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Abstract: We consider the finite element discretization of a convection-diffusion equation,
where the convection term is handled via a fluctuation splitting algorithm. We prove a
posteriori error estimates which allow us to perform mesh adaptivity in order to optimize
the discretization of these equations. Numerical results confirm the interest of such an
approach.

Résumé: Nous considérons une discrétisation par éléments finis d’une équation de con-
vection–diffusion, où un algorithme de décentrage est utilisé pour traiter le terme de con-
vection. Nous prouvons des estimations d’erreur a posteriori qui permettent d’adapter
le maillage pour optimiser la discrétisation de ces équations. Des résultats numériques
confirment l’intérêt d’une telle approche.

1
Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie - Paris 6,
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1. Introduction.

We are interested in the discretization of the following convection-diffusion equation,
set in a bounded connected domain Ω in R2 or R3,

−α∆p+ (u · ∇)p = f in Ω, (1.1)

and provided with appropriate boundary conditions, in both cases where the diffusion
term or the convection term is the leading one. The discretization that we propose relies
on Lagrange finite element methods of low order. However, as standard for convection
dominated problems, a further upwind scheme must be inserted into the discrete problem
in order to have good convergence properties.

After the pioneering papers [15] and [10] where the method of characteristics is in-
troduced, a large amount of work has been performed concerning the construction of new
upwind schemes and their analysis. We quote among others the discontinuous Galerkin
methods [7], several kinds of finite volume discretizations [9][19], the N scheme [14] and the
positive streamwise invariant (PSI) algorithm introduced in [8]. We use here the abstract
framework proposed in [5] for handling the more general fluctuation splitting methods, also
called residual distribution methods [1], which includes the PSI scheme and other second-
order non-linear residual-distribution schemes (see also [5] for a more general bibliography
on these upwind schemes).

On the opposite, it seems that very few works deal with the a posteriori analysis of
such methods (see [2] for the method of characteristics and [19] for finite volume methods).
In this paper, we perform the a posteriori analysis of the PSI method, in the framework
proposed in [5]. We observe that the techniques of proof are very similar to their analogue
in the case of a simple Galerkin method and we establish optimal upper bounds of the
error as a function of residual type error indicators (see [18] for the description of these
indicators). Conversely, these indicators are bounded from above by the local error. So
our estimates are fully optimal and the error indicators constitute a very efficient tool for
mesh adaptivity.

We next describe our adaptivity strategy. The numerical experiments that we present
are aimed to prove that mesh adaptivity is a very efficient tool for computing some solutions
in realistic cases, for instance when they present boundary layers. They confirm the interest
of using the PSI algorithm in strongly convection dominated regimes.

An outline of the paper is as follows:
• In Section 2, we present the abstract framework for the fluctuation splitting methods.
Next, we recall from [5, §6 & 7] the main results concerning the well-posedness of the
discrete problem and the convergence of its solution.
• Section 3 is devoted to the a posteriori analysis of the discrete problem.
• Numerical experiments are presented in Section 4.
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2. The continuous and discrete problems.

Let Ω be a connected bounded open set in Rd, d = 2 or 3, with a Lipschitz–continuous
boundary ∂Ω. The generic point in Ω is denoted by x, while the generic point on ∂Ω is
denoted by τ . As usual, n stands for the unit outward normal vector to Ω on ∂Ω. With
standard notation for the Sobolev spaces, we introduce a vector function u in W 1,r(Ω)3,
r > d

2 , and we make the further assumption that

divu = 0 in Ω. (2.1)

We are thus in a position to introduce a partition of ∂Ω without overlap into Γ− and Γ+,
with

Γ− =
{
τ ∈ ∂Ω; (u · n)(τ ) < 0

}
, Γ+ =

{
τ ∈ ∂Ω; (u · n)(τ ) ≥ 0

}
,

and we assume from now on that Γ− has a positive measure in ∂Ω. We are interested in
the following equation 

−α∆p+ (u · ∇)p = f in Ω,

p = 0 on Γ−,

α∂np = 0 on Γ+,

(2.2)

where the diffusion coefficient α is a positive constant. The unknown is the scalar function
p and the datum f is assumed to be regular enough. Note that we have chosen to work
with zero boundary conditions only for simplicity.

Let H1
∗ (Ω) denote the space

H1
∗ (Ω) =

{
q ∈ H1(Ω); q = 0 on Γ−

}
. (2.3)

It is readily checked that, when the boundaries of Γ− and Γ+ are smooth enough, system
(2.2) admits the equivalent variational formulation

Find p in H1
∗ (Ω) such that

∀q ∈ H1
∗ (Ω), a(p, q) = 〈f, q〉, (2.4)

where the bilinear form a(·, ·) is defined by

a(p, q) = α

∫
Ω

(grad p)(x) · (grad q)(x) dx+
∫

Ω

(
(u · ∇) p

)
(x) q(x) dx, (2.5)

while 〈·, ·〉 stands for the duality pairing between H1
∗ (Ω) and its dual space H1

∗ (Ω)′.
Owing to the assumption on u, we deduce from standard Sobolev imbeddings that

the form a(·, ·) is continuous on H1(Ω)×H1(Ω). Moreover, we have for any function q in
H1
∗ (Ω)

a(q, q) = α |q|2H1(Ω) +
1
2

∫
Γ+

(u · n)(τ ) q2(τ ) dτ ≥ α |q|2H1(Ω).

Thus, using the Poincaré–Friedrichs inequality (indeed, Γ− has a positive measure), we
obtain the following ellipticity property: There exists a positive constant c such that

∀q ∈ H1
∗ (Ω), a(q, q) ≥ c α ‖q‖2H1(Ω). (2.6)
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All this together with the Lax–Milgram lemma yields that, for any datum f in H1
∗ (Ω)′,

problem (2.4) has a unique solution.
We assume from now on that Ω is a polygon (d = 2) or a polyhedron (d = 3). Let

(Th)h be a regular family of triangulations of Ω (by triangles or tetrahedra), in the sense
that:
• For each h, Ω is the union of all elements of Th;
• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge
or a whole face of both of them;
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed
circle or sphere is smaller than a constant σ independent of h.
As usual, h stands for the maximum of the diameters hK , K ∈ Th. We make the further
and non restrictive assumption that both Γ− and Γ+ are the union of whole edges (d = 2)
or whole faces (d = 3) of elements of Th. In what follows, c, c′, . . . are generic constants
that may vary from line to line but are always independent of h.

In view of the finite element discretization, we introduce the space

Xh =
{
qh ∈ H1(Ω); ∀K ∈ Th, qh|K ∈ P1(K)

}
,

where P1(K) is the space of restrictions to K of affine functions with d variables. We also
need its subspace

X∗h = Xh ∩H1
∗ (Ω).

In view of the fluctuation splitting method, we introduce another finite-dimensional space
Y∗h made of piecewise constant functions. We assume that the dimension of Y∗h is the same
as the dimension of X∗h and moreover we introduce a one-to-one linear mapping Πh from
X∗h onto Y∗h.

Next, assuming that the datum f belongs to L2(Ω), we consider the discrete problem
Find ph in X∗h such that

∀qh ∈ X∗h, ah(ph, qh) =
∫

Ω

f(x)(Πhqh)(x) dx, (2.7)

where the bilinear form ah(·, ·) is defined by

ah(ph, qh) = α

∫
Ω

(grad ph)(x) · (grad qh)(x) dx+
∫

Ω

(
(u ·∇) ph

)
(x) (Πhqh)(x) dx. (2.8)

To go further, we now describe the links between the spaces X∗h and Y∗h in the frame-
work of the fluctuation splitting method. Let bj , 1 ≤ j ≤ J , denote all the vertices of the
elements of Th. With these vertices, we associate the standard Lagrange functions ϕj : For
1 ≤ j ≤ J , the function ϕj belong to Xh and satisfies

ϕj(bj) = 1 and ϕj(bi) = 0, 1 ≤ i ≤ J, i 6= j. (2.9)

The functions ϕj , 1 ≤ j ≤ J , form a basis of Xh and without restriction we assume that
the ϕj , 1 ≤ j ≤ J∗, form a basis of X∗h (with J∗ < J).

The fluctuation splitting method relies on the choice of linearly independent functions
λj , 1 ≤ j ≤ J∗, which are piecewise constant and have a small support in a neighbourhood

3



of bj (“small” means contained in the union of triangles or tetrehedra in Th that contain
bj). Then, the operator Πh is defined by

Πhqh =
J∗∑
j=1

qh(bj)λj , (2.10)

and it is readily checked that it is one-to-one from X∗h onto the space Y∗h spanned by the
functions λj , 1 ≤ j ≤ J∗. Of course, since our aim is to construct upwind schemes, the
operator Πh, hence the functions λj , depend on the convection vector u. They can also
depend on the fluxes

∫
K
u(x) · (∇ph)(x) dx, and in this case we use the notation Πh(ph)

and λj(ph) when needed (note that in this case the discrete problem is nonlinear).
For each K in Th, we denote by bjK the vertices of K, where jK is the global index

corresponding to the local index j, 1 ≤ j ≤ d+1, and by λKj the restriction of the function
λjK to K. From now on, we assume that the λKj are zero when bj is not a vertex of K.
Example 2.1. The N scheme [14]
For each K in Th, we introduce the normal vector to the edge opposite to bjK

nKj = dmeas(K) gradϕjK .

Denoting by uK the mean value of u on K, we set

aKj =
1
d
uK · nKj , (aKj )+ = max{aKj , 0}, (aKj )− = min{aKj , 0}, bK =

d+1∑
j=1

(aKj )−.

Finally, for any function ρh in X∗h, we define the functions λKj (ρh) by

λKj (ρh) =
1∫

K
u(x) · (∇ρh)(x) dx

d+1∑
i=1

(aKj )+bK(aKi )−
(
ρh(bKj )− ρh(bKi )

)
. (2.11)

Despite their complex form, the functions λKj are easy to compute, for instance when u is
constant on K. Note however that the local flux

∫
K
u(x) · (∇ρh)(x) dx can vanish and, in

this case, the functions λKj are not defined.
Example 2.2. The PSI method
With the previous notation, the functions λKj are now defined by

λKj (ρh) =
1− µKj∫

K
u(x) · (∇ρh)(x) dx

d+1∑
i=1

(aKj )+bK(aKi )−
(
ρh(bKj )− ρh(bKi )

)
, (2.12)

where the constants µKj are chosen such that

0 ≤ µKj ≤ 1, 1 ≤ j ≤ d+ 1, and
d+1∑
j=1

λKj (ρh) = 1,

and also such that all λKj , K ∈ Th, are bounded independently of ρh. It can be noted that
the only difference between the N scheme and the PSI method relies on the choice of the
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constants µKj which are added to stabilize the discretization. Examples of constants µKj
satisfying the previous properties are given in [1] for instance.

To conclude, we recall from [5, §6 & 7] the main results concerning the well-posedness
of problem (2.7) and the convergence of the discrete solution ph to p. We are led to make
a few assumptions for that.
Assumption 2.3. The following property holds for each K in Th

λKj ≥ 0, 1 ≤ j ≤ d+ 1, and
d+1∑
j=1

λKj = 1. (2.13)

We now introduce the matrices linked to our discrete problem: D stands for the
matrix with coefficients

∫
Ω

(gradϕi)(x) · (gradϕj)(x) dx, 1 ≤ i, j ≤ J∗, and, for any
ρh in X∗h, C(ρh) stands for the matrix with coefficients

∫
Ω

(
(u · ∇)ϕi

)
(x)

(
λi(ρh)

)
(x) dx,

1 ≤ i, j ≤ J∗. We need a further definition.
Definition 2.4. A matrix A with coefficients Aij , 1 ≤ i, j ≤ N , is a M -matrix if

Aii > 0, 1 ≤ i ≤ N, and Aij ≤ 0, 1 ≤ i, j ≤ N, i 6= j,

Aii ≥
∑
j 6=i

|Aij |.

Assumption 2.5. For any ρh in X∗h and any real number α > 0, the matrix αD+C(ρh)
is a M -matrix.
Assumption 2.6. The mapping: ρh 7→ C(ρh) is continuous from X∗h into the space of
square real matrices with dimension J∗ × J∗.

Indeed, the following results are established in [5, Thms 6.1 & 7.1].
Proposition 2.7. If Assumptions 2.3, 2.5 and 2.6 are satisfied, for any datum f in L2(Ω),
problem (2.7) has a solution ph in X∗h for h small enough. Moreover, this solution satisfies

‖ph‖H1(Ω) ≤ c ‖f‖L2(Ω). (2.14)

Proposition 2.8. If Assumptions 2.3, 2.5 and 2.6 are satisfied, any sequence of solutions
(ph)h of problem (2.7) converges to the solution p of problem (2.4) strongly in H1(Ω) when
h tends to zero.

We refer to [5, Thm 7.3] for an explicit a priori estimate of the error between p and
ph under the previous assumptions: The scheme is first-order acurate in the H1(Ω)-norm.

We also observe that the N scheme and the PSI method both satisfy Assumption
2.3. On the other hand, they satisfy Assumption 2.5 only when the angles between edges
(d = 2) or the dihedral angles between faces (d = 3) of all elements of Th are ≤ π

2 . And
the PSI method always satisfies Assumption 2.6, but the N-scheme does not. To conclude,
let us remark that a relevant feature of the schemes verifying Assumptions 2.3, 2.5 and
2.6 is the verification of the discrete maximum principle, although this only occurs with
piecewise affine discretizations.
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3. A posteriori analysis of the discrete problem.

We need some further notation. With each K in Th, we associate
(i) the set E0

K of all edges (d = 2) or faces (d = 3) of K which are not contained in ∂Ω;
(ii) the sets E+

K of all edges (d = 2) or faces (d = 3) of K which are contained in Γ+;
(iii) the domain ωK equal to the union of all elements of Th that share at least an edge
(d = 2) or a face (d = 3) with K.
For each e in E0

K , we denote by [·]e the jump through e (the introduction of a vector normal
to e is necessary to make precise the sign of this jump, however we do not need it in what
follows). For each e in E0

K and in E+
K , he stands for the length (d = 2) or diameter (d = 3)

of e.
We introduce a piecewise constant approximation fh of the datum f : For each K in

Th, we set

fh|K =
1

meas(K)

∫
K

f(x) dx.

We also need an approximation uh of u. Several choices are possible for that:
• Assuming that u is continuous on Ω, we can define uh as the Lagrange interpolate of u
with values in Xh;
• A more consistent choice consists in taking uh in the Raviart–Thomas finite element
space [16]

Zh =
{
vh ∈ H(div,Ω); ∀K ∈ Th, vh|K ∈ PRT (K)

}
,

where H(div,Ω) is the domain of the divergence operator in L2(Ω)d and PRT (K) stands
for the space of restrictions to K of polynomials of the form µ + ν x, µ ∈ Rd, ν ∈ R.
Indeed, using the corresponding interpolation operator (see [16]) leads to a function uh
which is exactly divergence-free.

We are now in a position to define the error indicators: For each K in Th,

ηK = hK ‖fh− (uh · ∇)ph‖L2(K) +
∑
e∈E0

K

αh
1
2
e ‖[∂nph]e‖L2(e) +

∑
e∈E+

K

αh
1
2
e ‖∂nph‖L2(e). (3.1)

It can be noted that all the functions which appear in the norms are polynomials with
low degree, so that these indicators are very easy to compute once the discrete solution is
known.

We successively prove an upper and a lower bound of the error as a function of these
indicators. We set:

εK = hK ‖
(
(u− uh) · ∇

)
ph‖L2(K). (3.2)

Proposition 3.1. If Assumption 2.3 is satisfied, the following a posteriori estimate holds
for the error between the solution p of problem (2.4) and any solution ph of problem (2.7)

α ‖p− ph‖H1(Ω) ≤ c
( ∑
K∈Th

(
η2
K + ε2

K + h2
K ‖f − fh‖2L2(K)

)) 1
2
. (3.3)

Proof: Using (2.4) yields the residual equation, for any q un H1
∗ (Ω),

a(p− ph, q) =
∫

Ω

f(x)q(x) dx− a(ph, q).
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Then, it follows from (2.7) that, for any qh in X∗h,

a(p− ph, q) =
∫

Ω

f(x)(q −Πhqh)(x) dx

− α
∫

Ω

(grad ph)(x) ·
(
grad (q − qh)

)
(x) dx−

∫
Ω

(
(u · ∇) ph

)
(x) (q −Πhqh)(x) dx.

By integrating by parts on each K, we observe that, since ph is affine on K,

α

∫
K

(grad ph)(x) ·
(
grad (q − qh)

)
(x) dx =

∑
e∈E0

K
∪E+

K

α

∫
e

(∂nph)(τ )(q − qh)(τ ) dτ .

By also inserting the approximations fh and uh in the previous equation, we obtain, with
the appropriate signs for the jumps [∂nph]e,

a(p− ph, q)

=
∑
K∈Th

(∫
K

(f − fh)(x)(q −Πhqh)(x) dx−
∫
K

(
((u− uh) · ∇) ph

)
(x) (q −Πhqh)(x) dx

+
∫
K

(
fh − (uh · ∇) ph

)
(x) (q −Πhqh)(x) dx

− 1
2

∑
e∈E0

K

α

∫
e

[∂nph]e(τ )(q − qh)(τ ) dτ −
∑
e∈E+

K

α

∫
e

(∂nph)(τ )(q − qh)(τ ) dτ
)
.

Next, we take qh equal to the image of q by a Clément type regularization operator, see
[6]. We recall from [3, Chap. IX, Thms 3.7, 3.8 & Cor. 3.9] that this operator satisfies,
for all K in Th and e in E0

K or E+
K

‖q − qh‖L2(K) + hK |qh|H1(K) ≤ c hK |q|H1(∆K), ‖q − qh‖L2(e) ≤ c h
1
2
e |q|H1(∆K),

where ∆K is the union of elements of Th that intersect K. On the other hand, it is proven
in [5, Lemma 5.2] that, owing to Assumption 2.3, for any qh in X∗h and K in Th,

‖qh −Πhqh‖L2(K) ≤ c hK |qh|H1(K).

Combining all this with Cauchy–Schwarz inequalities yields

a(p− ph, q) ≤ c
∑
K∈Th

(ηK + εK + hK ‖f − fh‖L2(K)) |q|H1(∆K),

whence (note that each K in Th is only included in a finite number of ∆K′ , where “finite”
means bounded as a function of the regularity parameter σ of the family of triangulations)

a(p− ph, q) ≤ c
( ∑
K∈Th

(η2
K + ε2

K + h2
K ‖f − fh‖2L2(K))

) 1
2 |q|H1(Ω).

To conclude, we take q equal to p − ph and use the ellipticity property (2.6) of the form
a(·, ·).
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Remark 3.2. When the diffusion term is the leading one, it is a little deceipful that the
term ∆ph disappears in the definition of ηK (since ph is piecewise affine). A remedy to
that is proposed in [20] for instance: It consists in introducing an auxiliary unknown by
re-interpolating grad ph in an enriched space. We do not present this improvement in this
paper for the sake of simplicity and also because fluctuation splitting methods are specially
appropriate for convection dominated equations.
Remark 3.3. When |ph|H1(Ω) is bounded as a function of ‖f‖L2(Ω) (see (2.14)), we have

εK ≤ c hK ‖u− uh‖L∞(K)d . (3.4)

So, at least when the function u is smooth enough, the quantity εK is much smaller than
ηK .
Proposition 3.4. The following bound holds for each error indicator defined in (3.1),
K ∈ Th,

ηK ≤ c
(
‖p− ph‖H1(ωK) +

∑
κ∈Th,κ⊂ωK

(
εκ + hκ ‖f − fh‖L2(κ)

))
. (3.5)

Proof: We now write the residual equation in a slightly modified form: For each q in
H1
∗ (Ω),

a(p− ph, q) =
∑
K∈Th

(∫
K

(f − fh)(x)q(x) dx−
∫
K

(
((u− uh) · ∇) ph

)
(x) q(x) dx

+
∫
K

(
fh − (uh · ∇) ph

)
(x) q(x) dx

− 1
2

∑
e∈E0

K

α

∫
e

[∂nph]e(τ )q(τ ) dτ −
∑
e∈E+

K

α

∫
e

(∂nph)(τ )q(τ ) dτ
)
.

We bound successively the three terms in ηK thanks to appropriate choices of q in this
equation.
1) Denoting by ψK the bubble function on K (equal to the product of the barycentric
coordinates associated with the vertices of K), we first take q equal to qK , with

qK =
{

(fh − (uh · ∇)ph)ψK in K,
0 in Ω \K.

Since the function qK vanishes on ∂K, we obtain

‖(fh − (uh · ∇)ph)ψ
1
2
K‖

2
L2(K) ≤ c ‖p− ph‖H1(K)‖qK‖H1(K)

+ ‖f − fh‖L2(K)‖qK‖L2(K) + ‖
(
(u− uh) · ∇

)
ph‖L2(K)‖qK‖L2(K).

Next, we use the inverse inequalities [18, Lemma 3.3], valid for any polynomial ϕK of fixed
degree,

‖ϕK‖L2(K) ≤ c ‖ϕK ψ
1
2
K‖L2(K), ‖ϕK ψK‖L2(K) ≤ c′ ‖ϕK ψ

1
2
K‖L2(K),

and also
‖ϕK ψK‖H1(K) ≤ c h−1

K ‖ϕK ψK‖L2(K).
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By using this in the previous inequality and multiplying it by hK , we derive

hK ‖fh − (uh · ∇)ph‖L2(K) ≤ c
(
α ‖p− ph‖H1(K) + hK ‖f − fh‖L2(K) + εK

)
. (3.6)

2) With each edge or face e of a triangle K, we associate a lifting operator Le,K
• which maps polynomials on e vanishing on ∂e into polynomials on K vanishing on ∂K \e,
• which is constructed from a fixed lifting operator on the reference triangle or tetrahedron
by affine transformation.
Next, for each edge or face e in E0

K which is contained in another element K ′ of Th, we
define the function qe by

qe =
{
Le,κ

(
[∂nph]e ψe

)
in κ ∈ {K,K ′},

0 in Ω \ (K ∪K ′),
where ψe stands for the bubble function on e. Taking q equal to this function qe in the
residual equation, we obtain

α ‖[∂nph]e ψ
1
2
e ‖2L2(e)

≤ ‖fh − (uh · ∇)ph‖L2(K∪K′)‖qe‖L2(K∪K′) + c ‖p− ph‖H1(K∪K′)‖qe‖H1(K∪K′)

+ ‖f − fh‖L2(K∪K′)‖qe‖L2(K∪K′) + ‖
(
(u− uh) · ∇

)
ph‖L2(K∪K′)‖qe‖L2(K∪K′).

It can be checked from the construction of Le,κ [18, Lemma 3.3] that it satisfies, for any
polynomial ϕe of fixed degree,

‖Le,κϕe‖L2(κ) ≤ c h
1
2
e ‖ϕe‖L2(e).

By combining this, the previous inverse inequalities and similar ones (with ψK replaced
by ψe and K replaced by e) and using (3.6), we derive

αh
1
2
e ‖[∂nph]e‖L2(e) ≤ c

(
‖p− ph‖H1(K∪K′) +

( ∑
κ∈{K,K′}

(h2
κ ‖f − fh‖2L2(κ) + ε2

κ)
) 1

2
)
. (3.7)

3) Similarly, for each edge or face e in E+
K , we define the function q+

e by

q+
e =

{
Le,K

(
(∂nph)ψe

)
in K,

0 in Ω \K,

and we take q equal to q+
e in the residual equation. Exactly the same arguments as in part

2) of the proof yield

αh
1
2
e ‖∂nph‖L2(e) ≤ c

(
‖p− ph‖H1(K) + hK ‖f − fh‖L2(K) + εK

)
. (3.8)

The desired result follows from (3.6) to (3.8).
As a consequence of Propositions 3.1 and 3.4, the error α ‖p− ph‖H1(Ω) is equivalent

to the Hilbertian sum of the indicators

ηh =
( ∑
K∈Th

η2
K

) 1
2 , (3.9)

up to the terms involving the data and the convection vector. Moreover, the equivalence
constants only depend on the regularity parameter σ of the family of triangulations. On
the other hand, estimate (3.5) is local. This leads us to think that the ηK , K ∈ Th, give a
good representation of the local error and thus are an efficient tool for mesh adaptivity.
Remark 3.5. It can be noted that estimate (3.3) holds when only Assumption 2.3 is
satisfied. Thus, even if the convergence of the discrete solution is not proved for some
algorithms, for instance for the N scheme, computing the ηK allows us to check numerically
this convergence or the non-convergence of the method.
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4. Numerical experiments.

We first describe the very simple strategy which is used in what follows. Let η∗ be a
fixed tolerance.
Initialization step: We choose an initial triangulation T 0

h such that

( ∑
K∈T 0

h

(
ε2
K + h2

K ‖f − fh‖2L2(K)

)) 1
2 ≤ η∗. (4.1)

Indeed, this quantity appears in the right-hand side of (3.3) and, since the datum f and
the convection vector u are known (see also (3.4)), enforcing this condition is rather easy.
Adaptation step: Assuming that the triangulation T nh is known, we compute a discrete
solution pnh, the corresponding error indicators ηnK and their mean value ηn. Then, we
perform mesh adaptivity in the usual way: The diameter of any element in the new trian-
gulation T n+1

h which contains or is contained in an element K of T nh is equal to a constant
ρ times the diameter of K times the ratio ηn/ηnK . We refer to [11, Chap. 21] for the way
of constructing such a mesh.

This step can be iterated until the Hilbertian sum of the indicators ηnK becomes smaller
than η∗ (when possible) or a finite number of times.

The numerical experiments that follow rely on the PSI method described in Example
2.2, we refer to [1] and [8] for the choice of the coefficients µKj . They are performed on
the finite element code FreeFEM++, in dimension d = 2 for simplicity, see [12] for the
detailed description of this code. We also work in the more general case of nonhomogeneous
boundary conditions

p = p− on Γ−, α ∂np = r+ on Γ+. (4.2)

We refer to [18, §1.1] for the (very weak) modifications induced by these new conditions
in the a posteriori analysis.
Case of known solutions

We first consider equation (1.1) in the square domain Ω =]0, 1[2, with coefficients and
data

α = 1.15, u =
(

7.5
20

)
, f = 0, (4.3)

provided with nonhomogeneous Dirichlet boundary conditions on Γ− and homogeneous
Neumann conditions on Γ+. Moreover, the Dirichlet condition p− is zero on the edge
x = 0 and piecewise affine on the edge y = 0, with support in [a− δ, b+ δ], equal to 1 on
[a, b] (a = 0.3 + 0.02

√
3 , b = 0.6 + 0.02

√
3, δ = 0.1) . The exact solution can be easily

evaluated by Fourier expansion. A countour plot of this solution is given in Figure 1.
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Figure 1: The exact solution
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Figure 2: The curves of errors in H1(Ω) and L2(Ω)
In what follows, we use a new definition of h, which is more significative in the context

of mesh adaptivity: h stands for the quantity J−
1
2 , where J is the number of vertices of

the triangles in Th (see Section 2). Figure 2 presents the curves of the errors in H1(Ω)
(left part) and in L2(Ω) (right part) as a function of h, in the following three situations:
1) for uniformly refined meshes (black line),
2) for adapted meshes according to the previous strategy, with ρ = 1 (red diamonds),
3) for adapted meshes according to the previous strategy, but now with ρ = 0.85 (green
line).
It can be noted that mesh adaptivity is less efficient for diminishing the error in the L2(Ω)-
norm than in the H1(Ω)-norm. This is in good coherence with the a posteriori analysis
performed in Section 3 which only deals with the H1(Ω)-norm.

Figure 3 presents the final adapted mesh after 30 iterations of the adaptation step
with ρ = 1. Figure 4 presents the chart of the local error divided by its mean value (left
part) and of the error indicators also divided by their mean value (right part) computed
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on this mesh.
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Figure 3: The final adapted mesh
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Figure 4: The local errors and error indicators
To conclude, Figure 5 presents the ratio of the standard deviation of the error indi-

cators to their mean value as a function of the number of iterations N of the adaptation
step. The fact that this ratio tends to zero when N increases proves the efficiency of our
adaptivity strategy, at least in this simple case. Figure 6 presents the effectivity index,
i.e., the ratio of the Hilbertian sum of the indicators defined in (3.9) to the error in H1(Ω)-
norm, also as a function of the number of iterations N . Even if it highly oscillates for low
values of N , it tends to a limit when N tends to infinity, which is in good coherence with
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our analysis, see Propositions 3.1 and 3.4.
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Figure 5: The deviation of the indicators with respect to their mean value
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Figure 6: The effectivity index
Case of unknown solutions

We now work with a test case proposed in [17]. The domain Ω is the rectangle
]− 1, 1[×]0, 1[. The coefficients and data are given by

α = 10−4, u =
(

2y(1− x2)
−2x(1− y2)

)
, f = 0, (4.4)

so that the problem is strongly advection-dominated. This problem is provided with ho-
mogeneous Neumann boundary conditions r+ = 0 on Γ+, while the Dirichlet boundary
conditions on Γ− are given by

p−(x, y) = 1 + tanh
(
50(2x+ 1)

)
on Γ− =]− 1, 0[×{0}, (4.5)

so that a sharp front is transported by the velocity u. Figure 7 presents a reference solution
computed on a very fine mesh.

13



Figure 7: The reference solution
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Figure 8: The adapted meshes
We now compute the triangulations Th by iterating the adaptation step with the

constant ρ equal to 0.9. Figure 8 presents from left to right and top to bottom the
initial mesh next the resulting adapted meshes, after 5, 10, 15, 20 and 25 iterations of the
adaptation step. It can be noted that the final meshes are refined exactly at the location
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of the sharp front, which proves the efficiency of our strategy.
Finally, Figure 9 presents the Hilbertian sum of the indicators ηh (circles), and the

errors in the norms of H1(Ω) (stars) and L2(Ω) (crosses) as a function of h (defined as
previously as equal to J−

1
2 ) in bilogarithmic scales, all these quantities being divided by

their mean value. The expected order for uniform refinement is 1 in the H1(Ω) norm,
so it seems that clustering the points around the sharp gradient region yields a higher
convergence rate.
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Figure 9: The Hilbertian sum of the error indicators as a function of h.

For the last test case, the domain is [0, 1]2 and we still use the coefficient α = 10−4

and data f = 0 and r+ = 0. We now consider the veloicity u = (−∂yψ, ∂xψ)T , where is
the stream function ψ is given by

ψ(x, y) = −y − 1
3
x2(1− 2y) +

1
5π
x cos(kπx2) sin(pπy), (4.6)

with k = 16 and p = 4.
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Figure 10: The stream lines of the velocity u
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Such a velocity field is chosen in order to mimic a turbulent flow, and the corresponding
stream lines are plotted in Figure 10. The Dirichlet boundary conditions on Γ− are

p−(x, y) =
{
y5(1− y)5, if x = 0,
0, otherwise.

(4.7)

Due to the choice of the velocity field, Γ− and Γ+ are not connected (the inflow
boundary Γ− is indicated by a grey thick line on Figure 10). Hence, to simplify the
treatment of the boundary conditions, the Dirichlet boundary conditions are enforced
weakly employing the method by Nitsche, for which we refer to [13] and [4], which allows
the use of computational meshes such that the intersection Γ− ∩ Γ+ does not necessarily
coincide with a subset of the mesh nodes. In fact, the initial mesh considered in the mesh
adaptation process uses 16 uniform subdivisions for each side of the computational domain,
so that the small scale inflow/outflow pattern is not resolved.

The computed solution after 20 iterations of the adaption step is depicted in Figure
11, and the corresponding adapted grid is shown in Figure 12 (left part), together with a
zoom on the right upper part of the domain (right part).

Figure 11: The computed solution
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Figure 12: The adapted mesh

Even in these rather hard situations, the PSI method seems very efficient to solve the
advection-dominated problems and is fully compatible with mesh adaptivity.
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