 n � n matrix A, with eigenvalues �

1

� �

2

� � � � � �

n�1

. Then, if

�

1

� �

2

� � � � � �

n

are the eigenvalues of A,

�

1

� �

1

� �

2

� � � � � �

n�1

� �

n

:

Proof: Let A be the n� n matrix

A =

0

B

�

B a

a

T

b

1

C

A

;

and assume that the theorem is not true, i.e., �

i

> �

i

or �

i+1

> �

i

(sin
e the

matrix A is real symmetri
, all its eigenvalues are real). Let i be the �rst su
h

index. If �

i

> �

i

(the other 
ase is similar), there exists a real number � su
h

that �

i

> � > �

i

. Then, B��I

n�1

, where I

k

denotes the identity k�k matrix,
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is nonsingular (det(B � �I

n�1

) 6= 0), and the matrix

H =

0

B

�

B � �I

n�1

0

0 b� � � a

T

(B � �I

n�1

)

�1

a

1

C

A

=

0

B

�

I

n�1

0

�a

T

(B � �I

n�1

)

�1

1

1

C

A

0

B

�

B � �I

n�1

a

a

T

b� �

1

C

A

0

B

�

I �(B � �I

n�1

)

�1

a

0 1

1

C

A

;

is 
ongruent to A� �I

n

. Then, by the inertia theorem, the matrix H has the

same number of positive eigenvalues as A� �I

n

, i.e., i� 1. But H has at least

as many positive eigenvalues as B � �I

n�1

, i.e., i. The 
ontradi
tion proves

the theorem.

Obviously, the interla
ing property 3 
an be obtained as a simple 
orollary of

the Cau
hy Theorem, sin
e the matrix J

n

asso
iated with the SONP is a real

symmetri
 matrix and we 
an 
hoose as A the matrix J

n+1

whose zeros are

the zeros of the polynomial P

n+1

and then, the prin
ipal submatrix B is the

matrix J

n

whose eigenvalues 
oin
ide with the zeros of P

n

. This 
ompletes the

proof of Theorem 2.7.

2.3 The Favard Theorem and some appli
ations.

In this subse
tion we will prove the so-
alled Favard Theorem.

Theorem 2.9 Let f


n

g

1

n=0

and f�

n

g

1

n=0

be two arbitrary sequen
es of 
omplex

numbers, and let fP

n

g

1

n=0

be a sequen
e of polynomials de�ned by the relation

P

n

(x) = (x� 


n

)P

n�1

(x)� �

n

P

n�2

(x); n = 1; 2; 3; ::: ; (2.11)

where P

�1

(x) = 0 and P

0

(x) = 1. Then, there exists a unique moment fun
-

tional L su
h that

L[1℄ = �

1

; L[P

n

P

m

℄ = 0 if n 6= m:

Moreover, L is quasi-de�nite and fP

n

g

1

n=0

is the 
orresponding MSOP if and

only if �

n

6= 0, and L is positive de�nite if and only if 


n

are real numbers

and �

n

> 0 for all n = 1; 2; 3; ::: .

Proof: To prove the theorem, we will de�ne the fun
tional L by indu
tion on

P

n

, the linear subspa
e of polynomials with degree at most n. We put

L[1℄ = �

0

= �

1

; L[P

n

℄ = 0; n = 1; 2; 3; ::: : (2.12)
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So, using the three-term re
urren
e relation (2.11), we 
an �nd all the moments

in the following way: Sin
e L[P

n

℄ = 0, the TTRR gives

0 = L[P

1

℄ = L[x� 


1

℄ = �

1

� 


1

�

1

; then �

1

= 


1

�

1

;

0 = L[P

2

℄ = L[(x� 


2

)P

1

� �

2

P

0

℄ = �

2

� (


1

+ 


2

)�

1

+ (


1




2

� �

2

)�

1

;

then we 
an �nd �

2

, et
. Continuing this pro
ess, we 
an �nd, re
ursively, �

n+1

by using the TTRR, and they are uniquely determined. Next, using (2.11) and

(2.12), we dedu
e that

x

k

P

n

(x) =

n+k

X

i=n�k

d

n;i

P

i

(x) :

Then, L[x

k

P

n

℄ = 0 for all k = 0; 1; 2; :::; n� 1. Finally,

L[x

n

P

n

℄ = L[x

n�1

(P

n+1

+ 


n+1

P

n

+ �

n+1

P

n�1

)℄ = �

n+1

L[x

n�1

P

n�1

℄;

so, L[x

n

P

n

℄ = �

n+1

�

n

� � ��

1

.

Moreover, L is quasi-de�nite and fP

n

g

1

n=0

is the 
orresponding MSOP if and

only if for all n � 1, �

n

6= 0, while L is positive de�nite and fP

n

g

1

n=0

is the


orresponding MSOP if and only if for all n � 1, 


n

2 R and �

n

> 0.

Next, we will dis
uss some results dealing with the zeros of orthogonal poly-

nomials.

The following theorem is due to Wendro� [27℄ (for a di�erent point of view

using the B�ezoutian matrix see [2℄).

Theorem 2.10 (Wendro� [27℄)

Let P

n

and P

n�1

be two moni
 polynomials of degree n and n�1, respe
tively. If

a < x

1

< x

2

< � � � < x

n

< b are the real zeros of P

n

and y

1

< y

2

< � � � < y

n�1

are the real zeros of P

n�1

, and they satisfy the interla
ing property, i.e.,

x

i

< y

i

< x

i+1

; i = 1; 2; 3; :::; n� 1;

then there exists a family of polynomials fP

k

g

n

k=0

orthogonal on [a; b℄ su
h that

the above polynomials P

n

and P

n�1

belong to it.

Proof: Let 


n

= x

1

+x

2

+ � � �+x

n

�y

1

�y

2

�� � ��y

n�1

. Then, the polynomial

P

n

(x) � (x� 


n

)P

n�1

(x) is a polynomial of degree at most n� 2, i.e.,

P

n

(x)� (x� 


n

)P

n�1

(x) � ��

n

R(x);

where R is a moni
 polynomial of degree r at most n� 2. Sin
e

x

1

� 


n

= (y

1

� x

2

) + � � �+ (y

n�1

� x

n

) < 0;

10



and P

n�1

(x

1

) 6= 0 (this is a 
onsequen
e of the interla
ing property), then

�

n

6= 0 and R(x

1

) 6= 0. Moreover, P

n

(y

i

) = ��

n

R(y

i

). Now, using the fa
t that

P

n

(y

i

)P

n

(y

i+1

) < 0 (again this is a 
onsequen
e of the interla
ing property),

we 
on
lude that also R(y

i

)R(y

i+1

) < 0, and this immediately implies that R

has exa
tly n�2 real zeros and they satisfy y

i

< z

i

< y

i+1

for i = 1; 2; :::; n�2.

If we now de�ne the polynomial P

n�2

of degree exa
tly n � 2, P

n�2

� R,

whose zeros interla
e with the zeros of P

n�1

, we 
an 
onstru
t, just repeating

the above pro
edure, a polynomial of degree n� 3 whose zeros interla
e with

the ones of P

n�2

, et
. So we 
an �nd all polynomials P

k

for k = 1; 2; :::; n.

Noti
e also that, by 
onstru
tion,

P

n

(x) = (x� 


n

)P

n�1

(x)� �

n

P

n�2

(x);

so

�

n

=

(x

1

� 


n

)P

n�1

(x

1

)

P

n�2

(x

1

)

> 0;

be
ause signP

n�1

(x

1

) = (�1)

n�1

and signP

n�2

(x

1

) = (�1)

n�2

, whi
h is a


onsequen
e of the interla
ing property x

1

< y

1

< z

1

.

We point out here that it is possible to 
omplete the family fP

k

g

n

k=0

to obtain

a MSOP. To do this, we 
an de�ne the polynomials P

k

for k = n+ 1; n+2; :::

re
ursively by the expression

P

n+j

(x) = (x� 


n+j

)P

n+j�1

(x)� �

n+j

P

n+j�2

(x); j = 1; 2; 3; ::: ;

where 


n+j

and �

n+j

are real numbers 
hosen su
h that �

n+j

> 0 and the zeros

of P

n+j

lie on (a; b). Noti
e also that, in su
h a way, we have de�ned, from

two given polynomials P

n�1

and P

n

, a sequen
e of polynomials satisfying a

three-term re
urren
e relation of the form (2.11). So Theorem 2.9 states that

the 
orresponding sequen
e is an orthogonal polynomial sequen
e with respe
t

to a quasi-de�nite fun
tional. Moreover, sin
e the 
oeÆ
ients in (2.11) are real

and �

n+j

> 0, the 
orresponding fun
tional is positive de�nite.

Theorem 2.11 (Vinuesa & Guadalupe [26℄, Nevai & Totik [18℄)

Let fx

n

g

1

n=1

and fy

n

g

1

n=1

be two sequen
es of real numbers su
h that

� � � < x

3

< x

2

< x

1

= y

1

< y

2

< y

3

< � � � :

Then there exists a unique system of moni
 polynomials fP

n

g

1

n=0

orthogonal

with respe
t to a positive de�nite fun
tional on the real line su
h that P

n

(x

n

) =

P

n

(y

n

) = 0 and P

n

(t) 6= 0 for t =2 [x

n

; y

n

℄, n = 1; 2; ::: .
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Proof: Set P

0

= 1, �

0

= 0 and 


0

= x

1

. De�ne fP

n

g

1

n=1

, f


n

g

1

n=1

and f�

n

g

1

n=1

by

P

n

(x) = (x� 


n

)P

n�1

(x)� �

n

P

n�2

(x); n � 1;

�

n

= (x

n

� y

n

)

"

P

n�2

(x

n

)

P

n�1

(x

n

)

�

P

n�2

(y

n

)

P

n�1

(y

n

)

#

�1

; 


n

= x

n

� �

n

P

n�2

(x

n

)

P

n�1

(x

n

)

:

(2.13)

The above two formulas 
ome from the TTRR and from the requirement

P

n

(x

n

) = P

n

(y

n

) = 0. By indu
tion one 
an show that P

n

(x) 6= 0 if x =2 [x

n

; y

n

℄,

P

n

(x

n

) = P

n

(y

n

) = 0 and �

n+1

> 0 for n = 0; 1; 2; :::. Then, from Theorem 2.9

fP

n

g

1

n=0

is a MSOP with respe
t to a positive de�nite moment fun
tional.

Noti
e that, in the 
ase x

n

= �y

n

, for n = 1; 2; 3; :::, the expression (2.13) for

�

n

and 


n

redu
es to

�

n

= x

n

P

n�2

(x

n

)

P

n�1

(x

n

)

; 


n

= 0:

3 The Favard Theorem on the unit 
ir
le.

3.1 Preliminaries.

In this subse
tion we will summarize some de�nitions and results relating to

orthogonal polynomials on the unit 
ir
le T = fjzj = 1; z 2 C g.

De�nition 3.1 Let f�

n

g

n2Z

be a bisequen
e of 
omplex numbers (moment

sequen
e) su
h that �

�n

= �

n

and L be a fun
tional on the linear spa
e of

Laurent polynomials � = Spanfz

k

g

k2Z

. We say that L is a moment fun
tional

asso
iated with f�

n

g if L is linear and L(x

n

) = �

n

, n 2 Z.

De�nition 3.2 Given a sequen
e of polynomials f�

n

g

1

n=0

we say that f�

n

g

1

n=0

is a sequen
e of orthogonal polynomials (SOP) with respe
t to a moment fun
-

tional L if

(i) �

n

is a polynomial of exa
t degree n,

(ii) L(�

n

(z) � z

�m

) = 0, if 0 � m � n� 1,

L(�

n

(z) � z

�n

) = S

n

6= 0, for every n = 0; 1; 2; ::: .
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For su
h a linear fun
tional L we 
an de�ne a Hermitian bilinear form in P

(the linear spa
e of polynomials with 
omplex 
oeÆ
ients) as follows:

hp(z); q(z)i = L(p(z) � q(1=z)); (3.1)

where q(z) denotes the 
omplex 
onjugate of the polynomial q(z).

Noti
e that De�nition 3.2 means that f�

n

g

1

n=0

is an SOP with respe
t to the

above bilinear form, and thus the idea of orthogonality appears, as usual, in

the framework of Hermitian bilinear forms. Furthermore,

hzp(z); zq(z)i = hp(z); q(z)i ; (3.2)

i.e., the shift operator is unitary with respe
t to the bilinear form (3.1). In

parti
ular, the Gram matrix for the 
anoni
al basis fz

n

g

1

n=0

is a stru
tured

matrix of Toeplitz type, i.e.,

hz

m

; z

n

i =

D

z

m�n

; 1

E

=

D

1; z

n�m

E

= �

m�n

; m; n 2 N :

In this 
ase the entries (m;n) of the Gram matrix depend of the di�eren
e

m� n.

In the following we will denote T

n

= [�

k�j

℄

n

k;j=0

.

Now we will dedu
e some re
urren
e relations for the respe
tive sequen
e of

moni
 orthogonal polynomials.

Theorem 3.1 Let L be a moment fun
tional asso
iated with the bisequen
e

f�

n

g

n2Z

. The sequen
e of polynomials f�

n

g

1

n=0

is an SOP with respe
t to L

if and only if detT

n

6= 0 for every n = 0; 1; 2; :::. Furthermore, the leading


oeÆ
ient of �

n

is s

n

=

detT

n�1

det T

n

.

De�nition 3.3 L is said to be a positive de�nite moment fun
tional if for

every Laurent polynomial q(z) = p(z)p(1=z), L(q) > 0.

Theorem 3.2 L is a positive de�nite fun
tional if and only if detT

n

> 0 for

every n = 0; 1; 2; :::.

De�nition 3.4 L is said to be a quasi-de�nite moment fun
tional if detT

n

6=

0 for every n = 0; 1; 2; :::.

Remark: Compare the above de�nitions with those of Subse
tion 2.1.

In the following we will assume that the SOP f�

n

g

1

n=0

is normalized using

the fa
t that the leading 
oeÆ
ient is one, i.e., we have a sequen
e of moni
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orthogonal polynomials (MSOP) given by (n = 0; 1; 2; :::)

�

n

(x) =

1

detT

n�1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

�

1

� � � �

n

�

�1

�

0

� � � �

n�1

.

.

.

.

.

.

.

.

.

.

.

.

�

�n+1

�

�n+2

� � � �

1

1 z � � � z

n

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; detT

�1

� 1 : (3.3)

Unless stated otherwise, we will suppose the linear fun
tional L is quasi-

de�nite.

Theorem 3.3 (Geronimus [11℄) If f�

n

g

1

n=0

is an MSOP with respe
t to a

quasi-de�nite moment fun
tional, it satis�es two re
urren
e relations:

(i) �

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z), �

0

(z) = 1 (forward re
urren
e rela-

tion),

(ii) �

n

(z) = (1 � j�

n

(0)j

2

)z�

n�1

(z) + �

n

(0)�

�

n

(z), �

0

(z) = 1 (ba
kward re-


urren
e relation),

where �

�

n

(z) = z

n

�

n

(1=z) is 
alled the re
ipro
al polynomial of �

n

.

Proof:

(i) Let R

n�1

(z) = �

n

(z)� z �

n�1

(z). Thus, from orthogonality and (3.2)

D

R

n�1

(z); z

k

E

= L(z

k

�
R

n�1

(1=z)
) = L(z

k�n+1

� z

n�1

R

n�1

(1=z)
) = 0;

for k = 1; 2; :::; n� 1, and L(z

�j

� z

n�1

R

n�1

(1=z)) = 0, j = 0; 1; :::; n� 2.

This means that the polynomial of degree at most n� 1, z

n�1

R

n�1

(1=z), with

leading 
oeÆ
ient �

n

(0), is orthogonal to P

n�2

, i.e.,

z

n�1

R

n�1

(1=z) = �

n

(0)�

n�1

(z):

Thus, R

n�1

(z) = �

n

(0)�

�

n�1

(z).

(ii) From (i) we dedu
e

�

�

n

(z) = �

�

n�1

(z) + �

n

(0)z�

n�1

(z):

Then, the substitution of �

�

n�1

(z) in (i), using the above expression, leads to

(ii).

Remark: Noti
e that, if we multiply both sides of (ii) by 1=z

n

, use the or-

thogonality of �

n

as well as the expli
it expression (3.3), we get the following
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identity:

det T

n

detT

n�1

= (1� j�

n

(0)j

2

)

det T

n�1

det T

n�2

: (3.4)

The values f�

n

(0)g

1

n=1

are 
alled re
e
tion 
oeÆ
ients or S
hur parameters

for the MSOP. Noti
e that the main di�eren
e with the re
urren
e relation

analyzed in Se
tion 2 is that here only two 
onse
utive polynomials are in-

volved and the re
ipro
al polynomial is needed. On the other hand, the basi


parameters whi
h appear in these re
urren
e relations are the value at zero of

the orthogonal polynomial.

Theorem 3.4 L is a quasi-de�nite moment fun
tional if and only if j�

n

(0)j 6=

1 for every n = 1; 2; 3; :::.

Proof: If L is quasi-de�nite the 
orresponding MSOP satis�es both (i) and

(ii). If for some n 2 N , j�

n

(0)j = 1, then from (ii), �

n

(z) = �

n

(0)�

�

n

(z). Thus,

h�

n

(z); z

n

i = �

n

(0) h�

�

n

(z); z

n

i = �

n

(0)

D

z

n

�

n

(1=z); z

n

E

= �

n

(0)

D

�

n

(1=z); 1

E

= �

n

(0) h1;�

n

(z)i = 0;

whi
h is a 
ontradi
tion with the fa
t that f�

n

g

1

n=1

is a MSOP.

Assume now that a sequen
e of polynomials is de�ned by (i) with j�

n

(0)j 6= 1.

We will prove by indu
tion that there exists a moment fun
tional L whi
h is

quasi-de�nite and su
h that f�

n

g

1

n=1

is the 
orresponding sequen
e of MOP.

Let �

1

(z) = z+�

1

(0). We de�ne �

1

= L(z) = ��

1

(0)�

0

. Thus T

1

=

0

B

�

�

0

�

1

�

1

�

0

1

C

A

is su
h that det T

1

= �

2

0

(1� j�

1

(0)j

2

) 6= 0.

Furthermore,

h�

1

(z); zi = L(�

1

(z) � 1=z) = �

0

+ �

1

(0)�

1

= �

0

(1� j�

1

(0)j

2

) 6= 0;

i.e., �

1

is a moni
 polynomial of degree 1 su
h that h�

1

(z); 1i = �

1

+�

1

(0)�

0

=

0, i.e., is orthogonal to P

0

.

Assume f�

0

;�

1

; :::;�

n�1

g are moni
 and orthogonal. Let a

n

= �

n

(0), ja

n

j 6= 1,

and 
onstru
t a polynomial �

n

of degree n su
h that

�

n

(z) = z�

n�1

(z) + �

n

(0)

| {z }

a

n

�

�

n�1

(z):
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If �

n

(z) = z

n

+ 


n;1

z

n�1

+ � � �+ 


n;n�1

z+ a

n

, we de�ne �

n

= �


n;1

�

n�1

� � � ��




n;n�1

�

1

� a

n

�

0

. Noti
e that this means that h�

1

(z); 1i = 0.

On the other hand, for 1 � k � n� 1, using the re
urren
e relation (i)

D

�

n

(z); z

k

E

=

D

�

n�1

(z); z

k�1

E

+ a

n

D

�

�

n�1

(z); z

k

E

= 0;

where the last term in the above sum vanishes sin
e

D

�

�

n�1

(z); z

k

E

=

D

z

n�k�1

;�

n�1

(z)

E

:

Finally, using (3.4), we have

h�

n

(z); z

n

i =

detT

n

detT

n�1

= (1� j�

n

(0)j

2

)

detT

n�1

detT

n�2

;

and thus, be
ause of the indu
tion hypothesis, h�

n

(z); z

n

i 6= 0.

Corollary 3.1 The fun
tional L is positive de�nite if and only if j�

n

(0)j < 1,

for n = 1; 2; ::: .

3.2 The zeros of the orthogonal polynomials.

In the following we will analyze the existen
e of an integral representation

for a moment fun
tional.

First, we will 
onsider the 
ase of positive de�niteness.

Proposition 3.1 [12℄ If � is a zero of �

n

(z), then j�j < 1.

Proof: Let �

n

(z) = (z��)q

n�1

(z), where q

n�1

is a polynomial of degree n�1.

Then,

0 < h�

n

(z);�

n

(z)i = h(z � �)q

n�1

(z);�

n

(z)i = hz q

n�1

(z);�

n

(z)i

= hz q

n�1

(z); z q

n�1

(z)� �q

n�1

(z)i = hq

n�1

(z); q

n�1

(z)i � � hz q

n�1

(z); q

n�1

(z)i

= hq

n�1

(z); q

n�1

(z)i � � [h�

n

(z); q

n�1

(z)i + � hq

n�1

(z); q

n�1

(z)i℄

= (1� j�j

2

) hq

n�1

(z); q

n�1

(z)i ;

and the result follows.

Corollary 3.2 (Montaner & Alfaro [16℄) If � is a zero of �

�

n

(z), then j�j >

1.
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Remark: Noti
e that, in the quasi-de�nite 
ase, we only 
an guarantee that

j�j 6= 1.

Next, we will de�ne an absolutely 
ontinuous measure su
h that the indu
ed

inner produ
t in P

n

agrees with the restri
tion to P

n

of our inner produ
t

asso
iated with the positive de�nite linear fun
tional. In order to do this, we

need some preliminary result.

Lemma 3.1 [8℄ Let �

n

be the nth orthonormal polynomial with respe
t to a

positive de�nite linear fun
tional. Then,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

j;k

; 0 � j � k � n <1:

Proof: Noti
e that

1

2�

2�

Z

0

�

n

(e

i�

)�

n

(e

i�

)

d�

j�

n

(e

i�

)j

2

= 1; (3.5)

and, for j < n,

1

2�

2�

Z

0

�

n

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

=

1

2�

2�

Z

0

"

�

j

(e

i�

)

�

n

(e

i�

)

#

d�

=

1

2�

2�

Z

0

e

i(n�j)�

�

�

j

(e

i�

)

�

�

n

(e

i�

)

d�

=

1

2� i

Z

T

z

n�j�1

�

�

j

(z)

�

�

n

(z)

d z = 0;

(3.6)

be
ause of the analyti
ity of the fun
tion in the last integral (see Corollary 3.2).

Then, �

n

(z) is the nth orthonormal polynomial with respe
t to both, a positive

linear fun
tional and the absolutely 
ontinuous measure d�

n

=

d�

j�

n

(e

i�

)j

2

. Us-

ing the ba
kward re
urren
e relation (Theorem 3.3, (ii)) for the orthonormal


ase, the polynomials f�

j

g

n�1

j=0

, whi
h are uniquely de�ned by this re
urren
e

relation, are orthogonal with respe
t to both, the linear fun
tional and the

measure d �

n

. Thus, the result follows.

Remark: In [8℄, an indu
tion argument is used in order to prove the previous

17



result. Indeed, assuming that for a �xed k � n,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

jk

; 0 � j � k;

they proved that

1

2�

2�

Z

0

�

k�1

(e

i�

)�

l

(e

i�

)

d�

j�

n

(e

i�

)j

2

= Æ

k�1 l

; 0 � l � k � 1:

Noti
e that the nth orthogonal polynomial de�nes in a unique way the previous

ones; thus, the proof of the se
ond statement (the indu
tion) is not ne
essary.

Of 
ourse, here we need not do this sin
e we are using the ba
kward re
urren
e

relation for the orthogonal polynomials �

n

.

Noti
e also that the measure d�

n

=

d�

j�

n

(e

i�

)j

2

de�nes a MSOP f	

n

g

1

n=0

su
h

that 	

m

(z) = z

m�n

�

n

(z), for m � n, where �

n

is the moni
 polynomial 
orre-

sponding to �

n

. Moreover, the sequen
e of re
e
tion 
oeÆ
ients 
orresponding

to this MSOP f	

n

g

1

n=0

is f�

1

(0); :::;�

n

(0); 0; 0; :::g. Usually, in the literature

of orthogonal polynomials, this measure d�

n

is 
alled a Bernstein-Szeg�o mea-

sure (see [25℄).

In Se
tion 2, Theorem 2.10, we proved that the interla
ing property for the

zeros of two polynomials P

n�1

and P

n

of degree n � 1 and n, respe
tively,

means that they are the (n�1)st and nth orthogonal polynomials of a MSOP.

Indeed, the three-term re
urren
e relation for a MSOP plays a 
entral role in

the proof. In the 
ase of the unit 
ir
le, we have an analogous result, whi
h is

known in the literature as the S
hur-Cohn-Jury 
riterion [4℄.

Theorem 3.5 A moni
 polynomial p of degree n has its n zeros inside the unit


ir
le if and only if the family of parameters fa

k

g

n

k=0

de�ned by the following

ba
kward algorithm

q

n

(z) = p(z); q

n

(0) = a

n

;

q

k

(z) =

q

k+1

(z)� a

k+1

q

�

k+1

(z)

z(1� ja

k+1

j

2

)

; a

k

= q

k

(0); k = n� 1; n� 2; :::; 0;

satis�es ja

k

j < 1, k = 1; 2; :::; n:

Proof: Noti
e that the polynomials fq

k

g

n

k=1

, q

0

= 1, satisfy a ba
kward re-


urren
e relation like the polynomials orthogonal on the unit 
ir
le with trun-


ated S
hur parameters fa

k

g

1

k=1

. Be
ause fa

1

; a

2

; :::; a

n

; 0; 0; :::g is indu
ed by
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the measure d �

n

=

d�

jq

n

(e

i�

)j

2

=

d�

jp(e

i�

)j

2

, up to a 
onstant fa
tor, then p = q

n

(z)

is the nth moni
 orthogonal polynomial with respe
t to the measure d �

n

. A
-


ording to Proposition 3.1 its zeros are lo
ated inside the unit disk.

Conversely, if the polynomial p has its zeros inside the unit disk, then ja

n

j =

jq

n

(0)j < 1. On the other hand, sin
e

q

n�1

(z) =

q

n

(z)� a

n

q

�

n

(z)

z(1� ja

n

j

2

)

;

if � is a zero of q

n�1

with j�j � 1, then q

n

(�) = a

n

q

�

n

(�), and 0 < jq

n

(�)j <

jq

�

n

(�)j. This means that

�

�

�

�

�

q

n

(�)

q

�

n

(�)

�

�

�

�

�

< 1, but this is in 
ontradi
tion with the

fa
t that the zeros of q

n

(z) are inside the unit disk and thus, by the maximum

modulus prin
iple,

�

�

�

�

�

q

n

(z)

q

�

n

(z)

�

�

�

�

�

� 1 if jzj < 1, whi
h is equivalent to

�

�

�

�

�

q

n

(z)

q

�

n

(z)

�

�

�

�

�

� 1

for jzj � 1. The same pro
edure applied to all 1 � k � n � 2 leads to the

result.

Remark: The above 
riterion is a very useful qualitative result in the sta-

bility theory for dis
rete linear systems [4℄. In fa
t, given the 
hara
teristi


polynomial of the matrix of a linear system, we do not need to 
al
ulate its

zeros (the eigenvalues of the matrix) in order to prove that they are lo
ated

inside the unit disk, and then to prove the stability of the system.

3.3 The trigonometri
 moment problem revisited.

Next, we 
an state our main result.

Theorem 3.6 [8℄ Let fa

n

g

1

n=1

be a sequen
e of 
omplex numbers su
h that

ja

n

j < 1, n = 1; 2; ::: . Let

�

0

(z) = 1; �

n

(z) = z �

n�1

(z) + a

n

�

�

n�1

(z); n � 1:

Then, there exists a unique positive and �nite Borel measure � supported on

T su
h that f�

n

g

1

n=0

is the 
orresponding MSOP. In other words, the positive

de�nite linear fun
tional asso
iated with the re
e
tion 
oeÆ
ients fa

n

g

1

n=0


an

be represented as

L[p(z)℄ =

2�

Z

0

p(e

i�

) d�(�):
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Proof: Let

�

n

(�) =

�

Z

0

d�

n

(t) =

�

Z

0

d t

j�

n

(e

i t

)j

2

;

where �

n

denotes the nth orthonormal polynomial with respe
t to L. The

fun
tion �

n

is monotoni
 in
reasing in [0; 2�℄ and a

ording to Lemma 3.1,

j�

n

(�)j �

2�

Z

0

d�

j�

n

(e

i�

)j

2

� 2�d

0

< +1 8n 2 N ; � 2 [0; 2�℄:

FromHelly's sele
tion prin
iple (see e.g. [5℄) there exists a subsequen
e f�

n

k

g

1

n

k

=0

and a monotoni
 in
reasing fun
tion � su
h that lim

n

k

!1

�

n

k

(�) = �(�). Further-

more, for every 
ontinuous fun
tion f on T,

lim

n

k

!1

1

2�

2�

Z

0

f(e

i�

)d�

n

k

(�) =

1

2�

2�

Z

0

f(e

i�

)d�(�):

Finally,

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)d�(�) = lim

n

l

!1

1

2�

2�

Z

0

�

k

(e

i�

)�

j

(e

i�

)d�

n

l

(�) = Æ

j;k

;

taking n

l

> maxfk; jg.

To 
on
lude the study of the positive de�nite 
ase, we will show an analog of

Theorem 2.11 of Se
tion 2 in the following sense.

Theorem 3.7 [1℄ Let fz

n

g

1

n=1

be a sequen
e of 
omplex numbers su
h that

jz

n

j < 1. Then, there exists a unique sequen
e of moni
 polynomials �

n

orthog-

onal with respe
t to a positive de�nite moment fun
tional su
h that �

n

(z

n

) = 0.

Proof: Sin
e �

1

(z) = z +�

1

(0) = z � z

1

, then �

1

(0) = �z

1

, and j�

1

(0)j < 1.

Using indu
tion, assume that z

n�1

is a zero of �

n�1

and j�

n�1

(0)j < 1. Let

�

n

(z) = z�

n�1

(z) + �

n

(0)�

�

n�1

(z), for n > 1, and z

n

be a zero of �

n

. Then,

substituting z

n

in the above expression, we dedu
e

z

n

�

n�1

(z

n

) = ��

n

(0)�

�

n�1

(z

n

):

But �

�

n�1

(z

n

) 6= 0 (otherwise z

n

would be a zero of �

n�1

, whi
h is a 
ontra-

di
tion). Thus,

�

n

(0) = �z

n

�

n�1

(z

n

)

�

�

n�1

(z

n

)

; but then j�

n

(0)j = jz

n

j

�

�

�

�

�

�

n�1

(z

n

)

�

�

n�1

(z

n

)

�

�

�

�

�

< jz

n

j < 1;

sin
e

�

�

�

�

�

n�1

(z

n

)

�

�

n�1

(z

n

)

�

�

�

�

< 1 by the maximum modulus prin
iple (see the proof of

Theorem 3.5). Then, the sequen
e fz

n

g

1

n=1

de�nes uniquely a sequen
e of
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omplex numbers fa

n

g

1

n=1

, with a

n

= �

n

(0), and this sequen
e, a

ording to

Theorem 3.6, uniquely de�nes a sequen
e of orthogonal polynomials f�

n

g

1

n=0

with re
e
tion parameters a

n

su
h that �

n

(z

n

) = 0.

In the quasi-de�nite 
ase, as we already pointed out after Proposition 3.1, if

�

n

is the nth orthonormal polynomial with respe
t to a quasi-de�nite moment

fun
tional L, then the polynomials z�

n

(z) and �

�

n

(z) have no zeros in 
ommon.

They are 
oprime, and by the B�ezout identity [4℄, there exist polynomials r(z)

and s(z) su
h that

z r(z)�

n

(z) + s(z)�

�

n

(z) = 1;

or, equivalently, if u(z) = z r(z), i.e., u(0) = 0,

u(z)�

n

(z) + s(z)�

�

n

(z) = 1:

The next result is analogous to that stated in Lemma 3.1.

Theorem 3.8 [3℄ There exists a unique real trigonometri
 polynomial f(�)

of degree at most n, su
h that

1

2�

2�

Z

0

�

n

(e

i�

)e

�ik�

f(�)d� = 0; 0 � k � n� 1; (3.7)

1

2�

2�

Z

0

�

�

��

n

(e

i�

)

�

�

�

2

f(�)d� = 1; (3.8)

if and only if there exist u; v 2 P

n

, with u(0) = 0, su
h that u(z)�

n

(z) +

v(z)�

�

n

(z) = 1. Furthermore,

f(�) = ju(e

i�

)j

2

� jv(e

i�

)j

2

:

Proof: If f satis�es (3.7) and (3.8), 
onsider the fun
tion g(�) = f(�)�

n

(e

i�

),

whi
h is a trigonometri
 polynomial of degree at most 2n. The 
onditions mean

that the Fourier 
oeÆ
ients ĝ(k) of g(�) are ĝ(j) = 0, j = 0; 1; :::; n� 1, and

ĝ(n)�

�

n

(0) = 1. Then, there exist polynomials u; v 2 P

n

, su
h that u(0) = 0,

v(0))�

�

n

(0) = 1 and g(�) = e

in�

v(e

i�

)� u(e

i�

). In fa
t,

u(z) = �

n

X

j=1

ĝ(�j)z

j

and v(z) =

n

X

j=0

ĝ(j + n)z

j

:

Now we introdu
e the trigonometri
 polynomial of degree at most 3n, h(�) =

�

n

(e

i�

)f(�)�

n

(e

i�

). Noti
e that

h(�) = �

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

);
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and h is a real-valued fun
tion. Then,

�

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

) = �

�

n

(e

i�

)v(e

i�

)� u(e

i�

)�

n

(e

i�

);

or, equivalently,

s(�) = u(e

i�

)�

n

(e

i�

) + v(e

i�

)�

�

n

(e

i�

) 2 R:

This means that the algebrai
 polynomial of degree at most 2n,

q(z) = u(z)�

n

(z) + v(z)�

�

n

(z);

is real-valued on the unit 
ir
le, and thus q̂(j) = q̂(�j) = 0, i.e.,

q(z) = q(0) = u(0)�

n

(0) + v(0)�

�

n

(0) = 1:

This yields our result.

Conversely, assume there exist polynomials u; v 2 P

n

with u(0) = 0, su
h that

u(z)�

n

(z) + v(z)�

�

n

(z) = 1: (3.9)

Let f(�) = v(e

i�

)v(e

i�

)� u(e

i�

)u(e

i�

), a trigonometri
 polynomial of degree at

most n. We will prove that the orthogonality 
onditions (3.7) and (3.8) hold.

Indeed, let g(�) = f(�)�

n

(e

i�

). Taking into a

ount (3.9), we have

u(e

i�

)�

n

(e

i�

)+v(e

i�

)e

�in�

�

n

(e

i�

) = 1; i.e.; e

in�

= u(e

i�

)�

�

n

(e

i�

)+v(e

i�

)�

n

(e

i�

):

Then, using (3.9) as well as the last expression, we obtain

g(�) = �

n

(e

i�

)

h

v(e

i�

)v(e

i�

)� u(e

i�

)u(e

i�

)

i

= e

in�

v(e

i�

)� u(e

i�

); (3.10)

whi
h yields our orthogonality 
onditions

ĝ(j) = 0; j = 0; 1; :::; n� 1; and ĝ(n)�

�

n

(0) = 1:

In order to prove uniqueness of f , noti
e that if u; v 2 P

n

, satisfy (3.9) together

with u(0) = 0, then f(�) = u(e

i�

)�

n

(e

i�

)f(�) + v(e

i�

)�

�

n

(e

i�

)f(�). By (3.10),

we get

f(�)�

n

(e

i�

) = e

in�

v(e

i�

)� u(e

i�

);

and

f(�)�

�

n

(e

i�

) = v(e

i�

)� e

in�

u(e

i�

):

Thus, f(�) = jv(e

i�

)j

2

�ju(e

i�

)j

2

. The uniqueness of f follows from the unique-

ness of u; v.
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To 
on
lude this se
tion, we will show with two simple examples how to �nd

the fun
tion f expli
itly.

Example 3.1 Let �

3

(z) = 2z

3

+ 1. Noti
e that be
ause the zeros are inside

the unit 
ir
le, we are in a positive de�nite 
ase. Moreover, �

�

3

(z) = z

3

+ 2.

Using the Eu
lidean algorithm for z�

3

(z) and �

�

3

(z), we �nd

2z

4

+ z = 2z(z

3

+ 2)� 3z; and z

3

+ 2 = �3z(�

1

3

z

2

) + 2:

Thus,

1

6

z

2

(2z

4

+ z) + (z

3

+ 2)(

1

2

�

1

3

z

3

) = 1; and u(z) =

1

6

z

3

; v(z) =

1

2

�

1

3

z

3

:

Then

f(�) =

�

�

�

1

2

�

1

3

e

3i�

�

�

�

2

�

1

36

=

1

3

(1� 
os 3�) =

1

6

�

�

�e

3i�

� 1

�

�

�

2

� 0:

Example 3.2 Let �

3

(z) = z(z

2

+ 4). Noti
e that now there are two zeros

outside the unit 
ir
le. In this 
ase, �

�

3

(z) = 4z

2

+ 1. An analogous pro
edure

leads to

z�

3

(z) = z

4

+ 4z

2

=

1

4

z

2

(4z

2

+ 1) +

15

4

z

2

; �

�

3

(z) =

16

15

(

15

4

z

2

) + 1:

Thus

�

16

15

z

2

(z

2

+ 4) + (

4

15

z

2

+ 1)(4z

2

+ 1) = 1; u(z) = �

16

15

z

2

; v(z) =

4

15

z

2

+ 1;

so

f(�) =

�

�

�

4

15

e

2i�

� 1

�

�

�

2

�

256

225

= �

1

15

(1 + 8 
os 2�);

whi
h gives rise to a nonpositive 
ase, i.e., to a signed measure on [��; �℄.

4 The Favard Theorem for nonstandard inner produ
ts.

To 
on
lude this work, we will survey some very re
ent results 
on
erning the

Favard theorem for Sobolev-type orthogonal polynomials.

First of all, we want to point out that the Favard Theorem on the real line


an be be 
onsidered in a fun
tional-analyti
 framework as follows.

Theorem 4.1 (Duran [6℄) Let P be the linear spa
e of real polynomials and

B an inner produ
t on P. Then, the following 
onditions are equivalent:

(1) The multipli
ation operator t, i.e., the operator t : P ! P, p(t)! t p(t),

is Hermitian for B, that is, B(t f; g) = B(f; t g) for every polynomial f ,

g.
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(2) There exists a nondis
rete positive measure � su
h that B(f; g) =

R

f(t)g(t)d�(t).

(3) For any set of orthonormal polynomials (q

n

) with respe
t to B the follow-

ing three-term re
urren
e holds:

tq

n

(t) = a

n+1

q

n+1

(t) + b

n

q

n

(t) + a

n

q

n�1

(t); n � 0; (4.1)

with q

�1

(t) = 0, q

0

(t) = 1 and fa

n

g

1

n=0

, fb

n

g

1

n=0

real sequen
es su
h that

a

n

> 0 for all n.

Noti
e that from the three-term re
urren
e relation (4.1) we get

t

2

q

n

(x) = a

n+2

a

n+1

q

n+2

(t) + (b

n+1

a

n+1

+ b

n

a

n+1

)q

n+1

(t)

+(a

2

n+1

+ a

2

n

+ b

2

n

)q

n

(t) + (a

n

b

n

+ a

n

b

n�1

)q

n�1

(t) + a

n

a

n�1

q

n�2

(t);

i.e., the sequen
e fq

n

g

1

n=0

satis�es a �ve-term re
urren
e relation, whi
h is a

simple 
onsequen
e of the symmetry of the operator t

2

� t � t.

Here we are interested in the 
onverse problem, whi
h is a natural extension of

the Favard Theorem: To 
hara
terize the real symmetri
 bilinear forms su
h

that the operator t

2

is a Hermitian operator. A nonstandard example of su
h

an inner produ
ts is

B(f; g) =

Z

f(t)g(t)d�(t) +Mf

0

(0)g

0

(0); f; g 2 P;

for whi
h t

2

is Hermitian, i.e., B(t

2

f; g) = B(f; t

2

g).

Theorem 4.2 Let B be a real symmetri
 bilinear form on the linear spa
e P.

Then the following 
onditions are equivalent:

(1) The operator t

2

is Hermitian for B, that is, B(t

2

f; g) = B(f; t

2

g) for

every polynomial f , g.

(2) There exist two fun
tions � and � su
h that

B(f; g) =

Z

f(t)g(t)d�(t) + 4

Z

f

0

(t)g

0

(t)d�(t); (4.2)

where f

0

and g

0

denote the odd 
omponents of f and g, respe
tively, i.e.,

f

0

(t) =

f(t)� f(�t)

2

; g

0

(t) =

g(t)� g(�t)

2

:

Moreover, if we put �

n

=

R

t

n

d�(t) and �

n

= 4

R

t

n

d�(t), then the matrix

a

n;k

=

8

>

<

>

:

�

n+k

if n or k are even;

�

n+k

+ �

n+k

otherwise;
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is positive de�nite if and only if B is an inner produ
t. In this 
ase the set

of orthonormal polynomials with respe
t to an inner produ
t of the form (4.2)

satis�es a �ve-term re
urren
e relation

t

2

q

n

(x) = A

n+2

q

n+2

(t) +B

n+1

q

n+1

(t) + C

n

q

n

(t)

+B

n

q

n�1

(t) + A

n

q

n�2

(t); n � 0;

(4.3)

where fA

n

g

1

n=0

, fB

n

g

1

n=0

, and fC

n

g

1

n=0

are real sequen
es su
h that A

n

6= 0

for all n.

Also we get a generalization of the Favard Theorem.

Theorem 4.3 Let fq

n

g

1

n=0

be a set of polynomials satisfying the initial 
on-

ditions q

�1

(t) = q

�2

(t) = 0, q

0

(t) = 1 and the �ve-term re
urren
e relation

(4.3). Then, there exist two fun
tions � and � su
h that the bilinear form (4.2)

is an inner produ
t and the polynomials fq

n

g

1

n=0

are orthonormal with respe
t

to B.

Remark: The above theorem does not guarantee the positivity of the mea-

sures � and �. In fa
t in [6℄ some examples of inner produ
ts of type (4.2)

where both measures 
annot be 
hosen to be positive, or � is positive and �


annot be 
hosen to be positive, are shown.

All the previous results 
an be extended to real symmetri
 bilinear forms su
h

that the operator \multipli
ation by h(t)", where h is a �xed polynomial, is

Hermitian for B, i.e., B(h f; g) = B(f; h g).

The basi
 idea 
onsists in the 
hoi
e of an adequate basis of P whi
h is

asso
iated with the polynomial h. Assume that deg h = N , and let E

h

=

span[1; h; h

2

; :::℄; then

P = E

h

� t E

h

� � � � � t

N�1

E

h

:

If �

k

denotes the proje
tor operator in t

k

E

h

, then �

k

(p) = t

k

q[h(t)℄. We intro-

du
e a new operator ~�

k

: P ! P, p ! q, where q denotes a polynomial su
h

that �

k

(p) = t

k

q[h(t)℄. Then we obtain the following extension of Theorem

4.2:

Theorem 4.4 Let B be a real symmetri
 bilinear form in P. Then the follow-

ing statements are equivalent:

(1) The operator \multipli
ation by h" is Hermitian for B, i.e., B(h f; g)

= B(f; h g) for every polynomial f , g, where h is a polynomial of degree

N .
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(2) There exist fun
tions �

m;m

0

for 0 � m � m

0

� N � 1 su
h that B is

de�ned as follows:

B(f; g) =

Z

(�

0

(f); :::; �

N�1

(f))

0

B

B

B

B

B

�

d�

0;0

� � � d�

0;N�1

.

.

.

.

.

.

.

.

.

d�

N�1;0

� � � d�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

0

(g)

.

.

.

�

N�1

(g)

1

C

C

C

C

C

A

:

(3) There exist fun
tions �

0

and �

m;m

0

for 1 � m � m

0

� N � 1 su
h that B

is de�ned as follows:

B(f; g) =

Z

f gd�

0

+

Z

(�

1

(f); :::; �

N�1

(f))

0

B

B

B

B

B

�

d�

1;1

� � � d�

1;N�1

.

.

.

.

.

.

.

.

.

d�

N�1;1

� � � d�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

�

1

(g)

.

.

.

�

N�1

(g)

1

C

C

C

C

C

A

:

(4) There exist fun
tions ~�

m;m

0

for 0 � m � m

0

� N � 1 su
h that B is

de�ned as follows:

B(f; g) =

Z

(~�

0

(f); :::; ~�

N�1

(f))

0

B

B

B

B

B

�

d~�

0,0

� � � d~�

0;N�1

.

.

.

.

.

.

.

.

.

d~�

N�1;0

� � � d~�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

~�

0

(g)

.

.

.

~�

N�1

(g)

1

C

C

C

C

C

A

:

(5) There exist fun
tions ~�

0

and ~�

m;m

0

for 1 � m � m

0

� N � 1 su
h that B

is de�ned as follows:

B(f; g) =

Z

f gd~�

0

+

Z

(~�

1

(f); :::; ~�

N�1

(f))

0

B

B

B

B

B

�

d~�

1;1

� � � d~�

1;N�1

.

.

.

.

.

.

.

.

.

d~�

N�1;1

� � � d~�

N�1;N�1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

~�

1

(g)

.

.

.

~�

N�1

(g)

1

C

C

C

C

C

A

:

Proof: The equivalen
e 1 () 2 () 3 was proved in [6℄. 4 and 5 are a

straightforward reformulation of the above statements 2 and 3, respe
tively.

In a natural way, matrix measures appear in 
onne
tion with this extension of

the Favard Theorem. This fa
t was pointed out in [7, Se
tion 2℄. Even more,

if B is an inner produ
t of Sobolev type,

B(f; g) =

Z

f(t) g(t)d�(t) +

N

X

i=1

Z

f

(i)

(t)g

(i)

(t)d�

i

(t); (4.4)
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where f�

i

g

N

i=1

are atomi
 measures, it is straightforward to prove that there

exists a polynomial h of degree depending on N and mass points su
h that h

indu
es a Hermitian operator with respe
t to B. As an immediate 
onsequen
e

we get a higher-order re
urren
e relation of type

h(t)q

n

(t) = 


n;0

q

n

(t) +

M

X

k=1

[


n;k

q

n�k

(t) + 


n+k;k

q

n+k

(t)℄ ; (4.5)

where M is the degree of h and fq

n

g

1

n=0

is the sequen
e of orthogonal polyno-

mials relative to B.

Furthermore, extra information about the measures f�

i

g

N

i=1

in (4.4) is obtained

in [9℄ when the 
orresponding sequen
e of orthonormal polynomials satis�es a

re
urren
e relation like (4.5).

Theorem 4.5 Assume that there exists a polynomial h of deg h � 1 su
h that

B(h f; g) = B(f; h g), where B is de�ned by (4.4). Then the measures f�

i

g

N

i=1

are ne
essarily of the form

�

i

(t) =

j(i)

X

k=1

�

i;k

Æ(t� t

i;k

);

for some positive integers j(i), where

(1) �

i;k

� 0, k = 1; 2; :::; j(i), i = 1; 2; :::; N .

(2) R

i

= ft

i;k

g

j(i)

k=1

6= ; are the distin
t real zeros of h

(i)

, i = 1; 2; :::; N .

(3) supp�

i

�

i

\

k=1

R

k

, k = 1; 2; :::; N .

(4) The degree of h is at least N + 1 and there exists a unique polynomial H

of minimal degree m(H) satisfying H(0) = 0 and B(H f; g) = B(f;H g).

The above situation 
orresponds to the so-
alled diagonal 
ase for Sobolev-

type orthogonal polynomials.

Finally, we state a more general result, whi
h was obtained in [6℄.

Theorem 4.6 Let P be the spa
e of real polynomials and B a real symmetri


bilinear form de�ned on P. If h(t) = (t � t

1

)

n

1

� � � (t � t

k

)

n

k

and N = deg h,

then the following statements are equivalent:

(1) The operator \multipli
ation by h" is Hermitian for B and B(h f; t g) =

B(t f; h g), i.e., the operators \multipli
ation by h" and \multipli
ation

by t" 
ommute with respe
t to B.

(2) There exist a fun
tion � and 
onstant real numbers M

i;j;l;l

0

with 0 � i �
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n

l

� 1, 0 � j � n

l

0

� 1, 1 � l; l

0

� k and M

i;j;l;l

0

=M

j;i;l

0

;l

, su
h that

B(f; g) =

Z

f(t) g(t)d�(t) +

k

X

l;l

0

=1

n

l

�1

X

i=0

n

l

0

�1

X

j=0

M

i;j;l;l

0

f

(i)

(t

l

)g

(i)

(t

l

0

):

To 
on
lude, in view of the fa
t that the operator \multipli
ation by h" is

Hermitian with respe
t to the 
omplex inner produ
t

hf; gi =

Z

�

f(z)g(z)d�(z); (4.6)

where � is a harmoni
 algebrai
 
urve de�ned by =h(z) = 0 and h a 
omplex

polynomial (see [15℄), it seems natural to ask:

Problem 1 To 
hara
terize the sesquilinear forms B : P � P ! C su
h that

the operator \multipli
ation by h" satis�es B(h f; g) = B(f; h g) for every

polynomial f , g 2 P, the linear spa
e of polynomials with 
omplex 
oeÆ
ients.

In the same way (see [14℄), given an inner produ
t like (4.6), if � is an equipo-

tential 
urve jh(z)j = 1, where h is a 
omplex polynomial, then the operator

\multipli
ation by h" is isometri
 with respe
t to (4.6). Thus, it is natural to

formulate

Problem 2 To 
hara
terize the sesquilinear forms B : P � P ! C su
h that

the operator \multipli
ation by h" satis�es B(h f; h g) = B(f; g) for every

polynomial f , g 2 P, the linear spa
e of polynomials with 
omplex 
oeÆ
ients.

The 
onne
tion between these problems and matrix polynomials orthogonal

with respe
t to matrix measures supported on the real line and on the unit


ir
le, respe
tively, has been shown in [15℄ and [14℄.
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