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Abstract

In this paper we study a model for a species confined in a bounded region. This
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1 Introduction

We consider some population inhabiting in a bounded region. We assume that this pop-

ulation grows following a logistic law. Moreover, we assume that this population diffuses

in its habitat, that is the species is distributed in space and interacts with the physical

environment.

This movement is not of random or linear type but the species moves from high density

regions to low ones, and it is slower than in the linear case. Finally, unlike of previous

works where only absorbing boundary conditions were considered, we assume that there

is a flux of population across the boundary of the habitat.

So far, this model was only studied with linear diffusion and lethal boundary condition,

that is, all the individuals who reach the boundary they cross it, die or simply leave and

do not return. In this paper, we are interested in studying the effects of combining both

aspects (nonlinear slow diffusion and flux across the boundary), showing that there is an

important change of behavior on the model.

An outline of the paper is: in Section 2 we describe the model, present its novelty

and state the main quantitative results. In Section 3 we present the formal model under

a mathematical point of view. In Subsection 3.1 we employ the bifurcation method to

show the existence of an unbounded continuum of positive solutions emanating from the

trivial solution. In Subsection 3.2 we show non-existence results, in Subsection 3.3 we

prove the main result of the paper and in the final section we give some conclusions and

interpretations of our results.

2 Experimental motivation and main results

The main goal of this paper is a theoretical study of a system modelling some population

inhabiting in a heterogeneous environment. The model is based on non-linear partial

differential equations of reaction-diffusion type.

We assume mainly three assumptions in the model:

(A1) We assume that this population follows a logistic or Verhulst law; that is, the density
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of the population affects its growth rate. To be specific, when the population density

increases the effects of crowding brings about that the birth rate decreases and the

death rate increases.

(A2) The population diffuses, i.e., the population moves in its habitat. It is known that

some species migrate to avoid crowding rather than random motion, that is the

species moves from high density regions to low density ones. In this work, following

the papers [9] and [12], we assume that this mobility depends upon their density. In

fact, we consider the case where the diffusion is non-linear and degenerate, which

provides a diffusion slower than the classical linear diffusion.

(A3) Finally, we assume that there is a flux of population across the boundary of the

habitat. Specifically, we assume that this flux is proportional to the density of the

species with constant proportionality γ ∈ IR. We consider here three possible cases:

no-flux, positive and negative flux. The no-flux or reflecting boundary condition

(γ = 0 or Neumann conditions) means that individuals encountering the boundary

are always reflected back into the habitat so they do not leave. The case γ 6= 0 is

called Robin conditions in the mathematical literature.

The combination of these assumptions gives us a more realistic model which describes

better the previous models the reality, due to the previous models considered only some

of these assumptions.

We state now some of the main results of the paper. For that, we say that the flux

across the boundary is positive (γ > 0) when there is an influx of individuals from outside

of the habitat to inside, and negative (γ < 0) in the opposite case. Moreover, we divide

our study in linear, slow and very slow diffusion.

1. Fix a positive growth rate, that is assume that the species has a positive growth in

its domain. In the case of linear diffusion, there exists a number γ0 < 0 such that

the species only persists if γ > γ0. However, if the flux is very negative, γ < γ0, then

the species goes to the extinction. So, if the growth rate is positive the species can

persist even if the flux is negative. On the other hand, if the diffusion is slow, then
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the species persists for all the values of the flux. Finally, if the diffusion is very slow,

then there exists a positive number γ1 such that the species persists for γ < γ1 and,

however, the species grows in an uncontrolled way if γ > γ1.

2. Assume now that the death rate is bigger than the birth rate, that is the species

has a negative growth in its habitat. Now, in the linear and slow diffusion cases,

there exists a number γ0 > 0 such that the species persists if γ > γ0 and goes to

the extinction if γ < γ0. So, in this case in order that the species persists we need a

positive flux at the boundary. On the other hand, if the diffusion is very slow, then

the species persists for all the values of the flux.

A deeper biological interpretation of these results will be given in the final section.

3 The mathematical approach

We present now the formal model under the assumptions detailed in the above section.

Denoting by Ω the habitat and by w(x) the population density of the species in a point

x ∈ Ω, from [9] and [12] we know that, under assumptions (A1) − (A2), w verifies the

following logistic equation with degenerate diffusion

−∆(wm) = λw − w2 in Ω.

The parameter m > 1 means that the diffusion is slower than in the linear case (m = 1).

So, we are going to treat different cases: the case 1 < m < 2 will be denoted by slow

diffusion; m > 2 very slow diffusion and the special case m = 2 denoted by self-diffusion

case, see [11]. Finally, the parameter λ represents the growth rate of the species in the

habitat.

Under the change of variable wm = u we arrive at the equation

−∆u = λu1/m − u2/m in Ω.

Now, we introduce assumption (A3) related to the boundary condition, obtaining the
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model 



−∆u = λu1/m − u2/m in Ω,

∂u

∂n
+ αu = 0 on ∂Ω,

(3.1)

being Ω ⊂ IRN , N ≥ 1, a bounded and regular domain, m ≥ 1, λ, α ∈ IR and n denotes

the outward unit normal on ∂Ω.

In Robin condition term, see for instance [2], α measures the rate of individuals which

cross the boundary when they encounter it. When α = 0 corresponds to the case where

no individual crosses the boundary, mathematically called the Neumann case. When

α → +∞ all the individuals who encounter ∂Ω cross it, that is, ∂Ω absorbs all of them,

this is also known as the lethal or Dirichlet condition. When α < 0 the boundary in fact

“produces” individuals, that is, there is an influx of individuals from outside of the habitat

to inside.

Equation (3.1) has been studied under homogeneous Dirichlet boundary condition

u = 0 on ∂Ω in [13], see also [4] and references therein. We summarize here the main

results concerning to the Dirichlet case, including the linear diffusion case in order to

compare the results.

1. Assume that m = 1. Then, there exists a positive solution if, and only if, λ >

λ1, where λ1 denotes the principal eigenvalue of the laplacian under homogeneous

Dirichlet boundary conditions. In case of existence, the positive solution is unique

and stable.

2. Assume that m > 1. Then, there exists a positive solution if, and only if, λ > 0. In

case of existence, the positive solution is unique and stable.

So, for Dirichelt case when the growth rate is large (λ > λ1) the behaviour in both

cases (m = 1 and m > 1) is similar. However, if the growth rate is positive but small

(0 < λ ≤ λ1) when the diffusion is slow (m > 1) the species persists, however when the

diffusion is linear the species moves faster and so the number of individuals who attain

the lethal boundary is bigger, and the species tends to the extinction because there is an

important loss of individuals at the boundary.
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We use mainly the bifurcation and the sub-supersolution methods to obtain our results.

They show that there are drastic changes on the set of positive solutions of (3.1) depending

of the values of m and α. Before showing the result we need some notation. Denote by

λ1(α) the principal eigenvalue of the problem




−∆u = λu in Ω,

∂u

∂n
+ αu = 0 on ∂Ω.

(3.2)

We will prove that for all the values of m > 1 there exists a bifurcation from the trivial

solution at λ = 0 for (3.1). However, unlike that linear case where the bifurcation occurs

at λ = λ1(α) and it is always supercritical; the bifurcation direction (local and global)

depends on the sign of α and the size of m. Specifically, we state now our main results

(see Figures 1, 2 and 3):

Figure 1: Bifurcation diagrams in the case α ≥ 0: Case a) m = 1; Case b) m > 1.

Theorem 3.1. 1. Assume that m = 1. Then, there exists a positive solution of (3.1)

if, and only if, λ > λ1(α). In case of existence, the solution is unique and stable.

2. Assume 1 < m < 2.

(a) If α ≥ 0. Then, there exists a positive solution of (3.1) if, and only if, λ > 0.

In case of existence, the solution is unique and stable.
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Figure 2: Bifurcation diagrams in the case α < 0: Case a) m = 1; Case b) 1 < m < 2;

Case c) m > 2.

(b) If α < 0. There exists λ∗(α) < 0 such that (3.1) possesses at least a positive

solution if, and only if, λ ≥ λ∗(α). Moreover, the map α ∈ (−∞, 0) 7→ λ∗(α)

is non-decreasing and

lim
α→0

λ∗(α) = 0, lim
α→−∞λ∗(α) = −∞. (3.3)

Finally, there exists λ∗∗(α) ∈ (λ∗(α), 0) such that for λ ∈ (λ∗∗(α), 0) equation

(3.1) has at least two positive solutions.

3. Assume m = 2.

(a) If λ1(α) + 1 > 0, there exists positive solution of (3.1) if, and only if, λ > 0.

In this case, the solution is unique and stable.

(b) If λ1(α) + 1 = 0, there exists positive solution of (3.1) if, and only if, λ = 0.

(c) If λ1(α) + 1 < 0, there exists positive solution of (3.1) if, and only if, λ < 0.

4. Assume m > 2.
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Figure 3: Bifurcation diagrams in the case α < 0 and m = 2: Case a) λ1(α) + 1 > 0; Case

b) λ1(α) + 1 = 0; Case c) λ1(α) + 1 < 0.

(a) If α ≥ 0. Then, there exists a positive solution of (3.1) if, and only if, λ > 0.

In case of existence, the solution is unique and stable.

(b) If α < 0. There exists λ∗(α) > 0 such that (3.1) possesses at least a positive

solution if, and only if, λ ≤ λ∗(α). Moreover, the map α ∈ (−∞, 0) 7→ λ∗(α)

is non-decreasing and

lim
α→0

λ∗(α) = +∞, lim
α→−∞λ∗(α) = 0. (3.4)

Finally, there exists λ∗∗(α) ∈ (0, λ∗(α)) such that for λ ∈ (0, λ∗∗(α)) equation

(3.1) has at least two positive solutions.

3.1 Existence results

We are interested in classical positive solutions of (3.1); positive means non-trivial and

non-negative. Observe that, thanks to the strong maximum principle, when λ > 0 any

positive solution is in fact strictly positive in Ω. However, when λ ≤ 0 could occur that a

positive solution vanishes in a part of Ω, appearing the called dead cores, but this topic is

beyond the scope of this paper, see [3] for related results.

In this section we will show that for any value of the m > 1, a bifurcation from the
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trivial solution of (3.1) occurs at λ = 0. For that, we consider the Banach space

X := C(Ω).

Also, remember that the map α 7→ λ1(α) is increasing and

lim
α→−∞λ1(α) = −∞, lim

α→+∞λ1(α) = λ1,

where λ1 denotes the principal eigenvalue of −∆ under homogeneous Dirichlet boundary

conditions. So, since λ1(0) = 0 then λ1(α) < 0 if α < 0 and λ1(α) > 0 if α > 0.

Finally, we denote by ϕα a positive eigenfunction associated to λ1(α). Remember that,

by the strong maximum principle, ϕα > 0 in Ω.

The main result of this section reads:

Theorem 3.2. The value λ = 0 is the only bifurcation point from the trivial solutions for

(3.1). Moreover, there exists a continuum C0 of positive solutions of (3.1) unbounded in

IR×X emanating from (0, 0).

The proof of this result is practically similar to Theorem 4.1 in [5], and so we only

outline it. In fact, the main difference is writing our equation (3.1) equivalent to a fixed

point equation. Since Ω is smooth, there exists (see [8] and Proposition 3.4 in [10]) a

regular function ψ > 0 in Ω such that ∂ψ/∂n ≥ ρ0 > 0 in ∂Ω. Consider the change of

variable

u := eMψv, (3.5)

which transforms (3.1) into




Lv = λa(x)v1/m − b(x)v2/m in Ω,

∂v

∂n
+ c(x)v = 0 on ∂Ω,

(3.6)

where

Lv := −∆v − 2M∇v · ∇ψ − (M2|∇ψ|2 + M∆ψ)v,

and

a(x) := eMψ(1/m−1) > 0, b(x) := eMψ(2/m−1) > 0, c(x) := α + M
∂ψ

∂n
.
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Take M large such that c(x) > 0. Denote by λ1[L; c(x)] the principal eigenvalue of the

problem

Lw = λw in Ω,
∂w

∂n
+ c(x)w = 0 on ∂Ω.

Take K > 0 large enough such that λ1[L + K; c(x)] > 0. We extend the function

f(λ, x, s) := λa(x)s1/m − b(x)s2/m + Ks by taking f(λ, x, s) := 0 if s < 0. Note that

f can take negative values. Finally, we define the map

Kλ : X 7→ X; Kλ(v) := v − (L+ K)−1(f(λ, x, v))

where (L + K)−1 is the inverse of the operator L + K under boundary conditions ∂v
∂n +

c(x)v = 0, which is well-defined since c > 0 and λ1[L + K; c(x)] > 0. Now, we can prove

that u is a nonnegative solution of (3.1) if, and only if, v is a zero of the map Kλ.

In order to prove Theorem 3.2 we use the Leray-Schauder degree as in [5], see Lem-

mas 4.2 and 4.3 in [5]. We can get:

Lemma 3.3. Denote by i(Kλ, v) the index of the isolated zero v of Kλ.

1. If λ < 0, then i(Kλ, 0) = 1.

2. If λ > 0, then i(Kλ, 0) = 0.

Idea of the proof of Theorem 3.2: The fact that λ = 0 is a bifurcation point follows by

Lemma 3.3. That λ = 0 is the unique bifurcation point from the trivial solution follows

again by [5]. Now, we can conclude the existence of an unbounded continuum of positive

solutions of (3.1) emanating from (λ, u) = (0, 0).

3.2 Non-existence results

Concerning to the non-existence of positive solutions of (3.1) we have

Proposition 3.4. Assume that there exists at least a positive solution u of (3.1) for λ.

1. If λ1(α) ≥ 0, then λ > 0.

2. If λ1(α) < 0 and 1 < m < 2, then

λ ≥ r(α) := [−λ1(α)]1/(2−m)(m− 2)(m− 1)(m−1)/(2−m).
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3. If λ1(α) < 0 and m > 2, then

λ ≤ R(α) := [−λ1(α)]1/(2−m)(m− 2)(m− 1)(m−1)/(2−m).

4. Assume m = 2.

(a) If 1 + λ1(α) > 0, then λ > 0.

(b) If 1 + λ1(α) = 0, then λ = 0.

(c) If 1 + λ1(α) < 0, then λ < 0.

Proof. Multiplying (3.1) by a positive eigenfunction ϕα associated to λ1(α) and integrating

by parts, we obtain

0 =
∫

Ω
ϕαu1/m(λ− u1/m − λ1(α)u1−1/m). (3.7)

Now, paragraphs 1 and 4 follow easily from (3.7).

On the other hand, consider the function

h(r) := λ− r1/m − λ1(α)r1−1/m, r ≥ 0.

Assume λ1(α) < 0 and 1 < m < 2. In this case, h attains a maximum at

rM = [−λ1(α)(m− 1)]m/(2−m),

and h(rM ) = λ − [−λ1(α)]1/(2−m)(m − 2)(m − 1)(m−1)/(2−m), whence the result follows.

The case m > 2 can be reasoned in the same way.

3.3 Proof of the main results

In the proof of Theorem 3.1 we employ the following result, proved in [7] under homoge-

neous Dirichlet boundary condition, but that it is also true for Robin boundary condition.

Consider the general equation




−∆u = f(λ, x, u) in Ω,

∂u

∂n
+ c(x)u = 0 on ∂Ω,

(3.8)

where c is a regular function on ∂Ω and f is a locally Lipschitz function.
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Lemma 3.5. Suppose that I ⊂ IR is an interval and let Σ ⊂ I × C2(Ω) be a connected

set of solutions of (3.8). Consider a continuous map U : I 7→ C2(Ω) of supersolutions of

(3.8) but not a solution. If for some (λ0, u0) ∈ Σ we have that u0 < U(λ0), then u < U(λ)

for all (λ, u) ∈ Σ.

Now we are ready to prove the main result of the paper.

Proof of Theorem 3.1: The case m = 1 follows by Theorem 3.5 in [6]. In fact, there exists

a positive solution if, and only if,

λ > λ1(α). (3.9)

In this case the solution is unique and stable.

Assume now m > 1 and α ≥ 0, that is, λ1(α) ≥ 0. By Proposition 3.4 we know that

if there exists at least a positive solution then λ > 0. So, assume λ > 0. In this case, it is

easily computable that the pair (u, u) = (εϕα, λm) is a pair of sub-supersolution of (3.1)

where ε is a small constant. In fact, using the maximum principle we can show that for

any positive solution u of (3.1) we have that

u ≤ λm. (3.10)

The uniqueness follows by [1], that is, from the fact that u 7→ (λu1/m − u2/m)/u is de-

creasing, for which we have to use (3.10).

For the stability, we need to show that the first eigenvalue of the linearized around a

solution u0 for λ > 0 is positive, i. e.,

λ1(−∆− λ

m
u

1/m−1
0 +

2
m

u
2/m−1
0 ;α) > 0.

For that, we use that u0 is a positive supersolution of the above operator, that is

(−∆− λ

m
u

1/m−1
0 +

2
m

u
2/m−1
0 )u0 > 0 in Ω,

∂u0

∂n
+ αu0 = 0 on ∂Ω.

From now on we assume that m > 1 and α < 0. We get by Theorem 3.2 the existence

of an unbounded continuum C0 of positive solutions to (3.1).

Assume now that 1 < m < 2. We show now that the bifurcation direction is subcritical.

Assume on the contrary that there exists a sequence of positive solutions (λn, un) of (3.1)
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with λn ≥ 0 and ‖un‖∞ → 0. Take a positive constant M > 0, then for some n0 ∈ IN we

have that

u1/m
n ≥ Mun for n ≥ n0.

Then, −∆un ≥ λnMun − u
2/m
n in Ω and so

λ1(−∆ + u2/m−1
n − λnM ;α) ≥ 0,

which yields to an absurdum as λn → 0 because m < 2 and λ1(−∆;α) = λ1(α) < 0.

Hence, we know that the unbounded continuum C0 goes “to the left” near of λ = 0,

and by Proposition 3.4 we also know that (3.1) does not possess positive solutions for

λ ≤ r(α). Now, we are going to show that C0 is unbounded because its projection over the

λ-axis, called ProjIR(C0), is unbounded. First, we recall that, since m < 2, the equation





−∆z = −z2/m in Ω,

∂z

∂n
+ αz = 0 on ∂Ω,

(3.11)

is in the general setting studied in [6], and so (3.11) has positive solution if, and only if

(see (3.9)), 0 > λ1(α), or equivalently α < 0. Moreover, the solution is unique, we denote

it by z.

Hence, if u is a positive solution of (3.1) with λ ≤ 0, then u is a subsolution of (3.11)

and then

u ≤ z. (3.12)

On the other hand, it can be proved that, since m < 2, U(λ) := K(λ)ϕα is a supersolution

of (3.1) for K(λ) verifying

K1/mϕ1/m
α + λ1(α)K1−1/mϕ1−1/m

α ≥ λ in Ω.

If λ ≥ 0 the reaction term of (3.1) is locally Lipschitz and so we can apply Lemma 3.5

for I := [0, Γ0], for any Γ0 > 0 and λ0 = 0, and conclude that for all (λ, u) ∈ C0 we

have that u ≤ U(λ). Hence, we have proved that ProjIR(C0) is unbounded, in fact that

[0, +∞) ⊂ ProjIR(C0).
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We can define

λ∗(α) = inf{λ : (3.1) has at least a positive solution.}

We know that −∞ < λ∗(α) < 0 and it can be shown, using (3.12) and a standard

compactness argument, that there exists at least a positive solution for λ = λ∗(α). We

show now that in fact there exists a positive solution for all λ ≥ λ∗(α). Indeed, take

λ > λ∗(α). Then, the pair (u∗,Kϕα) is a sub-supersolution of (3.1) for K large and being

u∗ a positive solution of (3.1) for λ = λ∗(α). Finally, the existence of λ∗∗(α) verifying the

theorem follows by the connectedness of C0 and the subcritical direction of the bifurcation.

Now we prove (3.3). First, observe that λ∗(α) is non-decreasing. Indeed, take α1 ≤ α2

and assume that for some λ there exists a positive solution of (3.1) for α = α2. It can

be shown that (uα2 ,Kϕα1) is a sub-supersolution of (3.1) for α = α1 where K is a large

constant and uα2 is a positive solution of (3.1) for α = α2. So, there exists positive solution

for λ of (3.1) for α = α1 and then λ∗(α1) ≤ λ∗(α2).

On the other hand, we know that r(α) ≤ λ∗(α) < 0 and so it is clear that λ∗(α) → 0

as α → 0 because r(α) → 0. Moreover, there exists the limit

lim
α→−∞λ∗(α) := λ < 0.

Assume that −∞ < λ. Take λ0 < λ, we are going to show that there exists at least a

positive solution for α very negative of (3.1) with λ = λ0. For that, consider the equation





−∆w = λ0w
1/m − w2/m in Ω,

w = r on ∂Ω,

(3.13)

for r > 0. We claim that there exists a unique positive solution of (3.13), denoted by wr.

Indeed, the pair (w, w) = (0, r) is a sub-supersolution of (3.13). Moreover, since λ0 < 0,

the reaction term is decreasing, and so the uniqueness follows.

Now, it can be shown that the pair

(u, u) := (wr,Mz)
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is a sub-supersolution of (3.1) with λ = λ0, where z is the unique positive solution of

(3.11), M is a positive constant large enough, and

α ≤ −∂wr/∂n

r
.

This shows the existence of positive solution of (3.1) with λ = λ0.

Now consider the case α < 0 and m > 2. Assume now that there exists a sequence

of positive solutions (λn, un) of (3.1) such that λn ≤ 0 and ‖un‖∞ → 0. Take M large

enough such that

λ1(−∆ + M ;α) > 0. (3.14)

For such M , there exists n0 ∈ IN such that for n ≥ n0 we have that u
2/m
n ≥ Mun. Then,

−∆un = λnu1/m
n − u2/m

n ≤ −Mun in Ω.

Then, multiplying by ψα, a positive eigenfunction associated to λ1(−∆ + M ;α) and inte-

grating by parts we obtain

λ1(−∆ + M ; α)
∫

Ω
unψα ≤ 0,

an absurdum with (3.14).

Now, it is clear that the unbounded continuum C0 goes “to the right” near of λ = 0 and,

by Proposition 3.4, (3.1) does not possess positive solution for λ ≥ R(α). We prove now

that ProjIR(C0) is unbounded. Indeed, assume that there exists a value λ∞ such that for

a sequence (λn, un) of positive solutions of (3.1) we have that λn → λ∞ and ‖un‖∞ →∞.

Then, define

Un :=
un

‖un‖∞ .

It is clear that Un → U in C2(Ω) for some U non-negative and non-trivial and such that

−∆U = 0 in Ω,
∂U

∂n
+ αU = 0 on ∂Ω.

Again multiplying by ϕα in the above equation, an absurdum follows.

We can define

λ∗(α) = sup{λ : (3.1) has at least a positive solution.}
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Again, we can prove that 0 < λ∗(α) < ∞ and that there exists at least a positive solution

of (3.1) if λ ≤ λ∗(α). Indeed, we know that for all λ ≤ 0 there exists at least a positive

solution of (3.13) because (−∞, 0] ⊂ ProjIR(C0). Take λ ∈ (0, λ∗(α)). Then the pair

(εϕα, u∗) is a sub-supersolution of (3.13) with ε small and being u∗ a positive solution of

(3.13) with λ = λ∗(α).

Finally, we prove (3.4). For that, first we can see that λ∗(α) is non-decreasing in α.

Consider α1 ≤ α2 and assume that for λ > 0 there exists a positive solution of (3.1)

with α = α1. It is clear that uα1 is supersolution of (3.1) for α = α2 and that εϕα2 is

subsolution for ε small. Then, there exists at least a positive solution for λ of (3.1) for

α = α2, and so λ∗(α1) ≤ λ∗(α2). On the other hand, since λ∗(α) ≤ R(α) it is clear that

λ∗(α) → 0 as α → −∞ because R(α) → 0. We show now that λ∗(α) → +∞ as α → 0.

Assume that

lim
α→0

λ∗(α) = λ < ∞.

Consider λ0 > λ > 0, we will prove that there exists a positive solution of (3.1) for λ = λ0.

Indeed, it can be shown that the pair

(u, u) = (εϕα,Mϕα)

is a sub-supersolution of (3.1) with λ = λ0 for ε small and M large enough. That u is a

subsolution follows easily. On the other hand, u is supersolution provided of

F (M) := M1/mϕ1/m
α

+ M1−1/mϕ1−1/m
α λ1(α) ≥ λ0,

being

ϕ
α

:= min
x∈Ω

ϕα(x), ϕα := max
x∈Ω

ϕα(x).

The function F attains a maximum at

M0 =

(
ϕ1/m

α

ϕ
1−1/m
α λ1(α)(1−m)

)m/(m−2)

,

and its value is

F (M0) =
(

m− 2
m− 1

)(
1

λ1(α)(1−m)

)1/(m−2) (
ϕ

α

ϕα

)(m−1)/(m(m−2))

.
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Then, taking ϕα such that ‖ϕα‖∞ = ϕα = 1 and using that λ1(α) → 0 and ϕ
α
≥ δ0 > 0

as α → 0, for some δ0 > 0, it follows that u is supersolution for α small.

Finally, the case m = 2 can be proved in a similar way. This completes the proof.

4 Conclusion

Figure 4: Region of existence of positive solution in the plane (α, λ) in the case m = 1,

Figure 4 a) and 1 < m < 2 Figure 4 b).

We have studied a logistic equation with degenerate (slow) diffusion and Robin bound-

ary conditions. The results obtained depend on the values of m and α. We would like

to show the different behaviours of the set of positive solutions fixing the value of λ and

varying α. For that, according to Theorem 3.1, we have drawn in the (α, λ)-plane the

region (lined region) where there exists at least a positive solution of (3.1), we recommend

see the Figure 4.

In order to explain the results, we need some notation. Since limα→−∞ λ1(α) = −∞
and limα→+∞ λ1(α) = λ1, for all λ < λ1 there exists a unique value α such that λ1(α) = λ.

In a similar way, for all λ < 0 (resp. λ > 0) there exists a unique value α∗ (resp. α∗) such
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Figure 5: Region of existence of positive solution in the plane (α, λ) in the case m > 2,

Figure 4 c) and m = 2 Figure 4 d).

that λ∗(α∗) = λ (resp. λ∗(α∗) = λ). Finally, we denote by α0 < 0 the unique value such

that

λ1(α0) = −1.

Of course, α, α∗ and α∗ depends on λ. In fact, the maps λ 7→ α, α∗, α∗ are non-decreasing.

Remember that α > 0 means that there is a loss of population at the boundary, and

that for α < 0 there is an increasing of the population.

Now, we differentiate several cases:

Case λ ≥ λ1: In this case for 1 ≤ m < 2 there exists a positive solution for all α ∈ IR.

However, if m = 2 there exists positive solution if α > α0 and for α > α∗ in the case

m > 2. So, if the growth rate of the species is large, the species survives independently of

the value of α in the case of linear or slow diffusion, but for the very slow diffusion and

self-diffusion cases it is necessary that α is not very negative. That is, when the species

moves very slowly, only some of the individuals attain the boundary, and so in order to

avoid that the population grows in a uncontrolled way, it is necessary that the loss of

individuals for the boundary is large, that is α positive and large.
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Case λ ∈ (0, λ1): In the linear diffusion case, there exists positive solution if α < α; for

m < 2 for all α ∈ IR and if α > α0 if m = 2 and for α > α∗ in the case m > 2. In this

cases the possibilities are different. In the liner case, the species moves quickly and so it

attains often the boundary, now it is necessary that the loss on the boundary is not so

large, α < α. However if the diffusion is slow then the species does not attain so often the

boundary and the loss of population is small.

Case λ = 0: In this case, there exists a positive solution for all α < 0 if 1 ≤ m 6= 2 and for

α = α0 if m = 2. Here the interpretation is clear: if there is not growth rate (λ = 0) then

we need that the influx to inside occurs (α < 0).

Case λ < 0: In this case, there exists a positive solution for all α < α if m = 1, for α < α∗

if m < 2, for α < α0 if m = 2 and for all α < 0 if m > 2. So, if the growth rate is

negative, then we need to introduce populations across the boundary; of course we need

to introduce less population if the diffusion is slower.
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