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1. Introduction

ABSTRACT

Data mining methods in software engineering are becoming increasingly important as they
can support several aspects of the software development life-cycle such as quality. In this
work, we present a data mining approach to induce rules extracted from static software
metrics characterising fault-prone modules. Due to the special characteristics of the defect
prediction data (imbalanced, inconsistency, redundancy) not all classification algorithms
are capable of dealing with this task conveniently. To deal with these problems, Subgroup
Discovery (SD) algorithms can be used to find groups of statistically different data given a
property of interest. We propose EDER-SD (Evolutionary Decision Rules for Subgroup Dis-
covery), a SD algorithm based on evolutionary computation that induces rules describing
only fault-prone modules. The rules are a well-known model representation that can be
easily understood and applied by project managers and quality engineers. Thus, rules
can help them to develop software systems that can be justifiably trusted. Contrary to
other approaches in SD, our algorithm has the advantage of working with continuous vari-
ables as the conditions of the rules are defined using intervals. We describe the rules
obtained by applying our algorithm to seven publicly available datasets from the PROMISE
repository showing that they are capable of characterising subgroups of fault-prone mod-
ules. We also compare our results with three other well known SD algorithms and the
EDER-SD algorithm performs well in most cases.

Software Quality remains an important topic of research within the software engineering community. There are many
definitions of software quality, but in this context we refer to software reliability, which is generally defined as the proba-
bility of failure-free software operation for a specified period of time in a given environment [43]. One way of improving
software reliability and guiding the testing effort is through static metrics [15] capable of predicting fault-prone modules.

There is a wide range of defect prediction techniques using statistical methods and more recently, data mining techniques
(see Section 5). This is due to the creation of a number of publicly available data repositories obtained from real projects that
allow researchers and practitioners to apply data mining techniques. Examples of such repositories include PROMISE! and
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FLOSSMetrics®. There are however several issues that need to be considered when applying data mining techniques to defect
prediction data.

First, datasets can be imbalanced. In fact, like most datasets in defect prediction, the datasets used in this work are highly
imbalanced, i.e., samples of non-defective modules vastly outnumber the defective ones. In this situation, many data mining
algorithms generate poor models because they try to optimize the overall accuracy but perform badly in classes with very
few samples. For example, if the number of non-defective samples outnumbers the defective samples by 90%, an algorithm
that always predicts a module as non-defective will obtain a very high accuracy. As a result, many data mining algorithms
obtain biased models that do not take into account the minority class (defective modules in this case).

Second, although in theory havinga more attributes could provide further discriminant power, experience with data min-
ing algorithms shows just the opposite [36]. Removing irrelevant, redundant or noisy data provides immediate benefits
including performance improvements with respect to speed, predictive accuracy and comprehensibility of the results.

Finally, another problem when applying data mining techniques is that data can have duplicated (i.e., identical attribute
values including the class) and contradictory cases (i.e., instances with same attribute values but the class).

Recently a new set of descriptive induction algorithms categorised as Subgroup Discovery (SD) algorithms [30,58,59] have
been proposed to discover statistically different subgroups of data with respect to a property of interest, making these types
of algorithms suitable for extracting knowledge from imbalanced datasets.

In this work, we tackle the defect prediction problem through a descriptive induction process using SD. The objective is to
generate useful models represented through rules characterising fault-prone modules. The induced rules allow us to deter-
mine software metrics and their thresholds that increase the probability of detecting fault-prone modules. The rules are ob-
tained with an Evolutionary Algorithm (EA), called EDER-SD (Evolutionary Decision Rules for Subgroup Discovery). EAs have
the advantage that it is possible to optimise different fitness functions, such as precision, recall or coverage, depending on the
characteristics of the domain knowledge from experts.

Empirical work was performed using seven publicly available NASA datasets (CM1, KC1, KC2, KC3, MC2, MW1 and PC1)
related to software defect prediction from the PROMISE repository [5]. The induced rules from EDER-SD show that our tech-
nique generates understandable and useful models that can be used by project managers or quality assurance personnel to
guide the testing effort and improve the quality of software development projects. EDER-SD is also compared with three
other standard techniques in SD, performing well in most cases.

The organization of the paper is as follows. Section 2 presents the most relevant concepts related to the process and tech-
niques used in this work. Section 3 explains the modifications to a hierarchical classification algorithm to be adapted to sub-
group discovery in defect prediction. Section 4 describes the experimental work and discusses the results. Section 5 describes
the related work in defect prediction. Finally, Section 6 concludes the paper and outlines future research work.

2. Background

Data mining techniques can be grouped into predictive and descriptive depending on the problem at hand. From the pre-
dictive point of view, patterns are found to predict future behaviour. In fault prediction, it would correspond to the gener-
ation of classification models to predict whether a software module will be defective based on metrics from historical project
data. From the descriptive point of view, the idea is to find patterns capable of characterising the data represented in such a
way that domain experts can understand them. A comprehensive framework for data mining is described by Peng et al. [46].

The application of data mining in the context of defect prediction aims to extract useful and applicable knowledge from the
datasets obtained from the software modules in such a way that it can be used for decision making. There are different possible
representations of the learning-based models including decisions trees, decision rules, rules with exceptions, fuzzy rules, arti-
ficial neural networks, among others. However, when the output needs to be directly interpreted by end-users (e.g., project
manager, quality assurance manager, testers), the readability and understandability of the representation needs to be consid-
ered (for example, in the case of rules, hierarchical rules are much harder to understand than non-hierarchical rules). In this
respect, we selected rules as a representation as they are considered far more simple and intuitive than other representations.

In the following subsections we describe data mining concepts used in this work.

2.1. Reduction of imbalanced datasets

The existence of irrelevant and redundant features in the datasets has negative impact in most data mining algorithms. As
we are dealing with datasets of collected metrics from modules, we need to consider the following. First, the larger the num-
ber of metrics collected per module, the larger the need of data samples to ensure the quality of the learned patterns due to
statistical variability between patterns of different class. This problem is known as the curse of dimensionality [17].

Second, redundant or irrelevant features may mislead learning algorithms or cause them to overfit the data [36]. Hence,
the obtained classifier is in general less accurate than the one learned from the relevant data. Conversely, a dataset with less
dimensionality can in most cases improve the accuracy of models, generate simple, understandable models and the data
mining algorithms can be run faster.

2 http://flossmetrics.org/.
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As stated previously like most datasets in defect prediction, the datasets used in this work are highly imbalanced, i.e.,
samples of non-defective modules vastly outnumber the cases of defective modules. Under this situation, when the imbal-
anced data is not considered, many learning algorithms generate distorted models for which (i) the impact of some factors
can be hidden and (ii) the prediction accuracy can be misleading. This is due to the fact that most data mining algorithms
assume balanced datasets. When dealing with imbalanced datasets, there are two alternatives, either (i) sampling or balanc-
ing techniques: over-sampling algorithms aimed at balancing the class distribution increasing the minority class, or under-
sampling algorithms that balance the class removing instances from the majority classes; and (ii) to apply algorithms that are
robust to this problem [51,23,35,16].

A few authors have applied Feature Subset Selection (FSS) techniques to software engineering data. In the case of effort
estimation, it has been reported that reduced datasets improve the estimation accuracy [29,9,34,8]. It is known, however,
that feature selection algorithms do not perform well with imbalanced datasets, resulting in a selection of metrics that can-
not be adequate for the learning algorithms, decreasing the quality and usefulness of the rules. In previous work, we ana-
lysed the application of FSS to the datasets used in this work [50]. In particular, we applied CFS (Correlation-based Filter
Selection) a feature selection algorithm based on non-linear correlations, CNS (Consistency-based filter selection) and wrap-
pers [36]. Although the classification accuracy increased using FSS, few common metrics were selected from the datasets.
This can also be observed in other works such as [12]. From the software engineering point of view, these very heterogeneous
results were confusing when used to generate predictive models, for example, giving greater importance to metrics such as
the number of blank lines or number of commented lines than more intuitive metrics such as complexity. Another alterna-
tive to the use of FFS is to consider weights in conjunction with the attributes. For example, Turhan and Bener [53] reports
positive results with the application of Infogain [49] to the naive Bayes classifiers in software defect prediction.

2.2. Subgroup discovery

Subgroup Discovery (SD) aims to find subgroups of data that are statistically different given a property of interest
[30,58,59,21]. SD lies between predictive (finding rules given historical data and a property of interest) and descriptive tasks
(discovering interesting patterns in data). An important difference with classification tasks is that the SD algorithms only
focus on finding subgroups (e.g., inducing rules) for the property of interest and do not necessarily describe all instances
in the dataset.

In general, subgroups are represented through rules with the form Cond — Class having as consequent (Class) a specific
value of an attribute of interest. The antecedent (Cond) is usually composed of a conjunction of attribute-value pairs through
relational operators. Discrete attributes can have the form of att = val or att # val and for continuous attributes ranges need
to be defined, i.e., val; < att < val,.

An important aspect of SD is how to measure the quality of the rules that define the subgroups in order to both (i) guide
the search process of the SD algorithms and (ii) to compare them. To do so, we first describe standard measures used in clas-
sification and later modifications to those measures in SD.

One common way to evaluate the performance of classifiers is through the values of the confusion matrix [19]. Table 1
shows the possible outcomes for two classes; True Positives (TP) and True Negatives (TN) are respectively the number of po-
sitive and negative instances correctly classified, False Positives (FP) is the number of negative instances misclassified as po-
sitive, and False Negatives (FN) is the number of positive instances misclassified as negative.

Based on the previously defined values: the true positive rate (TP, = ) is the proportion of positive instances correctly

classified (also called recall or sensitivity); the False negative rate (FN, :T;}%) is the proportion of positive instances misclas-
sified as belonging to the negative class; the True negative rate (TN, = %) is the proportion of negative instances correctly
classified (specificity); and finally, the false positive rate (FP, = 5T) is the proportion of negative cases misclassified (also
called false alarm rate).

There is a trade-off between true positive rate and true negative rate as the objective is to maximise both metrics. They can

be combined to form single metrics. For example, the predictive accuracy (Acc) is defined as:

Table 1
Confusion matrix for two classes.
Actual
Positive Negative
Prediction  Positive  True Positive (TP) False Positive (FP) Positive Predictive Value
(PPV) = Confidence = Precision = = /5
Type I error (False
alarm)
Negative False Negative (FN)  True Negative (TN) Negative Predictive Value (NPV)= FNHVTN
Type II error

Recall = Sensitivity = Specificity = TN, =

__1P
TP = i




Acc = ﬂ (‘1)
" TP+TN+FP+FN’
Another widely used metric when measuring the performance of classifiers is the f — measure [57] as an harmonic median of

these two proportions:

2 - precision - recall 2-TP

f — measure = precision + recall 2-TP+ FP+ FN’

(2)

where precision (precision = 75) is the proportion of positive predictions that are correct and recall is the TP, previously
defined.

There are also some classification measures adapted to rules and SD. We next describe the most widely used measures for
SD evaluation [19,21]:

e Coverage of a rule (Cov) is the percentage of instances covered by a rule of the induced set of rules

n(Cond) TP+ FP 3
N N 3)
where R; is a single rule, n(Cond) is the number of instances covered by condition Cond and N is the total number of
instances.
e The Support of a rule refers to the ratio between the number of instances satisfying both the antecedent and the conse-
quent part of a rule and the total number of instances.

n(Cond - Class) TP )
N TN

where the n(Cond - Class) corresponds to the TP and N is the total number of instances.

The Specificity is the proportion of negative cases correctly classified.

_ -n(Cond-Class) TN
SpecR) == Class) PPN’

Cov(R;) = p(Cond) =

Sup(R;) =

()

where the —n(Cond - Class) corresponds to instances which do not satisfy both condition and target class (TN). The n(Class)
is the number of instances that satisfy the target class and —n(Class) is the number of those that do not satisfy the target
class.
e The Complexity refers to the number of tests or antecedents (conjunction attribute-value pairs) in the condition (Cond) of a
single rule.
Confidence (Conf), also known as Precision or Positive Predictive Value (PPV) of a rule is the percentage of positive instances
of a rule, i.e. relative frequency of the number of instances satisfying the both the Cond and the target Class and the num-
ber of instances satisfying the condition.

_n(Cond-Class) TP
Conf(R) === Cond)  ~ TP FP
Rule Unusualness is measured through the Weighted Relative Accuracy (WRAcc).

WRACC(R,) = n(CI(\)Ind) . <n(Cond - Class) n(Class)>.

(6)

(7)

n(Cond) N

This measure represents a trade-off between the coverage of a rule, i.e., its generality (p(Cond)) and its accuracy gain
(p(Cond - Class) — p(Class)).
Significance for a rule is measured by the likelihood ratio of a rule.

& n(Cond - Classy)
Sig(R) =23 n(Cond - Classy) - log 1 e Cond)

where n. is the number of values of the target class. Therefore, considering a binary problem as in this case:

TP TN ) 7 )

Sig(R)=2- TP-log—+——+ 1IN log ——
lg( l) 0g Def i (TP[J(IFP) + OgNonDef . (TP;FP)
where Def is the number of faulty modules in the dataset and NonDef is the number of non-defective modules contained
in the dataset.
o Lift (also known as interest) measures how many times more often the Cond and the Class occur together than expected if
they where statistically independent.
Conf(R;) p(Cond - Class) TP-N

HIR) = Sup(Cond) ~ p(Cond) -p(Class) ~ (TP + FP) - Def (10)




Currently, a number of SD algorithms have been proposed since the concept was introduced by Wrobel [58] with the
EXPLORA algorithm. A comprehensive survey of SD algorithms can be found in Herrera et al. [21]. In this work, we also com-
pare our algorithm, EDER-SD, described in the next section with the following classical algorithms.

The Subgroup Discovery algorithm SD [18] is a covering rule induction algorithm that using beam search aims to find
rules that maximise q, = %, where g is a generalisation parameter that allow us to control the specificity of a rule, i.e.,
the balance between the complexity of a rule and its accuracy.

The CN2-SD [32] algorithm is an adaptation of the CN2 classification rule algorithm [11]. CN2-SD, like the original algo-
rithm, consists of a search procedure based on beam search but the CN2-SD algorithm uses unusualness (WRAcc) as a quality
measure of the induced rules and incorporates weights into the samples. Discretisation is also required for continuous attri-
butes and an entropy based discretisation method (entropy MDL - Minimum Description Length) is used internally by the
algorithm so different rules can have different ranges for the same attribute. Therefore, there is no need to discretise con-
tinuous attributes as a preprocessing step.

APRIORI-SD [24] is also an adaptation of the APRIORI-C [22] which in turn is a modification for classification tasks of the
well-known rule APRIORI association algorithm [1].

There are other approaches to SD that do not fit with the representation needed for defect prediction (e.g. Zelezny and
Lavrac [56] describe how relational rule learning is adapted to subgroup discovery) or improvements to these algorithms
that are out of the scope of this paper (e.g., Cano et al. [7] make the previous CN2-SD algorithm scalable to large size datasets
using instance selection).

3. EDER-SD

In this work, we propose EDER-SD (Evolutionary Decision Rules for Subgroup Discovery), an Evolutionary Algorithm (EA)
[41] to characterise the minority class. EDER-SD is a robust algorithm written in C++ capable of dealing with imbalanced data
that generates rules only for the defective modules, the class we are interested in.

To do so, we modified HIDER (Hlerarchical DEcision Rules) [2], a sequential covering EA that produces a hierarchical set of
rules, i.e., an instance will be classified by the ith rule if it does not match the conditions of the (i — 1)th precedent rules
(Fig. 1). The rules are sequentially obtained until the search space is totally covered.

In order to apply EAs to optimisation problems, we need to (i) select an internal representation of the space to be searched
in and (ii) define a function that assigns fitness to candidate solutions. Both components are of paramount importance for the
successful application of the EAs to the problem of interest.

The representation of an individual, i.e., a rule in our case, in HIDER is a tuple of real values as is shown in Fig. 2. The [; and
u; values represent the interval for the the ith attribute. The last position is the label representing the Class. When [; for an
attribute g; is equal to its minimum value (l; = min(qa;)) such constrain will not be part of the rule and equally when the u;
value for an attribute is equal to its maximum value (u; = max(a;)). For example, in the first case the rule would be [I;, 7]
and in the second case [ ,u;], where vis any value within the range of the attribute. If both values are equal to their respective
boundaries, it means that the attribute is not relevant and will not appear in the rule. EDER-SD maintains the same repre-
sentation for individuals.

HIDER follows an Iterative Rule Learning methodology such that in each iteration an execution of the EA is performed to
induce a rule [55]. Instances covered by the induced rule after an execution of the EA are removed from the dataset for the
next execution so that only new instances will be covered (and as a consequence, it produces the hierarchy due to fact that
rules need to be applied in the induced order). This process is repeated until all instances are covered. HIDER is an algorithm
that induces a set of decision rules for all classes. Therefore, in the random generation of the individuals of the initial

if Conditions then Class
else if Conditions then Class

else if Conditions then Class

else "Unknown class"

Fig. 1. Hierarchical set of rules (HIDER).
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Fig. 2. Representation of rules.



population individuals are selected to cover all existing labels, and it is the evolutionary process which will provide the best
option (rule) in each iteration.

The main differences between EDER-SD and HIDER so that EDER-SD is suitable for subgroup discovery are as follows. The
first one is in the process of selecting the initial population at the beginning of each evolutionary process. HIDER generates
individuals (rules) for each class, however EDER-SD does not search for rules to classify the all data but only to describe one
particular class. In EDER-SD, the generation of each rule in the initial population randomly selects an instance that corre-
sponds to the class of interest (a defective module in this case). From this instance, a rule is generated so that each interval
[I;,u;] includes the attribute values for that instance. More formally, let e be an instance from the training dataset with label
def_module and attribute values (ay,a,,. . .,a,). Then, n weights are randomly generated w; € [0, 1]. Finally, a rule is generated
as follows:

li = a; — w; - range(a;),
u; = a; + w; - range(a;),
class = def _module,

where range(a;) is the max(a;) — min(a;) for each attribute.

The second difference lies in the fact that HIDER removes the covered instances from the training data after each execu-
tion of the EA (i.e., the instances covered by the rule selected) and as a consequence, the induced rules are hierarchical. EDER-
SD, on the other hand, does not remove instances from the training file but those instances covered by the rule are penalised.

Adding weights to instances instead of removing them produces the induction of more complex rules (i.e., with larger
number of conditions) increasing the precision of the rules. This can also generate pyramidal rules, where the first rule (with
fewer conditions) covers a large number of instances (high support) but with low precision. The rest of the rules in the pyr-
amid keep adding conditions decreasing the support but increasing the precision.

The final difference between HIDER and EDER-SD is related to the fitness function. While in the original HIDER, the fitness
function used is to maximise accuracy, in EDER-SD the fitness function can be any of the metrics used in SD, such as WRAcc or
Lift. Thus, rules are adapted to whatever measure is the most adequate in the domain. Fig. 3 shows the EDER-SD algorithm
where the classification algorithm was transformed into an algorithm for the extraction of subgroups to generate descriptive
models based on rules.

Procedure EDER-SD(E,R)
E is instance set |J Weights
R is the set of rules
c is the target class
P is the population

R:=10

E' :=F

while |E’| > |[{e € E|class(e) == c}|
r:= EvoAlg(E")
R:=Ro{r}
E' := modifyWeights(E', R)

end_while

end

Procedure EvoAlg(E)
i:=0
Py := Initialise(E)
Evaluation(Py, E)
while ¢ < num_generations
1i=1+1
for JE {L |Pi,—1|}
z := Selection(P;_1,1,7)
P, := P; + Recombination(Z, P;_1,1, )
end_for
Evaluation(P;, E)
end_while
return best_of (P;)
end_EvoAlg

Fig. 3. EDER-SD algorithm.



The EDER-SD procedure works over a set of weighted of instances whose weights are initialised to one. Each execution of
the evolutionary algorithm (EvoAlg) generates one rule, r, which is added to the total set of rules, R. The weights of the
covered instances are decreased by 10% each time and will be used to evaluate the fitness of posterior rules (Evaluation pro-
cedure within EvoAlg). The functions inside the EvoAlg procedure are the classical evolutionary algorithm functions:

o The Inititialise function generates an initial set of rules covering a set of the target class (as previously explained).

e The Evaluation function assigns to each rule a value according to its fitness. As stated previously, different evaluation func-
tions can be selected for each execution such as accuracy, sensitivity, significance, f — measure, lift or WRAcc. In order to
calculate such measures, the weighted instances are used for the n(Cond) and —n(Cond) expressions. The n(Cond) repre-
sents the sum of weights that satisfy the condition (antecedent of the rule) and the n(Cond - Class) is the sum of those
instances that satisfy the condition and belong to the target class. Therefore, during the first iteration of the EvoAlg pro-
cedure, all instances are equally considered. However, as more iterations are performed, the fitness values of the instances
already covered are penalised.

e The Selection function selects the rules in a generation to be recombined according a to their fitness measure. As in the
HIDER algorithm, EDER-SD uses the roulette-wheel algorithm.

e The Recombination function is the crossover operator. We have also applied the real code crossovers [2], an extension of
BLX-alpha adapted to individuals coded as interval [13].

o Finally, the best_of function returns the best rule according to the fitness measure used.

4. Experimental work

In this section we firstly describe the datasets used in this work. Secondly, we present the induced rules characterising
defective modules for each of the datasets. Thirdly, we compare the rules induced using EDER-SD and three other well-
known SD algorithms as well as a validation considering a splitting criterion. Finally, threats to validity of the empirical work
are considered.

4.1. Datasets

In this paper, we have used the CM1, KC1, KC2, KC3, MC2, MW1 and PC1 datasets available in the PROMISE repository [5],
to generate models for defect classification. These datasets were created from projects carried out at NASA>,

Table 2 shows the number of instances for each dataset, the number of defective, non-defective modules and their per-
centage, number of duplicates, inconsistencies (equal values for all attributes of an instance but the class) and programming
language. It can be observed that all datasets are highly imbalanced, varying from approximately 7% to 20% with a large
number of duplicate instances.

All datasets contain the same 22 attributes composed of 5 different metrics for lines of code, 3 McCabe metrics [37], 4
base Halstead metrics [20] and 8 derived Halstead metrics that have been discarded (see Subsection 2.1), a branch-count,
and the last attribute is problems with 2 classes (whether a module has reported defects). Table 3 summarizes the metrics
selected from the datasets in this study.

The McCabe metrics are based on the count of the number of paths contained in a program based on its graph. To find the
complexity, the program, module or method of class in an object oriented program is represented as a graph, and its com-
plexity is calculated as #(g) = e — n + 2, where e is the number of edges of the graph and n is the number of nodes in the graph.

The cyclomatic complexity metric measures quantity, but McCabe also defined essential complexity, eV(g), to measure the
quality of the code (penalising what is known as spaghetti code). Structured programming only requires sequences, selection
and iteration structures, and the essential complexity is calculated in the same manner as cyclomatic complexity but from a
simplified graph where such structures have been removed. The design complexity metric (iz(g)) is similar but takes into ac-
count the calls to other modules.

The other metrics used in this experiment are the Halstead’s Software Science metrics. They are based on simple counts of
tokens grouped into (i) operators such as keywords from programming languages, arithmetic operators, relational operators
and logical operators and (ii) operands that include variables and constants.

These sets of metrics (both McCabe and Halstead) have been used for quality assurance during (i) development to obtain
quality measures, code reviews etc., (ii) testing to focus and prioritize testing effort, improve efficiency etc. and (iii) and
maintenance as indicators of comprehensibility of the modules etc. Generally, the developers or maintainers use rules of
thumb or threshold values to keep modules, methods etc. within certain range. For example, if the cyclomatic complexity
((g)) of a module is between 1 and 10, it is considered to have a very low risk of being defective; however, any value greater
than 50 is considered to have an unmanageable complexity and risk. For the essential complexity (eV(g)), the threshold sug-
gested is 4 etc. Although these metrics have been used for long time, there are no clear thresholds, for example, although
McCabe suggests a threshold of 10 for #«(g), NASA’s in—house studies for this metric concluded that a threshold of 20 can
be a better predictor of a module being defective.

3 http://mdp.ivv.nasa.gov/.
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Table 2
Datasets used in this work.

Data # Inst Non-def Def % Def Dupl Inconst Lang
CM1 498 449 49 9.83 56 1 C
KC1 2,109 1,783 326 15.45 897 20 C++
KC2 522 415 107 20.49 147 6 C++
KC3 458 415 43 9.38 132 1 Java
MC2 161 109 52 32.30 3 1 C++
MW1 434 403 31 7.69 21 3 C++
PC1 1,109 1,032 77 6.94 155 6 C
Table 3
Attribute definition summary.
Metric Definition
McCabe LoC McCabe’s Lines of code
ug) Cyclomatic complexity
eV(g) Essential complexity
ing) Design complexity
Halstead base uniqOp Unique operators, n;
uniqOpnd Unique operands, n,
totalOp Total operators, N;
totalOpnd Total operands, N,
Branch branchCount No. branches of the flow graph
Class true, false Reported defects?

Table 4
Selected EDER-SD rules for the CM1 dataset.
# Rule # Def # Non Def
1 6 < (g) A 35 < uniqueOpnd A 64 < totalOpnd 22 62
2 82 < LoC A 22 < uniqueOp 13 21
3 82 < LoC A 22 < uniqueOp A 190 < totalOpnd 12 16
4 71 < LoC 17 27
5 71 < LoC A 22 < uniqueOp 16 25
6 71 < LoC A 22 < uniqueOp A 190 < totalOpnd 12 18

4.2. Rules found with EDER-SD

We next show the most relevant rules obtained with our tool EDER-SD for each dataset. In order to run the genetic algo-
rithms, we need to define a number of parameters. For all datasets, the population size was 100 individuals and each exe-
cution of the evolutionary algorithm ran 100 generations. We must also define a minimum support which is approximately
10% of the number of defective modules contained in the dataset. The rules presented here are the result of several execu-
tions with different fitness functions but for the sake of brevity and space, only the most relevant ones are shown.

4.2.1. CM1 dataset

As it can be seen in Table 4 in relation to the CM1 dataset, the ratio between defective and non-defective modules for the
first rule is about 26% (22/84). Although it seems a low value, it is worth noting that the percentage of unbalance of this data-
set is 10%, with only 49 defective modules out of 498 modules contained in the dataset. Therefore, the probability of finding a
defective module has been increased considerably. This rule was obtained by maximising sensitivity (0.44).

The second and third rules cover fewer modules than the first rule but the ratio between defective and non-defective
modules increases to 38% and 43% respectively. These rules were obtained optimising accuracy (0.89) or lift (4.35) and rule
3 can also be obtained maximising the f — measure (0.36).

Rules 4 to 6 show the effect of decreasing the weights of instances already covered by the EA, adding a new condition to
the precedent rule and showing a pyramidal effect. Rule 4 (obtained by maximising the f — measure) just considers LoC as
single condition achieving a precision of 38%, which means that almost 40% of the modules with more than 71 LoC will
be defective. Such a threshold is relatively close to the 60 LoC suggested by the McCabe 1Q* tool and the NASA repository.

4 http://www.mccabe.com/.
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Table 5
Selected EDER-SD rules for KC1 dataset.

# Rule # Def # Non Def
1 93 < LoC 40 33
2 93 < LoC A 17 < uniqgOp 39 29
3 4 <ig) A 69 < totalOpnd 76 54
4 4 <ig) A 69 < totalOpnd A LoC < 78 27 10
5 3<eV(g) A4 < ug) 100 159
6 3 <eV(g) A4 < g) A 17 < uniqOp 71 72
7 5 < branchCount 204 394
8 9 < branchCount 134 196
9 9 < branchCount A 9 < unigOp 134 194

Table 6

Selected EDER-SD rules for KC2 dataset.

# Rule # Def # Non Def
1 58 < LoC A5 < eV(g) A 17 < branchCount 36 5
2 17 < uniqOpnd 85 78
3 17 < uniqOpnd A 30 < totalOpnd 82 75
4 17 < uniqOpnd A 50 < totalOpnd 70 41
5 30 < totalOpnd 84 84
6 71 < totalOpnd 51 24
7 120 < totalOpnd 31 4
8 9<ug) 46 23
9 9< Ug) N4 <eV(g) 42 14

10 9<Yg) A <eV(g) A5 <iYg) 31 12

11 9< Yg) A4 <eV(g) A5 <iyg) A 75 < totalOpnd 27 0

12 9 < Ug) A4 <eV(g) A5 <iug)Auniq Op <24 A 75 < totalOpnd 31 4

In rules 5 and 6, when new conditions are added, precision increases (64% and 67% for rules 5 and 6 respectively) but support
decreases (41 and 30 modules respectively out of the 498 contained in the dataset). These rules can be obtained maximising
precision (0.4), WRAcc (0.25) or significance (11.17).

4.2.2. KC1 dataset

As shown by the first two rules in Table 5, modules with a large number of LoC or unigOp have a higher probability of
being defective. The limits found by EDER-SD are 93 and 17 respectively, maximising specificity (0.98). Although the number
of defective modules covered by the rules is larger than the non defective, both rules have low support as they cover a rel-
atively small number of modules: 73 for the first rule with a single condition (93 < LoC) and 68 for the second one with both
conditions (93 < LoC A 17 < uniqOp).

EDER-SD also found rules combining lines of code and complexity. For modules with large complexity but a relatively
small number of LoC, the probability of the module being defective increases. For example, for rule 3 in Table 5 (4 <i¥(g)
and 69 < totalOpnd), its ratio is 58% (76 out of 130). However, when the size of the module is limited to 78 LoC, the ratio
of defective modules is 72%. In other words, rule 4 states that small modules with high complexity tend to be fault-prone.
This rule was obtained by maximising precision (0.73) whereas rule 3 was obtained by maximising either accuracy (0.86) or
significance (54.48).

The combined threshold values for eV(g) and #(g) complexity metrics are 3 and 4 respectively (rule 5 obtained maximising
sensitivity (0.3)), achieving a ratio of 38% for defective modules. Adding a new constraint about unique operators (17 < uni-
qOp) to these complexity values increases the ratio to 50% with more than 70 modules covered by the rule. For this dataset,
the ratio of defective vs. non defective modules is just 15%, therefore the probability of finding a defective module also in-
creases considerably when compared with random selection.

Other rules found by EDER-SD relate the number of branches with unique operators. The rule (5 < brachCount) covers 204
defective modules out of 598 modules (34%) but if this threshold is increased to 9, the ratio also increases to 40%. However,
when considering both conditions (9 < brachCount A 9 < uniqOp), the rule covers 194 defective modules (almost 2/3 of the
313 defective samples included in the dataset) with ratio of 60%. That is to say that modules with branch count and unique
operator values larger than 9 have a 60% of probability of being defective. The last three rules can be obtained by maximising
the f — measure (0.44), significance (54.94) or WRAcc (0.05).

4.2.3. KC2 dataset
The first rule for the KC2 dataset in Table 6 combines three parameters (LoC,eV(g) and branchCount), which are very close
to the thresholds suggested by the McCabe IQ tool and the empirical values from the NASA repository (60, 4 and 19



respectively). This single rule already covers approximately 1/3 of the defective modules (36 out of a total of 107) and it was
obtained maximising the specificity (0.99).

Rules 2 to 7 in Table 6 show the relationship between uniqOpnd and totalOperands attributes. The threshold suggested by
the McCabe IQ tool for uniqOpnd is 20, which is quite close to the value of 17 suggested by these rules. As in previous data-
sets, when new conditions are added to a rule, the number of modules that are covered by the rule (support) decreases. In this
case, adding the 50 < totalOperands condition decreases the number of modules covered from 163 (rule 2) to 111 (rule 4), but
rule’s precision is increased from 52% (82 out of 163) to 63% (60 out of 111). Rules 2 to 4 were obtained maximising the
f— measure (0.64), accuracy (0.85) or WRAcc (0.099), rules 5 and 6 sensitivity (0.78), and specificity (0.99) for rule 7.

Rules 8 to 12 do not modify the limits but keep adding conditions to the precedent rule creating the pyramidal effect pre-
viously mentioned. Again, there is a trade-off between support and precision, slightly reducing the number of modules cov-
ered by the rule, increases the probability of the module being defective. These rules were obtained maximising the lift
(4.32).

4.2.4. KC3 dataset

Table 7 shows the selected rules for the KC3 dataset. The first two rules are obtained using measures that favour high
support, e.g., TP, or WRAcc. With such measures, the rules obtained cover a large number of defective modules (32 out of
43) but penalising Accuracy and Specificity measures. On the other hand, the rest of the rules try to maximise the latter mea-
sures resulting in a very low rate of false positives at the expense of a low support (only seven defective modules). In addi-
tion, the rules are composed of a large number of conditions (with the exception of rules 4 and 7).

4.2.5. MC2 dataset

The selected rules for the MC2 dataset are shown in Table 8. As with the KC3 dataset, the first three rules maximise WRAcc
or TP, while the remaining rules maximise Specificity or Precision. However, it is worth noting that the differences between
the Accuracy values in both sets of rules are very small, i.e., 0.6 to 0.7 for the first set and 0.7 to 0.75 for the second one. Rules
6, 7 and 8 maximise Accuracy and Significance resulting in similar values for iz{g) and UniqOp.

4.2.6. MW1 dataset

Table 9 shows the results for the MW1 dataset. Again, the first two rules maximise WRAcc and TP, and the rest of the rules
Lift or Precision. However, the differences of the values of the Accuracy measure are also very small (0.88 for the first of rules
and 0.94 for the rest of the rules). The same occurs in Specificity (0.9 vs. 0.98) or Significance (12 vs. 15). As with the previous
dataset, rules with very low values of false positives are composed of a large number of conditions.

Table 7
Selected EDER-SD rules for KC3 dataset.
# Rule # Def # Non Def
1 3 <iUg) A 12 < uniqOp A 40 < totalOp 32 94
2 20 <loc A3 <ig) 25 80
3 79 < loc A 10 < i(g) A uniqOp < 25 A totalOpnd < 308 A branchCount < 41 7 0
4 79 <loc A 10 < i(g) A uniqOp < 25 7 1
5 3 < yg) AeV(g) <3 Aig) <5 AuniqOp < 20 A 32 < UnigOpnd 7 1
6 88 < loc A 20 < unigOp A UnigOpnd < 106 A branchCount < 41 7 1
7 eV(g)=1 A 58 < UniqOpnd 5 0
8 57 < loc A eV(g) < 3 A 58 < UnigOpnd 6 0
9 eV(g)=1A3 <ing) A12 < uniqOp < 14 A 40 < totalOp A totalOpnd < 39 7 1
10 10 <iv(g) A uniqOp < 25 A 48 < UniqOpnd A 22 < branchCount 7 2
Table 8
Selected EDER-SD rules for MC2 dataset.
# Rule # Def # Non Def
1 2 <ig) A 15 < uniqOp 27 23
2 15 < uniqOp 32 36
3 5< UG A2 <ing) 30 23
4 14 < uniqOp A 11 < UniqOpnd A totalOpnd < 38 9 2
5 9 <loc <15 A 11 < UniqOpnd A 31 < totalOp 8 1
6 32 <loc A5 <eV(g) A2 <ig)A18 < unigOp 17 4
7 8 <Y A3 <ing) 22 8
8 8 < 1{g) A 137 < totalOpnd 17 6
9 totalOp < 24 A 11 < totalOpnd A branchCount < 1 5 0




Table 9
Selected EDER-SD rules for MW1 dataset.

# Rule # Def # Non Def
1 4 <ig) A 38 < uniqOpnd 17 34
2 10 < uniqOp A 38 < uniqOpnd A 54 < totalOpnd 18 36
3 52 <loc A g) <26 AeV(g) <10 A8 <iYg) A 86 < totalOpnd A 25 < branchCount 8 1
4 52 <loc A g) <26 A 8 <ig) A 86 < totalOpnd A 25 < branchCount 10 4
5 loc <67 AN12 < g) A6 < eV(g) A 53 < UniqOpnd A branchCount < 33 7 0
6 10 < uniqOp < 17 A 38 < UniqOpnd A 54 < totalOpnd < 110 A branchCount < 25 8 2
7 43 <loc A g) < 15 A eV(g) < 1 A5 <ing) A 11 < unigOp < 36 A 38 < UniqOpnd 6 1
Table 10
Selected EDER-SD rules for PC1 dataset.
# Rule # Def # Non Def
1 4 < (g) A 13 < unigOp A 18 < uniqOpnd A 40 < totalOp A 29 < totalOpnd 48 258
2 3 <ig) A 7 < branchCount 11 285
3 64 <LoCA3<ing) 20 56
4 84 <LoCA3<ing) 16 24
5 90 < LoCA17 < g) A3 <ig) A21 < uniqOp < 35 A unigOpnd < 102 A branchCount < 57 11 2
6 90 < LoCA 17 < Ug) A3 <ifg) A 20 < uniqOp < 34 A totalOpnd < 304 A branchCount < 57 9 1
7 58 < LoC A 16 < uniqOp < 31 A 59 < uniqOpnd A 159 < totalOp A 125 < totalOpnd A branchCount < 24 10 1
8 84 < LoC A eV(g) <9 A 20 < uniqgOp < 35 A 66 < uniqOpnd A totalOp < 544 12 1

4.2.7. PC1 dataset

Table 10 shows rules for the PC1 dataset. The first rule shows the threshold found by EDER-SD relating for the cyclomatic
complexity and metrics related to operands and operators. This rule covers a large proportion of the defective modules (62%)
contained in the dataset but provides a low precision of about 16%. It worth noting that this dataset is the most imbalanced
one with only 77 samples of defective modules out of 1109 (7% of the total) and therefore when this rule applies, the prob-
ability of finding a defective module is more than double than using random selection.

The second rule establishes the limits for the design complexity (iz{g)) and the number of branches (branchCount). Like
the previous one, this rule covers a large number of the defective modules (53% of the total) but has low precision (14%).

EDER-SD found two limits for the number of lines of code LoC, 64 and 84, as shown by the third and fourth rules. The latter
limit is more restrictive providing higher precision with a relatively low support as it covers 16 defective modules out of 77
(21% of the total). Finally, the rest of the rules are further examples of rules providing high precision but low support.

4.2.8. General observations across all datasets

Each dataset provides examples of concrete applications within a domain (real-time, instruments, control systems) and
programming language (C, C++ or Java). Thus, it is difficult to extrapolate the rules found for any of the datasets. It is possible,
however, to observe some common trends. As it can be observed from Tables 4-10, almost all induced rules are formed by
conditions providing lower limits for the metrics that compose the rules. As expected, we found defective modules for high
values of the metrics (e.g. lines of code, complexity, number of operands, operators and branches). This is especially true for
rules with high support values in each of the datasets. After analysing the rules, it can be seen in general that the limit for
LOC is 60; for the complexity measures, the limit of #(g) is between 4 and 9, and for iz(g) is from 2 to 4. The number of oper-
ators and operands have wider ranges (uniqOp: 10-15, uniqOpnd: 17-38, totalOp: 40, totalOpnd: 29-69). Finally, the lower
limit for the branchCount metric is between 5 and 7. On the rare occasions where an upper limit appears, the number of
defective modules covered by those rules (support) is very low, which means that they are very specific rules adjusted to
a particular subset of the data (e.g., high complex modules with very few operators) and they are also very difficult to
generalise.

It is worth noting the consistency of the values established by EDER-SD for the lower threshold values in relation to those
obtained by McCabe IQ tool and the NASA MDP web site (LoC: 60, «(g): 10, eV(g): 4, i1(g): 7, uniqOp: 20, unigOpnd: 20, totalOp:
30, totalOpnd: 30, branchCount: 19) but such thresholds set by the McCabe IQ tool are meant to be used individually. How-
ever, EDER-SD thresholds are delineated in several dimensions (metrics), allowing better adjustment of the values that lead
to faulty modules.

4.3. Comparison of EDER-SD with other algorithms

As stated previously, defect prediction datasets are in general highly imbalanced and with a large number of inconsisten-
cies (duplicates or contradictory cases). To deal with these problems using SD, we have developed an evolutionary algorithm
called EDER-SD that aims to find simple and easily understandable rules (few conditions) but capable of predicting



Table 11
SD induced rules for the KC2 dataset.

# Rule # Def # Non Def
1 eV(g) > 4 A totalOpnd > 117 28 5
2 in(g) > 8 A uniqOpnd > 34 A eV(g) > 4 31 6
3 loc > 100 A uniqOpnd > 34 A eV(g) > 4 31 7
4 loc>100 A i g)>8 neV(g)>4 29 5
5 loc> 100 A i(g) > 8 A totalOpnd > 117 27 5
6 in(g) > 8 A uniqOp > 11 A totalOp > 80 33 11
7 ig) > 8 A uniqOpnd > 34 32 8
8 totalOpnd > 117 31 6
9 loc>100 A in(g) > 8 31 9

10 eV(g)>4 ning)>8 32 7

11 eV(g) > 4 A uniqOpnd > 34 39 12

12 loc>100 A eV(g) >4 31 7

13 ing) > 8 A uniqOp > 11 34 13

14 eV(g) > 4 A totalOp > 80 A 1(g) > 6 A unigop > 11 46 19

15 in(g) > 8 A totalOp > 80 35 12

16 eV(g) > 4 A totalOp > 80 A uniqOp > 11 46 19

17 eV(g) >4 A totalOp > 80 A 1(g) > 6 47 19

18 loc > 100 A uniqOpnd > 34 34 9

19 eV(g) > 4 A totalOp > 80 47 19

20 ing)>8 35 13

Table 12
CN2-SD induced rules for the KC2 dataset.
# Rule # Def # Non Def
1 uniqOpnd > 34 A eV(g) > 4 39 12
2 totalOp > 80 A eV(g) > 4 47 19
3 uniqOp > 11 86 117

fault-prone modules. In this subsection, we now compare EDER-SD with three other well-known SD algorithms widely cited
in the literature, SD, CN2-SD and APRIORI-SD (see Section 2.2). These algorithms have been implemented in the Orange data
mining toolkit® as part of a SD plug-in®.

An important issue with the application of the APRIORI-SD algorithm is that we were only capable of inducing rules for
the KC2 dataset which corresponds with the more balanced one (20%). For the rest of the datasets the algorithm could not
find any rules, no matter the variations in the parameters of the algorithm. The reason may reside in the fact that datasets are
so highly imbalanced that rules do not achieve the minimum support and precision required, i.e., the number of samples
covered by a rule is not enough to fulfil the quality criteria. Furthermore, the APRIORI-SD algorithm not only discretises con-
tinuous attributes but discrete ones are also binerised.

Tables 11-13 show the set of rules induced for the KC2 dataset using the default parameters used in the Orange tool (min-
imal support = 5%; minimal precision = 80% beam width=20; generalization parameter, g = 5 and No. of times a covered instance
can be used before removed, k = 5). We do not show the rules for rest of the datasets for the sake of brevity and space. These
three algorithms are deterministic when the parameters are fixed.

The first observation is the disparity in the number of rules induced. The CN2-SD algorithm generates very few rules for
all four datasets (just two or three rules) but those rules are in general quite good. In order to validate EDER-SD against these
classical SD algorithms from a machine learning perspective, we also used a splitting criterion. We divided the datasets into
training and testing with two-thirds and one-third of the samples respectively. Table 14 shows the comparative results for
the maximum values obtained for the evaluation measures described in Section 2.2 using all algorithms and testing datasets,
where the +, — and = corresponds to EDER-SD performing better, worst or equal to other algorithm respectively. The reason
for using maximum values is that all algorithms induce a very different number of rules (CN2-SD induces only two or three
rules for these datasets). Therefore, it would not be fair to compare average values. Furthermore, the different algorithms
optimise different functions. EDER-SD performed better than the other three algorithms counting the number of times that
it obtained maximum values (the No. of pluses, minuses and equals in Table 14 shows if EDER-SD performed better, worst or
equal than the other algorithms in their respective metrics). Table 14 shows that the EDER-SD performed better than the SD
algorithm in 39 out of 70 evaluation measures, similar results in 14 and worst results in 17 evaluation measures. It also
preformed better in five out of the seven datasets for most evaluation measures. The best results were obtained in the

5 http://www.ailab.si/orange/.
6 http://kt.ijs.si/petra_kralj/SubgroupDiscovery/.
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Table 13
APRIORI-SD induced rules for the KC2 dataset.

# Rule # Def # Non Def
1 ug)>6 AifG)> 8 A uniqOp > 11 A totalOp > 80 35 13
2 iG) > 8 A uniqOp > 11 A totalOp > 80 A branchCount > 11 34 12
3 LoC> 100 A uniqgOp > 11 A uniqOpnd > 34 A totalOpnd > 117 31 6
4 LoC> 100 A unigOp > 11 A totalOp > 80 A totalOpnd > 117 31 6
5 LoC > 100 A uniqOpnd > 34 A totalOp > 80 A totalOpnd > 117 31 6
6 uniqOp > 11 A unigOpnd > 34 A totalOp > 80 A totalOpnd > 117 31 6
7 eV(g) >4 A uniqOp > 11 A uniqgOpnd > 34 39 12
8 ug) > 6 A eV(g) > 4uniqOpnd > 34 39 12
9 eV(g) > 4 A uniqOpnd > 34 A branchCount > 11 37 12
10 ug)>6 AifG)> 8 A uniqOp > 11 A branchCount > 11 33 13
11 LoC> 100 A uniqOp > 11 A uniqOpnd > 34 A totalOp > 80 34 9
12 eV(g) > 4 A totalOp > 80 47 19
Table 14
Comparison of EDER-SD with other SD algorithms.
WRAcc Cov Sup Acc Sig Prec TP, Spec Lift fmsr
EDER-SD cM1 .025 175 .042 .880 3.027 357 438 947 3.705 333
KC1 .057 287 101 .859 2.767 .596 .657 .980 3.878 458
KC2 .090 333 155 .839 11.301 769 771 978 3.824 .603
KC3 .034 .268 .059 935 6.219 .643 .643 1 10.928 .643
MC2 .062 .389 .167 759 3 529 .529 1 3.176 529
MW1 .027 119 .037 941 3.07 455 455 1 12.273 455
PC1 .024 .259 .041 943 7.125 577 577 1 14.231 577
SD cM1 .023 313 .048 .855 2.067 278 5 933 2.882 294
= — = + + + — + + +
KC1 .050 213 .083 .859 21.843 .600 .537 975 3.906 450
+ + + = — = + = — =
KC2 .079 322 144 .839 9.854 750 714 .986 3.729 .549
+ + + = + + + — + +
KC3 .042 .523 .078 .856 2.84 .857 .857 928 2.277 .857
- - - + + — — + + -
MC2 .066 .815 278 741 2171 .882 .882 973 2.541 .882
= — — + + — — + + _
MW1 .030 11 .037 933 5.542 455 455 992 9.205 455
= = = + - = = + + =
PC1 .016 .097 .022 .897 4.341 .308 .308 948 3.558 .308
+ + + + + + + + + +
CN2-SD cM1 .029 325 .06 .88 1.719 .238 .625 973 247 .286
= — — = + + - — + +
KC1 .052 418 117 .859 21.843 .588 759 975 3.829 408
= - - = — + — = + +
KC2 .071 391 149 839 9.257 .667 743 950 3314 522
+ — + = + + + + + +
KC3 .040 346 .072 .856 2.84 .786 .786 928 2.268 786
= — — + + — — + + —
MC2 .042 278 13 .685 769 412 412 .838 1.588 412
+ + + + + + + + + +
MW1 .032 148 .044 904 3.489 .545 .545 952 4.909 .545
= — — + — — — + + _
PC1 .029 322 .051 927 4.763 731 731 997 3.558 731
= — — + + — — = + —
APRIORI-SD KC2 .043 .091 .061 .831 73 .681 .306 963 3.384 416
+ + + + + + + + + +
MC2 .027 12 .065 .694 1.018 .559 .206 919 1.775 295
+ + + + + — + + + +

PC1 dataset (the most imbalanced one) where EDER-SD outperformed the SD in all the evaluation measures. Similar results
can be observed when comparing EDER-SD with the CN2-SD algorithm. It outperformed CN2-SD in 35 evaluation measures,
obtained similar values in 10 occasions, and 25 values were worst. EDER-SD almost always performed better in the specificity,
accuracy and lift measures and obtained similar or better results in WRAcc. The EDER-SD algorithm also performed better
than the APRIORI-SD algorithm with the KC2 dataset and MC2 datasets (the only two that we were able to obtain results)
for all evaluation measures with the exception of precision which was very similar. Taking into account all evaluation mea-
sures, EDER-SD performed better in 98 measures, similarly in 24 and worst in 43 out of the 160 evaluation measures.



Table 15
AntMiner + rules for the PC1 dataset [54].

if LOC_Blank > 16 and LOC_Code_And_Comment > 2 and
Normalized_Cyclomatic_Complexity > 0.17
then class = Erroneous module

else if LOC_Code_And_Comment > 1 and
LOC_Comments > 5 and
Normalized_Cyclomatic_Complexity > 0.23 and
Num_Unique_Operands > 38

then class = Erroneous module

else if Halstead_Content > 50.37 and
Halstead_Error_Est > 0.6 and

LOC_Blank > 16 and LOC_Comments > 14 and
LOC_Executable > 53

then class = Erroneous module

else if Halstead_Content > 50.37 and
LOC_Blank > 16 and LOC_Code_And_Comment > 2 and
LOC_Comments > 14 and
Normalized_Cyclomatic_Complexity > 0.08
then class = Erroneous module

else if Halstead_Content > 50.37 and
LOC_Code_And_Comment > 2 and
LOC_Comments > 5 and
Normalized_Cyclomatic_Complexity > 0.17
then class = Erroneous module

else class = Correct module

In the case of software prediction, there is an ongoing discussion about the evaluation of defect prediction models [60,39].
Menzies et al. suggest the use of probability of detection (pd or recall) and probability of false alarm (pf) arguing that a low
precision acceptable in this domain and with the datasets used in this work. In any case, there is a trade-off between these
two measures as stated by Menzies et al., increasing the recall, also increases the pf, and viceversa. Also, Khoshgoftaar and
Seliya [28] chose to to minimise Type II errors (a fault-prone error misclassified as non-fault-prone) in accordance with a pro-
ject manager of the system studied. When using EDER-SD in comparison with other tools, it is possible to generate rules
according to the criteria of project managers or quality engineers.

We do not apply HIDER or other classification techniques due to the fact that quality measures are related to accuracy and
this measure might not always be the most appropriate when data are imbalanced. Furthermore, in the case of hierarchical
classification rules, those are harder to interpret and apply by domain experts than the rules obtained using EDER-SD. For
example, Vandecruys et al. [54] show the rules obtained using their AntMiner + tool for the PC1 and KC1 datasets. AntMin-
er + extracts hierarchical classification rules, a chain of if .. .then.. else... which are harder to interpret and apply than the
rules obtained using EDER-SD. For example, Table 15 shows the AntMiner + rules for the CM1 dataset. Although the first rule
is easy to interpret, for the rest of the rules it becomes increasingly harder to extract useful knowledge. For modules not cov-
ered by the first rule we need to apply the second one and so on and so forth. Therefore, the number of conditions to consider
is 3 for the first rule, 3 + 4 for the second rule, 3 + 4+5 for the third rule etc. Furthermore, the rules presented by Vandercruys
to identify faulty modules have in general a low support and and the high level of accuracy for the Antminer + rules seems to
be consequence of the final "else” default branch, which covers the non-defective modules.

4.4. Threats to validity

There are some threats to validity that need to be considered in this study as in all empirical studies.

Construct validity is the degree to which the variables used in the study accurately measure the concepts they to measure.
Although there seems to be an agreement about the practical usefulness of static metrics, there are critics to their effective-
ness as predictors of quality. Here, we can also highlight the point that is difficult to avoid an unfair comparison between SD
algorithms as they induce a different number of rules, use different quality measures etc. For the comparison, the rules were
obtained using the default parameters provided by the tool but other parameters could generate better sets of rules.

Internal validity is the degree to which conclusions can be drawn. This work consisted in a small number of datasets and
all came from the same domain. There is some consistency among the attributes used within each dataset but they vary
among datasets and so do the thresholds. In this work, we have generated a set of rules for each dataset but from a practical
point of view, it could be interesting to generalise the rules across the datasets in order to facilitate their application by pro-
ject managers or quality engineers. One approach to do this is to join all datasets and generate generic rules even if some
degree of performance is lost in individual datasets. It can be observed that the threshold values across (the different datasets
are close to each other (e.g., LoC varies between 60 and 80; iz(g) between 3 and 5, etc.).

External validity is the degree to which the results of the research can be generalised to the population under study and
other research settings. According to Menzies et al. [40], the NASA repository can be generalised to the industry in general.



However, it is probably better to calibrate the rules to different domains or organisations. Finally, as with other empirical
studies, this approach needs to be replicated with further datasets and SD algorithms.

5. Related work

Initially, some statistical approaches were proposed to deal with defect prediction. For example, Munson and Khoshgof-
taar [42] explore discriminant analysis techniques on two commercial datasets composed with many of the Halstead and
McCabe metrics used in this work. Basili et al. [4] analysed the applicability of Chidamber and Kemerer's Object Oriented
set of metrics [10] with logistic regression to predict fault-prone code classes. Khoshgoftaar and Allen [27] also analysed lo-
gistic regression extended with prior probabilities and of misclassification costs.

More recently, a number of researchers have focused on machine learning approaches. Khoshgoftaar et al. [26] described
the use of neural networks for quality prediction. The authors used a dataset from a telecommunications system and com-
pare the neural networks results with a non-parametric model. Also, Khoshgoftaar et al. [25] applied regression trees as clas-
sification model to the same problem.

However, there are still large discrepancies regarding the assessment of the goodness of the different techniques and the
reasons for such discrepancies [44,60,39]. For example, Lessmann et al. [33] compare 22 classifiers grouped into statistical,
nearest neighbour methods, neural networks, support vector machine, decision trees and ensemble methods over ten data-
sets from the NASA repository. The authors discuss several performance metrics such as TP, and FP, but advocate the use of
AUC as the best indicator to compare the different classifiers. Arisholm et al. [3] compare different data mining techniques
(classification tree algorithm (C4.5), a coverage rule algorithm (PART), logistic regression, back-propagation neural work and
support vector machines) over 13 releases of a Telecom middleware software developed in Java using three types metrics: (i)
object oriented metrics, (ii) delta measures, amount of change between successive releases, and (iii) process measures from a
configuration management system. The authors concluded that although there are no significant differences regarding the
techniques used, large differences can be observed depending on the criteria used to compare them. The authors also pro-
pose a cost-effectiveness measure based on the AUC and number of statements so that larger modules are more expensive to
test. The same approach of considering module size in conjunction with the AUC as evaluation measure has been explored by
Mende and Koschke [38] using NASA datasets and three versions of Eclipse’ and random forests [6] as classification technique.
Koru and Liu [31] use the C4.5 [49] implementation of Weka for defect prediction on the NASA datasets to analyse the relation-
ships between defects and module size. Khoshgoftaar and Seliya [28] recognise the problem of imbalanced data and use Case-
based Reasoning to deal with this problem, considering Type I error when a non-faulty module is classified as faulty and Type II
error occurs when a faulty module is classified as non-faulty. This approach is also considered by Ostrand and Weyuker [45].

Also in this respect but in the domain of cost estimation, Shepperd and Kadoda [52] analyse the influence of different data
characteristics (dataset size; number, type and independence of features; and type of distribution, in.) using simulated data
over a number of different types of classifiers (regression, rules induction, nearest neighbour and neural networks). The
authors conclude there is no best classifier as the characteristics of the data highly affect the outcomes.

There are a number of other works using subsets of the NASA repository. Peng et al. [47] propose a performance metric to
evaluate the merit of classification algorithms using a broad selection of classification algorithms and performance mea-
sures. The experimental results, using 13 classification algorithms with 11 measures over 11 software defect datasets, indi-
cate that the classifier which obtains the best result for a given dataset according to a given measure may perform poorly on
a different measure. The results of the experiment indicate that support vector machines, k-nearest neighbor algorithm and
C4.5 algorithm ranked the top three classifiers. Menzies et al. [40] applied J48 (the Weka implementation of the C4.5) and
Naive Bayes to several datasets of the PROMISE repository for defect prediction. The authors concluded that such technique
can be used as good defect estimators and suggest bound exploration as part of future work. Elish and Elish [12] applied the
Support Vector Machine (SVM) technique to a subset of the NASA repository. The authors concluded that SVM is capable of
improving or at least obtaining similar result than other techniques such as logistic regression, neural networks, Bayesian
networks or decision trees. Recently, Peng et al. [48] have also analysed ten NASA datasets using four Multicriteria Decision
Making methods to rank classification algorithms, highlighting that the boosting of CART and the boosting of C4.5 decision
tree are ranked as the most appropriate algorithms to deal with defect prediction.

Finally, some authors criticize the use of only static metrics with statistical techniques as an approach to defect predic-
tion. For example, Fenton and Neil [14] advocate the use of Bayesian network approaches as a probabilistic technique to esti-
mate defects among other parameters.

6. Conclusions and future work
In this work, we applied Subgroup Discovery (SD), a data mining approach used to find groups of statistically different

data given a property of interest, to the problem of software defect prediction. SD is a sensible approach to deal with imbal-
anced, inconsistent or redundant data.

7 http://www.eclipse.org/.
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To do so, we developed a genetic algorithm, EDER-SD (Evolutionary Decision Rules for Subgroup Discovery), used to in-
duces rules describing only fault-prone modules. EDER-SD has the advantage of working with continuous variables as the
conditions of the rules are defined using intervals. Furthermore, the fitness function of the genetic algorithm can be adapted
to optimise the most suitable quality measure of the domain. EDER-SD was applied to seven publicly available datasets from
the PROMISE repository. The results shows that the induced rules are capable of characterising subgroups of fault-prone
modules. We also found that many of the thresholds found by the metrics are close to those defined in the literature or
the McCabe IQ tool used to obtain the datasets. Furthermore, the simplicity of the induced rules and their readability facil-
itates the application of this approach helping project managers or quality engineers with testing and software quality assur-
ance activities. We also compared EDER-SD with three other well-known SD algorithms. The results of the comparison
showed the advantages of been able to adapt the fitness function of the evolutionary algorithm as (in general) EDER-SD
did perform better than the other algorithms.

In relation to future work, we will further explore this approach with other datasets and different metrics, for example,
datasets with object oriented metrics. There is also room for improvement of the genetic algorithm, for example exploring
further quality measures or multiobjective approaches.
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