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3Instituto de Investigación para la Gestión Integrada de las Zonas Costeras, Universidad Politécnica de Valencia,
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Shape transformations in driven and damped molecular chains are considered. Closed chains of weakly
coupled molecular subunits under the action of spatially homogeneous time-periodic external field are studied.
The coupling between the internal excitations and the bending degrees of freedom of the chain modifies the local
bending rigidity of the chain. In the absence of driving the array takes a circular shape. When the energy pumped
into the system exceeds some critical value the chain undergoes a nonequilibrium phase transition: The circular
shape of the aggregate becomes unstable and the chain takes the shape of an ellipse or, in general, of a polygon.
The excitation energy distribution becomes spatially nonuniform: It localizes in such places where the chain is
more flat. The weak interaction of the chain with a flat surface restricts the dynamics to a flat manifold.
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I. INTRODUCTION

Nonlinear localization phenomena are widely recognized as
key to understanding the excitation dynamics in many physical
and technological aspects such as light propagation, charge,
and energy transport in condensed-matter physics, or dynamics
of micromechanical oscillator arrays [1–4]. Recent advances
in manufacturing of micro- and nano-electromechanical sys-
tems [5] have made it possible to fabricate externally actuated
resonant nanostructures and study intrinsic localized state
formation in driven micro-mechanical cantilever arrays [1–4].
Electric actuation is the most common actuation method
because of its simplicity and high efficiency. However, other
actuation methods including thermal mechanical stresses,
magnetic fields, and optical excitation are also used [6,7].

It is well known that in conservative systems of nonlinear
oscillators the modulational instability of band edge plane
waves leads to creation of spatially localized states. However,
as it was shown quite recently [8] in damped and driven
lattices intrinsic localized states appear via a new instability
mechanism, different from the modulational instability. New
aspects in nonlinear energy localization appear in systems
with complicated geometry. Nonlinear whispering gallery
modes for a nonlinear Maxwell equation in a microdisk were
investigated in [9], and the excitation of whispering-gallery-
type electromagnetic modes by a moving fluxon in an annular
Josephson junction was found in [10]. Localization of linear
and nonlinear excitations in parabolically curved waveguides
was studied in [11]. A curved chain of nonlinear oscillators
was considered in [12] and it was shown that the interplay of
curvature and nonlinearity leads to a symmetry breaking when
an asymmetric stationary state becomes energetically more
favorable than a symmetric stationary state. The interaction
of classical anharmonic localized modes with geometry was
considered in Refs. [13–17]. Another recent example of
localization in curved geometries was reported in [18,19],
where spatial instabilities of a circular ring of coupled
pendula parametrically driven by a vertical harmonic force are
discussed. Normal oscillation modes [19] (breathing, dipole,

quadrupole) and localized patterns of different types [18]
(breathers and kinks) are predicted and observed in such
mechanical system. The analogy between the considered
discrete mechanical system and a gas bubble cavitating under
the action of an acoustic field was also established.

The bulk of theoretical results has been achieved for
arrays of nonlinear oscillators with fixed geometry: linear
chains and two-dimensional lattices. Until recently there
have been few theoretical and numerical studies of nonlinear
excitations in systems with flexible geometry. Many types
of biomolecules as polymers or DNA chains belong to this
category. Conformational dynamics with account of coupling
between the internal and mechanical degrees of freedom was
studied in [20]. It was found that the presence of nonlinear
excitations may cause the buckling and collapse instabilities
of an initially straight chain. These instabilities remain latent
in a straight infinitely long chain, because the bending of
such a chain would require an infinite energy. The role of the
charge-curvature interaction on the formation of the ground
state of closed semiflexible molecular chains was studied
in [21–23]. It was shown that the coupling between charge
carriers and the bending degrees of freedom of the chain
modifies the local bending rigidity of the semiflexible chain.
Due to the interaction between charge carriers and the bending
degrees of freedom the circular shape of the aggregate may
become unstable and the chain takes the shape of an ellipse
or, in general, of a polygon. There, the polygon structure is a
result of the self-consistent interaction between charge carriers
and bending degrees of freedom: extrema of the curvature and
of the charge density correlate: In the case of the softening
charge-curvature interaction maxima of curvature and charge
density coincide, while in the case of the hardening interaction
the minima of the curvature coincide with the maxima of the
charge density. These results were obtained by assuming that
the charge carrier dynamics is coherent and the total charge is
an integral of motion.

In this work we are interested in nonequilibrium shape
transformations which may occur in closed filaments pos-
sessing two kinds of degrees of freedom: high frequency
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electromagnetically active degrees of freedom (in what fol-
lows we will call them excitons) and low frequency modes
which are nonlinearly coupled with excitons. There are many
examples of such systems. Probably, the best known model for
excitations in a biological chain is the Davydov-Scott model
for proteins. See Ref. [24] for a recent review. In this model the
so-called Amide I excitation consists of the stretching vibration
of the C = 0 bond of the peptide groups, which are linked by
hydrogen bonds. The periodic forcing of the exciton modes can
be provided by electromagnetic waves. The Amide I vibration
in proteins has a frequency of 1665 cm−1 or about 50 THz,
i.e., between the near and mid-infrared spectrum. There is
abundant bibliography dealing with the interaction of infrared
radiation with proteins and in particular with the Amide I
modes, including conformational changes and photoinitiated
dynamics. See, for example, [25,26] and references therein.
The interaction of the exciton with the bending degrees of
freedom is also considered in a very similar model for Amide
I excitations in crystalline acetanilide [27]. Lifetime of the
excitations is still a matter of research and debate. The lifetime
of Amide I excitations in the acetanilide crystal has been
experimentally determined in 2 ps but it was also shown that
the excitation energy is not dissipated until 35 ps suggesting
that the Amide I excitation can be transformed into another
more long-lived excitation [28]. However, Amide I excitations
in a protein [29] survive much more, up to 500 ps. Theoretical
calculations in the Davydov-Scott model show that the exciton
can travel along the protein in a few picoseconds time [24].

Another example are DNA minicircles [30,31] and cir-
cular plasmids adsorbed in a mica surface [32] with their
far-infrared-active interbase hydrogen-bond breathing modes
(characteristic frequency is ∼100 cm−1 [33] and typical life
time is ∼10 ps [34]) which are nonlinearly coupled with
torsional-acoustic modes [35]. An effective control of the
shape of the system by visible light is achieved by incorporat-
ing dye monomers into liquid-elastic elastomers [36,37]. The
liquid-elastic elastomers are characterized by a strong coupling
between the orientational order and mechanical strain. Under
the action of linear polarized light nematic strips doped
with azo-dyes controllably bend as monomers photoisomerize
between their trans- and cis-states and reduce the degree of
the orientational order in the elastomer [38].

The aim of the paper is to study shape transformations
in driven and damped molecular chains. A generic model
of closed chain of weakly coupled molecular subunits under
the action of a spatially homogeneous time-periodic external
electric field is studied. In contrast to the previous studies
[21–23], where the shape formation of the molecular chain
was due to a charge-bending interaction, and therefore related
to an equilibrium phase transition, here we discuss the shape
transformation of the molecular chain as a nonequilibrium
phase transition which occurs due to the energy pumping in
the system. The paper is organized as follows. In Sec. II we
describe a model. Section III presents the stationary analytical
solutions and discusses the stability issues. In Sec. IV we
present the results of numerical simulations, demonstrating
the excitation of different shape modes depending on the
parameters. In Sec. V we propose an analytical approach to
the problem based on the Galerkin decomposition method,
and compare the analytical results with the results obtained

directly by numerical simulations. Finally, Sec. VI presents
some concluding remarks.

II. THE MODEL

We consider a simple phenomenological model of a
polymer ring consisting of particles, labeled by an index n,
and located at the points rn = {xn, yn, zn}(n = 1 . . . N). We
are interested in the case when the array represents a closed
chain and so we impose the periodicity (closure) condition
on the coordinates rn = rn+N . Each unit n is connected with
its two neighbors n + 1 and n − 1 by elastic bonds. We will
assume that the chain is inextensible: |rn − rn+1| = a (the
bond length a is a constant which we in what follows put
equal to 1). The change of the angle between the bond vectors
tn+1 = (rn+1 − rn) and tn = (rn − rn−1) is controlled by the
bending potential which we take in the form,

Ub = K

2

∑
n

κ2
n, (1)

where K is the elastic modulus of the bending rigidity (spring
constant) of the chain,

κn ≡ |tn+1 − tn| (2)

determines the curvature of the chain at the point n. By using
the parametrization,

tn = (cos θn, sin θn sin φn, sin θn cos φn), (3)

the local curvature can be presented in the form,

κn ≈
√

(θn+1 − θn)2 + sin θn (φn+1 − φn)2. (4)

The angles θn and φn satisfy the relation,

θn+N = 2π + θn, φn+N = φn, (5)

which stems from the periodicity (closure) condition.
The bending rigidity of the chain K can be expressed as

K = lp kB T , (6)

where lp is the persistence length in units of chain period, T

is the temperature, and kB is the Boltzmann constant.
We consider the situation when the chain adheres to some

surface. The interaction between the chain and the surface
tends to orient all bond vectors parallel to the surface: easy-
surface anisotropy interaction. It is assumed weak enough in
order not to affect the internal and bending dynamics of the
chain. The surface of adherence is parallel to a x − y plane
and the easy-surface interaction has the form,

Uw = w

2

∑
n

( ẑ · tn)2

≡ w

2

∑
n

sin2 θn cos2 φn, (7)

where ẑ = (0,0,1) is a unit vector along the z axis, and
the parameter w gives the intensity of the surface-chain
interaction.

We assume that each particle represents a complex sub-
unit of the chain which additionally to its position rn(t),
carries a high-frequency internal excitation which can be
characterized by a complex amplitude �n(t). Examples of
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such internal modes are Amide I vibrations in proteins or
base-pair vibrations in DNA [39] and optical excitations
of dye-doped liquid-crystal elastomers [40], as commented
in the introduction. The Hamiltonian of the high frequency
excitations (excitons) has the form,

H = ω
∑

n

|�n|2 + 1

2
J

∑
n

|�n+1 − �n|2, (8)

where ω is the energy of the excitation (the Planck constant is
set equal to 1), and the parameter J characterizes resonance
coupling between subunits. We will assume that the presence
of the high-frequency excitation at the site n modifies locally
the bending rigidity or, in other words, there is a coupling
between excitons and bending degree of freedom of the form,

Uex−b = χ
∑

n

|�n|2 κ2
n, (9)

where the parameter χ characterizes the strength of the
coupling (see Appendix for details). In what follows we restrict
ourselves to the case of hardening exciton-curvature coupling:
χ > 0.

Energy is pumped into the system by exciting it with a
time-periodic external force of amplitude f and frequency 	.
The corresponding interaction energy is given by

Uf = −f
∑

n

(�n ei	 t + c.c.). (10)

The equation of motion for the complex amplitude �n has
the form,

i�̇n = −iα �n + ω �n − J (�n+1 + �n−1 − 2 �n)

+χ κ2
n �n + f e−i	t , (11)

where α−1 gives the lifetime of the exciton.
For the sake of simplicity we will neglect inertia effects

in the dynamics of the mechanical subsystem and take the
equations of motion for the bending degrees of freedom in the
form of overdamped Lagrange-Rayleigh equations,

∂F
∂ξ̇n

= − ∂

∂ξn

(Ub + Uw + Uex−b),

(12)
ξn ∈ (θn,φn)

where F is a dissipative function which is given by the
expression,

F = η
1

2

∑
n

(ṙn+1 − ṙn)2, (13)

the parameter η being the relaxation time for the bending
degrees of freedom. The dissipative function (13) describes
internal friction, which is due to irreversible processes taking
place within the system. The function (13) is the discrete
version of the dissipation function which is usually used in
macroscopic elasticity theory [41]. In terms of the parametriza-
tion (3) the dissipation function (13) takes the form,

F = η
1

2

∑
n

(
θ̇2
n + sin2 θn φ̇2

n

)
. (14)

From Eqs. (12) and (14) we get

η θ̇n = −(K + 2χ |�n−1|2) (θn − θn−1) + (K + 2χ |�n|2)

×(θn+1 − θn + sin θn cos θn (φn+1 − φn))

−w sin2 θn cos2 φn, (15)

η sin2 θn φ̇n = −(K + 2χ |�n−1|2) sin2 θn−1(φn − φn−1)

+ (K + 2χ |�n|2) sin2 θn (φn+1 − φn)

+w sin2 θn sin φn cos φn. (16)

To simplify notations it is convenient to use a rescaled
complex amplitude, transfer to a rotating frame of reference,

�n =
√

K

χ
ψn e−i	t , (17)

and measure all relevant variables in terms of the coupling
strength χ , defining t̄ = χt , ω̄ = ω/χ , 	̄ = 	/χ , f̄ =
f/

√
χK , J̄ = J/χ ,ᾱ = α/χ , η̄ = ηχ/K , and w̄ = w/K .

In the rescaled variables Eqs. (11), (15), and (16) take the
form,

iψ̇n = −(δ + iα)ψn − J (ψn+1 + ψn−1 − 2 ψn) + κ2
nψn + f,

(18)

η θ̇n = −(1 + 2 |ψn−1|2) (θn − θn−1) + (1 + 2 |ψn|2)

×(θn+1 − θn + sin θn cos θn (φn+1 − φn))

−w sin2 θn cos2 φn, (19)

η sin2 θn φ̇n = −(1 + 2 |ψn−1|2) sin2 θn−1(φn − φn−1)

+ (1 + 2 |ψn|2) sin2 θn (φn+1 − φn)

+w sin2 θn sin φn cos φn, (20)

where “bars” are omitted for simplicity and δ = 	 − ω is a
detuning frequency. Our analytical approach is based on the
assumption that the relaxation time η is short (η → 0) and
therefore the bending degrees of freedom are slaved to the
exciton ones. In this case from Eqs. (19) and (20) we get

φn = π

2
,

(21)

θn+1 − θn = A(t)

1 + 2 |ψn|2 ,

where the function A(t) is chosen in the form,

A(t) = 2 π

[
N∑

n=1

1

1 + 2 |ψn|2
]−1

, (22)

to satisfy the periodic boundary conditions given by Eq. (5).
By inserting Eq. (21) into Eq. (18), we obtain that the
exciton dynamics is governed by the following nonlinear
integro-differential equation,

iψ̇n = −(δ + i α) ψn − J (ψn+1 + ψn−1 − 2 ψn)

+ A2(t)

(1 + 2 |ψn|2)2
ψn + f. (23)
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Note that according to Eq. (21), the azimutal angle is fixed,
so motion is confined to a plane, as Fig. 2 shows.

III. SOLUTIONS AND STABILITY

Equation (23) has a spatially homogeneous solution,

ψn(t) = �, � = f

δ − 1
R2 + i α

, (24)

when all subunits oscillate in phase and the chain has a circular
shape with the curvature κn = 2π/N ≡ 1/R.

To investigate the stability of the spatially homogeneous
solution (24) (and the circular shape of the chain) we assume
that ψn(t) = � + ϕn(t), with

∑N
n=1 ϕn(t) = 0, and linearize

Eqs. (22) and (23) with respect to ϕn(t). As a result we obtain

iϕ̇n = −
(

δ + 1

R2
+ iα

)
ϕn − J (ϕn+1 + ϕn−1 − 2 ϕn)

+ 2

R2

1

(1 + 2|�|2)
(ϕn − 2 �2 ϕ∗

n). (25)

The stability is analyzed by considering solutions of the
linear system (25) of the form,

ϕn(t) = ϕ̃ exp

{
i

2π k

N
n − i z t

}
, (26)

where z is a complex frequency. Note that, in the linear
approximation, the curvature of the chain is given by the
expression,

κn = 1

R

(
1 − 2

� ϕ∗
n + �∗ ϕn

1 + 2 |�|2
)

, (27)

which means that in Eq. (25) the integer k must satisfy
inequality k � 2 to fulfill the closure condition (35); moreover,
the excitation of the kth exciton mode corresponds to a k-gonal
deformation of the chain: elliptical for k = 2, triangular for
k = 3, etc. Insertion of Eq. (26) into Eq. (25) leads to

zk = −iα ±
√

δk

(
δk + 8

R2

|�|2
1 + 2 |�|2

)
, (28)

where δk = 	 − ωk and

ωk = ω + 1

R2
+ 4 J sin2

(
π k

N

)
(29)

is the frequency of the kth exciton mode in the circular chain.
Direct inspection of Eq. (28) shows that Im(zk) > 0 and the
spatially homogeneous state (24) is unstable with respect to
exciting the kth exciton mode when f � fk and 	 � ωk (δk <

0), where

f 2
k =

(
α2 +

(
δ − 1

R2

)2 )
Nk, (30)

Nk = −1

2

α2 + δ2
k

α2 + δk

(
δk + 4

R2

) . (31)

We trace out instability curves of the spatially homogeneous
state (24) in (δ,f ) space. Equation (30) defines the kth mode
stability curves in the (δ,f ) plane. These results demonstrate
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FIG. 1. Instability curves in (δ,f ) space at which the kth mode
of the spatially homogeneous solution destabilizes for k = 2,3,4. The
strength of resonance coupling J varies in the panels as indicated.
We set weak losses, α = 0.01 and η = 0.01. In the unshaded regions,
spatially homogeneous states are stable.

that for large resonance coupling between subunits J , when

J > Jk = 1

N2

4π

√
1 − α2R4

4

sin
(

π
N

)
sin

(
π
N

(2k + 1)
) , (32)

the region of instability of the homogeneous solution splits
into separate areas (see the bottom panel in Fig. 1) where the
exciton modes with different k grow indefinitely. However,
for J < Jk the k- and (k + 1)th areas of instability overlap
and k-gonal and (k + 1)-gonal profiles can be simultaneously
stable for the same parameter values. The top panel of Fig. 1
presents the situation when the homogeneous state is unstable
simultaneously with respect to the modes k = 2 and k = 3.

IV. NUMERICAL RESULTS

To find the structures which appear as a result of such an
instability we solved numerically Eqs. (18)–(20) for a chain
of N = 36 elements and different parameter sets. The starting
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configuration corresponded to the exciton subsystem in the
ground state: ψn(0) = 0 and initially, all the chain points
were placed at (almost) symmetric points on the circle of an
appropriate radius (the symmetry was broken by changing the
local curvature of the chain by 0.1%). The simulations were
performed for two initial seeds:

θn = 2π

N
n + 10−3 sin

(
2 π k

N
n

)
,

φn = π

2
− 10−3 cos

(
2 π k

N
n

)
, k = 2,3. (33)

Small losses are considered in all the cases, α = η = 0.01.
The coordinates of the subunits can be presented in the
form,

xn(t) =
n∑

m=1

cos θm(t) − 1

N

N∑
m=1

(N − m − 1) cos θm(t),

yn(t) =
n∑

m=1

sin θm(t) sin φm(t)

− 1

N

N∑
m=1

(N − m − 1) sin θm(t) sin φm(t),

zn(t) =
n∑

m=1

sin θm(t) cos φm(t)

− 1

N

N∑
m=1

(N − m − 1) sin θm(t) cos φm(t), (34)

where the last terms in the expressions for xn, yn, and zn fix the
center of mass of the chain at the coordinate origin. In terms
of the parametrization (34) the closure condition reads

N∑
m=1

cos θm(t) =
N∑

m=1

sin θm(t) sin φm(t)

=
N∑

m=1

sin θm(t) cos φm(t) = 0. (35)

The results of the full scale 3D simulations are shown in
Figs. 2 and 3. It is seen that while the initial state of the
chain has a 3D shape, the stationary state has a flat shape
parallel to the x-y plane. We checked that the shape converges
to a two-dimensional x-y profile even for a rather weak
easy-surface anisotropy parameter: w ∼ 10−4. The upper row
of Fig. 3 shows the elipselike (k = 2), triangular (k = 3),
and tetragonal (k = 4) distributions of the chain subunits
obtained from numerical simulations. The lower row shows
the corresponding energy and curvature distribution along the
chain. The elipselike and triangular modes have been obtained
for the same forcing, coupling, and detuning parameters, but
different initial seeds, Eq. (33) with k = 2 and 3, respectively.
This clearly indicates the existence of multistability predicted
by the previous analysis, i.e., multiple k-gons, with different
values of k, can be simultaneously stable for the same
parameter values. The energy and curvature distributions also
demonstrate that the curve is more flat where the excitation
density is maximal. Such a behavior is generic. The parameters
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5

y
x

z×
 1

04

−5
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5 −5
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z×
 1

04
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FIG. 2. The top panel shows the initial 3D shape of the chain, and
the bottom panel shows the stationary shape which is achieved by the
chain in the presence of the same driving as in Fig. 3.

used for obtaining the tetragonal shape were different from the
ellipselike and triangular shapes (see caption).

We conclude that the polygon structure is a result of the self-
consistent interaction between excitations and bending degrees
of freedom; extrema of the curvature and of the excitation
density correlate: In the case under consideration when the
exciton-bending interaction locally hardens the chain stiffness
(χ > 0) the minima of the curvature coincide with the maxima
of the excitation density.

V. MINIMAL MODEL. GALERKIN APPROACH

To gain some insight into the mechanism of shape trans-
formations we will use a Galerkin approach by expanding the
complex amplitude ψn(t) into Fourier modes,

ψn =
N
2∑

k=− N
2 +1

Fk(t) exp

(
i

2π k n

N

)
. (36)

062227-5



YU. B. GAIDIDEI et al. PHYSICAL REVIEW E 93, 062227 (2016)

FIG. 3. (Upper row) Mode shapes of index k = 2 (left), k = 3 (center), and k = 4 (right), obtained in the area of parameters where the exciton
modes are linearly unstable. Modes k = 2 (elipselike) and k = 3 (triangular) coexist and have been obtained for f = 0.01,J = 0.2,δ = 0.03.
Mode k = 4 (tetragonal) was obtained for f = 0.2,J = 0.6,δ = 0.25. (Lower row) Density of excitation energy distribution |ψn|2 (dashed
line, rescaled by a factor 10−1) and curvature variation κn (solid line) along the chain.

Note that F1(t) = 0 in (36) because the harmonics with k = 1
cannot contribute to the expansion (36) due to the closure
condition, Eq. (35).

Lets us introduce an action functional S = ∫
e2αt L dt ,

where L is a Lagrangian function of the form,

L =
∑

n

{
i

2
(ψ̇n ψ∗

n − c.c.) + δ |ψn|2 − J |ψn+1 − ψn|2

− 2π2

[∑
n

1

1 + 2 |ψn|2
]−1}

. (37)

Note that minimizing the action, δS/δψ∗
n = 0, leads to the

evolution equation Eq. (23).
By inserting Eq. (36) into Eq. (37), expanding the La-

grange function (37) in terms of the amplitudes Fk(k 	= 0)
up to the second order, and carrying out summation over
n, one can obtain an effective Lagrangian function in the
form,

L = i

2

∑
k

(Ḟk F ∗
k − c.c) +

(
δ − 1

R2

)
|F0|2

+
∑
k 	=0

(
δk + 1

R2

)
|Fk|2 − 2

R2

1

1 + 2|F0|2

×
∑
k 	=0

(∣∣F 2
k

∣∣ − Fk F−k �∗2 − F 2
0 F ∗

k F ∗
−k

)
+ f (F0 + F ∗

0 ). (38)

From the action S the evolution equations for the complex
amplitudes Fk can be obtained in the form,

i�̇ = −
(

δ − 1

R2
+ i α

)
� + 4

R2

1

(1 + 2|F0|2)2

×
∑
k 	=0

[(∣∣Fk

∣∣2 − F ∗
k F ∗

−k F 2
0

)
F0

+Fk F−k (1 + |F0|2) F ∗
0

] − f, (39)

i Ḟk = −
(

δk + 1

R2
+ i α

)
Fk + 2

R2

1

1 + 2|F0|2
×

∑
k 	=0

(
Fk − 2 F 2

0 F ∗
−k

)
, k = 2,3, . . . (40)

For each k the set of Eqs. (39) and (40) has two kinds of
stationary solutions:

(1) Fk = 0 for k 	= 0 and F0 ≡ � is given by Eq. (24). In
this state the excitation energy is homogeneously distributed
along the circular chain. The stability of this state is discussed
in the previous section (see Fig. 1).
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FIG. 4. Bifurcation diagram of the lowest harmonic modes |F0|
and |F2| of the exciton wave function as a function of the normalized
pumping strength f/fc, where fc is the critical pump value at
which the instability appears (f2 in the case shown). The theoretical
solutions (lines) were obtained in the framework of the minimal
model, while numerical results (symbols) correspond to full scale
numerical simulations. Parameters are N = 36, J = 0.2, α = 0.01,
η = 0.01, and δ = 0.03.

(2) Fk 	= 0. In this state the chain is k-gonally deformed
and the excitation energy is concentrated in the flat parts of the
chain [as it is seen from Eq. (27) a maximum of the curvature
corresponds to a minimum of the excitation density and vice
versa]. The stability regions in the (δ,f ) parameter space of
such kind of stationary state are presented as shaded areas in
Fig. 1.

The stationary state has a remarkable feature which
distinguishes it from the first one. In contrast to the case
of the circular chain when the amplitude of the spatially
homogeneous component |F0| is a linear function of the pump
intensity f [see Eq. (24)] in the stationary state of the second
kind this component does not depend on f ,

|F0|2 = −1

2

α2 + δ2
k

α2 + δk

(
δk + 4

R2

) , (41)

and coincides with the threshold value Nk at which the spatially
homogeneous excitation distribution becomes unstable with
respect to excitation of the kth exciton mode. At this point a
Hopf bifurcation occurs and the amplitude of the kth mode for
f → fk evolves as

Fk ∼
√

f 2 − f 2
k , (42)

with fk given by Eqs. (30) and (31).
This is illustrated in Fig. 4 where the amplitude of the

spatially homogeneous component |F0| and the amplitude of
the first nonvanishing Fourier mode |F2| are presented as
a function of external force f . For f < f2 the amplitude
F0 ∼ F while F2 = 0. At f = f2 the Hopf bifurcation takes
place and the behavior of the Fourier harmonics qualitatively
changes: F0 remains constant and the amplitude of the second
harmonics grows as Eq. (42). To verify these results we carried
full scale numerical simulations for the same set of parameters.
These results are shown in Fig. 4 with symbols. From this

analysis, one can conclude that the minimal model gives a
reasonable description of the dynamics of the system.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the dynamics of closed chains
of weakly coupled molecular subunits under the action of a
spatially homogeneous time-periodic external field. Chains
become flat because of a weak interaction with a flat surface.
We investigated the role of the exciton-curvature interaction
on the formation of the shape and energy distribution of
closed semiflexible molecular chains. The reported shape
transformation of the molecular chain is the result of a
nonequilibrium phase transition, which is mediated by an
external driving (energy pumping) in the system. We have
found that in the absence of driving the array takes a stable
circular shape. When the driving intensity exceeds some
critical level the circular shape of the chain becomes unstable
and the chain takes a polygonal shape. In the case under
consideration, when the excitation locally hardens the bending
rigidity of the chain, the excitation energy is localized in
such places where the chain is more flat. The transition to
the polygonal shape is due to a Hopf bifurcation.
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APPENDIX

The aim of this Appendix is to derive an explicit form of
the exciton-bending interaction for a generic 3D filament. To
describe the filament flexibility we use a discrete wormlike
chain model. In the frame of this model the filament is
considered as a chain of rigid links, length a, with vertices
located at the points rn = (xn,yn,zn),(n = 1, . . . N). We are
interested in the case when the chain is closed and so we impose
the periodicity condition on the coordinates: rn+N = rn. We
assume that each vertex represents a complex subunit of the
polymer which additionally to its position rn(t) carries an
internal electromagnetically active degree of freedom which
can be characterized by the complex amplitude �n(t). We
consider a filament where electromagnetically active subunits
are coupled to bending degrees of freedom. This coupling
originates from the change in the interaction energy (i.e., the
van der Waals interaction, isotropic part of multipole-multipole
interactions, the intermolecular exchange interaction, etc.) of
the subunit with all neighboring subunits in its transition to the
excited state, and can be written as follows:

Eeb =
∑
n,n′

V (|rn − rn′ |)|ψn|2, (A1)
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where V (|rn − rn′ |) is the change of the interaction between
the nth subunit and the n′th subunit when the former occurs in
the excited state. In the next-nearest neighbor approximation
the interaction between the subunits has the form,

Eex−b =
N∑

n=1

{V (|rn − rn+1|) + V (|rn − rn−1|)

+V (|rn − rn+2|) + V (|rn − rn−2|)} |�n|2

=
N∑

n=1

{
2 V (a) + V

(
a

√
4 − κ2

n+1

)

+V
(
a

√
4 − κ2

n−1

)} |�n|2, (A2)

where the definition of the local curvature κn (2) is used.

By assuming that κ2
n � 1 and neglecting dispersion effects

in the exciton-bending interaction, i.e., 1
2 (κ2

n+1 + κ2
n−1) ≈ κ2

n ,
one can obtain approximately that

Eex−b =
∑

n

∑
m=±1,±2

V (m a) |�n|2 + Uex−b,

Uex−b = χ
∑

n

κ2
n |�n|2. (A3)

Here the parameter,

χ = −a
dV (r)

dr

∣∣∣∣
r=2a

, (A4)

characterizes the intensity of the exciton-bending interaction.
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