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ALEXANDRE N. CARVALHO†, JOSÉ A. LANGA‡, JAMES C. ROBINSON∗,
AND ANTONIO SUÁREZ?

Abstract. In this paper we determine the exact structure of the pullback attractors in
non-autonomous problems that are perturbations of autonomous gradient systems with
attractors that are the union of the unstable manifolds of a finite set of hyperbolic equilibria.
We show that the pullback attractors of the perturbed systems inherit this structure, and
are given as the union of the unstable manifolds of a set of hyperbolic global solutions
which are the non-autonomous analogues of the hyperbolic equilibria. We also prove, again
parallel to the autonomous case, that all solutions converge as t → +∞ to one of these
hyperbolic global solutions. We then show how to apply these results to systems that are
asymptotically autonomous as t → −∞ and as t → +∞, and use these relatively simple
test cases to illustrate a discussion of possible definitions of a forwards attractor in the
non-autonomous case.

1. Introduction

1.1. Overview. The study of the global attractors that arise in many infinite-dimensional
dynamical systems has been developed extensively over the past thirty years, and for au-
tonomous systems much of the theory is now classical (see, for example, the books by Hale
[9], Ladyzhenskaya [13], or Temam [24]). However, given the underlying models that arise
in various branches of the sciences it is very natural to try to extend the theory to treat
non-autonomous equations.

In the autonomous case the concept of a global attractor is settled and for gradient systems
(those that possess a Liapunov function) the structure of the attractor is well understood:
it is given as the union of the unstable manifolds of the equilibria. However, for non-
autonomous dynamical systems the appropriate definition of ‘a global attractor’ is still not
entirely settled, and there are few examples with attractors whose structure is known.

In this paper we identify a class of non-autonomous systems in which the structure of the
pullback attractor can be determined exactly: these are uniformly small non-autonomous
perturbations of gradient systems with a finite number of hyperbolic equilibria. Loosely
speaking, the main result proved in this paper is that the structure of the attractor is un-
changed by such non-autonomous perturbations. More precisely, we show that the pullback
attractor is the union of the unstable manifolds of hyperbolic global solutions. These ‘global
hyperbolic solutions’ are the non-autonomous analogue of hyperbolic equilibria, being solu-
tions defined for all t ∈ R, the linearizations around which enjoy exponential dichotomies.
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Even in the case of autonomous systems this provides new examples in which the structure
of the attractor is known explicitly. (A proof of this result for a restricted class of finite-
dimensional systems is given by Langa et al. [16], but the argument there uses time reversal
and so is not applicable in the infinite-dimensional setting.)

We then show how to adapt our results to the case of asymptotically autonomous systems.
As well as obtaining results that are interesting in their own right, we use these simple models
as a basis for a discussion of the possible definitions of an attractor in non-autonomous
systems.

1.2. Semigroups and processes. In order to describe the results of this paper in more
detail we need to introduce some terminology. Although in the main body of the paper
we choose to work with a particular model for which we are able to prove that some key
properties hold (see Section 1.4, below) more generally we are interested in non-autonomous
perturbations of an underlying autonomous process.

Taking a Banach space Z as our phase space, the underlying autonomous system is natu-
rally described by a semigroup of nonlinear operators (or ‘nonlinear semigroup’), i.e. a family
{S(t) : t ≥ 0} (or S(·) for short) consisting of continuous operators from Z into itself such
that

1) S(t) = I,

2) S(t)S(s) = S(t + s), for each t, s ≥ 0, and

3) t 7→ S(t)z0 is continuous for t ≥ 0, z0 ∈ Z.

If each S(t) is linear then we call {S(t) : t ≥ 0} a linear semigroup.
Upon addition of a non-autonomous perturbation the initial time becomes as important

as the final time, and the dynamics is then described by a nonlinear process, i.e. a two
parameter family {S(t, τ) : t ≥ τ ∈ R} (or S(·, ·) for short) of continuous operators from Z
into itself such that

1) S(τ, τ) = I,

2) S(t, σ)S(σ, τ) = S(t, τ), for each t ≥ σ ≥ τ, and

3) (t, τ) 7→ S(t, τ)z0 is continuous for t ≥ τ, z0 ∈ Z.

Again, if each S(t, τ) is linear then we refer to S(·, ·) as a linear process.
For a nonlinear process S(·, ·) with the property that S(t, τ) = S0(t− τ) for all t ≥ τ ∈ R,

i.e. for a process that is really a nonlinear semigroup in disguise, the behaviour of solutions as
t →∞, which we refer to as ‘the forwards dynamics’, is the same as the behaviour of solutions
as τ → −∞, ‘the pullback dynamics’. However, for general processes these ‘dynamical limits’
are totally unrelated and can produce entirely different qualitative properties (see [6, 17]).
We believe that this point is made forcibly in Section 4, where we consider asymptotically
autonomous gradient systems and are able to describe both dynamical limits completely.

1.3. Attractors. Our main tool for describing the long-term dynamics of both the au-
tonomous and non-autonomous systems we consider is the theory of attractors. Here we
first recall the definition of a global attractor for a nonlinear semigroup S(·) (see [9] or [24]),
and then discuss how this concept can be generalised to the attractor of a non-autonomous
process S(·, ·).

If B and C are subsets of Z, we say that the set B attracts the set C under S(t) if
dist(S(t)C,B) → 0 as t →∞, where dist(A,B) = supa∈A infb∈B |a− b|.
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A set A ⊂ Z is said to be invariant under {S(t) : t ≥ 0} if, for any z ∈ A, there is a
complete orbit γ(z) through z such that γ(z) ⊂ A or equivalently if S(t)A = A for any t > 0.

Definition 1.1. A set A ⊆ Z is said to be the global attractor for S(·) if it is

(i) compact,
(ii) invariant, i.e. S(t)A = A for all t ≥ 0, and
(iii) it attracts bounded subsets B of Z,

dist(S(t)B,A) → 0 as t →∞.

The notion of a global attractor for a nonlinear process S(·, ·) requires much more care.
Since any fixed set A will not, in general, be invariant in the above sense for a non-
autonomous process, it is natural to define invariance in this context as follows:

• A family {A(t) ⊂ Z : t ∈ [σ,∞)} is invariant under S(·, ·) if S(t, τ)A(τ) = A(t) for
all t ≥ τ ≥ σ.

With this in mind one might think that a non-autonomous attractor should be defined as
follows:

• A family {A(t) ⊂ Z : t ∈ R} with A(t) compact for all t ∈ R is a non-autonomous
attractor if it is invariant under S(·, ·) and attracts bounded sets; that is, for each
bounded set B ⊂ Z and τ ∈ R

lim
t→∞

dist(S(t, τ)B, A(t)) = 0.

Unfortunately such a definition is likely to be satisfied only in some very specific and re-
strictive situations (e.g. if {T (t, τ) : t ≥ τ ∈ R} is uniformly asymptotically compact in
the sense of [7]). Some very simple examples of systems that we would expect to possess a
‘global non-autonomous attractor’ will not have an attractor in the sense of this definition;
this is essentially due to the fact that some of the forwards dynamics may be associated with
solutions that blow up in finite backwards time (see Section 4.2).

Central to much of what follows is the concept of a globally-defined solution. In the
autonomous case, a globally-defined solution (or simply a global solution) through z is a
function ξ : R→ Z such that ξ(0) = z and for all s ∈ R and t ≥ 0 we have S(t)ξ(s) = ξ(t+s).
In the autonomous case the attractor is exactly the union of all such orbits [24],

A = {z : there is a bounded global solution through z}. (1.1)

In the non-autonomous case, the definition of an ‘attractor’ that has the same character-
ization as the union of all globally-defined bounded orbits,

{A(t) : t ∈ R} = {ξ(t) : ξ(·) : R→ Z is bounded and S(t, τ)ξ(τ) = ξ(t)}, (1.2)

is the pullback attractor:

Definition 1.2. A family of compact sets {A(t) ⊂ Z : t ∈ R} with ∪t∈RA(t) compact is a
pullback attractor for {S(t, τ) : t ≥ τ ∈ R} if it is invariant and attracts all bounded subsets
of Z ‘in the pullback sense’, i.e.

lim
τ→−∞

dist(S(t, τ)B,A(t)) = 0, ∀t ∈ R.



4 A. N. CARVALHO, J. A. LANGA, J. C. ROBINSON, AND A. SUÁREZ

(See [7], where the sets A(t) are referred to as kernel sections, and also [12, 22] who use the
terminology ‘pullback attractor’). It is shown in [7] that when a pullback attractor exists

it is given by (1.2). Note that the requirement that ∪t∈RA(t) be compact is not a standard
one in the literature on pullback attractors, and without it the definition still reduces to the
familiar one in the autonomous case. Indeed, there are examples in which allowing A(t) to
be unbounded, particular as t → +∞, is a useful weakening of the definition. Nevertheless,
the uniformity imposed here occurs in most interesting applications, and allows for stronger
results, while ruling out some potentially pathological behaviour, e.g. unstable sets that do
not belong to the attractor, see Theorem 5.2 in [14].)

For autonomous problems, it is clear that the concept of a pullback attractor coincides with
the standard definition of the attractor, while the characterization in (1.2) shows that this no-
tion is in some sense a ‘natural’ generalization. However, as is well-known and demonstrated
here by the example presented in Section 4.2, the pullback attractor will not necessarily en-
joy any kind of forward attraction. Except in very specific situations, for example when the
non-autonomous nonlinear process is asymptotically autonomous backwards and forwards
to the same nonlinear semigroup, the pullback behaviour and the forwards behaviour will
not be related (see Theorems 4.2 and 4.5, and [6, 21, 15] for other specific cases).

Ideally, therefore, one would describe the pullback attractor of a non-autonomous system,
and give some information on the limits of solutions as t → ∞. We accomplish both aims
in the particular class of systems that we consider here.

1.4. Gradient systems and ‘gradient-like’ attractors. Our result considers small non-
autonomous perturbations of autonomous gradient systems. In order to make it clear where
our work differs from previous results, we need to draw a distinction between gradient systems
and systems with ‘gradient-like’ attractors.

If T0(·) is a gradient nonlinear semigroup (i.e. T0(·) has a Liapunov function, see Definition
2.4) that has a global attractor A0 and a finite number of stationary solutions y∗i , 1 ≤ i ≤ n,
then every solution converges to one of the equilibria as t → +∞, and every solution defined
for all t ≤ 0 is also backwards asymptotic to one of the equilibria. This implies, in particular,
that the attractor A0 is the union of the unstable manifolds W u

0 (y∗i ) of the equilibria, i.e.

A0 =
n⋃

j=1

W u(y∗j ), (1.3)

and so the structure of A0 is completely understood. This is essentially the class of nonlinear
semigroups in Banach spaces for which a detailed knowledge of the structure of the attractor
is available. An attractor of the form (1.3) we term ‘gradient-like’. Clearly the class of
systems with gradient-like attractors is larger than those that are strictly gradient.

The argument that leads to our main result has two ingredients. We consider an under-
lying semigroup T0(·), and a parametrized family Tη(·, ·) of non-autonomous processes that
converge to T0(·) (in a sense which will of course be made precise) as η → 0. First, we assume
that the equilibria of T0(·) become hyperbolic global solutions for Tη(·, ·) for η sufficiently
small, and that the corresponding stable and unstable manifolds change continuously (this
is made precise in Section 2).

In this case, if one only assumes that the attractor of T0(·) is ‘gradient-like’ and all the y∗j
are hyperbolic, then it is possible to show that the pullback attractors Aη of Tη(·, ·) behave
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continuously as η → 0, i.e.

sup
t∈R

dist(Aη(t), A0) → 0 as η → 0,

where dist(X, Y ) = max[dist(X,Y ), dist(Y,X)], see [16, 5]. In fact this continuity result is
proved by showing that the pullback attractors for the perturbed problem contain (possibly
strictly) the union of the unstable manifolds of the global hyperbolic solutions, while the
remaining part of the pullback attractor for the perturbed problem (if it exists) is small.

Our main result here is that under the additional assumption that the unperturbed prob-
lem is truly gradient, i.e. has a Liapunov function, then there is no ‘remainder’, and the
pullback attractor has the same structure as the autonomous attractor, i.e.

Aη(t) =
n⋃

j=1

W u(ξj,η(·))(t),

where the ξj,η(·) are the hyperbolic global solutions corresponding to the hyperbolic equilibria
y∗j in the original problem. We also show that every solution converges to one of the ξj,η(·)
as t → +∞. To obtain these results we make continual use of the Liapunov function for the
unperturbed problem: the structure of the attractor for Tη(·, ·) cannot be deduced from the
continuity of the attractor under perturbation.

Our results provide new classes of systems in which the exact structure of the attractor is
known, even in the autonomous case. For example, if we consider an autonomous dynamical
system that is gradient and perturb it in such a way that the perturbed dynamical system
is still autonomous but no longer has a Liapunov function, the results in [5, 9] prove that
the attractors behave continuously but do not ensure that the perturbed attractor is exactly
the union of unstable manifolds of hyperbolic equilibria, which is what we are able to prove
here. (Section 5 gives the striking example of a damped hyperbolic equation which is not
gradient but whose attractor is nevertheless gradient-like.)

It is a natural question whether our results can be obtained for small perturbations of a
larger class than autonomous gradient systems. One might hope to prove a similar result
starting from a “generalized gradient dynamical system”, a reasonable definition of which is
a dynamical system (autonomous or non-autonomous) that has a pullback attractor given
as the union of the unstable manifolds of finitely many global hyperbolic solutions, and for
which every solution is forwards asymptotic to one of the (finite) set of global hyperbolic
solutions. However, our arguments are completely unable to treat this case, since we use the
Liapunov function of the limiting system throughout our proof.

We like to think of the characterization result of this paper as midway between full struc-
tural stability (which one would expect to involve assumptions such as the transversality
of stable and unstable manifolds) and the weaker property of continuity of attractors (as
in [5, 16]) valid under less stringent conditions. We suspect that extending our results to
treat generalized gradient systems will require techniques more akin to those involved in
considerations of structural stability. For example, in a system whose vector field is periodic
in time, a hypothesis such as the transversality of stable and unstable manifolds should lead
to a similar characterization of the attractor and also guarantee the preservation of the con-
nections between hyperbolic orbits, since if the associated Poincaré map is Morse-Smale one
can apply the results due to Oliva (see Oliva [19] or Hale et al. [10]) to show that the system
is topologically stable.
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1.5. Detailed summary of results. We now specify the particular model that we will
consider in detail, and give a formal summary of our main results. Our choice of model is
motivated by the need to guarantee that the stable and unstable manifold structure near a
hyperbolic equilibrium perturbs continuously. Such results were shown in [5] for a class of
semilinear problems on a Banach space Z, and it is these models that we consider in what
follows. At the risk of labouring the point, our results could be stated and proved within a
more abstract setting (an abstract process Tη(·, ·) that is a perturbation of a semigroup T0(·)
with the relevant additional properties), but here we choose to concentrate on this particular
example for the sake of concreteness.

We will consider the semilinear autonomous problem

ẏ = By + f0(y) with y(τ) = y0 ∈ Z, (1.4)

and the non-autonomous family for η ∈ (0, 1]

ẏ = By + fη(t, y) with y(τ) = y0 ∈ Z, (1.5)

where B : D(B) ⊂ Z → Z is the generator of a C0-semigroup of bounded linear operators
and, for η ∈ [0, 1], fη(t, ·) is a differentiable function which is Lipschitz continuous in bounded
subsets of Z with Lipschitz constant independent of η and t. Assume that, for each τ ∈ R
and y0 ∈ Z, unique solutions of (1.4) and (1.5) exist for all t ≥ τ . Then the solution
t → T0(t− τ)y0 of (1.4) defines a nonlinear semigroup on Z, and the solution t 7→ Tη(t, τ)y0

of (1.5) gives rise to a family of nonlinear processes on Z.
Some authors have considered models with additional properties, e.g. Shen & Yi [23]

have considered coefficients that are almost periodic, but we prefer to consider more general
non-autonomous terms and, indeed, it seems that the extra properties of almost periodic
equations would not help us in the direction we are pursuing here.

As remarked above, we choose this particular model because it is shown in [5] that if fη is
a C1 perturbation of f0 then to each hyperbolic equilibrium point of T0(·) there corresponds
a hyperbolic global solution ξ∗i,η(·) of Tη(·, ·) and the corresponding stable and unstable
manifolds behave continuously as η → 0; these results are recalled in Section 2. Using these
results and the assumption that T0(·) is gradient with a finite number of equilibria y∗i , all of
which are hyperbolic, we show the following in our main theorem, Theorem 2.11.

◦ Structure of the pullback attractors for the perturbed systems

Aη(t) =
n⋃

i=1

W u
η (ξ∗i,η)(t),

for all t ∈ R, where W u
η (ξ∗i,η)(t) denotes the unstable manifold associated to the global

hyperbolic solutions ξ∗i,η (these are shown in [5] to be given as a graph near each of
the hyperbolic equilibrium points y∗i ).

◦ Dimension of the pullback attractors for the perturbed systems
For each t ∈ R,

dimH(Aη(t)) = dimH(A0)

and give an explicit expression for this dimension in (2.21).

◦ Backwards and forwards limits of global solutions
For every bounded global solution of (1.5), ξη(t), there are j, k with 1 ≤ j ≤ n and
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1 ≤ k ≤ n such that

lim
t→∞

‖ξη(t)− ξ∗j,η(t)‖Z = 0 and lim
t→−∞

‖ξη(t)− ξ∗k,η(t)‖Z = 0.

◦ Forwards limits of all solutions
For each (τ, y0) ∈ R×Z there is a 1 ≤ j ≤ n such that

lim
t→∞

‖Tη(t, τ)y0 − ξ∗j,η(t)‖Z = 0.

In the second part (Section 4) of this paper we consider asymptotically autonomous dy-
namical systems in the case that the limiting system is gradient. Because asymptotically
autonomous systems can be analysed by considering non-autonomous perturbations of an
autonomous equation, we are able to take advantage of the above results to describe the
structure of the attractors in this case. Moreover, we show that every solution converges to
one of the hyperbolic global solutions of the non-autonomous problem; these are the true
time-dependent (and invariant) attracting structures, rather than their asymptotic limits
(which are invariant only for the limit system), cf. [3, 4]. We highlight the fact that if the
backwards and forwards limit systems are different then, although both the forwards and
pullback dynamics can be described in detail, they can be entirely unrelated.

Ideally, we would also like to characterize a forwards attractor for bounded sets (when
possible), insisting on the requirement that this be invariant. However, there are non-trivial
problems with defining such a forwards attractor, and these are also discussed in Section 4.

In Section 5 we present a number of examples that illustrate the broad applicability of
our results, and finally we make some general comments and conjectures in Section 6.

2. Background Results and Statement of the Main Theorem

We start by describing some previous results that are central in the proof of our main
theorem, namely results on the continuity of stable and unstable manifolds proved in [5],
and classical results on the structure of attractors in gradient systems.

If t 7→ T0(t− τ)y0 denotes the solution of

ẏ = By + f0(y) with y(τ) = y0, (2.1)

then

T0(t− τ)y0 = eB(t−τ)y0 +

∫ t

τ

eB(t−s)f0(T0(s− τ)y0) ds, (2.2)

while if we denote by t 7→ Tη(t, τ)y0 the solution of

ẏ = By + fη(t, y) with y(τ) = y0, (2.3)

we have

Tη(t, τ)y0 = eB(t−τ)y0 +

∫ t

τ

eB(t−s)fη(s, Tη(s, τ)y0) ds. (2.4)

The following result on the continuity of these solution operators as η → 0 is easy to prove.

Theorem 2.1. Assume that

lim
η→0

sup
t∈R

sup
z∈B(0,r)

‖fη(t, z)− f0(z)‖Z = 0, for each r > 0. (2.5)

Then, for each r > 0 and T > 0,

lim
η→0

sup{‖Tη(t + τ, τ)z − T0(t)z‖Z , τ ∈ R, t ∈ [0, T ] and ‖z‖Z ≤ r} → 0. (2.6)
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A solution of (2.1) is an equilibrium solution if it satisfies

By + f0(y) = 0. (2.7)

Suppose that y∗0 is solution of (2.7). It follows that, if A = B + f ′0(y
∗
0), then A generates

a strongly continuous semigroup {eAt : t > 0} of bounded linear operators.

Definition 2.2. An equilibrium solution y∗0 to (2.1) is said to be hyperbolic if the following
are satisfied:

(1) The spectrum of A does not intersect the imaginary axis and the set σ+ = {λ ∈
σ(A) : Reλ > 0} is compact.
This allows us to choose a smooth closed simple curve γ in ρ(A)∩{λ ∈ C : Reλ > 0}
that is positively orientated and encloses σ+; we can then define the projection

Q = Q(σ+) =
1

2πi

∫

γ

(λI −A)−1 dλ. (2.8)

If Z+ = Q(Z), Z− = (I−Q)(Z), and A± = A|Z± , then Z = Z+⊕Z−, A− generates
a strongly continuous semigroup on Z− and A+ ∈ L(Z+).

(2) There are constants M̄ ≥ 1 and β > 0 such that

‖eA+t‖L(Z+) 6 M̄eβt, t 6 0,

‖eA−t‖L(Z−) 6 M̄e−βt, t > 0.
(2.9)

The stable and unstable manifolds of an equilibrium y∗0, W s(y∗0) and W u(y∗0) respectively,
are defined as follows:

W s(y∗0) = { z ∈ Z : lim
t→+∞

‖T0(t)z − y∗0‖Z = 0}.
W u(y∗0) = { z ∈ Z : there is a backwards solution y(t) of (2.1)

satisfying y(τ) = z and such that lim
t→−∞

‖y(t)− y∗0‖Z = 0}.
The intersection of the unstable manifold with a neighbourhood of y∗0 is termed the local

unstable manifold, which we write W u
loc(y

∗
0). The existence of local stable and unstable

manifolds as graphs near a hyperbolic equilibrium is well-known:

Theorem 2.3. If y∗0 is a hyperbolic equilibrium then for suitably small ε > 0 there are
Lipschitz functions

B(0, ε) 3 w 7→ Σ∗,u(Qw) ∈ (I −Q)Z
B(0, ε) 3 w 7→ Σ∗,s((I −Q)w) ∈ QZ

such that
W u

loc(y
∗
0)={y∗0 + (Qw, Σ∗,u(Qw)), ‖w‖Z ≤ ε}

W s
loc(y

∗
0)={y∗0 + (Σ∗,s((I−Q)w), (I−Q)w), ‖w‖Z ≤ ε},

where Q is the projection from (2.8).

Next we recall the definition of a gradient nonlinear semigroup. (Note that we have slightly
strengthened the definition from that in Hale [9], since to ensure that ξ(·) is an equilibrium
we only require V (ξ(t)) to be constant on a semi-infinite interval.)

Definition 2.4. We say that a nonlinear semigroup {T0(t) : t ≥ 0} is gradient if {T0(t)z :
t ≥ 0} is relatively compact for each z ∈ Z and there exists a continuous function V : Z → R
such that
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• t 7→ V (T0(t)z) : [0,∞) → Z is non-increasing for each z ∈ Z.
• If z ∈ Z is such that there is a global solution ξ(·) : R → Z through ξ(0) = z and

there exists a t∗ ∈ R such that V (ξ(t)) = V (z) for all t ≥ t∗ or for all t ≤ t∗, then z
is a solution of (2.7) (and so in fact V (ξ(t)) = V (z) for all t ∈ R).

The function V : Z → R is called a Liapunov function for {S(t) : t ≥ 0}.
In a gradient system with a finite number of hyperbolic equilibria the attractor has a

particularly simple structure, and all global solutions in it are both forwards and backwards
asymptotic to an equilibrium, which we state formally in the following theorem (see [9]). Note
that the assumptions in the theorem are satisfied (at least generically) for many examples
that have a gradient structure.

Theorem 2.5. If T0(·) is a gradient system that has a global attractor A0, V : Z → R is its
Liapunov function and (2.7) has a finite number of solutions y∗i , 1 ≤ i ≤ n, then A0 is given
by

A0 =
n⋃

i=1

W u
0 (y∗i ), (2.10)

i.e. the attractor is ‘gradient-like’. Furthermore if we denote by {n1, · · · , np} the set of
all distinct values of V (y∗j ), ordered so that ni < nj, 1 ≤ i < j ≤ p ≤ n, and define
Ek = {y∗i ∈ E : V (y∗i ) = nk}, then if y(·) : R → Z is a global solution for (2.1), there are
k1, k2 with 1 ≤ k1 < k2 ≤ p, y∗i ∈ Ek1 and y∗j ∈ Ek2, such that

lim
t→−∞

y(t) = y∗j and lim
t→+∞

y(t) = y∗i .

While a characterization of the pullback attractor for small non-autonomous perturbations
of finite-dimensional gradient systems is given by Langa et al. [16], such a characterization
is not currently available in the literature for any class of infinite-dimensional problems.

Our first task is to find a non-autonomous analogue of a hyperbolic equilibrium points.
In [5] it is shown that near each of the hyperbolic equilibrium y∗i there is a unique global
solution ξ∗i,η which enjoys a hyperbolic structure. In order to be more precise we need the
notion of an exponential dichotomy, which we now introduce.

Definition 2.6. We say that a linear process {U(t, τ) : t ≥ τ ∈ R} has an exponential
dichotomy with exponent ω and constant M if there exists a family of projections {Q(t) :
t ∈ R} ⊂ L(Z) such that

(1) Q(t)U(t, s) = U(t, s)Q(s), for all t ≥ s.
(2) The restriction U(t, s)|R(Q(s))

, t ≥ s is an isomorphism from R(Q(s)) into R(Q(t));

we denote its inverse by U(s, t) : R(Q(t)) → R(Q(s)).
(3) There are constants ω > 0 and M ≥ 1 such that

‖U(t, s)(I −Q(s))‖L(Z) ≤ Me−ω(t−s) t ≥ s

‖U(t, s)Q(s)‖L(Z) ≤ Meω(t−s), t ≤ s.
(2.11)

Now we will define the analog of a hyperbolic equilibrium for non-autonomous problems
(2.3). But first we need to introduce some more terminology. Consider the problem

ż = Az + Bη(t)z

z(τ) = z0 ∈ Z,
(2.12)
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where R 3 t 7→ Bη(t) ∈ L(Z) is strongly continuous. It is well known that the problem
(2.12) has a unique mild solution Uη(t, τ)z0 for each z0 ∈ Z which satisfies

Uη(t, τ)z0 = eA(t−τ)z0 +

∫ t

τ

eA(t−s)Bη(s)Uη(s, τ)z0 ds. (2.13)

The family {Uη(t, τ) : t ≥ τ ∈ R} is a linear process. We say that (2.12) has an exponential
dichotomy if {Uη(t, τ) : t ≥ τ ∈ R} has an exponential dichotomy.

Now we are ready to define the analogue of a hyperbolic equilibrium for non-autonomous
systems.

Definition 2.7. Let ξ∗η : R → Z be a global solution of (2.3). We say that ξ∗η is hyperbolic
if

ż = Bz + (fη)y(t, ξ
∗
η(t))z

z(τ) = z0 ∈ Z
has an exponential dichotomy. A global solution that has an exponential dichotomy will be
called a global hyperbolic solution.

The following result can be adapted from Theorem 7.6.11 in [11].

Theorem 2.8. Suppose that limη→0 supt∈R ‖Bη(t)‖L(Z) = 0 and that A is the generator of
a C0-semigroup such that (2.9) is satisfied for some β > 0 and M̄ ≥ 1. Then, for each
M > M̄ and ω < β, there is a η0 > 0 such that, for all η ≤ η0, (2.12) has an exponential
dichotomy with exponent ω and constant M .

Definition 2.9. The unstable manifold of a global hyperbolic solution ξ∗η to (2.3) is the set

W u
η (ξ∗η) = { (τ, ζ) ∈ R×Z : there is a backwards solution z(t, τ, ζ) of (2.3)

satisfying z(τ, τ, ζ) = ζ and such that lim
t→−∞

‖z(t, τ, ζ)− ξ∗η(t)‖Z = 0}.
The stable manifold of a hyperbolic solution ξ∗η to (2.3) is the set

W s
η(ξ

∗
η) = { (τ, ζ) ∈ R×Z : there is a forwards solution z(t, τ, ζ) of (2.3)

satisfying z(τ, τ, ζ) = ζ and such that lim
t→+∞

‖z(t, τ, ζ)− ξ∗η(t)‖Z = 0}.
The intersection of the unstable (stable) manifold with a neighbourhood of the curve (·, ξ(·))
in R×Z is called a local unstable (stable) manifold and is denoted by W u

η,loc (W s
η,loc).

Setting z = y − y∗i , we rewrite equation (2.1) as

ż = Aiz + hi(z)

z(τ) = z0 = y0 − y∗i ,
(2.14)

where Ai = B + f ′0(y
∗
i ), hi(z) = f0(y

∗
i + z) − f0(y

∗
i ) − f ′0(y

∗
i )z. Hence, 0 is an equilibrium

solution for (2.14) and hi(0) = 0, h′i(0) = 0 ∈ L(Z).
If ξ∗i,η is a a global hyperbolic solution of (2.3), proceeding as in the autonomous case we

change variables z(t) = y − ξ∗i,η(t) in (2.3) and rewrite (2.3) as

ż = (Ai + Bi
η(t))z + hi

η(t, z)

z(τ) = z0

(2.15)
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where hi
η(t, z) = fη(t, ξ

∗
i,η(t)+z)−fη(t, ξ

∗
i,η(t))−(fη)y(t, ξ

∗
i,η(t))z and Bi

η(t) = (fη)y(t, ξ
∗
i,η(t))−

f ′0(y
∗
i ). Hence, 0 is a globally defined bounded solution for (2.15) and hi

η(t, 0) = 0, (hi
η)z(t, 0) =

0 ∈ L(Z).

The following proposition summarizes the main results proved in [5] which will be used in
the proof of our main theorem.

Proposition 2.10. Let η ∈ (0, 1], fη : R×Z → Z differentiable. Consider the initial value
problem (2.3). Assume that all solutions of (2.7) are hyperbolic equilibrium solutions for
(2.1) and that (2.1) has a global attractor A0. Assume that, for any r > 0,

lim
η→0

sup
t∈R

sup
y∈B(0,r)

{‖fη(t, y)− f0(y)‖Z + ‖(fη)y(t, y)− f ′0(y)‖L(Z)

}
= 0. (2.16)

Under these assumptions the following hold:

(1) If Ai = B + f ′0(y
∗
i ), the spectrum of Ai does not intersect the imaginary axis and the

set σ+
i = {λ ∈ σ(Ai) : Reλ > 0} is compact. If γi is a smooth curve in ρ(Ai) ∩ {λ ∈

C : Reλ > 0} orientated anti-clockwise and enclosing σ+
i , define

Qi = Qi(σ
+
i ) =

1

2πi

∫

γi

(λI −Ai)
−1 dλ; (2.17)

then there are constants M̄i ≥ 1 and βi > 0 such that

‖eA+
i t‖L(Z+

i ) 6 M̄ie
βit, t 6 0,

‖eA−i t‖L(Z−i ) 6 M̄ie
−βit, t > 0,

where Z+
i = R(Qi), Z−

i = R(I −Qi), A±
i = A|Z±

i

, A+
i ∈ L(Z+

i ).

(2) For each η sufficiently small, there are globally defined solutions of (2.15) ξ∗i,η : R→ Z
with limη→0 supt∈R ‖ξ∗i,η(t)− y∗i ‖L(Z) = 0 and such that

ż = Bz + (fη)y(t, ξ
∗
i,η(t))z (2.18)

has an exponential dichotomy; that is, there is a family of projections {Qi
η(t) : t ∈ R}

such that the conditions in Definition 2.7 are satisfied, where U i
η(t, τ) is the solution

operator associated to (2.18).
(3) For any τ ∈ R

lim
η→0

sup
t≥τ

‖U i
η(t, τ)(I −Qi

η(τ))− eAi(t−τ)(I −Qi)‖L(Z) → 0,

lim
η→0

sup
t≤τ

‖U i
η(t, τ)Qi

η(τ)− eAi(t−τ)Qi‖L(Z) → 0.

Furthermore, for any T > 0,

lim
η→0

sup
|t−τ |≤T

‖U i
η(t, τ)− eAi(t−τ)‖L(Z) → 0.

(4) The projections Qi
η(t) and Qi satisfy

lim
η→0

sup
t∈R

‖Qi
η(t)−Qi‖L(Z) = 0.
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(5) For ε > 0 sufficiently small there are functions

R×B(0, ε) 3 (τ, w) 7→ Σ∗,u
i,η (τ, Qi

η(τ)w) ∈ (I −Qi
η(τ))Z

R×B(0, ε) 3 (τ, w) 7→ Σ∗,s
i,η (τ, (I −Qi

η(τ))w) ∈ Qi
η(τ)Z

such that

W u
η,loc(ξ

∗
i,η) = {(τ, ξ∗i,η + w) :w=(Qi

η(τ)w,Σ∗,u
i,η (τ, Qi

η(τ)w)), τ ∈ R, ‖w‖Z ≤ ε}
W s

η,loc((ξ
∗
i,η))={(τ, ξ∗i,η+w) :w=(Σ∗,s

i,η (τ, (I−Qi
η(τ))w), (I−Qi

η(τ))w), τ ∈ R, ‖w‖Z ≤ ε}.
(6) Finally, the unstable and stable manifolds behave continuously at η = 0 in the sense

that

sup
t≤τ

sup
‖w‖Z≤ε

{‖Qi
η(t)w −Qiw‖Z + ‖Σ∗,u

i,η (t, Qi
η(t)w)−Σ∗,u

0 (Qiw)‖Z
} η→0−→ 0.

sup
t≥τ

sup
‖w‖Z≤ε

{‖Qi
η(t)w −Qiw‖Z + ‖Σ∗,s

i,η (t, (I−Qi
η(t))w)−Σ∗,s

0 ((I−Qi)w)‖Z
} η→0−→ 0.

In what follows we suppose the following:

i) For each η ∈ (0, 1] there exists a pullback attractor {Aη(t)}t∈R associated to (2.3).
ii) There exist η0 and a compact attracting set K ⊂ Z such that, for all B ⊂ Z bounded

lim
t→∞

sup
τ∈R

sup
η≤η0

dist(Tη(t, τ)B,K) = 0. (2.19)

In particular, this implies (see [7]) that
⋃

η≤η0

⋃

t∈R
Aη(t) ⊂ K. (2.20)

We are now ready to state our main theorem.

Theorem 2.11. Let η ∈ [0, 1], fη : R × Z → Z be differentiable. Consider the initial
value problem (2.3). Assume that (2.1) is a gradient system, that all solutions of (2.7) are
hyperbolic equilibrium solutions for (2.1), and that (2.1) has a global attractor A0 (which is
consequently given by (2.10)). Assume in addition that (2.16) is satisfied for any r > 0.

(1) If we write

W u
η (ξ∗i,η)(τ) = { ζ ∈ Z : there is a backwards solution z(t, τ, ζ) of (2.3)

satisfying z(τ, τ, ζ) = ζ and such that lim
t→−∞

‖z(t, τ, ζ)− ξ∗i,η(t)‖Z = 0},
then the attractor {Aη(τ) : τ ∈ R} of (2.3) is given by

Aη(τ) =
n⋃

i=1

W u
η (ξ∗i,η)(τ).

As a consequence for each τ ∈ R we have

dimH(Aη(τ)) = dimH(A0) = max
j=1,...,n

rank(Qj), (2.21)

where Qj is the projection defined in (2.17).
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(2) For each globally defined bounded solution ξη(·) of (2.3) and η ≤ η0, there are j, k
with 1 ≤ j ≤ k ≤ n such that

lim
t→∞

‖ξη(t)− ξ∗j,η(t)‖Z = 0 and lim
t→−∞

‖ξη(t)− ξ∗k,η(t)‖Z = 0. (2.22)

(3) For each (τ, y0) ∈ R×Z there is a j with 1 ≤ j ≤ n such that

lim
t→∞

‖Tη(t, τ)y0 − ξ∗j,η(t)‖Z = 0.

In Section 4.1 we use this theorem to give a characterization of the pullback attractors in
the case of asymptotically autonomous problems at −∞ and in Section 4.2 we define for-
wards invariant attractors and give a characterization of them for the case of asymptotically
autonomous problems at +∞ (Section 4.3).

Finally, we note that the characterization result (the structure of the attractor in part (1)
of the above theorem) does not rely on the dynamics of the equation on any semi-infinite
interval [τ,∞). A similar result therefore holds for ‘pullback attractors’ for which we only
assume that

τ⋃
−∞

A0(t)

is compact (cf. remarks after Definition 1.2).

3. Proof of Theorem 2.11

Before we can start the proof of Theorem 2.11 we need the following very important
lemma.

Lemma 3.1. Let ηk be a sequence of positive numbers such that ηk → 0 as k →∞. Assume
that there is a sequence ξηk

(·) : R → Z of solutions (2.3) such that ∪k∈N ∪t∈R ξηk
(t) is

compact. Then, for any sequence {tk} in R, there is a subsequence which we again denote
by ξηk

and a globally defined bounded solution y(·) of (2.1) such that

lim
k→∞

ξηk
(t + tk) → y(t) (3.1)

uniformly for t in compact subsets of R.

Proof: Since ∪k∈N ∪t∈R ξηk
(t) is compact, there is a subsequence which we again denote by

ηk and y0 ∈ Z such that ξηk
(tk) → y0. Let y(·) : [0,∞) → Z be the solution of (2.1) such

that y(0) = y0. Of course, this solution is bounded. If t > tk it follows from the continuity
of the nonlinear process Tηk

(t + tk, tk), uniformly for tk ∈ R and for t in compact subsets of
[0,∞) (equation (2.6)), that

ξηk
(t + tk) = Tηk

(t + tk, tk)ξηk
(tk) → T0(t)y0 = y(t)

uniformly for t in compact subsets of [0,∞). Proceeding similarly, ξηk
(tk−1) has a convergent

subsequence ξη1
k
(tk − 1) with limit y−1. Defining y(t) := T0(t + 1)y−1, t ∈ [−1,∞), we have

that y(0) = T0(tk − (tk − 1))y−1 = limk→∞ Tη1
k
(tk, tk − 1)ξη1

k
(tk − 1) = limk→∞ ξη1

k
(tk) = y0

and y(t) = T0(t + 1)y−1 for all t ≥ −1. From this we have that y(·) : [−1,∞) → Z is a
solution of (2.1) with y(−1) = y−1, y(0) = y0 and

ξη1
k
(t + tk) = Tηk

(t + tk, tk − 1)ξη1
k
(tk − 1) → T0(t + 1)y−1 = y(t)
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uniformly for t in compact subsets of [−1,∞). Suppose that:

• We have obtained subsequences {ξηi
k
}∞n=1 for 1 ≤ i ≤ m − 1 with the property that

{ηi
k}∞n=1 is a subsequence of {ηi−1

k }∞n=1 and such that ξηi
k
(tk− i) → y−i, 1 ≤ i ≤ m−1.

• We have defined y(t) by limn→∞ ξηi
k
(t + tk) = y(t), in [−i,−i + 1] and, consequently,

y(t) : [−i,∞) → Z is a solution of (2.1) with y(−j) = y−j, 0 ≤ j ≤ i and ξηi
k
(t + tk)

converges to y(t) uniformly for t in compact subsets of [−i,∞), 1 ≤ i ≤ m− 1.

Now construct {ηm
k }∞n=1 a subsequence of {ηm−1

k }∞n=1 such that ξηm
k

(tk − m) is convergent.
Let y−m be its limit and define y(t) = T0(t + m)y−m for t ∈ [−m,−m + 1]. Then y(t) is a
solution of (2.1) with y(−i) = y−i, 0 ≤ i ≤ m and ξηm

k
(t + tk) converges to y(t) uniformly

for t in compact subsets of [−m,∞).
With this we have constructed a sequence {ξηk

k
}∞k=1 and a solution y(·) : R → Z of (2.1)

with y(−i) = y−i for all i ∈ N and such that ξηk
k
(t + tk) → y(t) uniformly for t in compact

subsets of R. This concludes the proof.

The following lemma is taken from [9] and its proof is added here for completeness only.

Lemma 3.2. Assume that {T0(t) : t ≥ 0} is a gradient nonlinear semigroup which has a
global attractor A0 and such that (2.7) has a finite number of solutions E = {y∗i : 1 ≤ i ≤ n},
all of them hyperbolic. Let V : Z → R be the Liapunov function associated with {T0(t) : t ≥
0} and V (E) = {n1, · · · , np} with ni < ni+1, 1 ≤ i ≤ p− 1.

If 1 ≤ j ≤ p and nj−1 < r < nj, then Zj
r = {z ∈ Z : V (z) ≤ r} is positively invariant

under {T0(t) : t ≥ 0} and {T j
0,r(t) : t ≥ 0}, the restriction of {T0(t) : t ≥ 0} to Zj

r , has a

global attractor Aj
0 given by

Aj
0 = ∪{W u(y∗` ) : V (y∗` ) ≤ nj−1}.

In particular, V (z) ≤ nj−1 for all z ∈ Aj
0.

Proof: It is clear from the definition of the Liapunov function that Zj
r is invariant under

{T0(t) : t ≥ 0}. To prove the existence of an attractor for {T j
0,r(t) : t ≥ 0} we note that

it inherits from {T0(t) : t ≥ 0} the properties required to obtain the existence of a global
attractor; namely, orbits of bounded subsets of Zr are bounded, {T j

0,r(t) : t ≥ 0} is bounded

dissipative and {T j
0,r(t) : t ≥ 0} is asymptotically compact. Hence, {T j

0,r(t) : t ≥ 0} has a

global attractor Aj
0. The restriction V j

r of V to Zj
r is a Liapunov function for {T j

0,r(t) : t ≥ 0}
and the characterization of Aj

0 follows. The last statement is an immediate consequence of
the characterization of Aj

0.

Proposition 3.3. Assume that the hypotheses of Theorem 2.11 are satisfied. Let V : Z → R
be the Liapunov function associated with the nonlinear semigroup {T0(t) : t ≥ 0}, let E =
{y∗1, · · · , y∗n} and V (E) = {n1, · · · , np} with ni < nj, i < j. Set ν0 = 1

2
min{nk − nk−1 : 2 ≤

k ≤ p} and let

Oj
ν := V −1(nj − ν, nj + ν), 1 ≤ j ≤ p, ν ≤ ν0.

Then, for each ν ≤ ν0, there exists an ην > 0 such that, for each globally defined bounded
solution ξη(·) of (2.3) with η ≤ ην , there are j, k with 1 ≤ j < k ≤ n and t∗ = t∗(ξη(·)) > 0
such that

ξη(t) ∈ Oj
ν , for all t ≥ t∗ (3.2)
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and
ξη(t) ∈ Ok

ν , for all t ≤ −t∗. (3.3)

(Note that while each Oj
ν is a neighbourhood of the equilibrium y∗j , it is not necessarily the

case that Oj
ν → y∗j as ν → 0.)

Proof: Both (3.2) and (3.3) will be proved by contradiction. We present a complete proof
of (3.2) and since the proof of (3.3) is similar we present an abridged version of the proof
highlighting the main differences.

Proof of (3.2): If (3.2) does not hold then there exists a sequence ηk → 0 and corresponding
bounded solutions ξηk

(·) of (2.3) (with η = ηk) such that

for any t ∈ R, there is a τ > t such that ξηk
(τ) /∈ Oν(E) := ∪p

j=1Oj
ν . (3.4)

We deduce a contradiction using Lemma 3.1 and the fact that (2.1) is gradient. Before giving
all the details, we briefly summarize the argument.

The uniform convergence of Tη(t, s) to T0(t − s) (via Lemma 3.1) together with the fact
that every solution in A0 must tend to a single point of E guarantees that for some tk we
must have ξηk

(tk) ∈ Oj
ν . While our hypothesis means that ξηk

(·) must leave Oj
ν , we can

repeat the above argument to deduce that ξηk
(·) must then enter Ol

ν for some l. By showing
that V (y∗l ) < V (y∗j ) we deduce a contradiction, since this process must terminate.

Now we formalize this procedure. Choose ν and ν ′ with ν0 > ν ′ > ν > 0. The first stage
of the argument is to move every solution into Oj

ν for some 1 ≤ j ≤ n. Using our hypothesis,
there exists a sequence t1k such that ξηk

(t1k) /∈ Oν(E). It follows from Lemma 3.1 that there
is a subsequence, which we again denote by ξηk

, such that

lim
k→∞

ξηk
(t + t1k) → y1(t)

uniformly for t in compact subsets of R, where y1(·) is a solution of (2.1). Since y1(·) must
enter O ν

2
(E) there is a T > 0 such that ξηk

(t1k + T ) ∈ Oj
ν for some 1 ≤ j ≤ n. We therefore

set tk = t1k + T and begin our argument with a sequence of solutions ξηk
(t) of (2.3) (with

η = ηk) and times tk such that
ξηk

(tk) ∈ Oj
ν . (3.5)

However, since by assumption ξηk
(·) does not stay in Oj

ν , it must leave Oj
ν , and so there

is a sequence t2k > tk such that

ξηk
(t2k) ∈ Oj

ν′\Oj
ν ; (3.6)

that is,
V (ξηk

(t2k)) ∈ (nj − ν ′, nj − ν] ∪ [nj + ν, nj + ν ′).

We now embark on a case-by-case analysis. In each case we show that we can restart
from (3.5) with j replaced by l for some l < j. Given that there are only a finite number of
distinct values of the Liapunov function at the equilibria, this produces a contradiction.

Case (a). For infinitely many k we have V (ξηk
(t2k)) ≤ nj − ν.

We can use Lemma 3.1 to obtain a subsequence, which we again denote by ξηk
(·), such

that
lim
k→∞

ξηk
(t + t2k) → y2(t)

uniformly for t in compact subsets of R. It follows that V (y2(0)) ≤ nj − ν, and since V (y(·))
is non-increasing and y2(·) must enter Oν(E) as t increases, it follows using the uniform
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convergence of Tη to T0 that there is a fixed T2 > 0 such that ξηk
(t2k + T2) ∈ O`

ν for some
` < j.

So we can restart from (3.5) but with Oj
ν replaced by O`

ν for some ` < j.
Case (b). There exists a kν ∈ N such that for all k ≥ kν,

nj + ν ≤ V (ξηk
(t2k)) < nj + ν ′.

Note first that we may assume that

V (ξηk
(t)) > nj − ν ∀ t ≥ t2k, k ∈ N (3.7)

for otherwise, we must have

V (ξηk
(t3k)) ≤ nj − ν

for some t3k > t2k and for infinitely many values k. In this case would can return to case (a),
but with t2k replaced by t3k.

Now set

B = {ξηk
(θ) : V (ξηk

(θ)) ≤ nj + ν ′, for some θ ∈ R and some k ∈ N}.
Using Lemma 3.2, we can find t∗ν > 0 such that

sup{V (T0(t)B)} < nj +
ν

2
∀ t ≥ t∗ν . (3.8)

Now use the continuity of V and the uniform convergence of Tη to T0 to choose kν suffi-
ciently large that

sup{V (Tηk
(t + s, t)B)} < nj + ν ∀ s ∈ [t∗ν , 2t

∗
ν ] ∀ k ≥ kν . (3.9)

It follows by induction that if ξηk
(t2k + t) ∈ B then ξηk

(t2k + t + τ) ∈ B for all τ ≥ t∗ν , and
hence that for all k ≥ kν we must have

V (ξηk
(t2k + t)) < nj + ν ∀ t ≥ t∗ν . (3.10)

Now, (3.10) together with (3.7) contradicts our assumption in (3.4).
It follows, therefore, that case (b) is impossible and that case (a) must always occur. But

case (a) can only occur a finite number of times, and so we obtain a contradiction and (3.2)
must hold.
Proof of (3.3): The argument to show that every bounded global solution must end back-
wards in Oν(E) is similar to the forwards case. We start from the assumption that there
exists a sequence ηk → 0 and corresponding bounded solutions ξηk

(·) of (2.3) (with η = ηk)
such that

for any t ∈ R, there is a τ < t such that ξηk
(τ) /∈ Oν(E). (3.11)

Case (a). For infinitely many k we have V (ξηk
(t2k)) ≥ nj + ν is almost identical, except for

the obvious changes and its proof will be omitted.
Case (b). There exists a kν such that for all k ≥ kν,

nj − ν ′ < V (ξηk
(t2k)) < nj − ν.

We may assume that

V (ξηk
(t)) ≤ nj + ν for all t ≤ t2k, k ∈ N, (3.12)
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for otherwise, using the continuity of V , we must have

V (ξηk
(t3k)) ≥ nj + ν

for some t3k < t2k and for infinitely many values of k. Hence, we can return to case (a) with t2k
replaced by t3k. Since case (a) can only be repeated a finite number of times, we eventually
find ourselves in case (b) with (3.12) valid.

In this situation we choose ν ′′ with ν0 > ν ′′ > ν ′ > ν and set

B = {ξηk
(θ) : V (ξηk

(θ)) ≤ nj − ν, for some θ ∈ R and some k ∈ N}.
Using Lemma 3.2, we can find t∗ν > 0 such that

sup{V (T0(t)B)} < nj − ν ′′ ∀ t ≥ t∗ν .

Now use the continuity of V and the uniform convergence of Tη to T0 to choose kν suffi-
ciently large that

sup{V (Tηk
(t, t− s)B)} < nj − ν ′ ∀ s ∈ [t∗ν , 2t

∗
ν ] ∀ k ≥ kν . (3.13)

It follows by induction that if ξηk
(t2k − t) ∈ B then ξηk

(t2k − t + τ) ∈ B for all τ ≥ t∗ν .
We now claim that for all k ≥ kν we must have

V (ξηk
(t2k − t)) > nj − ν ∀ t ≥ t∗ν .

Indeed, suppose not. Then it follows that for some t ≥ t∗ν that

V (ξηk
(t2k − t)) ≤ nj − ν,

i.e. ξηk
(t2k − t) ∈ B. But then (3.13) shows that V (ξηk

(t2k)) < nj − ν ′, a contradiction.
It follows that, there exist kν and t∗ν such that

nj − ν < V (ξηk
(t2k − t)) < nj + ν ∀ k ≥ kν , t ≥ t∗ν .

As before, this contradicts our initial assumption (3.11), and the argument is concluded as
before.

We are now ready to prove the main result of this paper.

Proof of Theorem 2.11: The proof of (1) follows from (2) and the proof of (3) follows in
the same way as the forwards argument in (2).

To prove (2), let ε > 0 and η0 > 0 be such that in Bj
ε = B(y∗j , ε) there is a unique

global hyperbolic solution ξ∗j,η with the stable and unstable manifolds given as graphs for all

0 ≤ η ≤ η0. Hence, if a global solution ξη(·) is such that ξη(t) ∈ Bj
ε for all t ≥ tε (or for

all t ≤ −tε) for some tε > 0, then ξη(t) ∈ W s
j (ξη(·)) (or ξη(t) ∈ W u

j (ξη(·))). Hence, to prove
(2.22), it is enough to show that there is a η0 > 0 such that every globally defined bounded
solution of (2.3) ends forwards and backwards in Bε.

Suppose that ηk
k→∞−→ 0 and that ξηk

(·) does not end forwards or backwards in Bε = ∪n
j=1Bj

ε .
Taking a subsequence if necessary, we may assume that given ν ≤ ν0 there exists kν such that
ξηk

ends forward (respectively backward) in Oj
ν for some fixed j with 1 ≤ j ≤ p whenever

k ≥ kν . Hence we have a sequence tk such that ‖ξηk
(tk)−y∗i ‖Z ≥ ε for all y∗i with V (y∗i ) = nj.

Consequently, there is a subsequence (which we again denote by ξηk
) such that

lim
k→∞

ξηk
(t + tk) → y(t)

uniformly for t in compact subsets of R, where y(·) is a solution of (2.1). It is clear that
V (y(0)) = nj and since y(0) is not an equilibrium of (2.1) and V is non-increasing it follows
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(using the convergence of Tη to T0) that for a suitable choice of T > 0 (respectively T < 0)
we must have V (ξηk

(tk + T )) /∈ (nj − ν0, nj + ν0) which leads to a contradiction.

Finally we prove (2.21). We will use the following two properties of the Hausdorff dimen-
sion (see Falconer [8], for example): it is non-increasing under Lipschitz mappings,

Σ : Z → Z with ‖Σ(z1)−Σ(z2)‖Z ≤ L‖z1 − z2‖Z ⇒ dimH(Σ(X)) ≤ dimH(X),

and it is stable under countably infinite unions,

dimH

( ∞⋃
j=1

Xj

)
= sup

1≤j≤∞
dimH(Xj). (3.14)

First, observe that dH(W u
loc(ξ

∗
i,η)(τ)) = rank(Qi

η(τ)) = rank(Qi), since sufficiently close to

ξ∗i,η the unstable manifold is given as a Lipschitz graph over Qi
η(τ)Z and from the continuity

of the projections we have that rank(Qi
η(τ)) = rank(Qi). Note that

W u
η (ξ∗i,η)(t) =

∞⋃
n=0

Tη(t, t− n)W u
loc,η(t− n).

Since each Tη(t, τ) : Z → Z is Lipschitz it follows that

dimH(Tη(t, t− n)W u
loc(ξ

∗
i,η)(t− n)) ≤ dimH(W u

loc(ξ
∗
i,η)(t− n)),

and hence, using (3.14), that dimH(W u(ξ∗i,η)) = rank(Qi). The equality in (2.21) then follows
using (3.14) once again.

4. Asymptotically autonomous problems

As in Section 1 we consider a Banach space Z and the semilinear problem

ẏ = By + f(t, y)

y(τ) = y0,
(4.1)

where B : D(B) ⊂ Z → Z is the generator of a C0-semigroup of bounded linear operators
and f(t, ·) is a differentiable function that is Lipschitz continuous in bounded subsets of Z
with Lipschitz constant independent of t. If we denote by t 7→ T (t, τ)y0 the solution for (2.3),
then {T (t, τ) : t ≥ τ ∈ R} defines a nonlinear process. We will assume that the problem
(4.1) has a pullback attractor {A(t) : t ∈ R}.

4.1. Asymptotically Autonomous Problems at −∞. Assume that

lim
t→−∞

sup
z∈B(0,r)

{‖f(t, z)− f0(z)‖Z + ‖fy(t, z)− f ′0(z)‖L(Z)} = 0, for each r > 0, (4.2)

and that (2.1) has an autonomous attractor A0.
Suppose that (2.7) is gradient and has a finite number of solutions, all of them hyperbolic:

then A0 is given by (2.10) (Theorem 2.5). We now prove that the non-autonomous system
possesses global solutions that are backwards asymptotic to the equilibria of the limiting
autonomous problem.
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Proposition 4.1. Assume that (4.2) holds and that all solutions of (2.7) are hyperbolic.
Then, there are solutions ξ∗i− : R→ Z, 1 ≤ i− ≤ n−, such that

lim
t→−∞

max
1≤i−≤n−

‖ξ∗i−(t)− y∗i−‖Z = 0. (4.3)

Furthermore, there is a τ ∈ R such that

ẏ = Ai−y + Bi−(t)y (4.4)

has an exponential dichotomy in (−∞, τ ], where Ai− = B+f ′0(y
∗
i−) and Bi−(t) = fy(t, ξ

∗
i−(t))−

f ′0(y
∗
i−) .

Proof: The proof of this result reduces to the proof of (2) in Proposition 2.10, cutting the
nonlinearities f and f0 around y∗i− in such a way that the fixed point argument works. To

be more specific, we fix 1 ≤ i− ≤ n− and consider the change of variables z = y − y∗i− in
(4.1). In this new variable (4.1) becomes

ż = Ai−z + g̃i−(t, z) (4.5)

where g̃i−(t, z) = f(t, z + y∗i−) − f0(y
∗
i−) − f ′0(y

∗
i−)z. Cut g̃i− outside a small neighbourhood

of z = 0 and suitably large negative times t ≤ τ in such a way that it becomes globally
Lipschitz and bounded with very small Lipschitz constant and bound. Denote by gi− the
new nonlinearity and consider, for t ≤ τ,

z(t) = eAi− (t−τ)z(τ) +

∫ t

τ

eAi− (t−s)gi−(s, z(s)) ds.

Hence

Qi−z(t) =

∫ t

∞
eAi− (t−s)Qgi−(s, z(s)) ds

and

(I −Qi−)z(t) =

∫ t

−∞
eAi− (t−s)(I −Q)gi−(s, z(s)) ds.

Consequently, there exists in a small neighbourhood of z = 0 a globally defined solution of
(4.1) if and only if

Ti−(z)(t) =

∫ t

∞
eAi− (t−s)Qi−gi−(s, z(s)) ds +

∫ t

−∞
eAi− (t−s)(I −Qi−)gi−(s, z(s)) ds

has a unique fixed point in the set

{z : R→ Z : sup
t∈R

‖z(t)‖Z ≤ ε}

for ε sufficiently small. This follows assuming that, for z, z1, z2 ∈ B(0, ε), ‖gi−(t, z)‖Z ≤ δ and
that ‖gi−(t, z1)− gi−(t, z2)‖Z ≤ δ‖z1− z2‖Z , with δ > 0 sufficiently small. As a consequence
of this it follows that ξ∗i−(·) is uniformly close to y∗i− . This solution is hyperbolic on R.
Hence, ξ∗i− is a hyperbolic solution of (4.5) for all t large and negative. Hence, y∗i− + ξ∗i− is a
hyperbolic solution of (4.1) in (−∞, τ ] with −τ > 0 suitably large.

This also ensures that (1) below holds, and we can show that all globally defined bounded
solutions are backwards asymptotic to one of the solutions from Proposition 4.1 (themselves
asymptotic to the equilibria of the limiting autonomous system).
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Theorem 4.2. Let f : R×Z → Z be a differentiable function that satisfies (4.2). Consider
the initial value problem (4.1). Assume that (2.1) is gradient and that all solutions of (2.7)
are hyperbolic equilibrium solutions for (2.1).

(1) If we write

W u(ξ∗i )(τ) = { (τ, ζ) ∈ R×Z : there is a backwards solution z(t, τ, ζ)

of (4.1)satisfying z(τ, τ, ζ) = ζ and such that lim
t→−∞

‖z(t, τ, ζ)− ξ∗i (t)‖Z = 0},
then the attractor {A(τ) : τ ∈ R} of (4.1) is given by

A(τ) = ∪n
i=1W

u(ξ∗i )(τ).

(2) For each globally defined bounded solution ξ(·) of (4.1) there is an i− with 1 ≤ i− ≤ n−

such that
lim

t→−∞
‖ξ(t)− ξ∗i−(t)‖Z = 0. (4.6)

Proof: The proof of (1) is a consequence of Proposition 4.1 and Theorem 2.11 if we analyse
(4.1) by considering the small non-autonomous perturbations of (2.1) obtained by replacing
f(t, y) by

fν(t, y) =

{
f(t, y), if t ≤ −ν
f(ν, y), if t > −ν.

¿From Theorem 2.11, for suitably large ν, there exists a pullback attractor {Aν(s) : s ∈ R}
for

ẏ = By + fν(t, y)

y(τ) = y0
(4.7)

given by Aν(s) = ∪n
i=1W

u
ν (ξ∗i,ν)(s). To obtain the pullback attractor for (4.1) we first note

that (4.7) and (4.1) coincide for t ≤ τ ≤ −ν. Hence A(t) = Aν(t) for t ≤ −ν. To recover
A(t) for t ≥ −ν we only have take advantage of the invariance to see that A(t) = T (t, τ)A(ν),
for all τ ≤ −ν ≤ t.

Now, (2) is also essentially proved since, by (4.3), every global solution approaches one of
the equilibria y∗i− as t → −∞, so that, in particular, (2) holds.

It is clear from the above proof that in order to characterize the pullback attractor {A(t) :
t ≥ 0} it is not necessary that A(t) remains bounded as t →∞. This accounts for many cases
in the existing literature where the pullback attractors do not remain bounded as t → ∞
(see [12, 22]) (cf. comments after Definition 1.2).

4.2. Time-dependent forwards attractors. Before considering problems that are asymp-
totically autonomous as t → +∞ we consider in general the problem of defining forwards
attractors in non-autonomous problems.

It is relatively easy to give a definition of an attractor for individual solutions (‘the point
attractor’) in the non-autonomous setting:

Definition 4.3. For any fixed t0 ∈ R, a family {A(t) : t ≥ t0} is the forwards point attractor
of a process S(·, ·) for t ≥ t0 if

• A(t) is non-empty and compact for each t ≥ t0;
• A(t) is invariant, in the sense that

S(t, s)A(s) = A(t) for all t ≥ s ≥ t0;
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• A(t) attracts each individual solution,

dist(S(t, s)z0, A(t)) → 0 as t →∞
for all s ∈ R, z0 ∈ Z; and

• A(t) is the minimal set with this property, in that if C(t) is another such family, we
have A(t) ⊆ C(t) for all t ≥ t0.

A somewhat simpler definition would have A(t) defined for all t ∈ R, but this does not
seem appropriate for the asymptotically autonomous problems that we are considering here.
Allowing for attractors that are only defined on semi-infinite intervals makes them more
widely applicable, and we can use the minimality to show that even given this freedom the
forwards attractor is essentially unique.

Indeed, suppose that t1 > t0, and {A0(t) : t ≥ t0} is a point attractor for t ≥ t0 and
{A1(t) : t ≥ t1} is a point attractor for t ≥ t1, then due to the minimality property it is
immediate that we have

A1(t) ⊆ A0(t) for all t ≥ t1,

while the reverse inclusion follows if we define {Ã1(t) : t ≥ t0} by setting Ã1(t) = A1(t) for
all t ≥ t1 and

Ã1(t) = {z ∈ Z : S(t1, t)z ∈ A1(t1)}, for t ∈ [t0, t1).

That Ã1(·) so defined is compact and invariant follows since A1(t) ⊆ A0(t), and so solutions
starting in A1(t1) can be extended back to t = t0. It follows that

A0(t) = A1(t) for all t ≥ t1,

showing that ‘asymptotic behaviour’ of the point attractor is uniquely specified by this
definition.

Identifying the correct concept of a forwards global attractor (i.e. a forwards attractor of
bounded sets) for non-autonomous problems is still something that requires further reflection.
One would certainly desire that any definition of such a global attractor would include all
globally defined bounded solutions, and as discussed in the introduction this is sufficient to
define the global attractor in autonomous problems, and gives rise to the pullback attractor
in non-autonomous problems. So the pullback attractor should certainly be a subset of the
‘global attractor’ in a non-autonomous problem.

However, to see that the pullback attractor will not in general describe all the interesting
asymptotic behaviour of a truly non-autonomous problem, consider the equation

ẋ = λ(t)x− x3 (4.8)

with λ : R → R being a smooth function with the property that 0 ≤ λ(t) ≤ 1, λ(t) = 0 for
all t ≤ 0 and λ(t) = 1 for all t ≥ 1.

While the pullback attractor for (4.8) is A(t) = {0} for all t ∈ R, for t ≥ 1 the equation is

ẋ = x− x3,

which has three stationary solutions x0 = 0, x− = −1 and x+ = 1 with the equilibrium
x0 = 0 being unstable. If we look at the solution with x(1) = 1 and solve the equation for
t ≤ 1 we see that x(0, 1, 1) = x1 > 0 and therefore

x(t, 1, 1) =
1√

2t + x2
1

for − x2
1

2
< t ≤ 0,
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which blows up as t → −x2
1/2. We also see that the set {−1, 0, 1} attracts points of R and

that [−1, 1] attracts bounded subsets of R forwards in time.
In this case it is natural to define A+(t) = [−1, 1] for each t > 1. This set has the property

that T (t, τ)A+(τ) = A+(t) for all t ≥ τ ≥ 1 and one can easily see that dist(T (t, τ)B, A+(t)) →
0 as t →∞. We now give a general definition along these lines:

Definition 4.4. We say that a family {A+(t) ⊂ Z : t ≥ t0} is a time-dependent forwards
attractor for (4.1) if:

• A+(t) is compact for each t ≥ t0,
• {A+(t) : t ≥ τ} is invariant in the sense that T (t, τ)A+(τ) = A+(t) for all t ≥ τ ≥ t0,

and
• dist(T (t, τ)B, A+(t)) → 0 as t →∞ for each bounded set B ⊂ Z and for any τ ≥ t0.

However, it is important to note that even in our simple example, the ‘natural’ choice
A+(t) = [−1, 1] for t > 1 is not the only possibility that satisfies our definition. Indeed, if K
is any compact set whose interior contains {0} and t0 ∈ R is fixed then it is easy to see that

A+(t) = T (t, t0)K

has the properties required by our definition. This implies, in particular, that we cannot
impose uniqueness by requiring either maximality or minimality of the forwards attractor.

Whether there can be a definitive notion of a forwards attractor for bounded sets is an
outstanding open problem. Equally important would be to determine conditions under which
the pullback attractor also attracts solutions forwards in time (for examples where this does
occur, see [15] and [17]).

In the next section we discuss forwards attractors in the context of asymptotically au-
tonomous problems. In this case we can identify the forwards point attractor, and also find
a candidate set that satisfies our definition of a forwards global attractor.

4.3. Asymptotically Autonomous Problems at +∞.
Assume that

lim
t→+∞

sup
z∈B(0,r)

{‖f(t, z)− f0(z)‖Z + ‖fy(t, z)− f ′0(z)‖L(Z)} = 0, for each r > 0, (4.9)

and that (2.1) has an autonomous attractor A0. We note that the nonlinearity f0 in this
subsection may be different from that in the previous subsection and consequently the at-
tractor A0 in this subsection may be different from that in the previous one. We assume in
addition (and crucially) that is gradient, and that (2.7) has a finite number of solutions, all
of them hyperbolic: it follows from Theorem 2.5 that A0 is given by (2.10).

Assume that (4.1) gives rises to a nonlinear process {T (t, τ) : t ≥ τ ∈ R} for which
there is an absorbing ball B(0, r0). Consider fk(t, z) the function which coincides with f in
[k,∞)×Z and which is equal to f(k, z) for all t < k and z ∈ Z. Then

lim
k→+∞

sup
t∈R

sup
z∈B(0,r0)

{‖fk(t, z)− f0(z)‖Z + ‖(fk)y(t, z)− f ′0(z)‖L(Z)} = 0. (4.10)

It has been proved in [5] that the family of attractors for

ẏ = By + fk(t, y)

y(τ) = y0
(4.11)
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behaves upper and lower semicontinuously as k → ∞ with the limit attractor being the
attractor for (2.1), i.e.

sup
t∈R

dist(Ak(t), A0) → 0 as k →∞,

where dist(A,B) is the symmetric Hausdorff distance defined in Section 1.4.
If we denote by {Ak(t) : t ∈ R} the pullback attractor for (4.11) then

Aj(t) = Ak(t), for all j > k and t ≤ k.

Let k0 be such that for k ≥ k0 the pullback attractor of (4.11) coincides with the union of
the unstable manifolds of all those {ξ∗i,k} with supt∈R ‖ξ∗i,k(t)− y∗i ‖Z → 0 as k →∞. Define
A+(t) = Ak0(t) for t ≥ k0. Note that A+(t) is in fact the forwards image of the global
attractor of the autonomous system ẏ = By + f(k0, y) under the non-autonomous process
T (·, ·).

If we define T∞(t, τ) = T0(t− τ), it follows from the fact that

sup
t≥τ

‖Tk(t, τ)B − T∞(t, τ)B‖Z → 0, as k →∞

and from the lower semicontinuity of attractors that, given ε > 0 there is a Tε > 0 such that,
for all t ≥ Tε, T∞(t, τ)B ⊂ Oε(A0) and an N ∈ N such that Tk(t, τ)B ⊂ Oε(T∞(t, τ)B) ⊂
O2ε(A0) ⊂ O3ε(A

+(t)) for all t ≥ k ≥ N . This proves the following result:

Theorem 4.5. There is a t0 ∈ R and a time dependent forwards attractor {A+(t) : t ≥ t0}
for (4.1).

We now show that there is a finite number of hyperbolic solutions that attract all other
solutions as t →∞. First we show that there are hyperbolic solutions asymptotic (as t →∞)
to each of the equilibria of (2.1)

Proposition 4.6. Assume that (4.9) holds. Then, there are solutions ξ∗j+ : R→ Z, 1 ≤ j ≤
n+, such that

lim
t→+∞

max
1≤j+≤n+

‖ξ∗j+(t)− y∗j+‖Z = 0. (4.12)

Furthermore, there is a t0 ∈ R such that

ẏ = Aj+y + Bj+(t)y (4.13)

has an exponential dichotomy in [t0, +∞), where Aj+ = B+f ′0(y
∗
j+

) and Bj+(t) = fy(t, ξ
∗
j+(t))−

f ′0(y
∗
j+) .

Proof: Again, the proof of this result reduces to the proof of (2) in Proposition 2.10, cutting
the nonlinearities f in the same way as before to make (4.10) hold. To be more specific, we
fix 1 ≤ j+ ≤ n+ and consider the change variables z = y− y∗j+ in (4.1). In this new variable
(4.1) becomes

ż = Aj+z + g̃j+(t, z) (4.14)

where g̃j+(t, z) = f(t, z + y∗j+)− f0(y
∗
j+)− f ′0(y

∗
j+)z. Cut g̃j+ outside a small neighbourhood

of z = 0 and sufficiently large times in such a way that it becomes globally Lipschitz and
bounded with very small Lipschitz constant and bound. Let gj+ be the new nonlinearity and
proceed exactly as in the previous section (asymptotically autonomous in −∞) to obtain the
existence of a global hyperbolic solution ξ∗j+(·) for the modified equation which is uniformly
close to y∗j+. Now, ξ∗j+ is a solution of (4.14) for all t large enough. Hence, y∗j+ + ξ∗j+ is a
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solution of (4.1) in [τ,∞) with τ > 0 suitably large. This solution is hyperbolic on R. Hence,
ξ∗j+ is a hyperbolic solution of (4.5) for all t large enough. Hence, y∗j+ + ξ∗j+ is a hyperbolic
solution of (4.1) in [τ, +∞) with τ > 0 suitably large.

Ball and Peletier [4] (see also [3]) prove that, further to (4.12), given each (τ, y0) ∈ R×Z,
there exists a j+ with 1 ≤ j+ ≤ n such that

lim
t→∞

‖T (t, τ)y0 − y∗j+‖Z = 0. (4.15)

For us, this is a corollary of the following:

Corollary 4.7. Let f : R×Z → Z be a differentiable function which satisfies (4.9). Consider
the initial value problem (4.1). Assume that (2.1) is gradient and has a global attractor A0,
and that all solutions of (2.7) are hyperbolic equilibrium solutions for (2.1).

Then, for each (τ, y0) ∈ R×Z, there exists a j+ with 1 ≤ j+ ≤ n such that

lim
t→∞

‖T (t, τ)y0 − ξ∗j+(t)‖Z = 0. (4.16)

In particular, for each globally defined bounded solution ξ(·) of (4.1) there is a j+ with
1 ≤ j+ ≤ n such that

lim
t→∞

‖ξ(t)− ξ∗j+(t)‖Z = 0. (4.17)

Note that results on asymptotically autonomous systems in the literature usually show
that the forwards asymptotic behaviour of the equations tends to limiting structures within
the limit attractor, for instance equilibria of the limit equations, which, in general, are
not solutions of the non-autonomous system. (Although there are non-gradient examples
showing that the limiting behaviour can differ from that of the limit system, e.g. [20, 25].)
Corollary 4.7 goes a little further, since it describes the forwards long time dynamics by
means of hyperbolic solutions of the non-autonomous equations. Observe that we also get
(4.15) from (4.16) and (4.12).

5. Examples

In this section we give three examples to illustrate the wide applicability of our results: an
autonomous damped wave equation (a striking example of an autonomous system in which
the attractor is still gradient-like even though the underlying system is not gradient), an
asymptotically autonomous parabolic equation that illustrates some of the peculiarities of
non-autonomous systems, and a simple non-autonomous scalar ordinary differential equation
whose pullback attractor we can describe very fully.

We hope that our results will further the understanding of non-autonomous attractors in
an even wider array of examples.

5.1. A gradient-like attractor for a damped wave equation. Let Ω be a bounded
smooth domain in R3. For η ∈ [0, 1], assume that g : R → R is a twice differentiable
function that is bounded with bounded derivatives up to second order.

For a ∈ C(Ω̄,R3) and η ≥ 0, consider the damped hyperbolic equation

utt + βut −∆u = η a(x) · ∇u + g(u) in Ω (5.1)

with the boundary condition
u = 0 in ∂Ω. (5.2)
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The initial data for (5.1), (5.2) will be taken in the space Z = H1
0 (Ω) × L2(Ω), where the

norm in H1
0 (Ω) is defined by ‖ϕ‖H1

0 (Ω) = ‖∇ϕ‖L2(Ω), ϕ ∈ H1
0 (Ω).

It is easy to (see [1, 2]) that (5.1), (5.2) defines a nonlinear semigroup {Tη(t), t ≥ 0} on
Z where Tη(t)(ϕ, ψ) = (u(t), ut(t)) with (u(t), ut(t)) being the solution of (5.1), (5.2) such
that u(0) = ϕ and ut(0) = ψ.

If we let A : D(A) ⊂ L2(Ω) → L2(Ω) be −∆ with homogeneous Dirichlet boundary
conditions, then D(A) = H2(Ω)∩H1

0 (Ω). We consider (5.1), (5.2) as an abstract evolutionary
equation in Z:

ż = Cz + fη(z),

z(0) = z0 ∈ Z (5.3)

where

z =

(
z1

z2

)
∈ Z,

C =

(
0 I
−A −β

)
,

and

fη(z)(x) =

(
0

η a(x) · ∇z1(x) + g(z1(x))

)
, for x ∈ Ω.

Under these assumptions fη is continuously differentiable (see [1]), and it is not difficult to
see that (2.16) is satisfied.

Using the energy V : Z → R defined by

V (z) =
1

2

∫

Ω

|∇z1|2 + δ

∫

Ω

z1z2 +
1

2

∫

Ω

z2
2 +

∫

Ω

G(z1),

where δ > 0 is chosen suitably and

G(z1) =

∫ z1

0

g(s) ds,

it follows in a similar way as in [1] that (5.3) has a global attractor in Z.
We note that the equilibrium points of (5.1) with η = 0 are of the form z∗0 = (u∗0, 0) where

u∗0 is a solution of

Au = g(u). (5.4)

Furthermore, if u∗0 is a solution of (5.4) such that 0 /∈ σ(−∆ − g ′(u∗0)I) (which is true
generically) then (u∗0, 0) is a hyperbolic equilibrium point of (5.1) with η = 0.

As a consequence of Theorem 2.11 the following result holds:

Theorem 5.1. Assume that g is twice continuously differentiable with bounded derivatives
up to second order and that 0 /∈ σ(A − g ′(u∗0)I) whenever u∗0 is a solution of (5.4). Then,
the nonlinear semigroup associated to (5.3) has a global attractor Aη, η ∈ [0, 1], and from
the results in [5] this family of attractors is upper and lower semicontinuous at η = 0.
Additionally, as a consequence of Theorem 2.11, for suitably small η > 0, Aη has a gradient-
like structure, i.e. it is exactly the union of the unstable manifolds of hyperbolic equilibria.
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Proof. The only thing we need to prove is that in each small neighbourhood of a hyperbolic
equilibrium point z∗ = (u∗, 0) of (5.1) with η = 0 there is a unique equilibrium point of (5.1)
with η > 0 suitably small. This will ensure that the global hyperbolic solutions for (5.1) are
equilibrium solutions and the result then follows from Theorem 2.11.

We want to prove that in a neighbourhood of the solution u∗ of (5.4) there is a unique
solution u∗η of

Au = η a(x) · ∇u + g(u). (5.5)

This will follow from proving that

Φη(v) = (A− g′(u∗))−1[g(v + u∗)− g(u∗)− g′(u∗)v + η a(x) · ∇(v + u∗)]

has a unique fixed point in a small H1
0 (Ω) neighbourhood of u∗0 and noting that if v∗η is a

fixed point of Φη then u∗η = v∗η + u∗ is a solution of (5.5).

To prove that Φη has a unique fixed point in a closed ball B̄ε(0) of H1
0 (Ω) with ε sufficiently

small, note that

• (A− g′(u∗))−1 ∈ L(L2(Ω), H1
0 (Ω)),

• ‖g(v + u∗)− g(u∗)− g′(u∗)v‖L2(Ω) ≤ C‖v‖2
L4(Ω),

• η‖a(x) · ∇(v + u∗)‖L2(Ω) ≤ ηC(‖u∗‖H1
0 (Ω) + ε)), ∀ v ∈ B̄ε(0)

and from the fact that L4(Ω) ⊂ H1
0 (Ω) (Ω ⊂ R3) we can choose ε > 0 and η > 0 sufficiently

small that

‖(A− g′(u∗))−1[g(v + u∗)− g(u∗)− g′(u∗)v + η a(x) · ∇(v + u∗)]‖H1
0 (Ω) ≤ ε, ∀v ∈ B̄ε(0).

A similar reasoning proves that Φη is a contraction in B̄ε and the result follows.

5.2. An asymptotically autonomous parabolic problem. Let λ ∈ [0,∞) be a parame-
ter and consider the problem

u′′(x) + λ(u− u3) = 0, x ∈ (0, π),
u(0) = u(π) = 0.

(5.6)

It is well known that if λ ∈ (n2, (n+1)2), n ≥ 0, then (5.6) has exactly 2n+1 equilibrium
solutions, namely E = {u0, u

±
1 , · · · u±n }, all of them hyperbolic. If u is a continuous function,

denote by `(u) the number of sign changes of u. For each 1 ≤ i ≤ n, u±i changes signs i− 1
times. The corresponding parabolic initial boundary value problem

ut(t, x) = uxx(t, x) + λ(u(t, x)− u(t, x)3), x ∈ (0, π),
u(0, · ) = u0(· ) ∈ H1

0 (Ω),
u(t, 0) = u(t, π) = 0,

(5.7)

has a global attractor Aλ which is given by

Aλ = W u(u0) ∪
(∪n

i=1W
u(u+

i )
) ∪ (∪n

i=1W
u(u−i )

)
.

We also know that any solution ξ(·) : R → H1
0 (0, π) must satisfy limt→−∞ ξ(t) = u∗ and

limt→+∞ ξ(t) = v∗ with `(u∗) > `(v∗).
Let λk ∈ (n2

k, (nk + 1)2), k = 1, 2, with n1 < n2 and let h : R → R be a smooth function
with the property that 0 ≤ h(t) ≤ 1, h(t) = 0 for all t ≤ 0 and h(t) = 1 for all t ≥ 1.
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Consider the problem

ut(t, x) = uxx(t, x) + (h(t)λ2 + (1− h(t))λ1)(u(t, x)− u(t, x)3), x ∈ (0, π),
u(0, · ) = u0(· ) ∈ H1

0 (0, π),
u(0) = u(π) = 0.

(5.8)

Our results in Section 4.1 (Section 4.3) ensure that any globally defined solution must con-
verge as t → −∞ to an equilibrium point of (5.7) with λ = λ1, and as t → +∞ to an
equilibrium point of (5.7) with λ = λ2.

However, as a consequence of the results in [18], if ξ : R → H1
0 (0, π) is a global bounded

solution of (5.8) then t 7→ `(ξ(t)) is decreasing. Combining these results it follows that any
solution that converges to an equilibrium point u∗ of (5.7) with λ = λ2 and l(u∗) > n1 − 1
cannot be a solution in the pullback attractor associated to (5.8). It follows that such
solutions either do not exist globally or must blow up backwards in a finite time.

5.3. An ordinary differential equation. Let λ : R → R be a smooth function with the
property that 0 ≤ λ(t) ≤ 1, λ(t) = 0 for all t ≤ 0 and λ(t) = 1 for all t ≥ 1. Consider the
non-autonomous scalar equation

u̇ = λ(t)(u− u3) + (1− λ(t))(u(u2 − 1)(4− u2)). (5.9)

If we set u∗j = j− 2 of (5.9), j = 0, 1, 2, 3, 4, then the pullback attractor {A(t) : t ∈ R} for
(5.9) is given by

A(t) = ∪4
j=0W

u(u∗j)(t), t ∈ R.

The interval [−1, 1] is a forwards attractor for (5.9), and the set {−1, 0, 1} is a point attractor
for (5.9).

Note that the solutions u∗j are constant for j = 1, 2, 3 and A(t) = [u0(t), u4(t)] is the
pullback attractor and a forwards attractor for (5.9). Unfortunately, such simple geometry
is not present in higher dimensions. Many examples of this kind can be produced with dif-
ferent asymptotically autonomous problems at −∞ and +∞, each having its own particular
structure.

6. Conclusion

Given an infinite-dimensional autonomous gradient system, we have shown here that re-
sults on the continuity of local stable and unstable manifolds of hyperbolic equilibria under
non-autonomous perturbations have significant consequences for the structure of the attrac-
tors in these systems.

By showing that all bounded global solutions are backwards asymptotic to a hyperbolic
global solution, we have extended the characterization of attractors given in Langa et al. [16]
to the more significant infinite-dimensional case. In addition we have shown that all solutions
are also forwards asymptotic to a hyperbolic global solution.

Not only is the structure of the attractor preserved, but its Hausdorff dimension is un-
changed, and equal to the maximum dimension of the local unstable manifolds near the
equilibria of the autonomous equation. It is not clear – even in the autonomous case –
whether a similar result holds for the box-counting (‘fractal’) dimension.

We note that if the results on perturbations of stable and unstable manifolds in [5] can be
generalized to treat singular perturbations, the results in the present paper will hold with the
same proofs (maintaining, of course, the assumption that the limiting system is gradient).
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Such a generalization is not straightforward, however, since this requires generalization of
existing results on the roughness of exponential dichotomies.

It is natural to conjecture that the connections between equilibria are also preserved under
perturbation: i.e. if there exists a solution y(t) of (2.1) such that

lim
t→−∞

y(t) = y∗j and lim
t→+∞

y(t) = y∗k

then for every η sufficiently small there exists a global solution of (2.3) such that

lim
t→−∞

‖y(t)− ξ∗j,η(t)‖ = 0 and lim
t→+∞

‖y(t)− ξ∗k,η(t)‖ = 0.

Such a result will probably require the assumption that the stable and unstable manifolds
in the limiting system intersect transversally.

Finally, we wish to highlight once more the problems associated with the definition of a
forwards attractor for bounded sets, and the interesting open problem of finding conditions
under which the pullback attractor is also a forwards attractor.
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