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AMALGAMATED PRODUCTS AND PROPERLY 3-REALIZABLE

GROUPS

M. CARDENAS, F. F. LASHERAS, A. QUINTERO AND D. REPOVŠ

Abstract. In this paper, we show that the class of all properly 3-realizable
groups is closed under amalgamated free products (and HNN-extensions) over
finite groups. We recall that G is said to be properly 3-realizable if there exists
a compact 2-polyhedron K with π1(K) ∼= G and whose universal cover K̃ has
the proper homotopy type of a 3-manifold (with boundary).

1. Introduction

We are concerned about the behavior of the property of being properly 3-
realizable (for finitely presented groups) with respect to the basic constructions
in Combinatorial Group Theory; namely, amalgamated free products and HNN-
extensions. Recall that a finitely presented group G is said to be properly 3-
realizable if there exists a compact 2-polyhedron K with π1(K) ∼= G and whose

universal cover K̃ has the proper homotopy type of a 3-manifold. It is worth men-
tioning that the property of being properly 3-realizable has implications in the
theory of cohomology of groups, in the sense that if G is properly 3-realizable then
for some (equivalently any) compact 2-polyhedron K with π1(K) ∼= G we have

H2
c (K̃; Z) free abelian (by manifold duality arguments), and hence so is H2(G; ZG)

(see [9]). It is a long standing conjecture that H2(G; ZG) be free abelian for every
finitely presented group G. In [1] it was shown that the property of being properly
3-realizable is preserved under amalgamated free products (HNN-extensions) over
finite cyclic groups. See also [3, 4, 7] to learn more about properly 3-realizable
groups and related topics. In this paper, we continue in the line of [1]. Our main
result is :

Theorem 1.1. The class of all properly 3-realizable groups is closed under amal-
gamated free products (and HNN-extensions) over finite groups.

This generalizes to show that the fundamental group of a finite graph of groups
with properly 3-realizable vertex groups and finite edge groups is properly 3-realizable,
since such a group can be expressed as a combination of amalgamated free products
and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K
with π1(K) ∼= G and K̃ as universal cover, the number of ends of G is the number of

ends of K̃ which equals 0, 1, 2 or ∞ [6] (see also [8, 13]). The 0-ended groups are the
finite groups and the 2-ended groups are those having an infinite cyclic subgroup of
finite index, and they are all known to be properly 3-realizable (see [1]). Note that
Stallings’ Structure Theorem [12] characterizes those groups G with more than one
end as those which split as an amalgamated free product (or an HNN-extension)
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over a finite group (see also [13, 8]). In addition, Dunwoody [5] showed that this
process of further splitting G must terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are
properly 3-realizable it suffices to look among those groups which are 1-ended.

2. Main result

The purpose of this section is to prove Theorem 1.1. We will make use of the
following result :

Proposition 2.1 ([1], Prop. 3.1). Let M be a manifold of the same proper homo-
topy type of a locally compact polyhedron K with dim(K) < dim(M). Then, any
Freudenthal end ǫ ∈ F(M) can be represented by a sequence of points in ∂M .

Proof of Theorem 1.1. Let G0, G1 be properly 3-realizable groups and F be a finite
group with presentation 〈a1, . . . , aN ; r1, . . . , rM 〉. Consider monomorphisms ϕi :
F −→ Gi(i = 0, 1), and denote by G0 ∗F G1 = 〈G0, G1;ϕ0(ai) = ϕ1(ai), 1 ≤ i ≤ N〉
the corresponding amalgamated free product. Let X0, X1 be compact 2-polyhedra
with π1(Xi) ∼= Gi and such that their universal covers have the proper homotopy
type of 3-manifolds M0,M1 respectively. Let L = ∨N

i=1S
1 and fi : L −→ Xi

(i = 0, 1) be cellular maps such that Im fi∗ ⊆ π1(Xi) corresponds to the subgroup
Im ϕi ⊆ Gi. We take the standard 2-dimensional CW-complex Y ′ associated to the
above presentation of F , i.e., Y ′ has one 1-cell ei for each generator ai (1 ≤ i ≤ N),
all of them sharing the only vertex in Y ′, and one 2-cell dj for each relation rj
(1 ≤ j ≤ M) attached via a map S1 −→ ∨N

i=1ei which “‘spells” the relation rj .
Consider the adjunction spaces Y = (∨N

i=1ei)× I ∪(∨N
i=1

ei)×{ 1

2
} Y

′ (homotopy equi-

valent to Y ′) and Z = Y ∪f0×{0}∪f1×{1} (X0⊔X1). By van Kampen’s Theorem, Z is

a compact 2-polyhedron with π1(Z) ∼= G0 ∗F G1. Let Z̃ be the universal cover of Z

with covering map p : Z̃ −→ Z. Then, p−1(Xi) consists of a disjoint union of copies

of the universal cover X̃i of Xi, since the inclusion Xi →֒ Z induces a monomor-
phism Gi →֒ G0 ∗F G1 between the fundamental groups, i = 0, 1 (see [10]). On the

other hand, let Γ be a connected component of p−1(∨N
i=1ei) ⊂ p−1(Y ′) and Ỹ ′ be

the connected component of p−1(Y ′) containing Γ. Observe that Ỹ ′ is a copy of
the universal cover of Y ′ (which is compact), as the inclusion Y ′ →֒ Z induces a
monomorphism F →֒ G0 ∗F G1. Then, it is easy to see that p−1(Y ) consists of a

disjoint union of copies of the compact CW-complex K = (Γ× I)∪Γ×{ 1

2
} Ỹ

′. Thus,

Z̃ comes together with the following data (see [13]) :

(a) The disjoint unions
⊔

p∈N

X̃0,p and
⊔

r∈N

X̃1,r of copies of X̃0 and X̃1 respectively;

(b) a disjoint union
⊔

p,q∈N

Kp,q of copies of K; and

(c) a bijective function ϕ : N × N −→ N × N, (p, q) 7→ (r, s) (given by the group

action of G0 ∗F G1 on Z̃), so that for each p, q ∈ N, Γ × {0} ⊂ Kp,q is being glued

to X̃0,p via a lift f̃0
p,q : Γ×{0} −→ X̃0,p of the map f0, and Γ×{1} ⊂ Kp,q is being

glued to X̃1,r via a lift f̃1
r,s : Γ × {1} −→ X̃1,r of the map f1.

Next, for each copy of X̃i, i = 0, 1, in Z̃ (written as X̃0,p or X̃1,r), we take one

of the maps f̃ i
λ,µ : Γ × {i} −→ X̃i and observe that this map is nullhomotopic so
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we can replace it (up to homotopy) with a constant map gi
λ,µ : Γ×{i} −→ X̃i with

Im gi
λ,µ ⊂ Im f̃ i

λ,µ, and we do this equivariantly using the group action ofGi on X̃i.
Since this action is properly discontinuous, the collection of all these homotopies
gives rise to a proper homotopy equivalence between Z̃ and a new 2-dimensional
CW-complex W obtained from a collection of copies of K and a collection of copies
of X̃0 and X̃1 by gluing each copy of Γ × {i} to the corresponding copy of X̃i via
the bijection ϕ and the new maps gi

λ,µ, i = 0, 1.

We will now manipulate the CW-complex K as follows. First, let K ′ be the
CW-complex obtained from K by shrinking to a point v × {i} each copy T × {i}

(i ∈ I) of a maximal tree T ⊂ Ỹ ′ ⊂ K. Next, we take K ′′ to be the CW-complex
obtained from K ′ by identifying the subcomplexes Γ × {i}/T × {i}, i = 0, 1, to
a (different) point which we will denote by [v × {0}] and [v × {1}]. Note that

K ′′ has a copy of Ỹ ′/T as a subcomplex. Since Ỹ ′/T is compact and simply con-

nected, it follows from ([14], Prop. 3.3) that Ỹ ′/T is homotopy equivalent to a finite
bouquet of 2-spheres ∨α∈AS

2 (which we may regard as a connected 2-dimensional
CW-complex with no 1-cells). Moreover, we may assume that this homotopy equi-

valence is given by a cellular map Ỹ ′/T −→ ∨α∈AS
2 so that the 1-skeleton Γ/T of

Ỹ ′/T is mapped to the wedge point. Finally, taking into account this homotopy
equivalence, it is not difficult to see that K ′′ is homotopy equivalent to the CW-

complex K̂ obtained from the disjoint union of a finite bouquet ∨α∈A∪BS
2 (where

Card(B) = 2 rank(π1(Γ)) and the unit interval I by identifying 1
2 ∈ I with the

wedge point, so that I ⊂ K̂ would correspond to the subcomplex v × I ⊂ K ′ and

0, 1 ∈ I would correspond to [v×{0}], [v×{1}] ∈ K ′′. Notice that K̂ thickens to a

3-manifold P ց K̂ containing 3-dimensional 1-handles H and H ′ (with a free end

face each of them) corresponding to the edges [0, 1
2 ], [12 , 1] ⊂ I ⊂ K̂ respectively.

According to the above, one can see that the CW-complex W (proper homotopy

equivalent to Z̃) is in turn proper homotopy equivalent to the quotient space ob-
tained from the following data :

(a) A disjoint union
⊔

p∈N

X̃0,p of copies of X̃0 together with a locally finite sequence

of points {xp
q}q∈N ⊂ X̃0,p, for each p ∈ N, corresponding to the images of the con-

stant maps g0
p,q : Γ × {0} −→ X̃0,p considered above in the construction of W ;

(b) a disjoint union
⊔

r∈N

X̃1,r of copies of X̃1 together with a locally finite sequence of

points {yr
s}s∈N ⊂ X̃1,r, for each r ∈ N, corresponding to the images of the constant

maps g1
r,s : Γ × {1} −→ X̃1,r from the construction of W ;

(c) a disjoint union
⊔

p,q∈N

K̂p,q of copies of K̂; and

(d) the bijective function ϕ : N×N −→ N×N, (p, q) 7→ (r, s), so that 0 ∈ I ⊂ K̂p,q is

being identified with xp
q ∈ X̃0,p and 1 ∈ I ⊂ K̂p,q is being identified with yr

s ∈ X̃1,r

((r, s) = ϕ(p, q)), for each p, q ∈ N.

We now follow an argument similar to the proof of ([1], Lemma 3.2). Fix proper

homotopy equivalences h : X̃0 −→ M and h′ : X̃1 −→ N , where we now denote
M0 by M and M1 by N . Given the above data, we set A = N × N and consider
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maps i : A −→
⊔

p∈N

X̃0,p , i
′ : A −→

⊔

r∈N

X̃1,r given by i(p, q) = xp
q and i′(p, q) = yr

s ,

where (r, s) = ϕ(p, q). It is easy to check that i and i′ are proper cofibrations, as
the corresponding sequences of points are locally finite. Next, we take exhaustive
sequences {Ap

m}m∈N and {Br
n}n∈N of copies Mp and Nr of the 3-manifolds M

and N respectively by compact submanifolds, and define proper cofibrations j :

A −→
⊔

p∈N

Mp , j′ : A −→
⊔

r∈N

Nr as follows. Given (p, q) ∈ A and the proper

homotopy equivalences hp = h : X̃0,p −→ Mp , h′r = h′ : X̃1,r −→ Nr (with
(r, s) = ϕ(p, q)), we take m(q), n(s) ∈ N to be the least natural numbers such that
hp ◦ i(p, q) /∈ Ap

m(q) ⊂ Mp and h′r ◦ i
′(p, q) /∈ Br

n(s) ⊂ Nr. Then, using Proposition

2.1, we define j(p, q) and j′(p, q) to be points j(p, q) = ap,q ∈ ∂Mp − Ap

m(q) and

j′(p, q) = br,s ∈ ∂Nr − Br
n(s) so that (i) j, j′ are one-to-one maps (note that h, h′

need not be one-to-one); and (ii) ap,q and hp ◦ i(p, q) (resp. br,s and h′r ◦ i′(p, q))
are in the same path component of Mp − Ap

m(q) (resp. Nr − Br
n(s)). Notice that j

and j′ are proper maps by construction. Consider now maps

G :




⊔

p∈N

X̃0,p



× {0} ∪ (i(A) × I) −→
⊔

p∈N

Mp

H :

(
⊔

r∈N

X̃1,r

)
× {0} ∪ (i′(A) × I) −→

⊔

r∈N

Nr

with G|X̃0,p×{0} = hp = h and H |X̃1,r×{0} = h′r = h′ (p, r ∈ N), and so that

αp,q = G|i(p,q)×I (resp. βr,s = H |i′(p,q)×I) is a path in Mp −Ap

m(q) from hp ◦ i(p, q)

to ap,q (resp. a path in Nr − Br
n(s) from h′r ◦ i

′(p, q) to br,s). Observe that G and

H are proper maps, since h, h′, j and j′ are proper. By the Homotopy Extension
Property, the maps G,H extend to proper maps

Ĝ :




⊔

p∈N

X̃0,p



× I −→
⊔

p∈N

Mp , Ĥ :

(
⊔

r∈N

X̃1,r

)
× I −→

⊔

r∈N

Nr

which yield commutative diagrams

A

i

{{vvvvvvvvv

j

##GGGGGGGGG

⊔
p∈N

X̃0,p
ĥ

//
⊔

p∈N
Mp

A

i′

zzvvvvvvvvv

j′

##GGG
GG

GGG
G

⊔
r∈N

X̃1,r
ĥ′

//
⊔

r∈N
Nr

where ĥ = Ĝ|(
⊔

p∈N
X̃0,p)×{1} and ĥ′ = Ĥ |(

⊔
r∈N

X̃1,r)×{1} are proper homotopy equiv-

alences. Moreover, ĥ and ĥ′ are proper homotopy equivalences under A, by ([2],
Prop. 4.16) (compare with [11], Chap. 6, § 5). Hence, they induce a proper ho-
motopy equivalence between the quotient space described above (proper homotopy
equivalent to W ) and the following 3-manifold obtained as the quotient space given
by the data :

(a) The disjoint unions
⊔

p∈N

Mp and
⊔

r∈N

Nr of copies of the 3-manifolds M and N

respectively;
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(b) a disjoint union
⊔

p,q∈N

Pp,q of copies of the compact 3-manifold P ց K̂; and

(c) the bijective function ϕ : N×N −→ N×N, (p, q) 7→ (r, s), so that for each p, q ∈
N, the free ends of the corresponding 3-dimensional 1-handlesHp,q, H

′
p,q ⊂ Pp,q con-

sidered above are being identified homeomorphically with small disks Dp,q ⊂ ∂Mp

and D′
r,s ⊂ ∂Nr about the points ap,q and br,s respectively.

In the case of an HNN-extension G∗F = 〈G, t; t−1ψ0(ai)t = ψ1(ai), 1 ≤ i ≤ N〉
(with monomorphisms ψi : F −→ G, i = 0, 1), let X be a compact 2-polyhedron
with π1(X) ∼= G and whose universal cover has the proper homotopy type of
a 3-manifold, and let fi : ∨N

i=1S
1 −→ X (i = 0, 1) be cellular maps so that

Im fi∗ ⊆ π1(X) corresponds to the subgroup Im ψi ⊆ G. Let Y be the 2-
dimensional CW-complex constructed as above and consider the adjunction space
Z = Y ∪f0×{0}∪f1×{1} X , with π1(Z) ∼= G∗F . Then, the proof goes just as the one
given above for the amalgamated free product. �
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