
Natural Encoding for Evolutionary
Supervised Learning

Jesús S. Aguilar-Ruiz, Raúl Giráldez, and José C. Riquelme

Abstract—Some of the most influential factors in the quality of
the solutions found by an evolutionary algorithm (EA) are a cor-
rect coding of the search space and an appropriate evaluation func-
tion of the potential solutions. EAs are often used to learn decision
rules from datasets, which are encoded as individuals in the ge-
netic population. In this paper, the coding of the search space for
the obtaining of those decision rules is approached, i.e., the rep-
resentation of the individuals of the genetic population and also
the design of specific genetic operators. Our approach, called “nat-
ural coding,” uses one gene per feature in the dataset (continuous
or discrete). The examples from the datasets are also encoded into
the search space, where the genetic population evolves, and there-
fore the evaluation process is improved substantially. Genetic op-
erators for the natural coding are formally defined as algebraic
expressions.

Experiments with several datasets from the University of
California at Irvine (UCI) machine learning repository show that
as the genetic operators are better guided through the search
space, the number of rules decreases considerably while main-
taining the accuracy, similar to that of hybrid coding, which joins
the well-known binary and real representations to encode discrete
and continuous attributes, respectively. The computational cost
associated with the natural coding is also reduced with regard to
the hybrid representation.

Our algorithm, HIDER*, has been statistically tested against
C4.5 and C4.5 Rules, and performed well. The knowledge models
obtained are simpler, with very few decision rules, and therefore
easier to understand, which is an advantage in many domains.
The experiments with high-dimensional datasets showed the same
good behavior, maintaining the quality of the knowledge model
with respect to prediction accuracy.

Index Terms—Decision rules, evolutionary encoding, supervised
learning.

I. INTRODUCTION

DECISION RULES are especially relevant in problems re-
lated to supervised learning. Given a dataset with contin-

uous and discrete features or attributes, and a class label, we try
to find a rule set that describes the knowledge within data or
classifies new unseen data. When the feature is discrete, the
rules take the form of “if , then class,” where
the values are not necessarily all those that the fea-
ture can take. When the feature is continuous, typically the
rules take the form of “if then class,” where

This work was supported in part by the Spanish Research Agency CICYT
under Grant TIN2004-00159 and in part by Junta de Andalucía (III Research
Plan).J. S. Aguilar-Ruiz and R. Giráldez are with the School of
Engineering, Pablo de Olavide University, 41013 Seville, Spain (e-mail:
jsagurui@upo.es; rgirroj@upo.es).

J. C. Riquelme is with the Department of Computer Science, University of
Seville, 41004 Seville, Spain (e-mail: riquelme@lsi.us.es).

and are two real values belonging to the range of the feature
and . For example, let us assume that we have a syn-
thetic dataset that associates the weight (in kilograms) and eye
color of a person with whether or not she/he will have a paper
accepted in a relevant conference. The dataset is a sequence of
tuples such as (60, green, no), (70, black, yes), etc. A rule de-
scribing the relationship among attribute values and class might
be

The search for these rules can be tackled with many dif-
ferent techniques, however, evolutionary algorithms (EAs)
present particularly good performance when the search space
is complex.

Two critical factors influence the decision rules obtained by
an EA: the selection of an internal representation of the search
space (encoding) and the definition of an external function that
assigns a value of goodness to the potential solutions (evalua-
tion).

In this work, a particular emphasis is placed on the physical
representation of the encoding (the genotype: string of genes
possessed by an individual) as compared with the features of
the supervised learning problem to be optimized by the EA (the
phenotype). The mapping operation between these two repre-
sentations is also very important to define the search space and
to guide the specific genetic operators.

In principle, a single gene can affect several features in the
phenotype (mapping one-to-m) or one feature in the phenotype
can be controlled by multiple genes (mapping m-to-one). These
two situations, named pleiotropy and poligeny [1], respectively,
have a strong presence in naturally evolved systems. However,
the one-to-one mapping is the most common in evolutionary
systems, which represents a simplification of natural evolution.

Winston [2] suggests that good generators of solutions in a
search space should possess the following properties.

• Completeness: they eventually produce all positions in a
search space.

• Nonredundancy: they never damage efficiency by
proposing the same solution twice.

• Informedness: they use possibility limiting information to
restrict the solutions they propose accordingly.

Moreover, a good evolutionary encoding should satisfy the
following properties.

• Coherence: it should not be possible to encode an element
that has no semantic meaning.

• Uniformity: every element will be represented by the
same number of encodings and, if possible, will be unique
(uniqueness).

• Simplicity: the coding function must have easy application
in both directions.

• Locality: small modifications to the values (phenotype)
should correspond to small modifications to the hypothet-
ical solutions (genotype).

• Consistency: futile or unproductive codings should not
exist .

• Minimality: the length of the coding should be as short as
possible.

On the other hand, internal redundancy should be avoided.
A representation is said to contain internal redundancy when
not all of the genetic information contained in a chromosome
is strictly necessary in order to identify uniquely the solution to
which it corresponds. It is also very common to find degeneracy
in representations. A representation is said to exhibit degeneracy
when more than one chromosome can represent the same so-
lution. Degeneracy is often detrimental to genetic search [3],
because it means that isomorphic forms are allowed. In some
problems, the effect of one gene suppresses the action of one or
more other genes. This feature of interdependency, called epis-
tasis, should also be controlled and minimized.

Therefore, the design of a new representation for EAs is not
simple if we wish it to have a good performance. In fact, not only
should the encoding preserve most of the properties mentioned
above, but new genetic operators should also provide some ad-
vantages when the new encodings are used. In this work, we
present a new evolutionary encoding to produce decision rules.
Our approach, named “natural coding,” is a one-to-one map-
ping, and it only uses natural numbers to encode continuous
and discrete features. This coding needs a new definition for the
genetic operators in order to avoid the conversion from natural
numbers to the values in the original space. These definitions
are presented, and as it is shown in this paper, the EA can work
directly with the natural coding until the end, when the individ-
uals will be decoded to decision rules.

This paper is organized as follows: in Section II, the work
related to binary, integer, and real codings is presented; the mo-
tivation of our approach is described in Section III; the natural
coding is presented in Section IV, together with the genetic op-
erators associated with continuous and discrete attributes; the
algorithm is illustrated in Section V, discussing the new eval-
uation method and the length of individuals; later, we com-
pare our approach to the hybrid coding regarding the length
of individuals and to C4.5 and C4.5 Rules to search for statis-
tical differences about the error rate and the number of rules in
Section VI; finally, the most interesting conclusions are summa-
rized in Section VII.

II. RELATED WORK

Choosing a good genetic representation is critical for the EA
to find a good solution for the problem because the encoding
will have much influence on achieving an effective search. Bi-
nary, Gray, and floating-point chromosome encodings have been
widely used in the literature because they have provided gener-
ally satisfactory results. Thus, few alternatives have been ana-
lyzed. Nevertheless, there are many ways of associating feature
values to genes, which should be discussed in light of finding
the best one for specific problems.

Taking the aforementioned properties into account, we are
going to analyze the most common representations for EAs,
from the perspective of supervised learning. To our knowledge,
little theoretical work has been developed in the field of evolu-
tionary encoding. Many authors have approached several cod-
ings for specific applications, most of them for optimization or
scheduling tasks, clustering, and feature selection. However, in
supervised learning, the binary, real and hybrid (binary coding
for discrete features and real for continuous) codings have com-
manded the attention of many researchers.

A number of studies dedicated to EAs, beginning with Hol-
land’s [4] made use of binary coding. The simplicity and, above
all, the similarity with the concept of Darwinian analogy, have
advanced its theoretical use and practical application. Several
genetic algorithms-based concept learners apply binary coding
to encode features with symbolic domains in order to induce
decision rules in either propositional (GABIL [5], GIL [6],
COGIN [7]) or first-order form (REGAL [8], [9], and DOGMA
[10]). However, binary coding is not the most appropriate for
continuous domains.

In general, binary coding has been widely used, for instance,
for feature selection [11] and data reduction [12].

In general, assuming that the interaction among attributes is
not linear, in principle, the size of the search space is related to
the number of genes used. For an individual with genes, the
size of the search space is , where is the alphabet
for the th gene. Traditionally, the same alphabet has been used
for every gene, mostly the binary alphabet, so that .
However, for a continuous feature with range , if we decide
to use length to encode it, the error in the precision of that
attribute would be

(1)

Therefore, if ,
the minimum encoding length, to ensure the precision is main-
tained, would be

(2)

Taking into account (2), the quantum defined by error will
assure that the length is the least that guarantees a good preci-
sion for the mutation operator. However, the locality problem is
not solved for binary representation. Gray encoding, where two
individuals next to each other in the search space differ by only
one bit, has been studied in depth [13], [14] and offers some ad-
vantages in this realm [15], although it suffers from the same
lack of precision as binary coding.

Both binary and Gray representations have some drawbacks
when applied to multidimensional, high-precision problems.
For example, for ten attributes with domains in the range [0,1],
where a precision of three digits after the decimal point is
required, the length of an individual is about 100. This, in turn,
generates a search space size of about .

For many problems, binary and Gray encoding are not ap-
propriate because a value of 1 bit may suppress the fitness con-
tributions of other bits in the genotype (epistasis) and genetic
operators may produce illegal solutions (inconsistency). Some

examples of other specific encodings are: Prüfer numbers to rep-
resent spanning trees [16] and integer numbers to obtain hierar-
chical clusters [17].

In real-valued coding [18], the chromosome is encoded as
a vector of floating-point numbers of the same length as the
solution vector. Each attribute is forced to be within a desired
range and the operators are carefully designed to preserve this
requirement. The motivation behind floating-point codings is to
move the EA closer to the problem space. This coding is capable
of representing quite large domains.

On the contrary, its main theoretical problem is the size of
the search space. Since the size of the alphabet is infinite, the
number of possible schemes is also infinite and, therefore, many
schemes that are syntactically different but semantically similar
will coexist (degeneracy).

In principle, any value can be encoded with an only (real)
gene, but this could be avoided by using a discrete search space,
where the mapping is one-to-one. However, instead of mapping
real values to real values, we will map natural numbers to real
intervals. For continuous domains, the intervals can precisely
define a range of values within the domain. With this solution,
the size of the search space is finite, and therefore so is the
number of schemes as well. However, this search space reduc-
tion requires a prior discretization of continuous attributes, so
the choice of the discretization method is critical. This idea will
be explained in detail in Section IV-B.

The approaches gathered in the bibliography, some of them
based on evolutionary strategies, use real coding for machine
learning tasks [19] or for multiobjective problems [20]. In SIA
[21], real coding is applied to a real-world data analysis task
in a complex domain. Finally, a combination of binary and real
coding is used in [22] in order to benefit from the advantages of
both codings by using the binary approach in discrete domains
and real coding for continuous attributes.

Fuzzy coding is another alternative for representing a chro-
mosome. Every attribute consists of a fuzzy set and a set of
degrees of membership to each fuzzy set [23]. Some other en-
coding strategies have been used in EAs. These include trees,
matrix encodings, permutation encodings, and structured het-
erogeneous encodings to name a few.

III. MOTIVATION

The main shortcoming of using real coding to produce deci-
sion rules is that any value in the range of the attribute could
be used as lower or upper bound of the interval for that attribute
condition. For example, the C4.5 tool [25] only takes as possible
values for the nodes of the decision trees the midpoints among
two consecutive values of an attribute. This idea might be used
to encode an individual of the genetic population so that only
hypothetically good values will be allowed as conditions over
an attribute in the rules. In a similar way, Bonissone et al. show
in [24] some real-world applications where the knowledge of
the problem domain benefits the use of EAs.

To clarify this idea, we will use the dataset shown in Fig. 1,
whose features are described in Section I. Observing the at-
tribute weight (the first one), C4.5 would investigate as possible
values: 56, 58, 59.5, 61, 63, 66, and 69. In other words, C4.5
is applying a local unsupervised method of discretization [26]

Fig. 1. Labeled dataset with one continuous and one discrete attribute.

since the class label is not taken into account in this process.
The reduction of the number of values is only determined by
the number of equal values for the attribute being considered.
This unsupervised discretization is not a good choice to analyze
possible limit values (either using entropy or any other criterion)
for the intervals [27].

A number of remarkable supervised discretization methods
have been included in the bibliography, including Holte’s 1R
[28] and the method of Fayyad and Irani [29]. In [30], a super-
vised discretization method, named unparametrized supervised
discretization (USD) is presented. This method is very similar
to 1R, although it does not need any input parameter. However,
as the aim of this method is not to find intervals but cutpoints
to be used as limits of further decision rules, we assume that
any supervised discretization method would be appropriate for
this purpose. As we will see below, if the discretization method
produces cutpoints, then there will be possible
intervals for the decision rules.

Our goal consists in observing the class along with the dis-
cretization method and decreasing the alphabet size. Following
the example in Fig. 1, we can note that it is only necessary to in-
vestigate the values 56, 61, 63, and 66, because they are values
which produce a change of class. Therefore, this coding allows
the use of all the possible intervals defined by every pair of cut-
points obtained by means of discretization, together with the
feature range bounds.

In short, if we are able to encode every possible interval and
every possible combination of discrete values in such a way that
the genetic operators make an efficient search of potential solu-
tions, then the proposed representation will be appropriate for
our purpose. Next, we are going to present and discuss this new
encoding method, which will disclose interesting properties.

The natural coding leads to a reduction of the search space
size, which has a positive influence on the convergence of the
EA with respect to the hybrid coding HIerarchical DEcision
Rules (HIDER [22]). The prediction accuracy is maintained,
while the number of rules is decreased, therefore using less
computational resources.

IV. NATURAL CODING

In this section, we propose a new encoding for EAs in order
to find decision rules in the context of supervised learning, to-
gether with their genetic operators, which will be presented in
two independent subsections: discrete and continuous features,
respectively. This coding has been named “natural” because it

Fig. 2. Hybrid individual versus natural individual.

only uses natural numbers to represent the set of intervals for
continuous features and the set of values for discrete ones, which
might take part in the decision rules.

Regarding the properties mentioned in Section I, natural
coding is complete, nonredundant, and informed. The internal
redundancy and degeneracy properties are especially taken into
account to perform an effective search for solutions. Moreover,
it is coherent, unique, simple, consistent, and minimal. Locality
is also satisfied as small variations of the natural numbers cor-
respond to small modifications of the intervals they represent.

Through the text, we will use a very simple dataset in order
to explain the application of the genetic operators. This dataset
(see Fig. 1) has a continuous attribute (weight in kilograms)
with range [55, 70], a discrete attribute (eye color) with values

black, green, blue , and a class (she/he is a candidate to have a
paper accepted in a relevant conference) with values yes, no .
Although the semantics of the natural coding have not yet been
detailed, Fig. 2 illustrates the length of natural versus hybrid
representations. It shows two individuals that represent the same
rule. The method to encode these values will be shown later.

Hybrid coding represents a rule comprising the union of two
types of genotypes: real coding for the continuous attributes and
binary coding for the discrete ones. Each condition associated
with a continuous attribute is encoded by two real numbers rep-
resenting the bounds of the interval for that attribute. Each con-
dition related to a discrete feature is encoded by a vector of bi-
nary values. The size of this vector is equal to the number of dis-
tinct values of the attribute, so that 1 means that attribute value
is present in the condition, and 0, absent. For instance, the rule
in Fig. 2 is encoded by using the hybrid coding (left).

The main problem of this encoding is that the search space
is very large, since for each continuous feature we have to find
two values in the range of the attribute. Another drawback is the
length of the individuals, which might be very large when the
discrete attributes take many distinct values. Our proposal tries
to minimize the search space size and the length of the indi-
viduals by assigning only one natural number to each condition
regardless of the type of the attributes. Thus, we attempt to limit
the search space of valid genotypes and reduce the length of the
individuals. When the attributes are discrete, this natural number
is the conversion of the aforementioned binary string from the
hybrid coding into a decimal number. For continuous features,
the natural number is obtained by numbering all the possible
intervals the condition can represent in an effective manner.

In Fig. 2, a rule is encoded by the natural encoding (right), in
contrast with the hybrid encoding (left). In this genotype, the
meaning of 8 is the number assigned to the interval [56, 63] in
the set of all valid intervals for , and the number 5 is the
integer that represents the binary string 101 for .

We can note that the natural coding is simpler, since the hy-
brid coding needs six genes to encode the rule, whereas the nat-
ural one encodes it with only three genes. In general, the hybrid
one uses two genes for continuous features and for discrete
ones, where is the number of different values that the fea-
ture can take. The natural coding gets to minimize the size of
individuals, assigning only one gene to each feature.

In general, to choose an encoding and a suitable set of ge-
netic operators is not an easy task. An unacceptable amount of
disruption can be introduced to the phenotype as a result of the
inappropriate design of genetic operators or the choice of the en-
coding strategy. Sometimes degeneracy is seen as a beneficial
effect to incorporate additional information. However, it is not
always a positive phenomenon since the genetic operators might
not increase the level of diversity of the next generation. In this
case, the implicit parallelism would also be reduced. As a norm,
encodings should be designed to naturally suppress redundant
encoding forms, and genetic operators should be implemented
in such a way that redundant forms do not benefit the operators.

A. Discrete Features

Several systems exist that learn concepts (concept learners)
and use binary coding for discrete features. When the set of at-
tribute values has many different values, the length of the indi-
vidual is very high so that a reduction in length might have a
positive effect on speeding the algorithm.

In the following discussions, we will assume that a discrete
feature is encoded by a single natural number (one gene), and
we will analyze how to apply the crossover and mutation opera-
tors such that the new values retain the meaning that they would
have had with a binary coding. The new value will belong to the
interval , where is the number of different values
of the attribute. With the natural coding for discrete attributes, a
reduction of the size of the search space is not obtained by itself,
but the individuals are better guided through the search space to
look for solutions when the specifically designed “natural ge-
netic operators” are applied.

The natural coding is obtained from a binary coding similar
to that used in GABIL and GIL. In decision rules, a condition
can establish a set of discrete values that the feature must satisfy
for an example to be classified. If a value is included in the
condition, its corresponding bit is equal to 1, otherwise, it is 0.
The natural coding for this gene is the conversion of the binary
number into a natural number. Table I shows an example for
a discrete feature with three different values: black, green, and
blue.

1) Natural Mutation: Following the example in Table I,
when a value is selected for mutation, for example, 3

, there are three options: 111, 001,
and 010, equivalent to the numbers 7, 1, and 2, respectively.
First, we assign the natural number corresponding to each
binary number. The mutation of each value would have to be

TABLE I
CODING FOR A DISCRETE ATTRIBUTE

TABLE II
MUTATION VALUES FOR DISCRETE ATTRIBUTES

some of the values shown in Table II. For example, possible
mutations of 0 are the values 1, 2, and 4.

Definition 1 (Natural Mutation): Let be the value of a gene
of an individual, then the natural mutation of the th bit of , de-
noted by , is the natural number produced by changing
that th bit

% (3)

where is the number of values of the
attribute; are the possible mutated values from ; % is
the rest of the integer division; and is the integer part.

Example 1: For example, according to Table II, the possible
mutation values for will be 4, 7, and 1

%

%

%

It is worth noting that we do not need to know the binary
values, as (3) takes a natural number and provides its natural
mutations.

Definition 2 (Mutation Set): Let be the value of a gene, we
define mutation set, , as the set of all valid mutations for
a natural value

(4)

where is the natural mutation of the th binary bit.
Example 2: From Example 1, .
Note that every discrete feature value set represented by a

natural number can be mutated by using (4), generating a set
of natural numbers which represents new discrete feature value
sets. Therefore, binary values do not appear in the population.

As shown in Example 2, from the value , the
possible values are and

.
2) Natural Crossover:
Definition 3 (-Order Mutation): Let be a set of natural

numbers, let us define the -order mutation, and it will be de-
noted as , as follows:

...

(5)

Definition 4 (Natural Crossover): Let and be the values
of two genes from two individuals for the same feature. The gene
of the offspring will be obtained from the values
belonging to the first nonempty intersection between the -order
mutations. Let , and , then

(6)

Example 3: Let us assume that we have the values 6(110) and
3(011). We include the current values into the mutation set since
the offspring could be similar to the parents. Thus, 6 mutates to

and 3 mutates to . As both genes share
2(010) and 7(111), any of them could be the offspring from 6
and 3. It is possible that the intersection is the parents (for ex-
ample, for 1 and 3, as the schema is the same for both, 0*1).

Example 4: Lets assume that we have the worst case, the
values 1(001) and 6(110), which have no bits in common. The
intersection between the first two mutation sets is empty. The
process is shown next

The intersection will be , and any of them will
be the valid offspring for .

Fig. 3 shows a more explanatory example of the nat-
ural genetic operators for the discrete attribute with values

. The gene encoded as 11
has the binary code 01011. The block on the right gives the
possible mutations, where the changed bit is shown in bold.
The gene encoded as 19 follows the same scheme. Therefore,
the set of mutations of both 11 and 19 are and

, respectively. The crossover between these
two genes is taken from the set .

Fig. 3. Example of mutation and crossover operators for a discrete attribute with five values fwhite, red, green blue, blackg.

TABLE III
INTERVALS CALCULATED FOR THE CONTINUOUS ATTRIBUTE WITH RANGE [55,70]. THE BOUNDARY POINTS ARE

f55; 56; 61; 63; 66;70g. A NATURAL NUMBER IS ASSOCIATED WITH EVERY CORRECT INTERVAL

B. Continuous Features

Using binary encoding in continuous domains requires trans-
formations from binary to real for every feature in order to apply
the evaluation function. Moreover, when we convert binary into
real, the precision might be affected. Ideally, the mutation of the
less significant bit of an attribute should include or exclude at
least one example from the training set. The real coding seems
more appropriate with real domains, simply because it is more
natural to the domain. A number of authors have investigated
nonbinary EAs theoretically [31]–[35]. In this sense, each gene
would be encoded with a float value. Two float values would be
needed to express the interval of a continuous feature.

As the range of continuous attributes is infinite, it would be
interesting to reduce the search space size, as the computational
cost should be lower. This reduction should not have negative
influence on the prediction accuracy of the solutions (decision
rules) found by the EA. The first step, therefore, consists in di-
minishing the cardinality of the set of values of the attribute.

1) Reducing the Cardinality: First, we will analyze what in-
tervals inside the range of the attribute tend to appear as in-
tervals for a potential decision rule obtained from the natural
coding. As mentioned before, this task could be solved by any
supervised discretization algorithm. In [27], it is carried out via
an experimental evaluation of various discretization schemes in
different evolutionary systems for inductive concept learning,
where our tool with natural coding, named HIDER*, was also

analyzed. This study showed that HIDER* was robust for any
discretization method [27, Table II], although USD [30] turned
out to be the most stable discretizer used in that experiment (the
last column in [27, Table IV]).

Once the vector indicating the boundaries for the intervals is
obtained (vector of cutpoints), we assign natural numbers to any
possible combination, as shown in Table III.

Example 5: Let us assume from the dataset in Fig. 1 that the
output of the discretization algorithm is the vector of cutpoints

for the attribute weight (note that the
upper and lower bounds of the feature range are also included:
55 and 70). We just need to observe the changes of labels when
the examples are ordered by the attribute weight (particular sit-
uations of this strategy are discussed in [30]). The possible in-
tervals to be generated from those values are shown in Table III.
Each interval is identified by a natural number, for example, the
interval [61,66] will be referenced by the natural number 14.

Table III shows 6 cutpoints, which can generate 15 possible
intervals. The number of intervals defines the size of the al-
phabet for such attribute and depends on the number of cuts k,
exactly k k .

In Table III, a natural number (in bold), beginning by 1, from
left to right and from top to bottom, is assigned to each interval.
These “natural” numbers will help us to identify such intervals
later.

2) Transitions: Once the necessary number of cutpoints has
been calculated, we know the elements of the new alphabet

. From now, we will analyze the mutation and crossover op-
erators for this encoding. Table III defines the new alphabet

.
Definition 5 (Row and Column): Let be the value of the

gene, and let row and col be the row and the column, respec-
tively, where is located in Table III. The way in which row and
col are calculated is: (% is the remainder of the integer division)

k
% k (7)

Example 6: Let and , and k . Then

Therefore, as we can see in Table III, 3 is in row 1 and column
3, and 20 is in row 4 and column 5.

Definition 6 (Boundaries): Let be the value of the gene,
we name boundaries of to those values from Table III that
limits the four possible shifts (one by direction): left, right, up
and down, and they will be denoted as leftb (left bound), rightb
(right bound), upperb (upper bound), and lowerb (lower bound),
respectively, and they will be calculated as

k k k

k

k k k (8)

Example 7: The number 9 could reach up to 7 to the left, up
to 10 to the right, up to 4 to the top and up to 19 to the bottom
(see Table III)

Definition 7 (Shifts): The left, right, upper, and lower adja-
cent shifts for a value will be obtained (if possible) as follows:

k

k (9)

We define horizontal and vertical shifts as all the possible shifts
for a given row and column, respectively, including itself

k
k (10)

k
k (11)

Fig. 4. Mutation and crossover for continuous attributes.

Example 8: From Example 7, the adjacent shifts of 9 will be

and the horizontal and vertical shifts of 9 will be

3) Natural Mutation: A mutation consists in selecting a near
interval to the one that contains the value . For example, ob-
serving Table III, if the number of cutpoints is k , and ,
there are four possible mutations ; if , there
are three possible mutations ; if , there are two
possible mutations ; and finally, if , there is only
one possible mutation .

Definition 8 (Natural Mutation): Let be the value of the
gene, the natural mutation of , denoted by , is any near
value to by using the shifts and distinct from

(12)

where .
Example 9: Thus, , i.e.,

. Now, one out of the three values could be
selected as mutation.

When a gene encodes a continuous feature, the muta-
tion consists in selecting an interval close to it. This is
easy to see in Fig. 4, which shows the same example as
Table III. For example, gene 14 is the interval [61, 66] and
it can be mutated into another interval belonging to the set

and (genes 9, 13, 15, and
19). However, gene 5 can only be transformed into 4 and 10,
because there are no genes above or to the right of it.

4) Natural Crossover: Given two parents, the crossover
should ideally produce a valid offspring, sharing the genetic
material of both parents.

Definition 9 (Natural Crossover): The natural crossover be-
tween two values and , denoted by is ob-
tained as follows:

(13)

We can observe in Table III that the interesting values are in
the intersection between the row and the column where both

values being crossed are placed. Only when the values and
are located in the same row or column, the interval will be

inside the other.
Example 10: Thus

The general case of crossover between two parents is illustrated
in Fig. 4. The possible offspring is formed by those numbers
in the intersection between the row and the column of both par-
ents. For example, the crossover between genes 5 and 14 (within
squares) generates as offspring genes 4 and 15 (within circles).
In Table III, we can see that this offspring makes sense because
it uses every boundary from the parents.

V. ALGORITHM

HIDER is a tool that produces a hierarchical set of rules [22].
When a new example is to be classified, the set of rules is se-
quentially evaluated according to the hierarchy. If the example
does not fulfil a rule, the next one in the hierarchy order is eval-
uated. This process is repeated until the example matches every
condition of a rule and it is classified with the class that such
rule establishes.

HIDER uses an EA to search for the best solutions. Since the
aim is to obtain a set of decision rules, the population of the EA
is formed by some possible solutions. Each genetic individual is
a rule that evolves applying the mutation and crossover opera-
tors. In each generation, some individuals are selected according
to their goodness and they are included in the next population
along with their offspring.

The pseudocode of HIDER is shown in Fig. 5. The main al-
gorithm is a typical sequential covering method [36], where the
function that produces each rule is an EA. Each call to this func-
tion (line 8) generates only one rule that is included in the final
set of rules (line 9) and used to eliminate examples from the
training data (line 10). The evolutionary function is started again
with the reduced training data. This loop is repeated until the
set of training data is empty or a percentage of the
training set has been already covered .

The function EvoAlg has a set of examples as its input pa-
rameter. It returns a rule that is the best individual of the last
generation. The initial population is built randomly by the func-
tion InitializePopulation. Some examples are randomly selected
and individuals that cover such examples are generated. After
initializing the population, the for-loop repeats the evolutionary
process a number of times that is determined by the parameter
num generations. In each iteration, the individuals of the popu-
lation are evaluated according to a defined fitness function, thus
each individual acquires a goodness (function Evaluate). The
best individual of every generation is replicated to the next gen-
eration (elitism). Later, a set of individuals are selected through
the roulette wheel method and replicated to the next generation.
Finally, another set of individuals are recombined and the off-
spring is included in the next generation. The selection of these
individuals is also carried out by means of the roulette wheel

Fig. 5. Pseudocode of HIDER.

method. Once the loop finishes, the best individual of the last
generation is returned.

Equation (14) gives the fitness function used by HIDER

during the evaluation process. The greater the value, the better
the individual is

(14)

where is an individual; is the number of examples being
processed; is the class error, i.e., the number of exam-
ples belonging to the region defined by the rule , which do not
have the same class; is the number of examples correctly
classified by ; and gives the size proportion of the
search space covered by the rule. A description about the cov-
erage factor and its positive influence on the results can be found
in [22].

A. Evaluation

A very important aspect of our approach is that the exam-
ples of the training file (dataset) are also encoded with natural
coding, so that each example of the dataset has the same struc-
ture as a rule. If an attribute is continuous, the gene that repre-
sents it in an encoded example is the smallest interval that in-
cludes the value of the attribute in such example. For example,
according to Table III, if the attribute takes the value 64, then the
gene is 19, since the smallest interval that includes 64 is [63,66].
However, if the attribute takes the value 65, it will be encoded
with the number 19 as well. This means that the original dataset

Fig. 6. Example of evaluation.

is reduced before applying the EA, only associating a weight
to each example. Thus, a gene that represents a continuous at-
tribute can take only a natural number belonging to the main
diagonal of the coding table. For discrete attributes, we will use
Table I to encode the values of examples. For example, if the
attribute takes the value “blue,” then the gene is 1. Thus, the ex-
ample (64, blue, no) is encoded as (19,1,0) (see Fig. 6).

The encoding of examples is carried out to speed up the evalu-
ation process, since to decode all of the rules in each evaluation
implies higher computational cost. For instance, let be the
condition (encoded interval) that a rule establishes for a con-
tinuous attribute , and let be the encoded value that such
attribute takes in an example. The row and column of and

are and , respectively, in
the coding table, and the value fulfils the condition if
“ ” and “ .” Therefore,
to know whether or not an example is covered by a rule only
consists in comparing four numbers. For discrete attributes, the
evaluation is even easier. A condition covers a discrete value

(both encoded) if “ ,” “&” being the binary con-
junction operator.

In short, an example is covered by a
rule if for each feature ,
the example value is covered by the rule value, , as
shown in the equation at the bottom of this page.

For example, in Fig. 6, we can see that has the value 10,
so observing Table III, the values 7, 8, 9, 10, 13, 14, 15, 19, 20,
and 25 would correspond to intervals that are inside the interval
whose associated value is 10. For the , with value 5, the
values 1, 4, and 5 would satisfy the binary conjunction operation
with the value 5.

Regarding the encoded examples, Fig. 6 shows that different
original examples are encoded to the same encoded example, for
instance, (7,2,0) and (25,4,1). This makes faster the evaluation
as the examples (7,2,0) and (25,4,1) would have weight equal to
2.

B. Length of Individuals

A set of datasets from the UCI Repository [37] has been
chosen to run the experiments. In Table IV, the length of individ-
uals of the genetic population for the hybrid and natural coding
are shown. The first and second columns are the dataset’s iden-
tifiers and names, respectively. The third shows the number of
continuous attributes (NC), if any, for each dataset. Likewise,
the next column gives the number of discrete features (ND)
along with the total number of different values in brackets (NV).
The column labeled as “Hybrid” gives the length of individ-
uals (number of genes) with hybrid coding. Finally, the last one
shows the length of individuals encoded with natural coding.
These lengths were calculated easily from the third and fourth
column. The hybrid coding uses two genes to represent contin-
uous attributes and a number of genes for discrete ones, being

the number of different values of the attribute. On the other
hand, the natural coding uses only one gene for each attribute,
regardless of its type (continuous or discrete). Thus, the length
for hybrid individuals is , whereas for natural in-
dividuals is .

As we can see, the natural coding noticeably decreases the
length of individuals. On average, it obtains a reduction greater
than 63% with respect to hybrid individuals, which also leads to
a search space size reduction. However, the space size reduction
is not due to the length, but to the discretization of continuous

TABLE IV
COMPARING LENGTH OF HYBRID AND NATURAL INDIVIDUALS. NC AND ND

ARE THE NUMBER OF CONTINUOUS AND DISCRETE FEATURES, RESPECTIVELY.
IN BRACKETS, NV IS THE NUMBER OF DISCRETE VALUES

attributes. Likewise, it is more natural (and as it will be shown
later, more efficient as well) to associate one gene with one at-
tribute, independently of its type.

The binary coding is not appropriate to address this task be-
cause the length of individuals is ridiculously large. For in-
stance, by using (2), the individual length for Iris and Cleveland
datasets are 22 and 202, respectively. Taking into account that
the number of potential solutions would be or , clearly
the pure binary coding should be ruled out.

VI. EXPERIMENTS

In order to show the quality of the natural coding, we have
designed two kinds of experiments. First, the hybrid coding is
compared with the natural coding, to guarantee that the same
prediction accuracy can be achieved with less computational
cost. Second, the results of the natural coding, C4.5 and C4.5
Rules are statistically analyzed, regarding the error rate and the
number of rules, by using two sets of datasets. The first set has
16 datasets with standard size and the second set has 5 large
datasets, with several thousands of examples and the number of
attributes ranging from 27 to 1558.

A. Natural Coding Versus Hybrid Coding

HIDER and HIDER* have been run with a set of datasets from
the UCI Repository. Both tools use the same EA, including the
fitness function, although HIDER uses the hybrid coding, in the
opposite of HIDER* that uses natural coding. Both were run with
the same crossover and mutation parameters, but with a different

TABLE V
PARAMETERS OF HIDER (HYBRID CODING) AND HIDER* (NATURAL CODING)

number of individuals and generations. Table V shows the pa-
rameters used in each case. These parameters have great influ-
ence on the computational cost, particularly, the number of gen-
erations and the population size.

Sixteen datasets are used in the experiments, some of which
only contain continuous features, others only contain discrete
features and the remainder include both types of features. Thus,
we can compare the behavior of natural and hybrid coding
with both types of features. To measure the performance of
each method, a tenfold cross-validation was achieved with each
dataset.

The values that represent the performance are the error rate
(ER) and the number of rules (NR) obtained. ER is the average
number of misclassified examples expressed as a percentage and
NR is the average number of rules from the cross-validation. The
algorithms were run on the same training sets and the knowl-
edge models tested using the same test sets, so the results were
comparable.

In Table VI, the first column shows the datasets used in the ex-
periments; the next two columns give the ER and NR obtained,
respectively, by HIDER with hybrid coding for each database.
Likewise, the fourth and fifth columns give the ER an NR for
HIDER* with natural coding. The last two columns show a mea-
sure of improvement for the error rate and the number
of rules . The coefficient has been calculated by di-
viding the error rate of HIDER by the corresponding error rate
of HIDER*. The same operation has been carried out to obtain

, but using number of rules for both tools. Finally, the last
row shows the average results for each column. As we can ob-
serve, HIDER* does not attain to reduce the ER for 7 out of 16
datasets. Nevertheless, on average, it improves HIDER, although
such improvement is very small (2%). As regards the number
of rules, the results are more significant, since HIDER* obtains
smaller number of rules in 12 out of 16 cases, with an average
improvement of 55%.

Although the results show that HIDER* has a better perfor-
mance, we must not forget that those numbers were obtained
using smaller number of generations and individuals of genetic
population. In particular, HIDER* needed 1/3 of the generations
and less than 3/4 of the population size invested by HIDER. This
means that HIDER evaluated 30. 000 individuals, in contrast with
HIDER*, which only evaluated 7.000, which represents 23% of
the initial exploration.

Obviously, this reduction has an important influence on the
computational cost. HIDER* needed 4.431 s (1 hour and 14 min,

TABLE VI
COMPARING HIDER AND HIDER*. ER AND NR ARE THE ERROR RATE

AND THE NUMBER OF RULES, RESPECTIVELY. � AND � ARE THE

IMPROVEMENT OF HIDER* OVER HIDER FOR THE ERROR RATE

AND THE NUMBER OF RULES, RESPECTIVELY

approximately) to complete the tenfold cross-validation for
the 16 datasets. Nevertheless, the version with hybrid coding
took 12.004 s (about 3 hours and 20 min) in the same standard
machine (1.6 GHz CPU, 1 Gb RAM) and for the same tests.
Table VII gives detailed time consumed on each dataset. Next
to the dataset’s identifiers (first column), the second and third
columns show the time in seconds taken by HIDER and HIDER*,
respectively, to complete the ten executions (training and test
phases of each fold of the cross-validation). The last column
gives the percentage of time that HIDER* consumed with respect
to HIDER, i.e., the third column divided by the second one and
multiplied by 100. Note that all these values are smaller than
100%. This fact indicates that HIDER* was faster than HIDER

in all of experiments. On average, HIDER*’s runtime was only
35% of the time taken by HIDER, about three times faster.

B. HIDER* Versus C4.5 and C4.5 Rules

To show the quality of our approach, the results obtained by
HIDER* (natural coding) have been compared with that of C4.5
and C4.5 Rules. The same heterogenous subset of datasets from
the UCI Repository, presented in Table IV, was used in the
experiments. The cross-validated performance of each method
was measured (tenfold cross-validation with each dataset).
However, the fact that the results are comparable does not make
them significant. Thus, a statistical analysis was carried out,
specifically, the Student’s t-Test of difference of means with a
critical value .

TABLE VII
COMPARING THE RUNTIME (IN SECONDS) FOR HIDER AND HIDER*

The parameters of EA were initially set (see Table V) and
remained constant for all the experiments. This is a very impor-
tant detail since such parameters could have been specifically
set for each dataset and the results would have been substan-
tially better.

The performance of each tool has been measured by means
of the error rate (ER) and the number of rules (NR) produced
by each method for the 16 datasets, in addition to the stan-
dard deviation of each measurement. The ER is the average
number of misclassified examples expressed as a percentage
for the tenfold cross-validation. Table VIII gives the results ob-
tained by HIDER*, C4.5, and C4.5 Rules. The first column shows
the databases used in the experiments. The next block of two
columns gives the error rate and the number of rules

obtained by HIDER*. The fourth and fifth columns
have the same meaning, in this case for C4.5. The next two
columns (HIDER* versus C4.5) show the results of the statistical
test with respect to ER and NR. The meaning of the symbols is
as follows: “–” denotes that HIDER* obtains a result worse than
C4.5; “ ” denotes that HIDER* obtains a result better than C4.5;
and “ ” means that the result is statistically significant (positive
or negative). The eighth and ninth columns show the ER and NR
for C4.5 Rules and the next two columns the statistical signifi-
cance of the comparison between HIDER* and C4.5 Rules.

As Table VIII shows, both algorithms tie regarding the error
rate, although C4.5 is significantly better in 2 out of 7 datasets.
On the contrary, HIDER* obtains better error rate with statistical
significance in one dataset. However, as regards the number
of rules, HIDER* outperforms C4.5 for all the datasets, where
the improvement is significant in 15 out of 16 datasets. The
comparison between C4.5 Rules and HIDER* is given next. We
can observe that there is also a tie for the error rates, although in
two cases HIDER* outperforms C4.5 Rules significantly. For the

TABLE VIII
STATISTICAL ANALYSIS OF RESULTS (STUDENT’S T-TEST OF DIFFERENCE OF MEANS WITH A CRITICAL VALUE � < 0:05).

SYMBOLS + AND � MEAN THAT HIDER* IS BETTER OR WORSE, RESPECTIVELY. IF THE SYMBOL � APPEARS NEXT,
THEN + OR � ARE STATISTICALLY SIGNIFICANT

number of rules, HIDER* improves C4.5 Rules in 11 datasets,
being significant in 10 cases. C4.5 Rules provides smaller
number of rules in 6 cases, of which only 3 are significant.

On average (last row), HIDER* obtains 18.4% as error rate
and 6.4 rules. This is a considerable improvement against C4.5,
since its averaged error rate is very similar (18.7%), but it gener-
ates a number of rules (36.9) six times greater than HIDER*. C4.5
Rules obtains an error rate of 19.7% and 8.5 rules on average. In
summary, HIDER* significantly reduces the number of rules for
most of the datasets used in the experiments without damaging
the classification accuracy noticeably. Furthermore, C4.5 and
C4.5 Rules carry out a posterior pruning of the nodes and rules,
i.e., they eliminate those rules that do not provide any benefit to
the model. If HIDER* carries out such pruning, the number of
rules would be even smaller without significant growth of the
error rate, since the deleted rules are those that cover very few
examples with respect to the dataset size.

As previously mentioned, HIDER* needs 1 hour and 14 min to
complete all the experiments. On the contrary, C4.5 took about
4 min only in the same machine. However, these results are not
comparable, since C4.5 is a deterministic algorithm and HIDER*
is an EA that applies a stochastic search to find the solutions. In
spite of the computational cost, the good outcomes obtained by
our proposal indicate that HIDER* can be very useful in non-
real-time applications and in realms where the simplicity of the
model is a target.

C. Experiments With High-Dimensional Datasets

It has been shown in previous sections that HIDER* provides
a good performance in comparison to HIDER, C4.5, and C4.5
Rules. However, although the datasets used in such experiments

TABLE IX
DATASETS’ FEATURES. NE AND NA ARE THE SIZE (NUMBER OF

EXAMPLES), AND THE NUMBER OF FEATURES, RESPECTIVELY.
THE LAST COLUMN GIVES THE NUMBER OF CLASS LABELS

are common in this type of comparative analysis, they do not
seem large enough for a thorough study. In this section, we
present a set of experiments in order to show the performance of
our approach with five high-dimensional datasets from the UCI
Repository [37]. Specifically, the datasets chosen to run the ex-
periments are illustrated in Table IX, where their characteristics
are summarized. The first and second columns are the dataset’s
identifiers and names, respectively. The third column gives the
size of the dataset as the number of examples (NE), whereas the
fourth is the number of attributes (NA) for each dataset.

HIDER*, C4.5, and C4.5 Rules were run with these datasets
by applying a tenfold cross-validation. Nevertheless, the results
obtained by C4.5 are not comparable with those produced by
the other classifiers. C4.5 produces models with a very low error
rate, although with a complexity extremely greater than HIDER*
or C4.5 Rules. For instance, for the Musk dataset, C4.5 obtains
an average of 118 rules for a error about 4%, whereas HIDER*

TABLE X
RESULTS WITH HIGH-DIMENSIONAL DATASETS. STATISTICAL ANALYSIS OF RESULTS (STUDENT’S T-TEST OF DIFFERENCE

OF MEANS WITH A CRITICAL VALUE � < 0:05). SYMBOLS + AND � MEAN THAT HIDER* IS BETTER OR WORSE,
RESPECTIVELY. IF THE SYMBOL � APPEARS NEXT, THEN + OR � ARE STATISTICALLY SIGNIFICANT

and C4.5 Rules obtain around 11% as error rate but only 11
rules approximately. The case of the Splice dataset is even more
meaningful, where C4.5 reduces the error rate half with respect
to HIDER*, but with 253 rules on average, i.e., 37 times greater
than the 7 rules produced by HIDER*. Although C4.5 reduces the
error rate significantly, the size of the decision trees does make
them unintelligible.

Table X gives the results obtained by HIDER* and C4.5 Rules.
The performance of each tool has been measured the same way
as in previous experiments, i.e., by means of the error rate (ER)
and the number of rules (NR). The statistical analysis was also
carried out and the results are presented with the same symbols,
as in Table VIII. Since these datasets have a great number of
attributes and the size is also large, some parameters of EA were
changed with respect to those shown in Table V. In particular,
the population size was set to 100 individuals and the number
of generations to 300, as previously used HIDER.

In general, HIDER* has a good performance. Regarding the
error rate, HIDER* is better in four datasets, being significant in
two cases. C4.5 Rules obtains a relevant reduction of the error
in one dataset (AD), although increasing slightly the number of
rules. As regards the number of rules, HIDER* outperforms C4.5
Rules in four datasets, all of them with statistical significance.
On average, HIDER* reduces both measurements, the error rate
(8.4% against 9.5%) and the number of rules (6.4 against 11.5).

In some high-dimensional domains, it is extremely important
to produce understandable models, with very few rules. HIDER*
shows an excellent performance when the size and dimension-
ality of the dataset are high, mainly with respect to the com-
plexity of the model.

VII. CONCLUSION

In this paper, a new encoding method for EAs in supervised
learning is presented. This method transforms every attribute
domain into a natural number domain, for continuous and dis-
crete attributes. The population will therefore have only natural
numbers. The genetic operators (mutation and crossover) are de-
fined as algebraic expressions in order to work efficiently with
this new search space, and they use no conversions from the
original feature domains to the natural number domains, but the
EA works from the beginning to the end with natural numbers.

Another important advantage of HIDER* is that all the ex-
amples from the database are encoded into the search space,
making the evaluation process very fast.

The natural coding for EA-based decision rules generation
is described and tested by using tenfold cross-validation with
21 datasets from the UCI Repository (five of them very large).
The quality of this coding has been tested by applying the same
evolutionary learning tool with natural (HIDER*) and hybrid
(HIDER) coding, also improving the computational cost. HIDER*
has been compared with C4.5 and C4.5 Rules in order to find
statistical differences and the experimental results show an ex-
cellent performance, mainly with respect to the number of rules,
maintaining the quality of the acquired knowledge model.

ACKNOWLEDGMENT

The authors are very grateful to the reviewers for helpful com-
ments and constructive criticisms.

REFERENCES

[1] D. B. Fogel, “Phenotypes, genotypes and operators in evolutionary
computation,” in Proc. 2nd IEEE Int. Conf. Evol. Comput., Perth, Aus-
tralia, 1995, pp. 193–198.

[2] Winston, Artificial Intelligence, 3rd ed. Reading, MA: Addisson-
Wesley, 1992.

[3] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimization,” Neural Comput. Appl., vol. 1, no. 1,
pp. 67–90, 1993.

[4] J. H. Holland, “Adaptation in natural and artificial systems,” Ph.D. dis-
sertation, Univ. Michigan, Ann Arbor, MI, 1975.

[5] K. A. DeJong, W. M. Spears, and D. F. Gordon, “Using genetic algo-
rithms for concept learning,” Mach. Learn., vol. 1, no. 13, pp. 161–188,
1993.

[6] C. Z. Janikow, “A knowledge-intensive genetic algorithm for super-
vised learning,” Mach. Learn., vol. 1, no. 13, pp. 169–228, 1993.

[7] D. P. Greene and S. F. Smith, “Using coverage as a model building
constraint in learning classifier systems,” Evol. Comput., vol. 2, no. 1,
pp. 67–91, 1994.

[8] A. Giordana and F. Neri, “Search-intensive concept induction,” Evol.
Comput. J., vol. 3, no. 4, pp. 375–416, 1996.

[9] F. Neri and L. Saitta, “An analysis of the universal suffrage selection
operator,” Evol. Comput. J., vol. 4, no. 1, pp. 89–109, 1996.

[10] J. Hekanaho, “GA-based rule enhancement concept learning,” in Proc.
3rd Int. Conf. Knowl. Discovery Data Mining, Newport Beach, CA,
1997, pp. 183–186.

[11] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A.
K. Jain, “Dimensionality reduction using genetic algorithms,” IEEE
Trans. Evol. Comput., vol. 4, no. 2, pp. 164–171, Apr. 2000.

[12] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in KDD: An experimental
study,” IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561–575, Dec.
2003.

[13] R. Caruana and J. D. Schaffer, “Representation and hidden bias: Gray
versus binary codign for genetic algorithms,” in Proc. Int. Conf. Mach.
Learn., 1988, pp. 153–161.

[14] R. Caruana, J. D. Schaffer, and L. J. Eshelman, “Using multiple rep-
resentations to improve inductive bias: Gray and binary coding for ge-
netic algorithms,” in Proc. Int. Conf. Mach. Learn., 1989, pp. 375–378.

[15] U. K. Chakraborty and C. Z. Janikow, “An analysis of gray versus bi-
nary encoding in genetic search,” Inf. Sci., no. 156, pp. 253–269, 2003.

[16] F. Rothlauf and D. Goldberg, “Prufer numbers and genetic algorithms,”
PPSN, pp. 395–404, 2000.

[17] J. A. Lozano and P. Larrañaga, “Applying genetic algorithms to search
for the best hierarchical clustering of a dataset,” Pattern Recogn. Lett.,
vol. 20, no. 9, pp. 911–918, 1999.

[18] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded ge-
netic algorithms: Operators and tools for the behavior analysis,” Arti.
Intell. Rev., vol. 12, pp. 265–319, 1998.

[19] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms
and interval-schemata,” Foundations of Genetic Algorithms-2, pp.
187–202, 1993.

[20] K. Deb and A. Kumar, “Real-coded genetic algorithms with simulated
binary crossover: Studies on multimodal and multiobjective problems,”
Complex Syst., vol. 9, pp. 431–454, 1995.

[21] G. Venturini, “SIA: A supervised inductive algorithm with genetic
search for learning attributes based concepts,” in Proc. Eur. Conf.
Mach. Learn., 1993, pp. 281–296.

[22] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning
of hierarchical decision rules,” IEEE Trans. Syst., Man, Cybern., Part
B, vol. 33, no. 2, pp. 324–331, 2003.

[23] S. K. Sharma and G. W. Irwing, “Fuzzy coding of genetic algorithms,”
IEEE Trans. Evol. Comput., vol. 7, no. 4, pp. 344–355, Aug. 2003.

[24] P. P. Bonissone, R. Subbu, N. Eklund, and T. R. Kiehl, “Evolutionary
algorithms + domain knowledge = real-world evolutionary compu-
tation,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 256–280, Jun.
2006.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo,
CA: Morgan Kaufmann, 1993.

[26] D. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsuper-
vised discretization of continuous features,” in Proc. 12th Int. Conf.
Mach. Learn., 1995, pp. 194–202.

[27] J. S. Aguilar-Ruiz, J. Bacardit, and F. Divina, “Experimental evalua-
tion of discretization schemes for rule induction,” in Genetic and Evo-
lutionary Computation, ser. Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, Jun. 2004, pp. 828–839.

[28] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Mach. Learn., vol. 11, pp. 63–91, 1993.

[29] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of con-
tinuous valued attributes for classification learning,” in Proc. 13th Int.
Joint Conf. Artif. Intell., 1993, pp. 1022–1027.

[30] R. Giráldez, J. S. Aguilar-Ruiz, and J. C. Riquelme, “Discretization ori-
ented to decision rules generation,” in Knowledge-Based Intelligent In-
formation Engineering Systems & Allied Technologies. Amsterdam,
The Netherlands: IOS-Press, 2002, pp. 275–279.

[31] J. Antonisse, “A new interpretation of schema notation that overturns
the binary encoding constraint,” in Proc. 3rd Int. Conf. Genetic Algo-
rithms, 1989, pp. 86–97.

[32] S. Bhattacharyya and G. J. Koehler, “An analysis of non-binary genetic
algorithms with cardinality 2 ,” Complex Syst., vol. 8, pp. 227–256,
1994.

[33] G. J. Koehler, S. Bhattacharyya, and M. D. Vose, “General cardinality
genetic algorithms,” Evol. Comput., vol. 5, no. 4, pp. 439–459, 1998.

[34] M. D. Vose and A. H. Wright, “The simple genetic algorithm and the
Walsh transform: Part I, Theory,” Evol. Comput., vol. 6, no. 3, pp.
253–273, 1998.

[35] M. D. Vose and A. H. Wright, “The simple genetic algorithm and the
Walsh transform: Part II, The inverse,” Evol. Comput., vol. 6, no. 3, pp.
275–289, 1998.

[36] T. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[37] C. Blake and E. K. Merz, “UCI repository of machine learning

databases,” Univ. California, Irvine, CA, 1998.

Jesús S. Aguilar-Ruiz received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science from the
University of Seville, Seville, Spain, in 1992, 1997,
and 2001, respectively.

He is an Associate Professor of Computer Science
at Pablo de Olavide University, Seville, Spain. He has
been member of the program committee of several
international conferences, and reviewer for relevant
journals. His areas of research interest include evolu-
tionary computation, data mining and bioinformatics.

Raúl Giráldez received the B.Eng., M.S.Eng.,
and Ph.D. degrees in computer science from the
University of Seville, Seville, Spain, in 1998, 2000,
and 2004, respectively.

He is an Assistant Professor at Pablo de Olavide
University, Seville, Spain. His areas of research
interest include evolutionary algorithms, knowledge
discovery, and bioinformatics. He has been member
of the program committee of several international
conferences related to this areas of research.

Dr. Giráldez received the Doctoral Dissertation
Award from the University of Seville.

José C. Riquelme received the M.Sc. degree in math-
ematics and the Ph.D. degree in computer science
from the University of Seville, Seville, Spain, in 1986
and 1996, respectively.

He is an Associate Professor at the University
of Seville. He conducts research in genetic pro-
gramming, feature selection, and data mining. He
has served as a member of the program committee
of several conferences related to evolutionary
computation.

