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El trabajo que aqúı se presenta me ha permitido conocer a la doctora Pepa Ramı́rez
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Introduction

The classification problems are in vogue due to the fact that they are necessary in
many filds of real life, where the datasets gather so much information. Some examples
that reveal the importance of these problems are: the early detection of diseases, the
granting of credit to a certain individual,. . . It seems clear that to work with good fea-
tures, that is, attributes that are able to distinguish the different classes, is a key point.

Over the years, the classification problems have been studied and many classifiers
have been developed. Some examples of them are: Support Vector Machine ([5]), Ran-
dom Forest ([3]), Näıve Bayes ([6],[11],[8],[10]), between others. Once a classifier is
defined, the question that everyone wants to know is how good is a given classification
function. In order to solve this question, measures of effectiveness were defined ([16]).

This work focuses on the Näıve Bayes classifier. A thorough study of the behavior
of the Näıve Bayes classifier, the effect of assuming independence and the influence of
the involved parameters estimation methods is presented. Finally, as a major contri-
bution of this work, a different version of Näıve Bayes classifier is presented, in which
the estimation is made by imposing constraints on the effectiveness measures on the
obtained classifier.

The structure of the work is described next. In Chapter 1 an introduction to
classification is made. In Chapter 2, Näıve Bayes classification is explained in more
detail, in addition to introduce a coefficient for the calculation of both linear and
nonlinear relationships between variables ([15], [18]). Finally, the different parameters
estimation methodologies will be compared. In Chapter 3 a study of the novel approach
will be carried out.

7





Chapter 1

Motivation and Background

1.1 Definition of a classifier and performance mea-

sures

A classifier is a function, called f , that associates input variable vectors x = (x1, . . . , xp) ∈
X to output classes y ∈ {C1, . . . , CK}, where X is the space of variables and xi ∈ R
although they will be continuous and discrete. Moreover, it is considered that classes
are categorical and respectively exclusive. The aim of statistical classification is to
learn f from a labeled training dataset of N input-output pairs, (xn, yn), n = 1 . . . N ,
where xn are the individuals and yn denotes the class for such individual.

Once the classifier has been obtained using the training set, its performance is mea-
sured ([16]) by using a test dataset so as to avoid the over-fitting. Note that both
samples, training and test, can be assumed to be generated from the same population.

Let the true class for a given individual be denoted x and the class for the same
individual indicated by the classifier be denoted y. Although it is expected that they
are the same for as many individuals as possible in the test dataset, nevertheless, the
classifier will make errors. The probabilities that the classifier will return correct results
on each of the classes are estimated in a frequentist manner by dividing the number
of rightly classified individuals for a given class by the total number of individuals in
that class in the test dataset.

The probability P (y = Ck|x = Ck) is understood as the probability that the
classifier designates class Ck, given that the individual belongs to class Ck. Now,
P (y = Ck|x = Cl), k, l ∈ {1, . . . , K}, k 6= l, shows the probability that the classifier
fails in classifying an individual actually from class Cl as an individual in class Ck.
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The correct classification rate (CCR) and the misclassification rate (MCR) can be
obtained from P (y = Ci|x = Cj) ∀i, j ∈ {1, . . . , K}. The CCR of a certain class is
defined as follows:

CCRCk =
#{Correct classifications of Ck class}

#{Individuals from Ck}
, k = 1, . . . , K. (1.1)

And the MCR of a certain class is:

MCRCk = 1− CCRCk , k = 1, . . . , K.

1.2 Overall view of classification methods

As commented in the previous section, the aim of classification methods is to specify
a class for each input individual. Given a training dataset of the form (xn, yn), where
xn ∈ X is the n-th individual and yn ∈ {C1, . . . , CK} is the n-th class the aim is ob-
taining a model (classifier) f that computes f(x) for a new individual. In this section
two kinds of classification approaches are distinguised: binary classification method
and multiclass classification method.

Depending on the number of class labels it will be said that we are dealing with
a binary classification, when the number of class labels is two, or a multiclass clas-
sification, in case more than two classes exist. However, the multiclass classification
problem can be viewed as a set of binary classification problems, which can be solved
via binary classifiers as is described below.

One-versus-all

This approach consists of reducing the problem of classifying K classes into K binary
classification problems, where each problem distinguishes a fixed class from the other
K−1 classes. For this strategy, K binary classifiers are needed, where the k-th classifier
is trained under positive individuals from class k and negative individuals belonging
to the other K − 1 classes. When an unknown individual is classified, the most voted
class is considered the winner, and this class is assigned to such individual.

One-versus-one

In this approach, each class is contrasted against each other. A binary classifier is
constructed to separate each pair of classes, while ignoring the remaining classes. This
strategy demands building K(K−1)

2
binary classifiers. When it classifies a new indi-

vidual, a voting procedure is performed between the classifiers and the class with the
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maximum number of votes is the winner.

1.3 Benchmark classifiers

A number of classifiers have been proposed in the literature. Among them, we should
highlight the Support Vector Machine, the Random Forest and the Näıve Bayes classi-
fier because of their wide range of applications, tractability and computational reasons.

1.3.1 Support Vector Machine

Support Vector Machine (SVM) was introduced by Vapnik and co-workers ([5]). This
subsection will briefly review the method. The classic linear SVM behaves as follows.
Given a new observation x, the classifier is defined as

f(x) = βtx + β0,

where β ∈ Rp, β0 ∈ R and such that if f(x) > 0, the observation is assigned to class
+1. In other case, the class −1 is selected. But the aim is to find a classifier (or
separation function) that classifies correctly between individuals of each class and that
it fails as little as possible in a certain given dataset. In other words, it is sought that
all positive points (y = 1) in the training dataset are classified to class 1 and negative
points (y = −1) are assigned to class −1. This can be formulated as

y(βtx + β0) > 0,

for all individual from training dataset. In the case in which f(x) = 0, it is necessary
to fix a rule, such as classifying at random.

Depending on the dataset, a linear separation function f will be able to separate
both classes, but, in other cases, the dataset will not be linearly separable. Let us
study both options.

Linearly Separable Case

This case is characterized because the positive points (y = 1) and negative points
(y = −1) from the training dataset can be separated by a hyperplane:

{x : f(x) = βx + β0 = 0}
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where β is the weight vector and β0 is the bias. So, if this hyperplane is able to
separate the positive and the negative individuals, then, the positive and the negative
hyperplanes are, respectively the following:

H+ : βtx + β0 > 0, if y = 1

H− : βtx + β0 < 0, if y = −1.

Let us notice that, for separable datasets, lots of separating hyplerplanes can be
built. Fixed one of them, it is defined d+ as the shortest distance from the separating
hyperplane to the nearest positive data individual, and d− as the shortest distance
from the separating hyperplane to the nearest negative data individual. Moreover, the
hyperplane that maximizes the distance between it and the closest observation is called
the optimal separating hyperplane.

The optimization problem that returns the optimal separating hyperplane, using
the euclidean distance, is the following one:

min
β,β0

βtβ

s.t. : yn(βtxn + β0) ≥ 1,∀n = 1, . . . , N.

β ∈ Rp, β0 ∈ R.

where N is the cardinal of the training dataset.

Nonlinearly Separable Case

The previous case is not common in real applications, that is, it will be completely
likely to find the classes to superimpose. It seems clear that this kind of datasets are
more difficult to classifier with linearly hyperplanes because of it will be problems for
classification, especially in overlapping individuals.

If it is considered ε as a perturbation, it is possible to include a sum in the objective
funtion to control this perturbation, that is:

min
β,β0

βtβ + C(‖ε‖p)p

s.t. : yn(βtxn + β0) + εn ≥ 1,∀n = 1, . . . , N.

β ∈ Rp, β0 ∈ R.

εn ≥ 0, ∀n = 1, . . . , N.
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where N is the cardinal of the training dataset and C > 0 is a regularization parameter.

Finally, for the case when none of the above cases can be used, they can be combined
with a technique that performs, using ‘kernels’, a non-linear mapping to the feature
space. That is, SVM finds a non-linear hyperplane in feature space which corresponds
with a non-linear decision in the training dataset (see [7]).

1.3.2 Random Forest

Random Forest (RF) was introduced by Breiman in 2001 and consists of a combination
of tree classifiers. The goal of classification trees ([17]) is to create a model that pre-
dicts the value of a response variable based on several predictor variables arranged as a
tree. Each interior node of tree classifiers corresponds to one of the predictor variables
and, moreover, in some cases there are other edges towards daughter nodes depending
on the value of that predictor variable.
Each sheet represents a value (class) of the response variable given the values of the
predictor variables represented by the pathway from the root node to the sheet.

Each tree learns by splitting the full set of attributes into subsets of features. This
process is repeated on each subset in a recursive manner, and the recursion finishes
when the subset at a node has all the same value of the response variable, or when
splitting does not add value to the predictions.

Improvements in classification results can be obtained from generating groups of
trees and making that they select the most popular class. In order to create these
groups of trees, random vectors of features are used to control the growth of each tree
in the group. That is, let us consider the k-th tree, then the random vector Θk for this
tree is sampled independently but with the same distribution than Θ1, . . . ,Θk−1. The
training dataset and Θk are necessary to construct the corresponding tree, and this
yields a classifier f(x,Θk), with x the input vector. In summary, the procedure that
RF follows is: firstly a big number of trees is constructed and, later, it is selected the
most voted class.

So, let us define a RF as in [3]:

Definition 1.3.1 A random forest is a classifier consisting of a collection of tree-
structured classifiers {f(x,Θk), k = 1, . . . } where the Θk are independent identically
distributed random vectors and each tree casts a unit vote for the most popular class at
input x.

In more detail, fixed B, a large number, the RF algorithm can be written as:
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1. For b = 1 to B:

• Generate a bootstrap sample Z∗ of size n from the training dataset, where
n is the size of the training dataset (a sample obtained by sampling n times
with replacement from the training dataset).

• Construct a random-forest tree Tb to the previous data. This will be done
by recursively repeating the following steps for each terminal node of the
tree:

– Select m variables at random from the p variables.

– Pick the best variable among the m.

– Split the node into two daughter nodes.

• Output the ensemble of trees {Tb}B1 .

This will be repeated until the minimum node size nmin is reached.

2. And finally, to make a prediction at a new individual x, if Ĉb(x) is the class
prediction of the b-th random-forest tree, then

ĈB
rf (x) = majority vote{Ĉb(x)}B1 .

1.3.3 Näıve Bayes

Although in the next chapters this classifier will be explained in more detail, a brief
description of Näıve Bayes classifier is made in this first chapter to introduce it.

The Näıve Bayes approach, ([6],[11],[8],[10]) is a classification technique that is
mainly proper when the dimension p of the feature space is large, making joint density
estimation disagreeable.

The Näıve Bayes classification is based on Bayes’ rule and works as follows. Name
the vector of measurements of a individual by x = (x1, . . . , xp) and its class by y
(y ∈ {C1, . . . , CK}). Then, to obtain estimates of p(x|y), the distribution of x for
individuals from class y, and estimates of π(y), y ∈ {C1, . . . , CK}, the probabilities
that a member of class y happens, and then, it merges them using Bayes theorem to
give estimates of p(y|x) ∝ p(x|y)π(y).

Now, it is necessary to estimate the multivariate class-conditional distributions of
x. The Näıve Bayes Classifier presupposes that p(x|y) factorizes into a product of its
univariate marginals, and it is selected the class y that maximizes this value over all
the classes.
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Chapter 2

Näıve Bayes classifier

In this chapter, the Näıve Bayes classifier (NB) is described. Since the tractability
of this algorithm is due to the hypothesis of conditional independence of the features
to the class, a discussion about such hypothesis will be given. On the other hand, in
order to implement the NB, a statistical approach for estimating the distributions of
the features needs to be chosen. Here, two different methodologies will be described
and compared on a real dataset: the common, classic, frequentist approach, versus a
Bayesian approach based on the Normal Gamma distribution.

2.1 Description

Assume that our classification setting is given by a set of p features X1, . . . , Xp and
K possible classes, C1, . . . , CK . Given a new observation x = (x1, . . . , xp) the aim is
to assign to x one of the K classes. The NB performs by computing the conditional
probabilities p(Ck | x) for k = 1, . . . , K and the class ŷ ∈ {1, . . . , K} assigned to x is
that maximizes p(Ck | x), that is

ŷ = argmax
k∈{1,...,K}

p(Ck | x). (2.1)

The computation of p(Ck | x) may be cumbersome if the number of features p is
large. However, the use of the Bayes theorem makes the model more tractable since

p(Ck | x) =
π(Ck)p(x | Ck)

p(x)
, (2.2)

where π(Ck) is the prior distribution for the class, p(x | Ck) is the likelihood function
of the data and p(x) is the so-called evidence. Since the evidence is constant (it is
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independent on the class), in practice, the interest is in computing the numerator,
which can be written as the joint distribution

p(x, Ck) = p(x1 | x2 . . . xn, Ck)p(x2 | x3 . . . xn, Ck) . . . p(xn | Ck)π(Ck). (2.3)

The key assumption of the NB, which makes it a so tractable classifier even for large
values of p, is the independence of the features conditioned to the class, which implies
that (2.3) can be simplified to

p(x, Ck) = π(Ck)

p∏
i=1

p(xi | Ck).

Finally, the probabilities of interest (2.2) will be computed according to

p(Ck | x) ∝ π(Ck)

p∏
i=1

p(xi | Ck).

Note that in order to implement the NB classifier, a prior distribution π(·) for the
class as well as a probability distribution for the features conditioned to the classXi | Ck
need to be selected. Common choices for the last include the Normal and Multinomial
distributions, for the continuous and discrete cases, respectively. Concerning the choice
of the prior, it can be based on the researcher’s previous knowledge of the problem or,
in the case of lack of prior knowledge, it can be set equal for all classes (that is,
π(Ck) = 1/K, for all k = 1, . . . , K).

2.2 Discussion about the independence hypothesis

As previously commented, the independence assumption in the NB notably simplifies
the computation of the conditional probabilities as in (2.2). However, this assumption
is generally not true in practice and violated for many real datasets. The aim of this
section is to discuss how this affects the performance of the classifier. As a toy example,
consider three features X1, X2, X3 such that X1 and X2 are independent, but X3 is
highly correlated with X1. The assumption of independence leads to decomposing
the joint density as the product of the three marginals, and therefore the influence
of X1 (' X3) is different than it should be. Hence, it is natural to think that such
miscalculations may possibly deteriorate the classifier’s performance. However, the NB
has proven to be comparable or superior to many well-known classification alternatives.
In [6] this fact is explained as follows:

“...although the individual class density estimates may be biased, this bias
might not hurt the posterior probabilities as much, especially near the de-
cision regions. In fact, the problem may be able to withstand considerable
bias for the savings in variance such a naive assumption earns...”
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Also, [8] provides another possible explanation about the over performance of the NB,
which is based on the features’ selection process. Due to the measurement of variables is
often quite expensive (for example, in biomedical contexts as metabolomics), a previous
selection step is undertaken in order to eliminate redundant information. The result
of such selection is a set of variables which tend to be weakly correlated.

Next, we explore more in depth the effect of dependent features on the NB perfor-
mance via a numerical example. Assume that the number of classes is only two (positive
and negative), and four features (M1, M2, M3 and M4) are simulated according to a
multivariate Normal distribution with means vectors given by

µ+ = (2, 3, 4, 1), µ− = (3, 6.5, 2, 3.5)

and covariance matrix defined by
M1 M2 M3 M4

M1
M2
M3
M4


1.0 0.9 0 0
0.9 1.0 0 0
0 0 1.0 0
0 0 0 1.0


Note that features are linearly independent, except for M1 and M2 which are highly
correlated. In order to train the NB classifier (where Normal conditional marginals
are assumed), a sample of size equal to 1000 is used. For validation of the method, a
sample of 300 observations is considered. In both cases, the proportion of the classes is
equal. To implement the NB, the routine NaiveBayes from the library klaR is used
(see the Appendix for the details). Table 2.1 shows the performance values (correct
classification rates) for both classes, for all possible combinations of features.

From the table, it can be observed how the results under the selection (M2,M3,M4)
(that is, when one dependent variable is removed) are better than using the complete
information provided by the four variables. This fact points towards the importance of
a proper feature selection method that discards noisy information. Because of the in-
dependence assumption in the NB, such attributes’ selection process should produce a
final set of independent features with high significance. Traditionally, the Pearson cor-
relation coefficient has been used to measure the (linear) dependence between random
variables. However, other type of correlations (nonlinear) may be present in the data
and are ignored by the Pearson coefficient. The next section introduces an index, on
which such feature selection process might be based, that takes into account nonlinear
associations.

2.2.1 Maximal Information Coefficient (MIC)

The Maximal Information Coefficient (MIC) (see [15],[18]) measures nonlinear relation-
ships among random variables. Its definition arises from that of the concept of mutual
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Combination CCR Positive Class CCR Negative Class
M1 0.741 0.708
M2 0.954 0.96
M3 0.838 0.829
M4 0.888 0.899

M1, M2 0.935 0.952
M1, M3 0.865 0.896
M1, M4 0.905 0.895
M2, M3 0.968 0.993
M2, M4 0.973 0.967
M3, M4 0.935 0.959

M1, M2, M3 0.942 0.979
M1, M2, M4 0.966 0.948
M1, M3, M4 0.953 0.947

M2, M3, M4 0.987 0.993
M1, M2, M3, M4 0.974 0.98

Table 2.1: Results of each combination of variables.

information (MI) (see, [9]), which quantifies the information about one variable X that
is provided by a different variable Y . The MI coefficient performs by exploring if the
products of marginal distribution p(X)p(Y ) is similar to the joint distribution p(X, Y ).
Specifically, the MI coefficient between two discrete variables X and Y is defined as

MI(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
,

where p(x) and p(y) denote the probability mass functions of X and Y , and p(x, y) is
the joint probability mass function of X and Y .

Similarly, for the continuous case, the coefficient is given by

MI(X, Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy,

where now p(·) refers to a density function.
The MI coefficient presents two main problems. The first is from a computational

viewpoint, since its calculation depends on a two dimensional smoothing. The second
problem is that it is not bounded, which makes its interpretation difficult. After more
than 50 years of development of the MI index, the MIC coefficient has been proposed
to overcome the drawbacks of the MI. The MIC captures the relationships between
two variables using a grid on the scatterplot of these two variables. To calculate the
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MIC, all possible grids are explored up to a maximal grid resolution (depending on
the sample size), and for each pair of integer values (x, y), the highest possible MI
realizable by any x-by-y grid is computed. Then, such MI values are normalized in
the interval [0, 1] in order to guarantee the comparison between all grids. To calculate
the MIC coefficient, first the matrix M = (mx,y) is defined where mx,y is the largest
normalized mutual information obtained by any x-by-y grid, so that the maximum
value in M will be the value of the MIC coefficient. Formally, let G a grid and let IG
be the mutual information of the probability distribution induced on the boxes of G,
with the probability of a box proportional to the number of points dropping inside the
box. The (x, y)-th entry of M is denoted by mx,y, defined as

mx,y = max IG/ log min{x, y},

where this maximum is calculated over all x-by-y grids G. The MIC index is defined
as the maximum of mx,y between all ordered pairs (x, y) satisfying xy < B, where B is
dependent on the sample size. Note that the elements of M take values between 0 and
1, and consequently, the MIC does, too. Also, the MIC index satisfies the symmetry
property, that is, MIC(X, Y ) = MIC(Y,X), because of the symmetry of the MI
coefficient and because of IG depends on the rank order of the data. Finally, it should
be noted that to compute M , it is necessary to optimize over all grids, so it seems
clear that computing tools will be need to calculate the MIC value. In particular, the
software R computes the MIC coefficient through the command mine, included in the
library miverva (see the Appendix for the details).

2.3 Parameters’ estimation methodologies

As described in Section 2.1., in order to implement the NB classifier, a probability
distribution for the features conditioned to the class needs to be selected,

Xi | Ck ∼ Fθi,k(x).

Once such model is set, then it needs to be estimated through sample data. Throughout
this work, it will be assumed that Xi | Ck follows a Normal distribution with unknown
mean and variance denoted by θi,k =

(
µi,k, σ

2
i,k

)
. In next section we explore two possible

alternatives for estimating the model’s parameters.

2.3.1 The frequentist versus the Bayesian paradigms

Two main approaches can be considered for statistical inference: the frequentist (or
classic) and the Bayesian one. The first approach undertakes estimation just by taking
into account the observed sample data and, basing on the concept of frequency, it
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derives point estimates for the model parameters by maximizing the likelihood function.
Therefore, under a Gaussian likelihood, the frequentist approach gives as parameters’
points estimates the sample mean and the sample variance.

The second approach considers instead the possible prior knowledge that the re-
searcher possesses about the problem, and this previous knowledge is updated (via the
Bayes formula) by the likelihood function once data are observed. The use of the prior
knowledge implies assigning a probability distribution (the so-called prior distribution)
to the model parameters, which are treated as random variables (instead of unique,
unknown values as in the frequentist approach). Such prior distribution will transform
(using the likelihood function) into the posterior distribution, which is the object of
interest for Bayesian statisticians. Formally, the Bayesian inference approach performs
as follows. Suppose that before the experiment is undertaken, our prior distribution
describing the model parameter θ is π(θ). The data are coming from an assumed model
(likelihood) which depends on the parameter and is denoted by f(x|θ). Bayes theorem
updates the prior π(θ) to the posterior by accounting for the data x,

π(θ|x) =
h(x, θ)

m(x)
=
f(x|θ)π(θ)

m(x)
,

where m(x) is a normalizing constant, m(x) =
∫

Θ
f(x|θ)π(θ)dθ. Some of the advantages

of the Bayesian statistics are pointed out next:

• The uncertainty is expressed via the probability distribution. The statistical
inference follows a conceptually simple recipe embodied in Bayes’ theorem.

• Available prior information is coherently incorporated intro the statistical model
describing the data.

• The FDA (US Food and Drug administration) recommends the use of a Bayesian
methodology in the design and analysis of clinical trials for medical devices. Some
of the reasons are:

– Valuable prior information is often available.

– The use of prior information may alleviate the need for a larger sized trial.

– Bayesian methods allow for great flexibility in dealing with missing data.

– Bayesian models facilitate meta-analysis.

For a detailed description of the Bayesian paradigm, we refer the reader to [19].
In this work, because of the versatility that priori distributions provide, we will

assume a Bayesian framework. The next section introduces the Normal-Gamma model,
as a useful tool for Bayesian inference of the Normal distribution.
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2.3.2 The Normal-Gamma model

Consider a pair of random variables (X, Y ) such that the conditional distribution X | Y
is normal

X | Y ∼ N

(
µ,

1

kY

)
.

Also, Y is distributed according to a Gamma probability model,

Y | (α, β) ∼ Ga(α, β).

Then, it is said that the pair (X, Y ) follows a Normal-Gamma distribution, noted
by

(X, Y ) ∼ NG(µ, k, α, β).

The joint probability density function can be found as

f(x, y | µ, k, α, β) =
βα
√
k

Γ(α)
√

2π
yα−

1
2 e−βy−

ky(x−µ)2

2 . (2.4)

Figure 2.1 depicts the previous density function for an assortment of parameters’ values.
Some properties of the model are as follows. Concerning the expected values of the
random variables, they are given by

E(X) = µ, E(Y ) =
α

β
.

Regarding the variance values, they can be found as

V (X) =
β

k(α− 1)
, V (Y ) =

α

β2
.

Finally, it can be proven that (2.4) is unimodal with the maximum attained at
(
µ, α−0.5

β

)
.

The usefulness of the Normal-Gamma model in Bayesian statistics is that it is a
conjugate model. This implies that, for a Normal likelihood (like the case considered
in this work), a Normal-Gamma prior transforms into a Normal-Gamma posterior
distribution, and therefore, the posterior does not need to be numerically calculated.
This fact is stated by the next Theorem (see [12]).

Theorem 2.3.1 Let X follow a Normal distribution, X ∼ N(µ, σ2) and let x =
(x1, . . . , xn) denote a simple random sample of X. Assume that µ and σ2 follow a
Normal-Gamma prior distribution, that is(

µ,
1

σ2

)
∼ NG(µ0, k0, α0, β0).
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(a) NG(µ = 0.1, k = 2, α = 1, β = 1)
(b) NG(µ = 0.1, k = 2, α = 3, β = 1)

(c) NG(µ = 0.1, k = 2, α = 5, β = 1)

(d) NG(µ = 0.1, k = 2, α = 5, β = 3)

Figure 2.1: The probability density function of different Normal-Gamma models
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Then, the posterior distribution of X is also a Normal-Gamma distribution, given by(
µ,

1

σ2

)
| x ∼ NG(µn, kn, αn, βn),

where

µn =
k0µ0 + nx̄

k0 + n

kn = k0 + n

αn = α0 +
n

2

βn = β0 +
1

2

n∑
j=1

(xj − x̄)2 +
k0n(x̄− µ0)2

2(k0 + n)
.

Proof:
The likelihood function is

l(x|µ, σ2) =
n∏
i=1

p(xj|µ, σ2) =

(
1√

2πσ2

)n
exp

{
− 1

2σ2

n∑
j=1

(xj − µ)2

}
. (2.5)

Let λ denote the so-called precision, λ = 1
σ2 . Then

l(x|µ, σ2) =
1

(2π)n/2
λn/2 exp

{
−λ

2

n∑
j=1

(xj − µ)2

}
. (2.6)

Let x̄ and s2 denote the empirical mean and variance:

x̄ =
1

n

n∑
j=1

xj

s2 =
1

n

n∑
j=1

(xj − x̄)2.

Since

n∑
j=1

(xj − x̄)(µ− x̄) = (µ− x̄)

((
n∑
j=1

xj

)
− nx̄

)
= (µ− x̄)(nx̄− nx̄) = 0.
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then, it is possible to rewrite the exponential term as follow

n∑
j=1

(xj − µ)2 =
n∑
j=1

[(xj − x̄)− (µ− x̄)]2 =

=
n∑
j=1

(xj − x̄)2 +
n∑
j=1

(x̄− µ)2 − 2
n∑
j=1

(xj − x̄)(µ− x̄) =

= ns2 + n(x̄− µ)2 (2.7)

Assume that (µ, λ) follows a Normal-Gamma conjugate prior distribution, then

f(µ, λ|µ0, k0, α0, β0) =
1

Γ(α0)

β
α0
0

(
2π
k0

) 1
2

λα0− 1
2 exp

(
−λ

2
[k0(µ− µ0)2 + 2β0]

)
,

where µ0, k0, α0, β0 are assumed to be known. Hence, the posterior density is

f(µ, λ|x) ∝ f(µ, λ|µ0, k0, α0, β0)p(x|µ, λ)

∝ λ
1
2 e−

(k0λ)(µ−µ0)2

2 λα0−1e−β0λλ
n
2 e−(λ2 )

∑n
j=1(xj−µ)2

From (2.7)
n∑
j=1

(xj − µ)2 = n(µ− x̄)2 +
n∑
j=1

(xj − x̄)2.

Finally, it can be shown that

k0(µ− µ0)2 + n(µ− x̄)2 = (k0 + n)(µ− µn)2 +
k0n(x̄− µ0)2

k0 + n
,

where

µn =
k0µ0 + nx̄

k0 + n
.

Therefore,

k0(µ− µ0)2 +
n∑
j=1

(xj − µ)2 = k0(µ− µ0)2 +
n∑
j=1

(xj − x̄)2 =

= (k0 + n)(µ− µn)2 +
k0n(x̄− µ0)2

k0 + n
+

n∑
j=1

(xj − x̄)2.

Thus,
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f(µ, λ|x) ∝ λ
1
2 e−

λ
2

(k0+n)(µ−µn)2

λα0+n
2
−1e−β0λe−(λ2 )

∑n
j=1(xj−x̄)2

e
−(λ2 ) k0n(x̄−µ0)2

k0+n .

In conclusion, the posterior density follows a Normal-Gamma distribution

p(µ, λ|x) = NG(µ, λ|µn, kn, αn, βn)

with

µn =
k0µ0 + nx̄

k0 + n

kn = k0 + n

αn = α0 +
n

2

βn = β0 +
1

2

n∑
j=1

(xj − x̄)2 +
k0n(x̄− µ0)2

2(k0 + n)
.

�

2.3.3 A simulation example

Here, we estimate from a Bayesian viewpoint and using the Normal-Gamma model
described in the previous section, the probability density in a Gaussian NB classification
context. The model parameters are estimated by maximizing the posterior density
(Maximum a posteriori estimates). In this case, the parameters are Normal-Gamma
distributed a priori, and consequently, according to Theorem 2.3.1, they follow the
same probability model (with different parameters) a posteriori.

The maximum a posteriori estimate

The maximum a posteriori (MAP) estimates are parameters’ point estimates obtained
as the mode of the posterior distribution. Therefore, once the posterior distribution is
known, then it needs to me maximized. Here, a simplification of the posterior density
is found, under the Normal-Gamma setting. Assume first that feature Xi conditioned
to the class Ck is Gaussian distributed

Xi | Ck ∼ N(µi,k, σ
2
i,k),
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where i = 1, . . . , p and k = 1, . . . , K. Define Θ = {θi,k}i=1,...,p, k=1,...,K , where θi,k =(
µi,k, σ

2
i,k

)
. Given a random sample x1, . . . ,xp, then due to the independence assump-

tion of the NB, the posterior distribution will be given by

f(Θ | x1, . . . ,xp) =
K∏
k=1

p∏
i=1

π(θi,k)f(x
(k)
i |θi,k), (2.8)

where x
(k)
i is the vector of observations of the feature i for the class k, and π(·) and

f(x | ·) denote the prior and likelihood functions, respectively. Under the assumption
that the prior distribution of θi,k follows a Normal-Gamma model with parameters(
µ

(k)
0,i , k

(k)
0,i , α

(k)
0,i , β

(k)
0,i

)
then,

K∏
k=1

p∏
i=1

π(θi,k)p(x
(k)
i |θi,k) =

=
K∏
k=1

p∏
i=1

λ
1
2
i,ke
−
λi,k

2
k

(k)
nik,i

(µi,k−µ
(k)
nik,i

)2

λ
α

(k)
nik,i

−1

i,k e
−λi,kβ

(k)
nik,i =

=
K∏
k=1

p∏
i=1

λ
α

(k)
nik,i

− 1
2

i,k e

−λi,k
 k(k)

nik,i
(µi,k−µ

(k)
nik,i

)2

2
+β

(k)
nik,i



where nik denotes the sample size of x
(k)
i and

µ
(k)
nik,i

=
k

(k)
0,i µ

(k)
0,i + nikx̄

(k)
i

k
(k)
0,i + nik

k
(k)
nik,i

= k
(k)
0,i + nik

α
(k)
nik,i

= α
(k)
0,i +

nik
2

β
(k)
nik,i

= β
(k)
0,i

1

2

nik∑
j=1

(
x

(k)
i (j)− x̄

(k)
i

)2

+
k

(k)
0,i nik

(
x̄

(k)
i − µ

(k)
0,i

)2

2
(
k

(k)
0,i + nik

)
The posterior (2.8) can be simplified if logarithms are taken

K∑
k=1

p∑
i=1

(
log

(
λ
α

(k)
nik,i

− 1
2

i,k

)
− λi,k

[
k

(k)
nik,i

(µi,k − µ(k)
nik,i

)2

2
+ β

(k)
nik,i

])
. (2.9)
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Finally, the MAP estimates are defined as

{θ̂i,k} = argmax
(R×R+)p×K

K∑
k=1

p∑
i=1

(
log

(
λ
α

(k)
nik,i

− 1
2

i,k

)
− λi,k

[
k

(k)
nik,i

(µi,k − µ(k)
nik,i

)2

2
+ β

(k)
nik,i

])
.

Implementation with R

For this example, all calculations will be implemented in R and in particular, the
maximization of the objective function (2.9) will be done via the nmkb function from
the dfoptim library (see the Appendix for the details). Such function performs a
Nelder-Mead algorithm ([13]) for derivative-free optimization which is described next.
Assume that a function of p variables is to be minimized without constraints. Then,
first the algorithm considers (p + 1) p-dimensional initial points, called P0, P1, . . . , Pp.
Let yi be the objective function value at Pi, and yh and yl the maximum and the
minimum values reached, respectively. Let P be the centroid of the points with i 6= h
and [PiPj] the distance from Pi to Pj. Then, at each phase in the process, Ph is
substituted by a new point using one of the next operations: reflection, contraction
and expansion.In a first place, the algorithm performs a reflection P ∗ and it checks
if y∗ have lied between yh and yl. In this case, Ph will be replace by P ∗ and the
algorithm starts again. If y∗ < yl, that is, a new minimum have been produced by
the reflection, it will be perform a expansion P ∗∗ of Ph and it will check if y∗∗ < yl.
In this case, Ph will be replace by P ∗∗ and the algorithm starts again. In other case,
Ph is replaced by P ∗ and the algorithm restarts. Note that, when y∗ > yi i 6= h, the
algorithm made a contraction, and in the case in which the contraction does not return
the expected results, the algorithm replaces all P ′is by (Pi+Pl)

2
, and the procedure begins

again. Finally, when the variation of the values of y is smaller than a certain tolerance,
the algorithm ends and it returns the best solution that has found.

Results

A multivariate sample of size 1000 of three independent normal distributions with two
classes (positive and negative) is simulated. The vectors of means are given by (2, 3, 4)
and (1.5, 5.4, 2) for the positive and negative classes, respectively. The variances are
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all set equal to one. That is the parameters of the generating model are given by:

θV 1,+ = (2, 1)

θV 2,+ = (3, 1)

θV 3,+ = (4, 1)

θV 1,− = (1.5, 1)

θV 2,− = (5.4, 1)

θV 3,− = (2, 1)

We show next how the parameters are correctly estimated by maximizing the poste-
rior density given by (2.9). The prior and posterior parameters for the Normal-Gamma
model are found in Tables 2.2-2.5. Note how the parameters change from the prior to
the posterior, due to the effect of the likelihood function, especially for k and β.

V1 V2 V3

Positive
µ0 = 1.003 µ0 = 0.223 µ0 = 0.654
µn = 1.937 µn = 2.963 µn = 4.02

Negative
µ0 = 0.213 µ0 = 1.1 µ0 = 0.34
µn = 1.495 µn = 5.355 µn = 2.025

Table 2.2: Comparison between µ0 and µn.

V1 V2 V3

Positive
k0 = 7 k0 = 2 k0 = 5
kn = 1007 kn = 1002 kn = 1005

Negative
k0 = 8 k0 = 5 k0 = 4
kn = 1008 kn = 1005 kn = 1004

Table 2.3: Comparison between k0 and kn.

V1 V2 V3

Positive
α0 = 6 α0 = 4 α0 = 3
αn = 506 αn = 504 αn = 503

Negative
α0 = 9 α0 = 3 α0 = 5
αn = 509 αn = 503 αn = 505

Table 2.4: Comparison between α0 and αn.
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V1 V2 V3

Positive
β0 = 0.1 β0 = 0.2 β0 = 0.044
βn = 511.543 βn = 512.756 βn = 552.540

Negative
β0 = 0.994 β0 = 0.6 β0 = 0.1
βn = 521.799 βn = 586.808 βn = 486.041

Table 2.5: Comparison between β0 and βn.

Under randomly chosen starting points, the final solution is given by

θ̂V 1,+ = (1.93, 1.01)

θ̂V 2,+ = (2.96, 1.01)

θ̂V 3,+ = (4.02, 1.09)

θ̂V 1,− = (1.49, 1.026)

θ̂V 2,− = (5.35, 1.16)

θ̂V 3,− = (2.02, 0.96)

It should be noted here that the solutions to the problem of maximizing the posterior
density, shown previously, are very close to the true modes of the posterior, known to

be given by
(
µnik ,

αnik−0.5

βnik

)
.

2.4 A real dataset example

In this section we implement the Gaussian NB classifier using the well-known Iris
dataset. After a short description of the dataset where some statistical properties
are shown, a comparison between the frequentist and the Bayesian (in terms of the
Normal-Gamma model) estimation methods are given.

2.4.1 Univariate and bivariate analysis

The (Fisher’s or Anderson’s) iris dataset contains the measurements in centimeters of
the variables Sepal Length, Sepal Width, Petal Length and Petal Width, respectively,
for 50 flowers from each of 3 species of iris. The species are Setosa, Versicolor, and
Virginica, and this dataset contains 50 individuals of each class. In order to better
understand the classification results, it may be of interest to study some marginal
descriptive statistics for each one of the variables in the set. Table (2.6) shows the
maximum and minimum values of each variable as well as the median, mean and
coefficient of variation. The results point out to the discriminating power of the variable
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related to the petal, since they are more disperse than the other two variables (due to
their range is larger). The same behavior can be observed from the marginal histograms
in Figure 2.2.

Variable Minimum Median Mean Maximum Variation Coefficient
Sepal Length 4.3 5.8 5.843 7.9 0.142
Sepal Width 2 3 3.057 4.4 0.143
Petal Length 1 4.35 1.758 6.9 1
Petal Length 0.1 1.3 1.199 2.5 0.636

Table 2.6: Some descriptive statistics of the Iris dataset.

Figure 2.3 depicts the two-dimensional projections of the multidimensional data
where the red points represent the Setosa class, the green points the Versicolor class
and the blue points the Virginica class. It looks like most of the variables could be used
to predict the species, although it can be observed that the variables Sepal Length and
Sepal Width can not separate Virginica and Versicolor classes as well as the others set
of variables.

2.4.2 Comparison between the frequentist and Bayesian ap-
proaches

The previous sections described the frequentist versus the Bayesian approach (in par-
ticular, this last one) in the context of the NB classifier. It seems clear that different
estimation approaches will lead to different classifiers, and it is the purpose of this
section to explore this issue more in depth.

Design of experiments

The performance results of the NB using the Iris dataset will be calculated under
the frequentist and Bayesian inference methods previously discussed. That is, the
parameters for the Gaussian model for the features conditioned to the classes will be
estimated by both the sample moments, and via the Normal-Gamma conjugate model.

Since the NB considers assumes features, we first computed the MIC coefficients of
such features (per classes). The results are shown by the next matrices for the classes
Setosa , Virginica and Versicolor, respectively, where SL, SW, PL and PL stand for
Sepal Length, Sepal Width, Petal Length and Petal Width.
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Figure 2.2: Marginal histograms in the Iris data set
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Figure 2.3: Scatterplots for each pair of variables in the Iris dataset
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SL SW PL PW

SL
SW
PL
PW


0.99 0.66 0.23 0.19
0.66 1 0.3 0.22
0.23 0.3 1 0.14
0.19 0.22 0.14 0.9


SL SW PL PW

SL
SW
PL
PW


0.99 0.40 0.62 0.29
0.40 0.99 0.22 0.3
0.62 0.22 1 0.28
0.29 0.3 0.28 1



SL SW PL PW

SL
SW
PL
PW


0.99 0.36 0.60 0.50
0.36 1 0.40 0.38
0.6 0.39 1 0.52
0.50 0.38 0.52 0.99


Note from the MIC values how the hypothesis of independence becomes unrealistic in
this example (especially for some pairs of variables).

Some details are given next, related to how the numerical experiment will be con-
ducted. First, all possible combinations of variables will be considered. For each
combination, we will proceed as follows.

• The full dataset is separated in training dataset and validation samples with
samples sizes given by the Table 2.7.

Setosa Virginica Versicolor
Training 35 35 35

Validation 15 15 15

Table 2.7: Distribution of samples in training and validation.

• In order to get reliable results and to ensure that the results do not depend on
a certain choice of the training set and validation set, the previous step will be
repeated 10 times in a random way, so that the final performance measure will
be the average/median of the measures for each fold on the validation set. Then,
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– in the case of Classic (frequentist) NB classifier, as the parameters estimates
are the sample mean and sample variance, we get them from the training
sample. Once these estimations are set, then the correct classification rate
for each class will be calculated on the validation dataset. The R command
NaiveBayes will be used for this case.

– in the case of the Bayesian NB classifier, where the parameters estimates
are found as the solution to the maximization of the objective function (2.9)
using the training sample, then the correct classification rate for each class
will be calculated on the validation dataset. Here, similarly as in Section
2.3., the R command nmkb will be used to maximize the posterior density.

Results

We focus now on the classification rates under both estimation methods, shown by Ta-
bles 2.8-2.11. In view of the results obtained, it seems that, for the Iris dataset, in most
of variable sets the average behavior is more or less similar under both approaches, al-
though the frequentist estimation of parameters of the NB classifier gets more balanced
values of correct classification rate for the three classes, while the Bayesian Inference of
the parameters returns some cases that are more unbalanced in this aspect. As another
observation, the best accuracy has been obtained, in both cases, for the combination
Petal Width and Petal Length. It is important to note that these are independent in
the three classes, because of the value 0.52 is the highest value that they take. This
clearly points out to the already commented importance of the attributes selection
process.

Figures 2.4 and 2.5 depict the boxplots of the estimations for the precision param-
eter under the frequentist and Bayesian approaches, respectively, for Petal Length and
Petal Width variables. Note from the first figure how the classic method leads to more
variable results. Note also, how the Bayesian one seems more robust and its results are
not very affected by the choice of the starting point in the maximization algorithm.
Figures 2.6-2.7 are the analogous to the previous ones for the means. In this case, both
estimation methods look more similar.

We found it of interest to visually show how the prior density transformed into the
posterior. Figures 2.8-2.9 depict such results for the case of the Petal Length variable
conditioned to the Setosa class. Even though the densities belong to the same family
of distributions it is clear the change in the modes.
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Figure 2.4

Figure 2.5

35



Figure 2.6

Figure 2.7

36



Figure 2.8: Prior density for the Gaussian parameters of the Petal Length variable
conditioned to the class Setosa.
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Figure 2.9: Posterior density for the Gaussian parameters of the Petal Length variable
conditioned to the class Setosa.
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Sepal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 86.66 62 62.67 70.44
Median 86.67 60 66.67 71.11

Variation coefficient 0.14 0.18 0.18 0.08
Sepal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 71.33 42.67 56 56.67

Median 73.33 43.33 56.67 57.78
Variation coefficient 0.13 0.17 0.22 0.1

Petal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 92 93.33 95.11
Median 100 93.33 93.33 94.44

Variation coefficient 0 0.75 0.07 0.02
Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 98 91.33 98 95.78

Median 100 90 100 95.56
Variation coefficient 0.03 0.06 0.03 0.03

Sepal Length & Sepal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 98.67 63.33 74.67 78.89
Median 100 60 76.67 80

Variation Coefficient 0.03 0.14 0.14 0.04
Sepal Length & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 80 87.33 89.11

Median 100 86.67 86.67 87.78
Variation coefficient 0 0.16 0.12 0.04

Sepal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 99.33 91.33 95.33 95.33
Median 100 90 93.33 95.56

Variation coefficient 0.02 0.06 0.03 0.02
Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 82 89.33 90.44

Median 100 83.33 93.33 91.11
Variation coefficient 0 0.13 0.1 0.04

Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 99.33 89.33 94 94.22
Median 100 86.67 96.67 94.44

Variation coefficient 0.02 0.08 0.07 0.03

Table 2.8: Classic Näıve Bayes.
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Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 93.33 96.67 96.67
Median 100 93.33 100 96.67

Variation coefficient 0 0.07 0.05 0.03
Sepal Length & Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 72.67 87.33 86.67

Median 100 80 86.67 86.67
Variation coefficient 0 0.15 0.12 0.05

Sepal Length & Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 91.33 88.67 93.33
Median 100 90 86.67 94.44

Variation coefficient 0 0.06 0.09 0.03
Sepal Length & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 93.33 93.33 95.56

Median 100 93.33 93.33 95.56
Variation coefficient 0 0.07 0.06 0.02

Sepal Width & Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 92.67 96.67 96.44
Median 100 90 100 96.67

Variation coefficient 0 0.07 0.05 0.03
Sepal Length & Sepal Width & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 92.67 94.67 95.78

Median 100 90 93.33 95.56
Variation coefficient 0 0.07 0.04 0.02

Table 2.9: Classic Näıve Bayes
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Sepal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 44 25.33 98 55.78
Median 46.67 26.67 100 56.67

Variation coefficient 0.3 0.35 0.05 0.09
Sepal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 98 0 40 46

Median 100 0 36.67 44.44
Variation coefficient 0.03 0 0.02 0.06

Petal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 83.33 98.67 94
Median 100 86.67 100 94.44

Variation coefficient 0 0.14 0.03 0.04
Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98 69.33 89.11

Median 100 100 73.33 88.89
Variation coefficient 0 0.03 0.12 0.03

Sepal Length & Sepal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 97.33 42 91.33 76.89
Median 100 40 93.33 75.56

Variation coefficient 0.04 0.2 0.08 0.05
Sepal Length & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 94 86.67 93.56

Median 100 93.33 86.67 93.33
Variation coefficient 0 0.07 0.11 0.03

Sepal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 60 100 86.67
Median 100 60 100 86.67

Variation coefficient 0 0.1 0 0.02
Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 99.33 62.67 87.33

Median 100 100 63.33 87.78
Variation coefficient 0 0.02 0.3 0.07

Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 90 98 96
Median 100 86.67 100 95.56

Variation coefficient 0 0.07 0.03 0.03

Table 2.10: Näıve Bayes and Bayesian Inference.
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Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 88.67 99.33 96
Median 100 93.33 100 96.67

Variation coefficient 0 0.1 0.02 0.03
Sepal Length & Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 68 90.67 86.22

Median 100 66.67 90 86.67
Variation coefficient 0 0.14 0.09 0.02

Sepal Length & Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 69.33 83.33 84.22
Median 100 70 80 84.44

Variation coefficient 0 0.09 0.14 0.03
Sepal Length & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98 81.33 93.11

Median 100 100 76.67 92.22
Variation coefficient 0 0.03 0.14 0.04

Sepal Width & Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 100 60.67 86.89
Median 100 100 60 86.67

Variation coefficient 0 0 0.26 0.06
Sepal Length & Sepal Width & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 92.67 85.33 92.67

Median 100 96.67 83.33 92.22
Variation coefficient 0 0.1 0.12 0.02

Table 2.11: Näıve Bayes and Bayesian Inference
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Chapter 3

The constrained Näıve Bayes

3.1 Motivation and formulation of the optimization

problem

There is a number of approaches in the literature modifying standard classification
methods, but there is a lack of methodologies allowing the user to control simultane-
ously the different performance measures of interest.

The application of mathematical optimization tools, as described in [4], seems to
be a promising and not fully explored option: one overall criterion is to be optimized,
while constraints are introduced in the model to impose acceptable values for the esti-
mates of the many performance measures under consideration.

NB is especially appropriate to accommodate constraints. Deterministic perfor-
mance constraints (e.g. for each class, the correct classification rate on a given inde-
pendent sample must be above a threshold value) are formulated and it would allow
us not only to obtain competitive estimates of the performance measures, but also to
control the achievement in the different individual performance measures under con-
sideration.

We analyze how to pose the associated optimization problem if a NB is used as base
classifier. It will be of interest to identify how estimates of the parameters densities are
to be derived if, as mentioned above, performance constraints are included in the model.

Hence in this work we propose to obtain bayesian estimates of the model parameters
Θ = {θi,k}, i = 1, . . . , p, k = 1, . . . , K is such a way that the performance of the NB
when classifying new observations is increased. Specifically, let us consider a set of
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features, assumed be independent (by a previous clustering based on MIC criterion)
and given a training sample x1, . . . ,xp (each xi is a vector of observations of the feature
i), we propose to obtain Θ as the solution of the following optimization problem with
constraints concerning the performance measures:

max
Θ

π(Θ)p(x1, . . . ,xp|Θ)

s.t.


m1(x,Θ) ≥ a1,
...

mJ(x,Θ) ≥ aJ

(3.1)

where

π(Θ)p(x1, . . . ,xp|Θ) =
K∏
k=1

p∏
i=1
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nik ≡ number of observations of xi beloging to the class k.
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That is, our objective function is a product of NG(µi,k, λi,k|µ(k)
nik,i

, k
(k)
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, α
(k)
nik,i

, β
(k)
nik,i

),
and the performance measure is controlled through the constraints.

Note that the posterior density is constructed by multiplying a selected prior den-
sity with the likelihood function defined from the observed dataset. So the obtained
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solution (estimation of Θ) is a MAP (maximum a posteriori) estimator, in the con-
strained space. The sequence mj, j = 1, . . . , J denotes a set of performance measures
(some of those discussed above) which are functions of θ and are evaluated at sample
x. Finally, the values a1, . . . , aJ are fixed lower-bounds of the performance measures.

The choice of the constraints for our model may vary depending on the aim that is
pursued.

It is important to note that the constraints considered depend on the classifier, that
is, these constraints must be calculated using the classifier in question, or similarly,
expressions for mj ∀j ∈ 1, . . . , J dependent on the Näıve classifier.

3.2 An algorithm to solve the optimization problem

As in the previous simulation, in order to obtain estimates of the parameters, it is
again necessary to optimize the objective function, but in this case taking into account
the constraints.

For this type of optimization problem the snomadr function from crs library in R
will be used, this function is an implementation of the Mesh Adaptative Direct Search
algorithm that is designed for optimization problems with blackbox functions as con-
straints. For more details concerning these commands, see the Appendix.

The Mesh Adaptative Direct Search algorithm (MADS), see [2], is a class of algo-
rithms minimizing nonsmooth functions f ,

f : Rn → R ∪ {∞},

under general constraints x ∈ Ω 6= ∅ ⊆ Rn, where Ω is the feasible region, it is
characterized because it does not need neither calculate nor approximate the derivatives
of f . Then, this algorithm is useful when the derivative of the objective function can not
be derived or estimated. Moreover, the feasible region can be defined using blackbox
constraints given by an oracle that returns if a certain point is feasible or not. Note
that this last fact is very useful in our case, because of we will work with blackbox
constraints.
So, given x0 ∈ Ω, an initial point, MADS algorithm tries to find a minimum of f over
Ω by computing f at a set of trial points from Ω. MADS is an iterative algorithm.
At each iteration, a finite set of trial points are selected and evaluated in the objective
function f . Once these calculations have been made, they are compared with the best
feasible objective function value found so far. The trial points have selected on the
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mesh of the iteration l, constructed from a finite set of scaled directions on Rn that are
fixed according to some restrictions.

3.3 Numerical example

We will design the following experiment in the same conditions as those explained in
Section 2.4.2: for each combination of variables, we perform the NB classification with
Bayesian inference of the parameters including constraints on the training dataset,
and, finally, we will compare the results obtained in these experiments on the valida-
tion dataset with the results obtained in tables 2.10 and 2.11, that is, with the results
that NB classifier with Bayesian inference of the parameters but without constraints.

Let us introduce some constraints in order to study how the constrained NB yields
different results according to the requirements imposed. It is very important to note
that the values of ai, for i from one to the number of constraints, that have to be fixed
in the optimization problem (3.1) may make the problem infeasible. Note again that
the results that will be achieved from this optimization problem not only will depend
on the values of ai, but also of the parameters used in Normal-Gamma prior distribu-
tions.

In this example we wanted to classify very well one of the two classes that seems to
be more mixed, that is, we have imposed a correct classification rate (see formula (1.1))
of Virginica class of 0.95, although we admit a correct classification rate of Versicolor
class of 0.60. And, for Setosa class we want to exceed the 0.75. Note that 0.95, 0.60
and 0.75 are the values of ai i = 1, 2, 3, so, these constraints can be written as follows:

CCRV irginica =
#{Correct classifications of V irginica class}

#{Individuals from V irginica class}
≥ 0.95 (3.2)

CCRV ersicolor =
#{Correct classifications of V ersicolor class}

#{Individuals from V ersicolor class}
≥ 0.60 (3.3)

CCRSetosa =
#{Correct classifications of Setosa class}

#{Individuals from Setosa class}
≥ 0.75 (3.4)

Now, if we observe the results of tables 3.1 and 3.2 and, if we compare with the
previous results obtained in tables 2.10 and 2.11, it is clear that, in these last results,
the Virginica class is better classified, and the results obtained satisfy the imposed con-
straints, although there are some sets of variables yielding infeasible problems (Sepal
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Length, Sepal Width and both together).

Hence, the best results in terms of overall mean or median accuracy satisfying (3.2)-
(3.4) are obtained if, instead of the four variables, only the variables Petal Length and
Petal Width are used.
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Sepal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean - - - -
Median - - - -

Variation coefficient - - - -
Sepal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean - - - -

Median - - - -
Variation coefficient - - - -

Petal Length
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 96 88 94.67
Median 100 100 86.67 93.33

Variation coefficient 0 0.07 0.08 0.02
Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98 69.33 89.11

Median 100 100 73.33 88.89
Variation coefficient 0 0.03 0.12 0.03

Sepal Length & Sepal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean - - - -
Median - - - -

Variation coefficient - - - -
Sepal Length & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98 76.67 91.56

Median 100 100 80 93.33
Variation coefficient 0 0.03 0.2 0.05

Sepal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 87.33 96.67 60.67 81.56
Median 90 100 66.67 82.22

Variation coefficient 0.16 0.05 0.18 0.07
Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98.67 72.67 90.44

Median 100 100 73.33 91.11
Variation coefficient 0 0.03 0.25 0.06

Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 92 98 63.33 84.44
Median 100 100 66.67 85.56

Variation coefficient 0.19 0.03 0.3 0.09

Table 3.1: Constrained Näıve Bayes and Bayesian Inference.
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Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 100 98 88 95.33
Median 100 100 90 95.56

Variation coefficient 0 0.05 0.13 0.03
Sepal Length & Sepal Width & Petal Length

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 96 72 89.33

Median 100 96.67 73.33 88.89
Variation coefficient 0 0.05 0.22 0.06

Sepal Length & Sepal Width & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 90.67 92.67 54.67 79.33
Median 96.67 93.33 56.67 78.89

Variation coefficient 0.15 0.11 0.26 0.05
Sepal Length & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 98 58.67 85.56

Median 100 100 60 85.56
Variation coefficient 0 0.03 0.29 0.07

Sepal Width & Petal Length & Petal Width
CCR Setosa CCR Virginica CCR Versicolor Accuracy

Mean 99.33 98 73.33 90.22
Median 100 100 70 90

Variation coefficient 0.02 0.05 0.2 0.05
Sepal Length & Sepal Width & Petal Length & Petal Width

CCR Setosa CCR Virginica CCR Versicolor Accuracy
Mean 100 96.67 65.33 87.33

Median 100 100 63.33 86.67
Variation coefficient 0 0.05 0.28 0.06

Table 3.2: Constrained Näıve Bayes and Bayesian Inference.
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Conclusions

Three main conclusions emerge from the study on the NB classifier that has been car-
ried out in this work. First, NB classifier assumes independence of variables. When
it is applied with dependent variables, the full set of variables may not yield the best
results in terms of accuracy. This is illustrated by the example of the Iris dataset.
In fact, Feature Selection, that has not been considered in this work beyond the com-
plete enumeration of set of variables in the same example, is concluded to be necessary.

Another main conclusion is that the different parameters estimation methods in-
duce, of course, different classifiers. This work does not have as an objective to indicate
which one is right (if the frequentist approach, if the Bayesian approach), but to show
with an example that different methods induce different classifiers. Although, regard-
ing the Bayesian approach, it remains to be done an exhaustive study of the sensitivity
priors, because different a priori estimates will lead to different estimates values and
therefore to different classifiers.

The novelty of this work is the inclusion of constraints on the classical Bayesian
approach. These constraints have provided a different classifier, with the difference that
this new approach allows to control the performance measures, which is fundamental
in many realworld classification problems.
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Appendix: R routines

Näıve Bayes routines

The language and environment R (see [14]) provides the following two packages relating
to Näıve Bayes classifier:

• The package e1071, that provides the functions

– naiveBayes: to perform Näıve Bayes classification.

– predict.naiveBayes: to obtain the predictions.

• The package klaR that has the following function to perform Näıve Bayes clas-
sification and to predict

– NaiveBayes

– predict.NaiveBayes

In next subsections, let us explain in more detail the previous functions.

Package “e1071”

Function naiveBayes can be called in two different ways, that is, with different type of
arguments. The first one would be:

naiveBayes(x, y, laplace=0, subset, na.action=na.pass)

• x: Numerical matrix or data-frame of numeric variables and/or categorical.

• y: Vector of classes.

• laplace: Laplace smoothing parameter to improve the estimates of the probabil-
ities in the case of categorical data (by default, it does not apply).
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• subset: Vector of indices specifying instances of the sample learning to use.

• na.action: Action to perform in the presence of missing values (NA).

And the second one is:

naiveBayes(formula, data, laplace=0, subset, na.action=na.pass)

• formula: Formula in the way class ∼ x1 + x2 + . . .

• data: Learning sample data-frame or contingency table with the frequencies
resulting from the count.

• laplace,subset, na.action: As before.

On the other hand, the function naiveBayes returns an object with the next com-
ponents:

• apriori: Probabities of each class of the response variable.

• tables: List of tables, one for each predictor variable. According the type of it,
the information obtained is different:

– Qualitative: the table contains the probabilities of each class of the output
variable conditional on the different modalities of the predictor variables.

– Quantitative: for each class the output variable, the table contains the mean
and standard deviation of the predictor variable conditioned to that class.

• levels: Output variable classes.

• call: Sequence of the call to the naiveBayes function.

Finally, once the classifier has been constructed according to the previous functions,
predictions can be made:

predict(object, newdata, type=class,threshold=0.001, eps=0)

where

• object: Object generated by the naiveBayes function.

• newdata: Data-frame with the instances to predict.
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• type: If raw is selected, the function returns the probability of each class of
output variable (for each instance to predict). If class is selected, it only indicates
the class with maximum probability for each instance to predict.

• threshold: Value for which the probabilities are replaced below the value spec-
ified in eps.

• eps: The lower probabilities than this value will be replaced by threshold.

Package “klaR”

There exists another function called NaiveBayes from klaR. The main differences
between the naiveBayes function (e1071) and the NaiveBayes function (klaR) are
the following:

• NaiveBayes allows one to specify prior probabilities of classes of the response
variable. In naiveBayes they are estimated from the learning sample.

• NaiveBayes lets one use kernel function to estimate the density function of con-
tinuous variables. In naiveBayes always it is assumed that this kind of variables
follows a Normal distribution.

• NaiveBayes requires learning sample given as matrix or data-frame (it does not
support contingency table).

MIC routine

R provides a function that performs the calculation of the MIC. The library miverva
has a function called mine, which returns the calculation of the MIC for a data set given.

The principal argument needed is x, a numeric vector, matrix or data frame (which
is coerced to matrix). The rest of arguments are optional and they are explained in
the manual provided by R. This function returns, among other outputs, the Maximal
Information Coefficient (MIC).

Optimization Routines

In this section two different functions from two distinct packages will be explained.
First, it will be described a function that is useful when unconstrained optimization
problems are carried out. The second one allows one to include constraints to the
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optimization problem and, moreover, both constraints as the objective function can be
given as blackbox functions.

Package “dfoptim”

The library dfoptim has a function called nmkb. This function is an implementation
of the Nelder-Mead algorithm for derivative-free optimization. It allows bounds over
the parameters. The arguments of this function are:

nmkb(par, fn, lower=-Inf, upper=Inf, control = list(), . . . )

where

• par: A initial vector of parameters. Note that it must be between lower and
upper bounds (if they exist).

• fn: The nonlinear objective function to be optimized.

• lower and upper: lower and upper bounds on the parameters.

• control: a list with the control parameters such as tolerance, maximum number
of objective function evaluations allowed, . . .

• . . . : auxiliary arguments of the objective function.

Package “crs”

The library crs has a function called snomadr. This last function snomadr is an
R interface to NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search)
([1]), an open source software C++ implementation of the Mesh Adaptive Direct Search
algorithm designed for constrained optimization of blackbox functions.
This function needs the following input arguments:

• eval.f : the function that returns the value of the objective function and the value
of the constraints.

• n: the number of variables.

• bbin: a vector that indicates the type of the variables.

• bbout: a vector that fixed how the constraints have to be considered during the
optimization process.
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• x0: the initial vector of parameters.

• lb and ub: vectors with lower and upper bounds of the controls, respectively.

• . . . : auxiliary arguments that will be needed to the objective and constraints
functions.

Note that this function has some additional arguments which are explained in the
help of R.
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