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Miguel Lacruz∗
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Abstract

A complex scalar λ is said to be an extended eigenvalue of a bounded linear operator T on a complex Banach
space if there is a nonzero operator X such that TX = λXT. Such an operator X is called an extended
eigenoperator of T corresponding to the extended eigenvalue λ.

The purpose of this paper is to give a description of the extended eigenvalues for the discrete Cesàro
operator C0, the finite continuous Cesàro operator C1 and the infinite continuous Cesàro operator C∞

defined on the complex Banach spaces ℓp, Lp[0, 1] and Lp[0,∞) for 1 < p <∞ by the expressions

(C0f)(n) : =
1

n+ 1

n
∑

k=0

f(k),

(C1f)(x) : =
1

x

∫ x

0

f(t) dt,

(C∞f)(x) : =
1

x

∫ x

0

f(t) dt.

It is shown that the set of extended eigenvalues for C0 is the interval [1,∞), for C1 it is the interval (0, 1],
and for C∞ it reduces to the singleton {1}.
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1. Introduction

We shall represent by B(E) the algebra of all bounded linear operators on a complex Banach space E.
A complex scalar λ is said to be an extended eigenvalue of an operator T ∈ B(E) provided that there is a
nonzero operator X ∈ B(E) such that TX = λXT, and in that case X called an extended eigenoperator of T
corresponding to the extended eigenvalue λ.We shall represent by {T }′ the commutant of an operator T, i.e.,
the set of operators that commute with T, or in other words, the family of all the extended eigenoperators
for T corresponding to the extended eigenvalue λ = 1.

Recently, the study of the extended eigenvalues for some classes of operators has received a considerable
amount of attention [2, 3, 5, 13, 14, 17, 18, 22].

The purpose of this paper is to describe the set of the extended eigenvalues for the discrete Cesàro
operator C0, the finite continuous Cesàro operator C1, and the infinite continuous Cesàro operator C∞

defined on the complex Banach spaces ℓp, Lp[0, 1] and Lp[0,∞) for 1 < p <∞ by the expressions

(C0f)(n) : =
1

n+ 1

n
∑

k=0

f(k), (1.1)

(C1f)(x) : =
1

x

∫ x

0

f(t) dt, (1.2)

(C∞f)(x) : =
1

x

∫ x

0

f(t) dt. (1.3)

It is shown that the set of extended eigenvalues for C0 is the interval [1,∞), for C1 is the interval (0, 1],
and for C∞ is the singleton {1}. The notion of an operator with rich point spectrum is introduced and it
is shown that the geometry of the point spectrum for such an operator determines its extended eigenvalues.
Then, it is shown that both C1 and C∗

0 have rich point spectrum. Further, it is shown that a bilateral
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weighted shift whose point spectrum has non empty interior and the adjoint of an analytic Toeplitz operator
with non constant symbol are further examples of operators with rich point spectrum. Then, this result
is applied to obtain information on the extended eigenvalues of those operators. Finally, a factorization is
provided for the extended eigenoperators of a Hilbert space operator under certain conditions.

The paper is organized as follows.
In section 2 we show that every λ ∈ (0, 1] is an extended eigenvalue for C1 on L2[0, 1] and the Euler

operator is a corresponding extended eigenoperator. Moreover, any extended eigenoperator for C1 on L
2[0, 1]

factors as the product of the Euler operator, a Toeplitz matrix, and a power of a backward unilateral shift
of multiplicity one.

In section 3 we introduce the notion of an operator with rich point spectrum. We show that if λ is an
extended eigenvalue of an operator T with rich point spectrum then λ multiplies intσp(T ), the interior of
the point spectrum of T, into closσp(T ), the closure of the point spectrum of T. We show that both C1 and
C∗

0 have rich point spectrum and we apply this geometric result to prove that for every 1 < p <∞ we have

1. if λ is an extended eigenvalue for C1 on Lp[0, 1] then 0 < λ ≤ 1,

2. if λ is an extended eigenvalue for C0 on ℓp then λ ≥ 1.

In section 4 we show that every λ ∈ (0, 1] is an extended eigenvalue for C1 on Lp[0, 1] and that a certain
weighted composition operator is a corresponding extended eigenoperator.

In section 5 we show when p = 2 that if λ is real with λ ≥ 1 then λ is an extended eigenvalue for C0.
In section 6 we show that if the point spectrum of a bilateral weighted shift W has non empty interior

then W has rich point spectrum, and as a consequence, the set of the extended eigenvalues for W is the unit
circle.

In section 7 we show that a result of Deddens [7] about extended eigenvalues of an analytic Toeplitz
operators can be regarded as a special case of our main result in section 3.

In section 8 we show under certain conditions that if λ is an extended eigenvalue for an operator T on
a Hilbert space then there is a particular extended eigenoperator X0 corresponding to λ such that every
extended eigenoperator X corresponding to λ factors as X = X0R for some R ∈ {T }′.

In section 9 we show that the family of the extended eigenvalues for C∞ on the complex Hilbert space
L2[0,∞) reduces to the singleton {1}.

In section 10 we show that the family of the extended eigenvalues for C∞ on the complex Banach space
Lp[0,∞), for 1 < p <∞, reduces to the singleton {1}.

2. The finite continuous Cesàro operator on Hilbert space

Brown, Halmos and Shields [6] proved in the Hilbertian case that C1 is indeed a bounded linear operator,
and they also proved that I − C∗

1 is unitarily equivalent to a unilateral shift of multiplicity one.
Recall that a bounded linear operator S on a complex Hilbert space H is a unilateral shift of multiplicity

one provided that there is an orthonormal basis (en) of H such that Sen = en+1 for all n ∈ N. It is easy to
see that the adjoint of a such a unilateral shift satisfies S∗e0 = 0 and S∗en = en−1 for all n ≥ 1.

Consider a unilateral shift of multiplicity one S ∈ B(L2[0, 1]) and a unitary operator U ∈ B(L2[0, 1]) such
that I − C∗

1 = U∗SU. We have C1 = U∗(I − S∗)U, and since the extended eigenvalues are preserved under
similarity in general, and under unitary equivalence in particular, it follows that the extended eigenvalues
of C1 are precisely the extended eigenvalues of I − S∗, and the extended eigenoperators of C1 are in one to
one correspondence with the extended eigenoperators of I − S∗ under conjugation with U.

We shall use repeatedly the following elementary, standard fact.

Lemma 2.1. The point spectrum of S∗ is the open unit disc D. More precisely, every λ ∈ D is a simple
eigenvalue of S∗, and a corresponding eigenvector f is given by the expression

f =

∞
∑

n=0

λnen. (2.1)
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Now we are ready to describe the set of the extended eigenvalues for I−S∗. Our first goal is to show that the
interval (0, 1] is contained in the set of the extended eigenvalues for I − S∗, and to exhibit a corresponding
extended eigenoperator. We shall prove that a particular extended eigenoperator is the Euler operator.

It is convenient now to have a digression about the Euler operator and the discrete Cesàro operator. We
follow the discussion in the paper of Rhoades [19]. Recall that the discrete Cesàro operator C0 is defined
on ℓ2 by the sequence of arithmetic means (1.1).

Let λ ∈ C. The Euler operator Eλ is defined on ℓ2 by the binomial means

(Eλf)(n) =

n
∑

k=0

(

n

k

)

λk(1 − λ)n−kf(k), n ∈ N. (2.2)

Let (µk) be a sequence of complex scalars and let ∆ denote the forward difference operator defined by

∆µk = µk − µk+1. (2.3)

A Hausdorff matrix is an infinite matrix A = (ank) whose entries are given by the expression

ank =







(

n

k

)

∆n−kµk if 0 ≤ k ≤ n,

0 if k > n.
(2.4)

The sequence (µk) is called the generating sequence for the Hausdorff matrix A and it is determined by the
diagonal entries of A. The Hausdorff operator associated with a Hausdorff matrix A = (ank) is defined by
the expression

(Af)(n) =

n
∑

k=0

ankf(k). (2.5)

The discrete Cesàro operator C0, with generating sequence µn = (n + 1)−1, and the Euler operator Eλ,
with generating sequence µn = λn, are two examples of Hausdorff operators. Rhoades [19] notes that Eλ is
bounded for 1/2 < λ ≤ 1. We show in Proposition 2.5 below that Eλ is bounded also for 0 < λ ≤ 1/2.

There is a strong connection between Hausdorff operators and the discrete Cesàro operator. Hurwitz and
Silvermann [10] showed that the commutant of C0 is precisely the set of all Hausdorff operators, whereas
Shields andWallen [20] showed that the commutant of C0 is the weakly closed algebra with identity generated
by C0.

Proposition 2.2. If 0 < λ ≤ 1 then λ is an extended eigenvalue for I − S∗, and moreover, the Euler
operator Eλ is a corresponding extended eigenoperator.

Proof. First of all, for k = 0 we have

Eλe0 =

∞
∑

n=0

(1− λ)nen.

Then, it follows from Lemma 2.1 that (I − S∗)Eλe0 = λEλ(I − S∗)e0. Next, for k ≥ 1 we have

S∗Eλek =

∞
∑

n=k

(

n

k

)

λk(1− λ)n−ken−1

= λkek−1 +

∞
∑

n=k

(

n+ 1

k

)

λk(1 − λ)n+1−ken,

so that

(I − S∗)Eλek = −λkek−1 +

∞
∑

n=k

[(

n

k

)

−

(

n+ 1

k

)

(1− λ)

]

λk(1− λ)n−ken.
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Using Pascal’s identity

(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

leads to

(I − S∗)Eλek = −λkek−1 +

∞
∑

n=k

[(

n

k

)

λ−

(

n

k − 1

)

(1− λ)

]

λk(1− λ)n−ken

= −λkek−1 +

∞
∑

n=k

(

n

k

)

λk+1(1− λ)n−ken

−
∞
∑

n=k

(

n

k − 1

)

λk(1− λ)n−(k−1)en

= λ

∞
∑

n=k

(

n

k

)

λk(1− λ)n−ken

− λ

[

λk−1ek−1 +

∞
∑

n=k

(

n

k − 1

)

λk−1(1− λ)n−(k−1)en

]

= λ

∞
∑

n=k

(

n

k

)

λk(1− λ)n−ken

− λ

∞
∑

n=k−1

(

n

k − 1

)

λk−1(1 − λ)n−(k−1)en

= λ(Eλek − Eλek−1)

= λEλ(I − S∗)ek,

so that (I − S∗)Eλek = λEλ(I − S∗)ek for all k ∈ N, as we wanted.

Our next goal is to describe the collection of the extended eigenoperators for I −S∗ corresponding to an
extended eigenvalue λ ∈ (0, 1]. It is convenient to have a digression on Toeplitz operators. We shall follow
the discussion about Toeplitz operators in the paper of Sheldon Axler [1].

Let (αn)n∈Z be a two sided sequence of complex scalars and consider the infinite matrix A = (ank)
whose entries are given by the expression ank = αn−k. We say that A is the Toeplitz matrix associated with
the sequence (αn)n∈Z. The Toeplitz operator associated with a Toeplitz matrix A = (ank) is defined on the
complex Hilbert space ℓ2 by the expression

(Af)(n) =

∞
∑

k=0

αn−kf(k). (2.6)

Consider the unit circle T = {z ∈ C : |z| = 1} and define a function ϕ : T → C by the Fourier expansion

ϕ(eiθ) =

∞
∑

n=−∞

αne
inθ. (2.7)

It is a standard fact that a Toeplitz matrix A induces a bounded operator if and only if ϕ is essentially
bounded, and moreover,

‖A‖ = sup{|ϕ(z)| : z ∈ T}. (2.8)

Halmos says [9, Problem 33] that Fourier expansions are formally similar to Laurent expansions, and the
analogy motivates calling the functions of H2(T) the analytic elements of L2(T). Thus, ϕ is analytic if and
only if αn = 0 for all n < 0. Also, ϕ is called co-analytic provided that αn = 0 for all n > 0.

It turns out that AS = SA if and only if A is an analytic Toeplitz operator, and that AS∗ = S∗A if and
only A is a co-analytic Toeplitz operator.
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Lambert [13] observed that if X ∈ B(H) is an extended eigenoperator for an operator T ∈ B(H)
associated with an extended eigenvalue λ ∈ C, and if R ∈ {T }′ then the product XR is also an extended
eigenoperator for T associated with λ.

Let A be a co-analytic Toeplitz operator. Since A commutes with S∗ and since (S∗)n0 commutes with S∗,
it follows that A(S∗)n0 commutes with I − S∗. Since Eλ is an extended eigenoperator for I − S∗ associated
with the extended eigenvalue λ, it follows from Lambert’s observation that EλA(S

∗)n0 is also an extended
eigenoperator for I − S∗ associated with the extended eigenvalue λ. The following result shows that these
are all possible extended eigenoperators for the operator I − S∗.

Theorem 2.3. If 0 < λ ≤ 1 and X is an extended eigenoperator of I −S∗ associated with λ then there is a
two sided sequence (αn)n∈Z of complex scalars with α0 6= 0 and αn = 0 for all n ≥ 1, and there is an n0 ∈ N

such that X admits a factorization

X = EλA(S
∗)n0 , (2.9)

where Eλ is the Euler operator and where A is the co-analytic Toeplitz matrix associated with (αn)n∈Z.

Proof. We have (I −S∗)Xe0 = λXe0 and (I −S∗)Xen = λ(Xen−Xen−1) for all n ≥ 1. Since X 6= 0, there
is some n ∈ N such that Xen 6= 0. Let n0 = min{n ∈ N : Xen 6= 0}.

First step: Let us suppose that n0 = 0 and notice that Xe0 is an eigenvector of I − S∗ corresponding to
the eigenvalue λ, so that according to Lemma 2.1, there is a nonzero complex scalar β0 such that

Xe0 = β0

∞
∑

n=0

(1− λ)nen. (2.10)

We claim that there is a sequence of complex scalars (βn)n∈N with β0 6= 0 and such that for every n ∈ N,

Xen =
n
∑

k=0

βn−kEλek. (2.11)

We proceed by induction. If n = 0, this follows trivially from equation (2.10). Then, suppose that n ≥ 1
and the complex scalars β0, . . . , βn−1 are constructed in such a way that

Xen−1 =

n−1
∑

k=0

βn−1−kEλek.

Notice that

[S∗ − (1 − λ)I]Xen = λXen−1 = λ

n−1
∑

k=0

βn−1−kEλek

= [S∗ − (1− λ)I]

(

n−1
∑

k=0

βn−1−kEλek+1

)

,

so that

Xen −
n−1
∑

k=0

βn−1−kEλek+1 ∈ ker[S∗ − (1 − λ)I].

Finally, according to Lemma 2.1, there is a complex scalar βn such that

Xen −
n−1
∑

k=0

βn−1−kEλek+1 = βnEλe0,
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and the claim follows. Now, let (αn)n∈Z be the two sided sequence defined by α−n = βn for all n ≥ 1 and
αn = 0 for all n ∈ N, and let A be the co-analytic Toeplitz matrix associated with the sequence (αn)n∈Z.
We have that X = EλA, so that equation (2.9) holds with n0 = 0.

Second step: Suppose that n0 ≥ 1. Notice that Xen = 0 for all 0 ≤ n < n0 and Xen0 6= 0. Thus,
(I − S∗)Xen0 = λXen0 and (I − S∗)Xen = λ(Xen − Xen−1) for each n > n0, or in other words, (I −
S∗)XSn0e0 = λXSn0e0 and (I − S∗)XSn0en = λ(XSn0en −XSn0en−1) for each n ≥ 1. This means that
XSn0 is a nonzero linear operator as in the first step of the proof. Therefore, there is a sequence (αn) of
complex scalars with α0 6= 0 and such that XSn0 = EλA, where A is the Toeplitz operator associated with
the sequence (αn). Finally, since Xen = 0 for 0 ≤ n ≤ n0, it follows that X = EλA(S

∗)n0 .

We finish this section with the consideration of the question of boundedness for the Euler operator Eλ.
We already mentioned that Rhoades [19] noted that Eλ is bounded for 1/2 < λ ≤ 1. He proved that in fact
we have ‖Eλ‖ = λ−1/2. We show in Proposition 2.5 below that Eλ is also bounded for 0 < λ ≤ 1/2 and
moreover, ‖Eλ‖ ≤ (1 − λ)−1/2. Since we could not find a proof of this fact in the literature, we include an
argument that is based on a criterion due to Schur. A proof of this criterion, different from the original one,
can be found in the paper of Brown, Halmos and Shields [6], where it is applied to show the boundedness
of both the continuous and the discrete Cesàro operators.

Lemma 2.4 (Schur test). If ank ≥ 0, if pk > 0, and if α, β > 0 are such that

∞
∑

k=0

ankpk ≤ αpn, (2.12)

∞
∑

n=0

ankpn ≤ βpk, (2.13)

then there is a bounded linear operator X with ‖X‖2 ≤ αβ and such that for all n ∈ N,

(Xf)(n) =

∞
∑

k=0

ankf(k).

Proposition 2.5. If 0 < λ ≤ 1/2 then the Euler operator Eλ is bounded with ‖Eλ‖ ≤ (1 − λ)−1/2.

Proof. We shall apply the Schur test to the infinite matrix

ank =







(

n

k

)

λk(1 − λ)n−k, if 0 ≤ k ≤ n,

0, if k > n.
(2.14)

If we set pk = 1, then it follows from the binomial theorem that

∞
∑

k=0

ankpk =

n
∑

k=0

(

n

k

)

λk(1− λ)n−k = 1.

On the other hand, using the geometric series expansion (1 − λ)−1 =

∞
∑

n=0

λn, we get

dk

dλk
(1− λ)−1 =

∞
∑

n=k

n!

(n− k)!
(1− λ)n−k,

so that
∞
∑

n=0

ankpn =
∞
∑

n=k

(

n

k

)

λk(1− λ)n−k =
λk

k!

∞
∑

n=k

n!

(n− k)!
(1− λ)n−k

=
λk

k!

dk

dλk
(1− λ)−1 = λk(1− λ)−k−1 ≤ (1 − λ)−1,
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and we conclude that Eλ is bounded with ‖Eλ‖ ≤ (1− λ)−1/2, as we wanted.

We shall use an elementary fact that can be stated as follows.

Lemma 2.6. Let λ be a nonzero complex number. Then |λ|+ |λ− 1| ≤ 1 if and only if λ ∈ (0, 1].

Proof. Let us prove the nontrivial implication. If λ ∈ R and λ > 1 then we have |λ|+ |1− λ| = 2λ− 1 > 1,
and if λ ∈ R and λ < 0 then |λ| + |1− λ| = 1 − 2λ > 1. Also, if λ ∈ C and Imλ 6= 0 then |λ| + |1 − λ| > 1
because λ and 1− λ are linearly independent over R.

Proposition 2.7. If λ ∈ C\(0, 1] then the Euler operator Eλ is unbounded.

Proof. We have for every n ≥ 0

E∗
λen =

n
∑

k=0

(

n

k

)

λk(1− λ)n−kek.

Using the Cauchy-Schwarz inequality gives

‖E∗
λen‖ =

∥

∥

∥

∥

∥

n
∑

k=0

(

n

k

)

λk(1− λ)n−kek

∥

∥

∥

∥

∥

≥
1

(n+ 1)1/2

n
∑

k=0

(

n

k

)

|λ|k|1− λ|n−k

=
(|λ|+ |1− λ|)n

(n+ 1)1/2
.

If λ 6= 0 then it follows from Lemma 2.6 that ‖E∗
λen‖ → ∞ as n → ∞. Finally, if λ = 0 then according to

equation (2.2) we have (E0f)(n) = f(0) for all n ∈ N, so that the constant sequence E0f belongs to the
complex Hilbert space ℓ2 only when f(0) = 0.

3. Extended eigenvalues for operators with rich point spectrum

We say that an operator T on a complex Banach space has rich point spectrum provided that intσp(T ) 6= ∅,
and that for every open disc D ⊆ σp(T ), the family of eigenvectors

⋃

z∈D

ker(T − z) (3.1)

is a total set. We shall see below that two examples of operators with rich point spectrum are the finite
continuous Cesàro operator and the adjoint of the discrete Cesàro operator. There are other natural examples
like a bilateral weighted shift whose point spectrum has non empty interior, or the adjoint of an analytic
Toeplitz operator with non constant symbol.

Recall that if ϕ is a bounded analytic function on D then the analityc Toeplitz operator Tϕ is defined on
the Hardy space H2(D) by the expression Tϕf = ϕ · f. Deddens [7] studied intertwining relations between
analytic Toeplitz operators. Bourdon and Shapiro [5] generalized his work later on and they applied it to
study the extended eigenvalues of an analytic Toeplitz operator.

Deddens showed that if there is a non zero operator X that intertwines two analytic Toeplitz operators
Tϕ and Tψ, that is, such that XTϕ = TψX, then

ψ(D) ⊆ closϕ(D). (3.2)

Bourdon and Shapiro observed that, as a consequence of this, if λ is an extended eigenvalue of an analytic
Toeplitz operator Tϕ, where ϕ is not constant, then there is a non zero operator that intertwines Tλϕ and
Tϕ, so that

(1/λ) · ϕ(D) ⊆ closϕ(D). (3.3)

8



Bourdon and Shapiro say that then the geometry of ϕ(D) quickly determines the extended eigenvalues of
Tϕ (for instance, if λ is an extended eigenvalue of the shift operator Tz ∈ B(H2(D)) then it follows from
Deddens result that (1/λ) · D ⊆ closD, and therefore |λ| ≥ 1. )

We prove in Theorem 3.1 that, in general, if an operator has rich point spectrum then the geometry of
its point spectrum determines the extended eigenvalues. The precise statement of this result is provided
below. Then, we apply Theorem 3.1 to show that if λ is an extended eigenvalue for C1 on Lp[0, 1] then λ is
real and 0 < λ ≤ 1 (Corollary 4.5) and if λ is an extended eigenvalue for C∗

0 on ℓp then λ is real and λ ≥ 1
(Corollary 5.3).

As another consequence of our general result, in section 6 we get that if λ is an extended eigenvalue of
a bilateral weighted shift W whose point spectrum has non empty interior then |λ| = 1.

Finally, if λ is an extended eigenvalue of an analytic Toeplitz operator Tϕ on the Hardy space H2(D)
with non constant symbol then Deddens result (3.3) can be derived as a consequence of Theorem 3.1.

Theorem 3.1. Let us suppose that an operator T on a complex Banach space has rich point spectrum. If
λ is an extended eigenvalue for T then we have

λ · intσp(T ) ⊆ closσp(T ). (3.4)

Proof. Let X be an extended eigenoperator of T corresponding to the extended eigenvalue λ, that is, X 6= 0
and TX = λXT. Let z ∈ intσp(T ) and let n ∈ N such that D(z, 1/n) ⊆ σp(T ). Since X 6= 0 and T has rich
point spectrum, there exist zn ∈ D(z, 1/n) and fn ∈ ker(T − zn)\{0} such that Xfn 6= 0. Hence,

TXfn = λXTfn = λznXfn,

and since Xfn 6= 0, this means that λzn ∈ σp(T ). Taking limits as n → ∞ yields λz ∈ closσp(T ), as we
wanted.

The following result will be applied at the end of the next section to the finite continuous Cesàro operator
and in section 5 to the adjoint of the discrete Cesàro operator.

Theorem 3.2. Let T be a bounded linear operator with rich point spectrum and such that σp(T ) = D(r, r)
for some r > 0. If λ is an extended eigenvalue for T then λ is real and 0 < λ ≤ 1.

Proof. Let µ = 1/λ. We must show that µ is real and µ ≥ 1. First of all, consider the open half plane
Ωr = {w ∈ C : Rew > 1/(2r)}, and notice that z ∈ D(r, r) if and only if 1/z ∈ Ωr. According to Lemma 3.1
we have µw ∈ Ωr for every w ∈ Ωr. This means that the map ϕ(w) = µw takes Ωr into Ωr, and it follows
from continuity that ϕ takes the closed half plane Ωr into itself. Now start with a point w ∈ Ωr ∩ R and
iterate the map ϕ to get a sequence of points (µnw) in Ωr, so that Re(µnw) ≥ 1/(2r), or in other words,

Re

[(

µ

|µ|

)n]

≥
1

2rw|µ|n
> 0.

Finally, write µ = |µ|(cos θ + i sin θ) for some 0 ≤ θ < 2π. Observe that cosnθ > 0 for all n ∈ N, and this
can only happen if θ = 0. This shows that µ is real. It is clear that µ ≥ 1 because if µ < 1 then ϕ maps Ωr
outside Ωr; for instance ϕ(1/(2r)) = µ/(2r) < 1/(2r), and this is a contradiction.

The following result will be applied in section 6 to a bilateral weighted shift.

Theorem 3.3. Let T be a bounded linear operator with rich point spectrum such that for some 0 < r < R,

{z ∈ C : r < |z| < R} ⊆ σp(T ) ⊆ {z ∈ C : r ≤ |z| ≤ R}.

If λ is an extended eigenvalue of T then |λ| = 1.

9



Proof. Consider the region Ω = {z ∈ C : r < |z| < R}. It follows from Lemma 3.1 that the map ϕ(z) = λz
takes Ω into Ω, and it follows from continuity that ϕ maps Ω into itself. Start with z0 ∈ Ω and iterate the
map ϕ to obtain a sequence of points (λnz0) in Ω, so that for all n ∈ N we have

r ≤ |λ|n · |z0| ≤ R,

and notice that this can only happen if |λ| = 1.

The following result provides a sufficient condition for a general operator to have rich point spectrum.
We apply that condition in the next section to show that the finite continuous Cesàro operator C1 on L

p[0, 1]
has rich point spectrum. We also apply our sufficient condition in section 5 to the adjoint of the discrete
Cesàro operator, C∗

0 on ℓq, and in section 6 to a bilateral weighted shift W whose point spectrum has non
empty interior. Finally, in section 7 we apply a suitable modification of that condition to the adjoint of an
analytic Toeplitz operator, T ∗

ϕ where ϕ is non constant.

Lemma 3.4. Let T be a bounded linear operator on a complex Banach space E and let us suppose that there
is an analytic mapping h : intσp(T ) → E with h(z) ∈ ker(T − z)\{0} for all z ∈ intσp(T ) and such that
{h(z) : z ∈ intσp(T )} is a total subset of E. Then T has rich point spectrum.

Proof. Let D be an open disc contained in σp(T ) and let g∗ ∈ E∗ such that 〈h(z), g∗〉 = 0 for all z ∈ D. We
must show that then g∗ = 0.We consider the analytic function ϕ : intσp(T ) → C defined by ϕ(z) = 〈h(z), g∗〉.
We have by assumption that ϕ vanishes on D. Then, it follows from the principle of analytic continuation
that ϕ vanishes on intσp(T ). Since the family of eigenvectors {h(z) : z ∈ intσp(T )} is a total set, it follows
that g∗ = 0, as we wanted.

We finish this section with a more general formulation of Theorem 3.1 for intertwining operators.

Theorem 3.5. Let T, S be two bounded linear operators on a complex Banach space, and suppose that there
is some X that intertwines T, S, that is, X 6= 0 and XT = SX. If T has rich point spectrum then

intσp(T ) ⊆ closσp(S).

Proof. Let z ∈ intσp(T ) and let n ∈ N such that D(z, 1/n) ⊆ σp(T ). Since X 6= 0 and since T has rich point
spectrum, there exist zn ∈ D(z, 1/n) and fn ∈ ker(T − z)\{0} such that Xfn 6= 0. Hence,

SXfn = XTfn = znXfn,

and since Xfn 6= 0, this means that zn ∈ σp(S). Taking limits as n→ ∞ yields z ∈ closσp(S).

Notice that Theorem 3.1 becomes a special case of Theorem 3.5 since λ is an extended eigenvalue for T
if and only if there is some non zero operator that intertwines λT and T.

4. The finite continuous Cesàro operator on Lebesgue spaces

Now we focus on the extended eigenvalues and extended eigenoperators for the Cesàro operator C1

defined on the Lebesgue spaces Lp[0, 1] for 1 < p < ∞ by the integral means (1.2). Leibowitz [15] showed
that C1 is indeed a bounded operator on Lp[0, 1] and he computed its spectrum and its point spectrum.

Theorem 4.1. If 0 < λ ≤ 1 then λ is an extended eigenvalue for the Cesàro operator C1 on Lp[0, 1] and a
corresponding extended eigenoperator is the weighted composition operator X0 ∈ B(Lp[0, 1]) defined by

(X0f)(x) = x(1−λ)/λf(x1/λ). (4.1)

10



Proof. First of all, let us show that X0 is indeed a bounded linear operator. We have for every f ∈ Lp[0, 1]

∫ 1

0

|(X0f)(x)|
p dx =

∫ 1

0

xp(1−λ)/λ|f(x1/λ)|p dx

= λ

∫ 1

0

y(p−1)(1−λ)|f(y)|p dy ≤ λ

∫ 1

0

|f(y)|p dy,

and this shows that X0 is bounded on Lp[0, 1] with ‖X0‖ ≤ λ1/p.
Now let us show that X0 is an extended eigenoperator of C1 associated with the extended eigenvalue λ.

Let n ∈ N and notice that X0x
n = x(n+1−λ)/λ, so that

C1X0x
n = C1x

(n+1−λ)/λ =
λ

n+ 1
x(n+1−λ)/λ =

λ

n+ 1
X0x

n = λX0C1x
n,

and since the linear subspace span {xn : n ∈ N} is a dense subset of Lp[0, 1], it follows that C1X0 = λX0C1,
that is, X0 is an extended eigenoperator of C1 associated with the extended eigenvalue λ.

Our next goal is to show that if λ is an extended eigenvalue of the finite continuous Cesàro operator
C1 ∈ B(Lp[0, 1)]) then λ is real and 0 < λ ≤ 1. First we show that C1 has rich point spectrum. Let
1 < p, q <∞ be a pair of conjugate indices, that is,

1

p
+

1

q
= 1.

Leibowitz [15] proved the following result about the point spectrum of C1.

Lemma 4.2. The point spectrum of the Cesàro operator C1 on Lp[0, 1] is the open disc D(q/2, q/2). More-
over, each z ∈ D(q/2, q/2) is a simple eigenvalue of C1 and a corresponding eigenfunction is given by
hz(x) = x(1−z)/z .

The following theorem was conjectured by Borwein and Erdélyi [4] and it was proven by Operstein [16].

Theorem 4.3. (Full Müntz theorem in Lp[0, 1].) Let 1 < p < ∞ and let (rn) be a sequence of distinct real
numbers greater than −1/p. Then the linear subspace span {xr0 , xr1 , . . . , xrn , . . .} is dense in Lp[0, 1] if and
only if

∞
∑

n=0

rn + 1/p

(rn + 1/p)2 + 1
= ∞. (4.2)

Theorem 4.4. The finite continuous Cesàro operator C1 on Lp[0, 1] has rich point spectrum.

Proof. Notice that σp(C1) = D(q/2, q/2) is open and connected. Also, the mapping h : σp(C1) → Lp[0, 1]
defined by h(z)(x) = x(1−z)/z is analytic, and h(z) ∈ ker(C1 − z)\{0}. It is a standard consequence of the
full Müntz theorem that the family of eigenfunctions {h(z) : z ∈ D(q/2, q/2)} is total in Lp[0, 1]. Indeed, it
suffices to consider a sequence of distinct real numbers (zn) with q/2 < zn < q and such that lim zn = q as
n → ∞, since the sequence of exponents rn = (1 − zn)/zn clearly satisfies the condition (4.2). The result
now follows from Lemma 3.4.

Corollary 4.5. If λ is an extended eigenvalue for C1 on Lp[0, 1] then λ is real and 0 < λ ≤ 1.

Proof. This is a consequence of Theorem 3.2 now that we know that C1 has rich point spectrum and that
its point spectrum is the open disc D(q/2, q/2).
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5. The discrete Cesàro operator on sequence spaces

We shall prove in this section that the set of the extended eigenvalues for the discrete Cesàro operator
is the interval [1,∞) when p = 2 and that it is contained in the interval [1,∞) when 1 < p < ∞. Let
us recall that the discrete Cesàro operator C0 is defined on the complex Banach space ℓp by the sequence
of arithmetic means (1.1). Rhoades [19] showed that C0 is indeed a bounded linear operator whose point
spectrum is empty and he proved the following result about the point spectrum of the adjoint operator C∗

0 .

Theorem 5.1. The point spectrum of C∗
0 on the complex Banach space ℓq is the open disc D(q/2, q/2).

Moreover, every z ∈ D(q/2, q/2) is a simple eigenvalue for C∗
0 and a corresponding eigenvector is the

sequence h(z) = (hn(z))n∈N defined by the relations

h0(z) = 1, hn(z) =

n
∏

k=1

(

1−
1

kz

)

for n ≥ 1. (5.1)

Our first goal is to show that if λ is an extended eigenvalue for C0 on ℓp then λ is real and λ ≥ 1. Notice
that the method that we applied to C1 in section 3 does not apply to C0 because the point spectrum of C0

is empty. We consider instead its adjoint C∗
0 .

Theorem 5.2. The adjoint of the discrete Cesàro operator C∗
0 ∈ B(ℓq) has rich point spectrum.

Proof. Notice that σp(C
∗
0 ) = D(q/2, q/2) is open and connected. It is easy to see that the mapping

h : σp(C
∗
0 ) → ℓq defined by equation (5.1) is analytic, and h(z) ∈ ker(C∗

0 − z)\{0}. It is a standard fact
that the family of eigenvectors {h(z) : z ∈ D(q/2, q/2)} is total in ℓq. As a matter of fact, the family of
eigenvectors {f(1/k) : k ∈ N} is total in ℓq, because fn(1/k) 6= 0 if and only if n < k. The result now follows
at once from Lemma 3.4.

Corollary 5.3. If λ is an extended eigenvalue of C0 on ℓp then λ is real and λ ≥ 1.

Proof. First of all, we have λ 6= 0 because C0 is injective. Also, notice that λ is an extended eigenvalue for
C0 if and only if 1/λ is an extended eigenvalue for C∗

0 , and therefore it is enough to show that if λ is an
extended eigenvalue for C∗

0 then λ is real and 0 < λ ≤ 1. This becomes a consequence of Theorem 3.2 now
that we know that C∗

0 has rich point spectrum and that its point spectrum is the disc D(q/2, q/2).

Our next goal is to show in the Hilbertian case p = 2 that if λ is real and λ ≥ 1 then λ is an extended
eigenvalue for C0. Kriete and Trutt [11] showed that C0 is subnormal using the following construction. Let
µ be a positive finite measure defined on the Borel subsets of the complex plane with compact support and
let H2(µ) be the closure of the polynomials on the Hilbert space L2(µ). Consider the shift operator Mz

defined on the Hilbert space H2(µ) by the expression (Mzf)(z) = zf(z). Kriete and Trutt [11] showed that
there is a is a positive finite measure defined on the Borel subsets of the complex plane and supported on D,
and there is a unitary operator U : ℓ2 → H2(µ) such that

I − C0 = U∗MzU,

or in other words
C0 = U∗(I −Mz)U.

Then, the extended eigenvalues of C0 are the extended eigenvalues of I−Mz and the corresponding extended
eigenoperators of C0 are in one to one correspondence with the extended eigenoperators of I −Mz under
conjugation with U, that is, if a non-zero operator X satisfies (I −Mz)X = λX(I −Mz) then the operator
Y = U∗XU satisfies C0Y = λY C0.

Theorem 5.4. If λ ≥ 1 then λ is an extended eigenvalue for I −Mz and a corresponding extended eigen-
operator is the composition operator X defined by the expression

(Xf)(z) = f

(

λ− 1

λ
+
z

λ

)

. (5.2)
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Proof. Let fn = Xzn =

(

λ− 1

λ
+
z

λ

)n

. We have fn+1 =

(

λ− 1

λ
+
z

λ

)

fn so that

λfn+1 = [(λ− 1) +Mz]fn

= λfn − (I −Mz)fn

and it follows that

(I −Mz)fn = λ(fn − fn+1)

so that

(I −Mz)Xz
n = (I −Mz)fn

= λ(fn − fn+1)

= λ(Xzn −XMzz
n)

= λX(I −Mz)z
n,

and since the family of monomials {zn : n ∈ N} is a total set in H2(µ), it follows that (I − Mz)X =
λX(I −Mz).

Corollary 5.5. If λ ≥ 1 then λ is an extended eigenvalue for the discrete Cesàro operator C0 on ℓ2.

6. Extended eigenvalues for bilateral weighted shifts

The third author [18] showed that the set of extended eigenvalues for an injective unilateral weighted
shift is either C\D or C\{0}. We consider in this section the extended eigenvalues for a bilateral weighted
shift W on an infinite dimensional, separable complex Hilbert space H, that is,

Wen = wnen+1, n ∈ Z, (6.1)

where (en)n∈Z is an orthonormal basis of H and the sequence (wn)n∈Z of non-zero weights is bounded.

Theorem 6.1. Let us suppose that an operator T on a complex Banach space is similar to αT for some
complex number α. If λ is an extended eigenvalue for T then λα is an extended eigenvalue for T.

Proof. Let S be an invertible operator such that αT = S−1TS. Let X be an extended eigenoperator
associated with an extended eigenvalue λ of T. We have

TX = λXT = λ(XS)(S−1T ), (6.2)

so that

T (XS) = λ(XS)(S−1TS) = λα(XS)T. (6.3)

Notice that XS 6= 0 because X 6= 0 and S is onto. This means that λα is an extended eigenvalue for T
and XS is a corresponding extended eigenoperator.

Theorem 6.2. If W is a bilateral weighted shift then every λ ∈ T is an extended eigenvalue for W.

Proof. Notice that if W is a bilateral weighted shift and if θ ∈ R then W is unitarily equivalent to eiθW.
Hence, it follows from Theorem 6.1 with α = eiθ and λ = 1 that eiθ is an extended eigenvalue for W. Thus,
the unit circle T = {λ ∈ C : |λ| = 1} is contained in the set of extended eigenvalues for W.
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Shkarin [22] constructed an example of a compact, quasinilpotent bilateral weighted shift W so that the
set of extended eigenvalues of W is the unit circle.

Now we consider the point spectrum of a bilateral weighted shift. We shall follow the discussion in the
classical survey on weighted shift operators by Allen L. Shields [21]. Let us consider the quantities

r+3 (W ) : = lim sup
n→∞

|w0 · · ·wn−1|
1/n, (6.4)

r−2 (W ) : = lim inf
n→∞

|w−1 · · ·w−n|
1/n. (6.5)

It turns out that when r+3 (W ) < r−2 (W ) we have

{z ∈ C : r+3 (W ) < |z| < r−2 (W )} ⊆ σp(W ) (6.6)

σp(W ) ⊆ {z ∈ C : r+3 (W ) ≤ |z| ≤ r−2 (W )}. (6.7)

Also, every z ∈ C with r+3 (W ) < |z| < r−2 (W ) is a simple eigenvalue of W and a corresponding eigenvector
is given by the expression

h(z) = e0 +

∞
∑

n=1

w0 · · ·wn−1

zn
en +

∞
∑

n=1

zn

w−1 · · ·w−n
e−n. (6.8)

Theorem 6.3. Let W be an injective bilateral weighted shift on an infinite-dimensional, separable complex
Hilbert space and suppose that r+3 (W ) < r−2 (W ). If λ is an extended eigenvalue for W then |λ| = 1.

Proof. This result becomes a consequence of Theorem 3.3 if we can show that W has rich point spectrum.
First of all, the interior of the point spectrum of W is the open annulus

G = {z ∈ C : r+3 (W ) < |z| < r−2 (W )}. (6.9)

Notice that this annulus is connected. Consider the analytic function h : G→ H defined by equation (8.9).
We have h(z) ∈ ker(W − z)\{0}. We must show that the family of eigenvectors {h(z) : z ∈ G} is a total
subset of H. Take any vector g =

∑

bnen ∈ H and suppose that 〈f(z), g〉 = 0 for all z ∈ G. We ought to
show that then g = 0. Consider the complex function ϕ : G→ C defined by ϕ(z) = 〈f(z), g〉, so that

ϕ(z) = b0 +

∞
∑

n=1

bn w0 · · ·wn−1
1

zn
+

∞
∑

n=1

b−n
w−1 · · ·w−n

zn, z ∈ G. (6.10)

Thus, ϕ is analytic and it vanishes identically on G. Hence, bn = 0 for all n ∈ Z, that is, g = 0.

Let λ ∈ T and let us consider the diagonal operator X0 = diag (λ−n)n∈Z. We have

X0h(z) = e0 +

∞
∑

n=1

w0 · · ·wn−1

λnzn
en +

∞
∑

n=1

λnzn

w−1 · · ·w−n
e−n = h(λz),

and it follows that
WX0h(z) =Wh(λz) = λzh(λz) = λzX0h(z) = λX0Wh(z),

and since the family of eigenvectors {h(z) : z ∈ Ω} is a total set, it follows that WX0 = λX0W, so that X0

is an extended eigenoperator for W associated with the extended eigenvalue λ. Notice that X0 is a unitary
operator since |λ| = 1.
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7. Extended eigenvalues for analytic Toeplitz operators

Now we focus on Deddens result (3.3) and we show that it can be viewed as a special case of Lemma 3.1.
We first show that the adjoint of a non trivial Toeplitz operator has rich point spectrum. The following
result is a generalization of Lemma 3.4 that suits the case of the adjoint of an analytic Toeplitz operator.

Lemma 7.1. Let T be a bounded linear operator on a complex Banach space E and suppose that there is an
open connected set G ⊆ C, an analytic mapping h : G→ E and a non constant analytic function ψ : G→ C

so that

1. h(z) ∈ ker[T − ψ(z)]\{0} for all z ∈ G, and

2. {h(z) : z ∈ G} is a total set.

Then T has rich point spectrum.

Proof. Since ψ is a non constant function, it follows from the open mapping theorem that ψ(G) is open.
Now it follows from the first condition that ψ(G) is contained in σp(T ), so that intσp(T ) is non empty.
Then let D ⊆ σp(T ) be an open disc, let G0 = ψ−1(D) and let us show that the family of eigenvectors
{f(z) : z ∈ G0} corresponding to eigenvalues ψ(z) ∈ D is a total subset of E. Let g∗ ∈ E∗ be a functional
such that 〈f(z), g∗〉 = 0 for all z ∈ G0. We must show that then g∗ = 0. Consider the analytic function
ϕ : G→ C defined by ϕ(z) = 〈f(z), g∗〉. We have by assumption that ϕ vanishes on G0. Now it follows from
the principle of analytic continuation that ϕ vanishes on G. Since the family of eigenvectors {f(z) : z ∈ G}
is a total subset of E, it follows that g∗ = 0, as we wanted.

Theorem 7.2. If the symbol ϕ is not constant then the adjoint operator T ∗
ϕ has rich point spectrum.

Proof. It suffices to show that T ∗
ϕ satisfies the conditions of Lemma 7.1. Recall that the reproducing kernel

Kz is the function defined for every z ∈ D by the expression

Kz(w) =
1

1− zw
, (7.1)

and it has the property that 〈f,Kz〉 = f(z) for all f ∈ H2(D). It is easy to see that for all z ∈ D we have

T ∗
ϕKz = ϕ(z)Kz. (7.2)

Then, consider the analytic function f : D → H2(D) defined by f(z) = Kz. We have T ∗
ϕf(z) = ϕ(z)f(z), so

that the first condition in Lemma 7.1 is satisfied by the analytic function ψ(z) = ϕ(z). Moreover, it is clear
that the family of eigenvectors {f(z) : z ∈ D} is a total subset of H2(D).

Deddens results (3.2) and (3.3) now follow easily.

Corollary 7.3. If there is an operator X that intertwines two analytic Toeplitz operators Tϕ and Tψ, that
is, such that XTϕ = TψX, then (3.2) holds.

Proof. Taking adjoints yields T ∗
ϕX

∗ = X∗T ∗
ψ with X∗ 6= 0. This means that X∗ intertwines T ∗

ψ and T ∗
ϕ, and

from Theorem 3.5 we get intσp(T
∗
ψ) ⊆ closσp(T

∗
ϕ). We have on the one hand ψ(D) ⊆ intσp(T

∗
ψ) and on the

other hand closσp(Tϕ) ⊆ σ(T ∗
ϕ) = closϕ(D), so that ψ(D) ⊆ closϕ(D), as we wanted.

Corollary 7.4. If the symbol ϕ is not constant and if λ is an extended eigenvalue of Tϕ then (3.3) holds.
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8. Factorization of extended eigenoperators in Hilbert space

Now we consider the problem of describing, for an operator on a complex Hilbert space, the family of all
the extended eigenoperators corresponding to an extended eigenvalue.

Notice that if X0 is a particular extended eigenoperator for an operator T corresponding to an extended
eigenvalue λ ∈ C and if R ∈ {T }′ then X0R is an extended eigenoperator for T corresponding to λ. It is
natural to ask whether or not all the extended eigenoperators arise in this fashion. We provide a factorization
result in Theorem 8.1 under certain conditions that are fulfilled by any bilateral weighted shift whose point
spectrum has non-empty interior.

Our result is based on the construction of an analytic reproducing kernel space H for an operator T with
the nice property that the shift operatorMz is bounded on H and that T ∗ is unitarily equivalent to the shift
operator Mz on the space H. The construction in the particular case of the operator T = I −C∗

0 appears in
the paper by Shields and Wallen [20] and also in the papers by Kriete and Trutt [11, 12].

Then we apply this result to show that if W is a bilateral weighted shift whose point spectrum has non-
empty interior then W has the property that every extended eigenoperator X corresponding to an extended
eigenvalue λ ∈ T factors as a product X = X0R, where X0 = diag (λ−n)n∈Z is a unitary diagonal operator
(a particular extended eigenoperator) and where R ∈ {W}′.

We also discuss the applicability of this result to the finite continuous Cesàro operator or the adjoint of
the discrete Cesàro operator.

Let us recall that an analytic reproducing kernel space on an open set G ⊆ C is a Hilbert space H of
analytic functions f : G → C such that the point evaluations f 7→ f(w) are bounded linear functionals.
If H is an analytic reproducing kernel space on G then for each w ∈ G there exists Kw ∈ H such that
f(w) = 〈f,Kw〉 for every f ∈ H. The function K : G ×G → C defined by the expression K(z, w) = Kw(z)
is called the reproducing kernel of H. It follows from the reproducing property that

K(z, w) = Kw(z) = 〈Kw,Kz〉 = 〈Kz,Kw〉 = Kz(w) = K(w, z).

Since K is analytic in z, it follows that K is co-analytic in w, and K is said to be an analytic kernel.
If ϕ : G→ C is an analytic function such that ϕ · f ∈ H for every f ∈ H then ϕ is called a multiplier. It

follows from the closed graph theorem that the operator Mϕ defined by Mϕf = ϕ · f is bounded.

Theorem 8.1. Let T be an operator on a complex Hilbert space H, let G ⊆ C be an open connected set and
suppose that there is an analytic mapping h : G→ H such that

(i) dimker(T − z) = 1 for every z ∈ G,

(ii) h(z) ∈ ker(T − z)\{0} for every z ∈ G,

(iii) {h(z) : z ∈ G} is a total subset of H.

Then there exists an analytic reproducing kernel space H on G with the property that Mz is bounded on H,
and there exists a unitary operator U : H → H such that T ∗ = U∗MzU.

Proof. Let f ∈ H and let f̂ : G → C be the analytic function defined by the expression f̂(z) = 〈f, h(z)〉.

Let H be the Hilbert space of all functions f̂ provided with the norm ‖f̂‖ = ‖f‖. It is clear that the map

U : H → H defined by Uf = f̂ is a unitary operator and that for every z ∈ G we have

(UT ∗f)(z) = 〈T ∗f, h(z)〉

= 〈f, Th(z)〉

= 〈f, zh(z)〉

= 〈zf, h(z)〉

= (MzUf)(z).

It follows that UT ∗ =MzU, so that Mz is bounded on H, and T ∗ = U∗MzU.
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The following result about multipliers is an important tool for the proof of Theorem 8.6. It is stated as
Lemma 5 in the paper of Shields and Wallen [20].

Lemma 8.2. If ϕ ∈ H∞(G) then the multiplication operator Mϕ defined by Mϕf = ϕ ·f is a bounded linear
operator on H with ‖Mϕ‖ = ‖ϕ‖∞.

Another tool for the proof of Theorem 8.6 is a result that has been extracted with slight modifications
from the proof of the main theorem in the paper by González and the second author [8].

Lemma 8.3. Let T ∈ B(H) be an operator as in Theorem 8.1 and let X ∈ B(H). The following are
equivalent:

(a) TX = XT,

(b) there is a bounded analytic function ϕ : G→ C such that for all z ∈ G,

Xh(z) = ϕ(z)h(z). (8.1)

Proof. First of all, if TX = XT then TXh(z) = XTh(z) = zXh(z), so that Xh(z) ∈ ker(T − z) and it
follows from (i) that there is a function ϕ : G→ C such that Xh(z) = ϕ(z)h(z). We claim that ϕ is analytic.
Let z0 ∈ G and let g ∈ H\{0} such that 〈h(z0), g∗〉 6= 0. Then we have

ϕ(z) =
〈Xh(z), g〉

〈h(z), g〉
, (8.2)

so that ϕ is analytic at z0 because it is the quotient of two analytic functions where the denominator does
not vanish in a neighborhood of z0. Also, it is clear that ϕ is bounded with ‖ϕ‖∞ ≤ ‖X‖. Conversely,
suppose (b) holds. We have

TXh(z) = ϕ(z)Th(z)

= zϕ(z)h(z)

= zXh(z)

= XTh(z).

Finally, it follows from (iii) that TX = XT.

The next result is the key to the factorization of an extended eigenoperator.

Lemma 8.4. Let T be an operator as in Theorem 8.1 and let λ be an extended eigenvalue of T. Let us
suppose that λ satisfies λ · G ⊆ G and let X be a corresponding extended eigenoperator. Then there exists
an analytic function ϕ : G→ C such that for all z ∈ G we have

Xh(z) = ϕ(z)h(λz). (8.3)

Proof. First of all, since X is an extended eigenoperator corresponding to λ and since h(z) is an eigenvector
corresponding to z, we get

TXh(z) = λXTh(z) = λzXh(z)

for every z ∈ G. This means that Xh(z) ∈ ker(T − λz), and it follows from (i) that there is a function
ϕ : G → C such that Xh(z) = ϕ(z)h(λz). We claim that ϕ is analytic. Indeed, let z0 ∈ G and let g ∈ H
such that 〈f(λz0), g〉 6= 0. Then

ϕ(z) =
〈Xh(z), g〉

〈h(λz), g〉
, (8.4)

so that ϕ is analytic at z0 because it is the quotient of two analytic functions where the denominator does
not vanish in a neighborhood of z0.
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We say that an analytic reproducing kernel space H is dilation invariant provided that, for every λ ∈ C

such that λG ⊆ G, the composition operator Y0 defined by the expression

(Y0f̂)(z) = f̂(λz). (8.5)

is a bounded linear operator on H.

Lemma 8.5. Let us suppose that the model space H of Theorem 8.1 is dilation invariant, let λ be a complex
scalar such that λG ⊆ G, let Y0 be the composition operator defined on H by equation (8.5), and set
X0 = U∗Y0U. Then λ is an extended eigenvalue for T and X0 is a corresponding extended eigenoperator.

Proof. We claim that X0h(z) = h(λz) for every z ∈ G. The result then follows easily because

TX0h(z) = Th(λz)

= λzh(λz)

= λzX0h(z)

= λX0Th(z),

and from (iii) we get TX0 = λX0T. Now, for the proof of our claim, observe that UX0 = Y0U, so that
UX0h(z) = Y0Uh(z) = Uh(λz), and the claim follows.

Theorem 8.6. Suppose that the model space H of Theorem 8.1 is dilation invariant and that the extended
eigenoperator X0 of Theorem 8.5 is bounded below, i.e., there is a constant c > 0 such that ‖X0f‖ ≥ c‖f‖.
If X is an extended eigenoperator for T corresponding to λ then there exists R ∈ {T }′ such that X = X0R.

Proof. First of all, apply Lemma 8.4 to find an analytic function ϕ : G→ C such that for all z ∈ G,

Xh(z) = ϕ(z)h(λz). (8.6)

Notice that Xh(z) = ϕ(z)X0h(z), and since X0 is bounded below, we get

|ϕ(z)| =
‖Xh(z)‖

‖X0h(z)‖
≤

1

c
·
‖Xh(z)‖

‖h(z)‖
≤

1

c
· ‖X‖,

so that ϕ is bounded. Then, consider the analytic function ψ(z) = ϕ(z). Thus, ψ ∈ H∞(G), and according
to Lemma 8.1, the multiplication operator Mψ defined by Mψf = ψ · f is a bounded linear operator on H.
Next, consider the operator R = U∗M∗

ψU. We claim that for all z ∈ G we have

Rh(z) = ϕ(z)h(z). (8.7)

Indeed, from the definition of R we have

URh(z) =M∗
ψUh(z),

so that for all z, ξ ∈ G we get

[URh(z)](ξ) = [M∗
ψUh(z)](ξ)

= 〈M∗
ψUh(z), Uh(ξ)〉

= 〈Uh(z),MψUh(ξ)〉

= 〈MψUh(ξ), Uh(z)〉

= [MψUh(ξ)](z)

= ψ(z) · [Uh(ξ)](z)

= ϕ(z) · 〈Uh(ξ), Uh(z)〉

= ϕ(z) · 〈Uh(z), Uh(ξ)〉

= ϕ(z) · [Uh(z)](ξ),
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so that URh(z) = ϕ(z)Uh(z) for all z ∈ G and the claim follows. Finally, it follows from equation (8.7) and
Lemma 8.3 that R ∈ {T }′. Moreover, Xh(z) = ϕ(z)X0h(z) = X0Rh(z) for all z ∈ G, and it follows from
(iii) that X = X0R, as we wanted.

LetW be an injective bilateral weighted shift on an infinite-dimensional, separable complex Hilbert space
H, so that for every n ∈ Z we have

Wen = wnen+1, (8.8)

where (en)n∈Z is an orthonormal basis of H and the sequence (wn)n∈Z of non-zero weights is bounded.
Recall that the point spectrum of W is the open annulus G = {z ∈ C : r+3 (W ) < |z| < r−2 (W )}. Also, recall
that every z ∈ G is a simple eigenvalue of W and a corresponding eigenvector is given by

h(z) = e0 +

∞
∑

n=1

w0 · · ·wn−1

zn
en +

∞
∑

n=1

zn

w−1 · · ·w−n
e−n. (8.9)

It is easy to see that conditions (i), (ii) and (iii) of Theorem 8.1 are satisfied. Then, let λ ∈ T and
consider the unitary diagonal operator X0 = diag (λ−n)n∈Z. A direct computation shows that that X0 is an
extended eigenoperator for W corresponding to the extended eigenvalue λ, and moreover, X0h(z) = h(λz).
Therefore, the model space H of Theorem 2.3 is dilation invariant, and the operator X0 is bounded below.
Thus, we get the following

Corollary 8.7. Let W be an injective bilateral weighted shift on an infinite dimensional, separable complex
Hilbert space and suppose that r+3 (W ) < r−2 (W ). Let X be an extended eigenoperator for W correponding to
some extended eigenvalue λ ∈ T. Then X admits a factorization

X = X0R,

where X0 = diag (λ−n)n∈Z is a unitary diagonal operator (a particular extended eigenoperator for T ) and
where R ∈ {W}′.

Let us see if Theorem 8.1 can be applied to C1. Let G = {z ∈ C : |z − 1| < 1} and let h : G→ L2[0, 1] be
the analytic mapping defined by the expression

h(z)(x) = x(1−z)/z . (8.10)

We have already seen that the conditions (i), (ii) and (iii) of Theorem 8.1 are fulfilled. Then, let 0 < λ ≤ 1
and consider the weighted composition operator X0 defined on L2[0, 1] by the expression

(X0f)(x) = x(1−λ)/λf(x1/λ).

We know that X0 is bounded with ‖X0‖ ≤ λ1/2 and that X0h(z) = h(λz). It follows that the model space
H is dilation invariant. However, we cannot apply Theorem 8.6 because X0 is not bounded below. Indeed,
if X0 is bounded below then there is a constant c > 0 such that ‖X0f‖ ≥ c‖f‖ for all f ∈ L2[0, 1], so that

1

c2
≥

‖h(z)‖22
‖X0h(z)‖22

=
‖f(z)‖22
‖f(λz)‖22

=
2Re

1− λz

λz
+ 1

2Re
1− z

z
+ 1

=

2

(

1− λ

λ
+

1

λ
Re

1− z

z

)

+ 1

2Re
1− z

z
+ 1

→ ∞ as z → 2,
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and this is a contradiction.
Let us see if Theorem 8.1 can be applied to the adjoint of the discrete Cesàro operator. We consider

the operator T = V C∗
0V

∗ ∈ B(H2(D)) and the analytic mapping h : G → H2(D) defined by the expression
h(z) = V g(z), so that h(z)(ξ) = (1 − ξ)(1−z)/z . It is easy to see that h is analytic on G and that the
conditions (i), (ii) and (iii) of Theorem 8.1 are satisfied. However, we cannot apply Theorem 8.5 because
the model space H fails to be dilation invariant. Indeed, if H is dilation invariant then for every 0 < λ < 1
there is a constant c > 0 such that ‖h(λz)‖ ≤ c‖h(z)‖. When λ = 1/2, we set z = 1/(n+ 1) and we get

h(z)(ξ) = (1 − ξ)n,

h(z/2)(ξ) = (1 − ξ)2n+1,

so that for every n ∈ N we have

‖(1− ξ)2n+1‖2H2(D) ≤ c2‖(1− ξ)n‖2H2(D).

Use the binomial theorem to get

(1 − ξ)n =

n
∑

k=0

(−1)k
(

n

k

)

ξk.

It follows from Parseval’s identity that

‖(1− ξ)n‖2H2(D) =
n
∑

k=0

(

n

k

)2

=

(

2n

n

)

.

Then we have

c2 ≥
‖(1− ξ)2n+1‖2H2(D)

‖(1− ξ)n‖2H2(D)

=

(

4n+ 2

2n+ 1

)

(

2n

n

)

=
(4n+ 2)!n!n!

(2n+ 1)! (2n+ 1)! (2n)!
,

but using Stirling’s formula, the last expression is approximately 22n+2, and this is a contradiction.

9. The infinite continuous Cesàro operator on Hilbert space

As we mentioned in the introduction, in this section we show that, in contrast with the operator C1, the
set of extended eigenvalues for the operator C∞ is as small as it can be, that is, it reduces to {1}.

There are several examples of Hilbert space operators with this property in the literature. It is worth
mentioning some of them. Biswas and the third author [3] showed that if Q ∈ B(H) is a quasinilpotent
operator then the set of extended eigenvalues for α + Q for every complex number α 6= 0 reduces to {1}.
They also showed when dimH < ∞ that the set of extended eigenvalues for T ∈ B(H) reduces to {1} if
and only if σ(T ) = {α} for some complex number α 6= 0. Finally, an example was given by Shkarin [22]
of a compact quasinilpotent operator on a Hilbert space whose set of extended eigenvalues reduces to {1},
answering at once two questions raised by Biswas, Lambert and the third author [2].

Brown, Halmos and Shields [6] proved that C∞ is indeed a bounded linear operator, and they also proved
that I − C∗

∞ is unitarily equivalent to a bilateral shift of multiplicity one.
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Recall that a bounded linear operator U on a complex Hilbert space H is a bilateral shift of multiplicity
one provided that there is an orthonormal basis (en) of H such that Uen = en+1 for all n ∈ Z.

Consider a bilateral shift of multiplicity one U ∈ B(L2[0, 1]) and a unitary operator V ∈ B(L2[0, 1]) such
that I − C∗

∞ = V ∗UV. We have
C∞ = V ∗(I − U∗)V,

and it follows that the extended eigenvalues of C∞ are precisely the extended eigenvalues of I − U∗, and
that the extended eigenoperators of C∞ are in one to one correspondence with the extended eigenoperators
of I − U∗ under conjugation with V.

Lemma 9.1. Let X be an operator satisfying (I −U∗)X = λX(I −U∗), and let . . . X−1, X0, X1, X2, . . . be
the rows of the matrix of X. Then

Xn+1 = (λU + 1− λ)Xn,

for all n ∈ Z. Consequently, for any m,n ∈ N,

Xm+n = (λU + 1− λ)nXm.

In particular, if m = 0, Xn = (λU + 1− λ)
n
X0, for all n ∈ N.

Proof. Taking adjoints we obtain X∗(I − U) = λ(I − U)X∗ so that X∗en −X∗en+1 = λ(I − U)X∗en and
therefore X∗en+1 = (λU +1−λ)X∗en. Hence, Xn+1 = X∗en+1 = (λU +1−λ)X∗en = (λU +1−λ)Xn.

Theorem 9.2. Let U be a bilateral shift of multiplicity one, and let λ be a complex number with λ 6= 1.
Then the equation (I − U∗)X = λX(I − U∗) has only the trivial solution X = 0.

Proof. Let A be a subset of the interval [0, 2π) such that |λeit + 1 − λ| > 1 for all t ∈ A. Each row Xn of
the matrix for X is a doubly infinite, square summable sequence of complex numbers, so it can be identified
with a function in L2(T), with these complex numbers as its Fourier coefficients. Since every point on the
unit circle is of the form eit for a unique t ∈ [0, 2π), the set A corresponds to a subset A′ of T. We will
show that X0 is equal to 0 almost everywhere on A′. Indeed, if that was not the case, there would exist a
set A0 ⊂ A of positive measure and a constant c > 0 such that |X0(t)| ≥ c and |λeit + 1− λ| ≥ 1 + c for all
t ∈ A0. It would then follow that for every n ∈ N,

‖Xn‖
2 =

∫ 2π

0

|Xn(t)|
2 dt

=

∫ 2π

0

| (λU + 1− λ)nX0(t)|
2 dt

=

∫ 2π

0

|
(

λeit + 1− λ
)n

|2 |X0(t)|
2 dt

≥

∫

A0

|
(

λeit + 1− λ
)n

|2|X0(t)|
2 dt

≥

∫

A0

(1 + c)2nc2 dt→ ∞, as n→ ∞.

Now we turn our attention to the set B ⊂ [0, 2π) such that |λeit + 1 − λ| < 1 for all t ∈ B. Once again,
X0 is equal to 0 for almost every t ∈ B. Otherwise, there would be a set B0 ⊂ B of positive measure and a
constant d ∈ (0, 1) such that |X0(t)| ≥ d and d ≤ |λeit + 1 − λ| ≤ 1− d for all t ∈ B0. It would then follow
that for every negative integer n,

‖Xn‖
2 =

∫ 2π

0
|Xn(t)|2 dt ≥

∫

B0
|Xn(t)|2 dt =

∫

B0
|X0(t)|2|λeit + 1− λ|2n dt

≥
∫

B0
d2(1− d)2n dt→ ∞, as n→ −∞.
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Thus, the function X0 is zero almost everywhere on A∪B. The complement of this set in [0, 2π) consists of
two points. These are the points of intersection of the unit circle and the circle with center (1 − λ)/λ and
radius 1/|λ|. The only exceptions occurs when λ = 1 and λ = 0. In the former case, the two circles coincide,
and in the latter |λeit + 1− λ| = 1 for all t ∈ [0, 2π). However, the case λ = 0 has been ruled out since the
kernel of I − U∗ is trivial.

We conclude that, unless λ = 1, X0 is the zero function in L2([0, 2π)) and, by Lemma 9.1, the same is
true of Xn for any n ∈ Z. Consequently, X = 0 and the theorem is proved.

10. The infinite continuous Cesàro operator on Lebesgue spaces

Let 1 < p, q <∞ be conjugate indices, that is,

1

p
+

1

q
= 1.

Our aim in this section is to show that the set of extended eigenvalues for the infinite continuous Cesàro
operator C∞ on the complex Banach space Lp[0,∞) reduces to the singleton {1}.

Before we present our result we define a sequence of functions {en}n∈Z in Lq(0,∞). This construction
is modeled after the one in [6] for the case q = 2. Let e0 = χ(0,1), and let

en = (1 − 2/q C∗
∞)ne0, for n ∈ N.

Next, we define an operator R on the linear span of {en}n∈N by

Rf(x) = −x−2/qf

(

1

x

)

,

and define e−n = Ren−1(x), for n ∈ N.

Proposition 10.1. Let the sequence of functions {en}n∈Z be defined as above. Then {en}n∈Z is a linearly
independent set of functions in Lq(0,∞) and its closed linear span is Lq(0,∞). Further, the operator
1− 2/q C∗

∞ shifts this sequence, i.e., (1 − 2/q C∗
∞)en = en+1 for all n ∈ Z. Finally, for any γ ∈ (0, 1) there

exists K = K(γ) such that ‖en‖ ≤ Kγ−n if n ≥ 0, and ‖en‖ ≤ Kγn if n < 0.

Proof. We start with the observation that the Cesaro operator C∞ is a bounded operator on Lp(0,∞), so its
adjoint C∗

∞ is bounded on Lq(0,∞). Therefore, en ∈ Lq(0,∞) for n ≥ 0. Furthermore, it is straightforward
to verify that ‖Ren‖q = ‖en‖q, so en ∈ Lq(0,∞) for n < 0 as well.

Next we will show that {en}n∈Z is a total set in Lq(0,∞). First we notice that for n ≥ 0, each function
en vanishes outside [0, 1], and for n < 0 outside of (1,+∞). In both cases it suffices to demonstrate that if a
bounded linear functional vanishes on all {en} then it must be the zero functional. Further, each functional
on Lq(0, 1) can be represented by a function g ∈ Lp(0, 1). So, suppose that g is such a function and that
∫ 1

0 eng = 0 for all n ≥ 0. Let gn = (I −C∗
∞)ne0, for n ≥ 0. It was proved in [6] that {gn} is an orthonormal

system in L2(0, 1). Further,

gn =

[

1−
q

2
+
q

2

(

1−
2

q
C∗

∞

)]n

e0 =

n
∑

i=0

(

n

i

)

(

1−
q

2

)n−i (q

2

)i

ei,

so
∫ 1

0 gng = 0 for all n ≥ 0. Thus, any bounded linear functional that vanishes on {en} must vanish on
{gn}, hence on L2(0, 1), and it must be zero. When n < 0, we will assume that g ∈ Lp(1,∞) and that
∫∞

1 e−ng = 0 for all n ≥ 1. However, using the substitution t = 1/x,

∫ ∞

1

e−n(x)g(x) dx = −

∫ ∞

1

x−2/qen−1(1/x)g(x) dx

= −

∫ 1

0

t−2/pen−1(t)g(1/t) dt.
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So, the previous case implies that t−2/pg(1/t) is the zero function, whence g = 0.
Next we consider the set F defined as follows. A function f ∈ Lq(0,∞) belongs to F if there exists a

sequence of complex numbers {cn}n∈Z such that f =
∑

n∈Z
cnen. Since {en}n∈Z is a total set, F is dense

in Lq(0,∞). Now we will show that if f ∈ F , there is exactly one sequence {cn}n∈Z. In order to do that it
suffices to demonstrate that, if

∑

k∈Z
ckek = 0 then ck = 0 for all k ∈ Z. Notice that

∥

∥

∥

∥

∥

∑

k∈Z

ckek

∥

∥

∥

∥

∥

q

=

∫ ∞

0

∣

∣

∣

∣

∣

∑

k∈Z

ckek

∣

∣

∣

∣

∣

q

=

∫ 1

0

∣

∣

∣

∣

∣

∞
∑

k=0

ckek

∣

∣

∣

∣

∣

q

+

∫ ∞

1

∣

∣

∣

∣

∣

−1
∑

k=−∞

ckek

∣

∣

∣

∣

∣

q

=

∥

∥

∥

∥

∥

−1
∑

k=−∞

ckek

∥

∥

∥

∥

∥

q

+

∥

∥

∥

∥

∥

∞
∑

k=0

ckek

∥

∥

∥

∥

∥

q

,

so we can consider separately n ≥ 0 and n < 0. We start with n ≥ 0. Let α ∈ D(q/2, q/2) and fα(x) =

x(1−α)/α. Since ‖f‖q ≥ |
∫ 1

0
ffα|/‖fα‖p for any f ∈ Lq(0, 1) and fα ∈ Lp(0, 1) it follows that

∫ 1

0

(

∞
∑

k=0

ckek

)

fα = 0.

Notice that, if k ≥ 0

∫ 1

0

ekfα =

∫ 1

0

(

1−
2

q
C∗

∞

)k

e0fα =

∫ 1

0

e0

(

1−
2

q
Ck∞

)

fα.

Further, (1− 2/q C∞)kfα = (1− 2/q α)kfα + vk, where vk is a function that vanishes on (0, 1). Thus,

∫ 1

0

∞
∑

k=0

ck

(

1−
2

q
α

)k

fα = 0.

It is easy to see that
∫ 1

0
fα 6= 0, so we obtain that

∞
∑

k=0

ck

(

1−
2

q
α

)k

= 0.

This implies that the analytic function
∑∞

k=0(1− 2z/q)k vanishes in the disc D(q/2, q/2), whence ck = 0 for
all k. This settles the case n ≥ 0 and we turn our attention to n < 0. We will use the identity

e−n(x) = −x−2/qen−1(1/x) (10.1)

which holds for all n ∈ N, and follows directly from the definition of e−n. Suppose that there exist complex
numbers {ck} such that

∥

∥

∥

∥

∥

∞
∑

k=1

cke−k

∥

∥

∥

∥

∥

= 0.

Using (10.1), it follows that
∫ ∞

1

∣

∣

∣

∣

∣

∞
∑

k=1

ckx
−2/qek−1(1/x)

∣

∣

∣

∣

∣

q

dx = 0.

With the substitution t = 1/x we obtain

∫ 1

0

∣

∣

∣

∣

∣

∞
∑

k=1

ckek−1(t)

∣

∣

∣

∣

∣

q

dt = 0,
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so the result follows from the previous case.
Our next step is to establish the desired estimate on the norm of en. To that end, we notice that the

spectrum of 1 − (2/q)C∗ is the unit circle. Thus, if γ ∈ (0, 1), the spectral radius of γ(1 − (2/q)C∗) is less
than one. It follows that this operator is similar to a strict contraction, hence power bounded. That is,
there exists K > 0 such that for n ≥ 0, ‖(γ − (2γ/q)C∗)n‖ ≤ K. Therefore,

‖en‖ =

∥

∥

∥

∥

(

1−
2

q
C∗

∞

)n

e0

∥

∥

∥

∥

≤

(

1

γ

)n

K‖e0‖ = K

(

1

γ

)n

.

As we had already noticed, ‖e−n‖ = ‖en−1‖ so the analogous estimate for en indexed by negative integers
follows.

Finally, we will prove that (1 − 2/q C∗
∞)en = en+1 for all n ∈ Z. For n ≥ 0 this is just the definition of

en, so we focus on the case n < 0. We will show that, for n ≥ 0,
(

1−
2

q
C∗

∞

)

R

(

1−
2

q
C∗

∞

)

en = Ren. (10.2)

Once this is established the result will easily follow. Indeed, if n > 1 then
(

1−
2

q
C∗

∞

)

e−n =

(

1−
2

q
C∗

∞

)

Ren−1

= R

(

1−
2

q
C∗

∞

)−1

en−1

= Ren−2 = e−n+1.

When n = 1
(

1−
2

q
C∗

∞

)

e−1(x) =

(

1−
2

q
C∗

∞

)

Re0(x)

= −

(

1−
2

q
C∗

∞

)

x−2/qe0

(

1

x

)

= −x−2/qe0

(

1

x

)

+

(

2

q

)
∫ ∞

x

t−2/qe0(1/t)

t
dt.

Since e0 = χ(0,1), if 0 < x < 1 then e0(1/x) = 0 and the domain of integration is reduced to (1,+∞). Thus,
we obtain

(

2

q

)
∫ ∞

1

t−2/q

t
dt = 1.

If x ≥ 1 then e0(1/x) = 1 so we obtain

−x−2/q +

(

2

q

)
∫ ∞

x

t−2/q

t
dt = 0.

We conclude that (1− 2/qC∗
∞)e−1 = e0.

Thus it remains to establish the identity (10.2). Let f be any function in Lq(0,∞) that vanishes outside
the interval (0, 1). Then

(

1−
2

q
C∗

∞

)

R

(

1−
2

q
C∗

∞

)

f =

= −x−2/qf

(

1

x

)

+
2

q
x−2/q

∫ ∞

1/x

f(t)

t
dt

+
2

q

∫ ∞

x

t−2/qf(1/t)

t
dt−

4

q2

∫ ∞

x

t−2/q

t
dt

∫ ∞

1/t

f(s)

s
ds.

(10.3)
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If 0 < x < 1 the first two terms are equal to 0, and in the remaining two, the domains of integration are
changed. We obtain

2

q

∫ ∞

1

t−2/qf(1/t)

t
dt−

4

q2

∫ ∞

1

t−2/q

t
dt

∫ 1

1/t

f(s)

s
ds.

Now the substitution u = 1/t followed by the change in the order of integration in the second term yields

2

q

∫ 1

0

u2/qf(u)

u
du−

4

q2

∫ 1

0

u2/q

u
du

∫ 1

u

f(s)

s
ds

=
2

q

∫ 1

0

u2/qf(u)

u
du−

4

q2

∫ 1

0

f(s)

s
ds

∫ s

0

u2/q

u
du

=
2

q

∫ 1

0

u2/qf(u)

u
du−

4

q2

∫ 1

0

f(s)

s

q

2
s2/q ds = 0.

If x ≥ 1, we will obtain that all the terms in (10.3) except for the first cancel. Once again, we use the
substitution u = 1/t in the last two terms and obtain

− x−2/qf

(

1

x

)

+
2

q
x−2/q

∫ ∞

1/x

f(t)

t
dt (10.4)

+
2

q

∫ 1/x

0

u2/qf(u)

u
du−

4

q2

∫ 1/x

0

u2/q

u
du

∫ ∞

u

f(s)

s
ds. (10.5)

Further, after interchanging the order of integration in the iterated integral, it becomes

∫ 1/x

0

f(s)

s
ds

∫ s

0

u2/q

u
du +

∫ ∞

1/x

f(s)

s
ds

∫ 1/x

0

u2/q

u
du

=

∫ 1/x

0

f(s)

s

q

2
s2/q ds+

∫ ∞

1/x

f(s)

s

q

2
x−2/q ds,

so it is easy to see that we have the announced cancelation. Combining these two cases we conclude that

(

1−
2

q
C∗

∞

)

R

(

1−
2

q
C∗

∞

)

f = Rf.

whenever f vanishes outside (0, 1). In particular, if f = en for n ≥ 0, we obtain (10.2).

Proposition 10.2. Let {en}n∈Z and F be as in Proposition 10.1 and let 0 < θ < 1. Let Wθ : F → Lq(0, 2π)
be a linear transformation defined by

Wθen =
θ|n|

(1− θ)max{1/p,1/q}
eint, for n ∈ Z,

and extended linearly. Then there is a constant K = K(p, q) such that, for any θ ∈ (0, 1) and any f ∈ F ,
‖Wθf‖ ≤ K‖f‖. Consequently, Wθ extends to a bounded linear operator Wθ : L

q(0,∞) → Lq(0, 2π).

Proof. We will show that there exists such a constant K that does not depend on θ and such that, for any
f =

∑∞
k=−∞ ckek ∈ Lq(0,∞) and any n ∈ N,

∥

∥

∥

∥

∥

n
∑

k=−n

ckθ
|k|eikt

∥

∥

∥

∥

∥

≤
K

(1− θ)max{1/p,1/q}

∥

∥

∥

∥

∥

n
∑

k=−n

ckek

∥

∥

∥

∥

∥

. (10.6)
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We start with the fact that
∑n
k=−n ckθ

|k|eikt is continuous, so its modulus attains its maximum at some
t0 ∈ [0, 2π]. Consequently,

∥

∥

∥

∥

∥

n
∑

k=−n

ckθ
|k|eikt

∥

∥

∥

∥

∥

q

=

∫ 2π

0

∣

∣

∣

∣

∣

n
∑

k=−n

ckθ
|k|eikt

∣

∣

∣

∣

∣

q

dt

≤ 2π

∣

∣

∣

∣

∣

n
∑

k=−n

ckθ
|k|eikt0

∣

∣

∣

∣

∣

q

= 2π

∣

∣

∣

∣

∣

n
∑

k=0

ck

(

1−
2

q
α

)k

+

−1
∑

k=−n

ck

(

1−
2

q
β

)−k
∣

∣

∣

∣

∣

q

,

where α = q/2(1− θe−it0) and β = q/2(1− θeit0). Let

g1(x) =

(

1−
2

q
β

)−1

βχ(0,1)(x)x
(1−α)/α,

g2(x) = −αχ(1,∞)(x)x
−2/p−(1−β)/β ,

and g = g1 + g2. Notice that g belongs to Lp(0,∞). Indeed, it suffices to establish that

Re

(

p(1− α)

α

)

> −1 and Re

(

−2−
p(1− β)

β

)

< −1.

These inequalities can be reduced to Re(1/α) > 1/q and Re(1/β) > 1/q, which in turn is equivalent to
α, β ∈ D(q/2, q/2). Since these are obvious, g ∈ Lp(0,∞). Moreover,

‖g‖p =

∫ ∞

0

|g1 + g2|
p

=

∫ 1

0

∣

∣

∣

∣

1−
2

q
β

∣

∣

∣

∣

−p

|βx(1−α)/α|p +

∫ ∞

1

|αx−2/p−(1−β)/β |p

=
1

θp
|β|p

1

1 + Re p 1−α
α

+ |α|p
1

1 + Re p 1−β
β

.

Further,

1 + Re
p(1− α)

α
= 1− p+ pRe

1

α

= 1− p+
p

|α|2
Re(α)

= 1− p+
2p

q|1− θe−it0 |2
Re(1− θeit0)

=
p

q

(

−1 + 2
1− θ cos t0

1− 2θ cos t0 + θ2

)

=
p

q

1− θ2

1− 2θ cos t0 + θ2
,

and the same equality holds with β in place of α. Using the relation α = β, we obtain that

‖g‖ =

(

1
θp

|β|p

1+Re p(1−α)
α

+ |α|p

1+Re p(1−β)
β

)1/p

(10.7)

=
(

1
θp + 1

)1/p
|α|
(

q
p
1−2θ cos t0+θ

2

1−θ2

)1/p

(10.8)

=
(

(θp+1)q
(θ+1)p

)1/p
|α|1+2/p

θ(1−θ)1/p
. (10.9)
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Next,
∥

∥

∥

∥

∥

n
∑

k=−n

ckek

∥

∥

∥

∥

∥

≥

∣

∣

∣

∣

∣

∫ ∞

0

n
∑

k=−n

ckek g

∣

∣

∣

∣

∣

1

‖g‖

=

∣

∣

∣

∣

∣

∫ ∞

0

n
∑

k=−n

ckek g1 + g2

∣

∣

∣

∣

∣

1

‖g‖

=

∣

∣

∣

∣

∣

∫ ∞

0

n
∑

k=0

ckek g1 +

∫ ∞

0

−1
∑

k=−n

ckek g2

∣

∣

∣

∣

∣

1

‖g‖

=

∣

∣

∣

∣

∣

∫ ∞

0

n
∑

k=0

ck

(

1−
2

q
C

∗
∞

)k

e0 g1 +

∫ ∞

0

−1
∑

k=−n

ckRe−k−1 g2

∣

∣

∣

∣

∣

1

‖g‖

=

∣

∣

∣

∣

∣

∫ ∞

0

n
∑

k=0

cke0

(

1−
2

q
C∞

)k

g1 +

∫ ∞

0

−1
∑

k=−n

ckR

(

1−
2

q
C

∗
∞

)−k−1

e0 g2

∣

∣

∣

∣

∣

1

‖g‖

=

∣

∣

∣

∣

∣

∫

1

0

n
∑

k=0

cke0

(

1−
2

q
α

)k

g1 +

∫ ∞

0

−1
∑

k=−n

cke0

(

1−
2

q
C∞

)−k−1

R
∗
g2

∣

∣

∣

∣

∣

1

‖g‖
.

It is not hard to see that the operator R∗ is given by the formula R∗f(x) = −x−2/pf(1/x), so

R∗g2(x) = αx−2/pχ(1,∞)(1/x)x
2/p+(1−β)/β = αχ(0,1)(x)x

(1−β)/β = αfβ(x).

Therefore, the second integral can be written as

α

∫ 1

0

−1
∑

k=−n

cke0(x)

(

1−
2

q
C

)−k−1

fβ(x) dx

= α

∫ 1

0

−1
∑

k=−n

cke0(x)

(

1−
2

q
β

)−k−1

fβ(x) dx

= αβ

−1
∑

k=−n

ck

(

1−
2

q
β

)−k−1

= αβ

(

1−
2

q
β

)−1 −1
∑

k=−n

ck

(

1−
2

q
β

)−k

.

Since the first integral equals

αβ

(

1−
2

q
β

)−1 n
∑

k=0

ck

(

1−
2

q
α

)k

,

we obtain that
∥

∥

∥

∥

∥

n
∑

k=−n

ckek

∥

∥

∥

∥

∥

≥

∣

∣

∣

∣

∣

αβ

(

1−
2

q
β

)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

k=0

ck

(

1−
2

q
α

)k

+
−1
∑

k=−n

ck

(

1−
2

q
β

)−k
∣

∣

∣

∣

∣

1

‖g‖

=
|α|2

θ

1

(2π)1/q
‖

n
∑

k=−n

ckθ
|k|

e
ikt‖

(

(θ + 1)p

(θp + 1)q

)1/p
θ(1− θ)1/p

|α|1+2/p

≥

(

p

q

)1/p
1

(2π)1/q
|α|1−2/p(1− θ)1/p

∥

∥

∥

∥

∥

n
∑

k=−n

ckθ
|k|

e
ikt

∥

∥

∥

∥

∥
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If 1 < p ≤ 2 then 1− 2/p ≤ 0, so

|α|1−2/p ≥
( q

2

)1−2/p

(1 + θ)1−2/p >
(q

2

)1−2/p

21−2/p.

If p > 2 then 1− 2/p > 0, so

|α|1−2/p ≥
(q

2

)1−2/p

(1 − θ)1−2/p

and it follows that, in this case,

|α|1−2/p(1− θ)1/p ≥
(q

2

)1−2/p

(1− θ)1−2/p+1/p =
(q

2

)1−2/p

(1− θ)1/q .

Therefore, there exists K = K(p, q) such that (10.6) holds. We conclude that W is a bounded linear
transformation and that ‖W‖ ≤ K.

Theorem 10.3. Let C∞ be the Cesaro operator on Lp(0,∞) for 1 < p ≤ ∞, and let λ 6= 1 be a complex
number. If X is a bounded linear operator on Lp(0,∞) such that C∞X = λXC∞, then X = 0.

Proof. Let q be the exponent conjugate to p, i.e., 1/p+ 1/q = 1. Since C∞ acts on Lp(0,∞), its conjugate
operator C∗

∞ is a bounded operator acting on Lq(0,∞). Let {en}n∈Z be set of functions inf Lq(0,∞) as
defined above, let θ ∈ (0, 1), and let W =Wθ be as in Proposition 10.2.

Next, let Mz be the operator of multiplication by eit on Lq(0, 2π), and let Γ be a weighted shift on
Lq(0, 2π) with weight sequence {µn}, i.e.,

Γeint = µne
i(n+1)t, with µn =

{

θ, if n ≥ 0,

1/θ if n < 0,
=
θ|n+1|

θ|n|
.

Then

(

1−
2

q
C∗

∞

)

en =Wen+1 =
θ|n+1|

(1− θ)max{1/p,1/q}
ei(n+1)t

=
µnθ

|n|

(1− θ)max{1/p,1/q}
Mze

int

= ΓWen

so W (1− 2/q C∗
∞) = ΓW . Further if C∞X = λXC∞ then X∗C∗

∞ = λC∗
∞X

∗, so we have

X∗

(

1−
2

q
C∗

∞

)

=

(

1−
2

q
λC∗

∞

)

X∗.

This implies that (1− 2/qλC∗
∞)X∗en = X∗(1− 2/qC∗

∞)en = X∗en+1 and, inductively, that

X∗en = (1−
2

q
λC∗

∞)nX∗e0, (10.10)

for all n ∈ Z. Notice that

W

(

1−
2

q
λC∗

∞

)

=W

(

1− λ+ λ−
2

q
λC∗

∞

)

= (1− λ)W + λW

(

1−
2

q
C∗

∞

)

= UW,
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where U = 1− λ+ λΓ. By the definition of Γ, we have

Ueint =
[

(1− λ) + λθeit
]

eint, if n ≥ 0, and

Ueint =

[

(1− λ) + λ
1

θ
eit
]

eint, if n < 0.

The estimates established in Proposition 10.1 allow us to obtain an estimate on the operator norm ‖X∗‖.
We have

‖X∗‖ ≥
‖X∗en‖

‖en‖
≥

1

K
γn‖X∗en‖, if n ≥ 0, and

‖X∗‖ ≥
‖X∗en‖

‖en‖
≥

1

K
γ−n‖X∗en‖, if n < 0.

As for ‖X∗en‖ we have

‖X∗en‖ = ‖

(

1−
2

q
λC∗

∞

)n

X∗e0‖

≥
1

‖W‖
‖W

(

1−
2

q
λC∗

∞

)n

X∗e0‖

=
1

‖W‖
‖UnWX∗e0‖

=
1

‖W‖
‖Unf‖

where f =WX∗e0. Combining with the previous estimates, we obtain that

‖X∗‖ ≥
1

K
γn

1

‖W‖
‖Unf‖, if n ≥ 0,

and

‖X∗‖ ≥
1

Kγn
1

‖W‖
‖Unf‖, if n < 0.

Let

Aγ = {t ∈ [0, 2π] : |γ(1− λ) + λγθeit| > 1},

Bγ = {t ∈ [0, 2π] : |γ−1(1 − λ) + λγ−1/θeit| < 1}.

Using the same argument as in the proof of Theorem 9.2, we see that f must be 0 on Aγ ∪ Bγ . Since this
must be true for any γ ∈ (0, 1), we see that f must vanish on A = ∪γ∈(0,1)Aγ and B = ∪γ∈(0,1)Bγ . Thus, f
can be different from 0 only on the complement of A ∪B. But,

(A ∪B)c = {t ∈ [0, 2π] : |(1− λ) + λθeit| ≤ 1 and |(1− λ) +
λ

θ
eit| ≥ 1}.

Let reiϕ be the polar form of (1−λ)/λ. Since we are assuming that λ 6= 1, this complex number is not zero,
so ϕ is well defined. Then

(A ∪B)c

= {t ∈ [0, 2π] : |r + θei(t−ϕ)| ≤
1

|λ|
and |r +

1

θ
ei(t−ϕ)| ≥

1

|λ|
}

= {t ∈ [0, 2π] : r2 + θ2 + 2rθ cos(t− ϕ) ≤
1

|λ|2
}∩

∩ {t ∈ [0, 2π] : r2 +
1

θ2
+ 2

r

θ
cos(t− ϕ) ≥

1

|λ|2
}

= {t ∈ [0, 2π] :
θ

2r

(

1

|λ|2
− r2 −

1

θ2

)

≤ cos(t− ϕ) ≤
1

2rθ

(

1

|λ|2
− r2 − θ2

)

}.

29



Notice that, as θ ↑ 1, both bounds for cos(t − ϕ) converge to the same number. It follows that, for a fixed
t ∈ [0, 2π] there exists Θ ∈ (0, 1) such that, if θ ≥ Θ then t /∈ (A ∪ B)c. In other words, if θ ≥ Θ then
f(t) = 0.

Let us write X∗e0 =
∑

n∈Z
cnen. Then

f(t) = (WX∗e0)(t) =

∞
∑

n=−∞

ck
θ|n|

(1− θ)max{1/p,1/q}
eint.

For a fixed t ∈ [0, 2π] the power series above is an analytic function of θ, for |θ| < 1, and this function
vanishes on the line segment (Θ, 1), so it must be zero. Consequently, c−ne

−int+ cne
int = 0 for every n ∈ N.

Since this is true for all t ∈ (A ∪B)c, it is easy to see that cn = 0 for all n ∈ Z. Thus X∗e0 = 0 and (10.10)
implies that X∗en = 0 for all n ∈ Z, whence X = 0.

11. Some open problems

Here is a list of problems that we find interesting and that we have not been able to solve.

1. Show that the co-analytic Toeplitz matrix A of Theorem 2.3 induces a bounded linear operator on ℓ2,
or in other words, show that the supremum in equation (2.8) is finite.

2. Show that if X is an extended eigenoperator for C1 on Lp[0, 1] then there exists R ∈ {C1}
′ such that

X = X0R, where X0 is the weighted composition operator of Lemma 4.1.

3. Show that if 1 < p <∞ and if λ is real and λ ≥ 1 then λ is an extended eigenvalue for C0 on ℓp.

4. Let T ∈ B(E) and consider the Deddens algebra DT associated with T, that is, the family of all
X ∈ B(E) for which there is a constant M > 0 such that for every n ∈ N and for every f ∈ E,

‖T nXf‖ ≤M‖T nf‖. (11.1)

When T is invertible this is equivalent to saying that

sup
n∈N

‖T nXT−n‖ <∞. (11.2)

The Deddens algebra DT is a not necesarily closed subalgebra of B(E) that contains all extended
eigenoperators corresponding to extended eigenvalues λ with |λ| ≤ 1. Show that DC∞

= {C∞}′. A
consequence of this result would be that the set of extended eigenvalues for C∞ reduces to {1}.
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[12] Thomas L. Kriete and David Trutt. On the Cesàro operator. Indiana Univ. Math. J., 24:197–214, 1974/75.
[13] Alan Lambert. Hyperinvariant subspaces and extended eigenvalues. New York J. Math., 10:83–88 (electronic), 2004.
[14] Vasile Lauric. The set of extended eigenvalues of a weighted Toeplitz operator. Acta Sci. Math. (Szeged), 72(3-4):691–700,

2006.
[15] Gerald M. Leibowitz. Spectra of finite range Cesàro operators. Acta Sci. Math. (Szeged), 35:27–29, 1973.
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