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1. Universidade Federal de Campina Grande
Centro de Ciências e Tecnologia

Unidade Acadêmica de Matemática e Estat́ıstica
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Abstract

In this paper we study the existence, uniqueness, multiplicity and stability of pos-
itive solution of a non-linear elliptic problem that combines local and non-local terms
taking the form of an integral in space. The proofs are mainly based on fixed point
theorems, bifurcation techniques, sub-supersolutions and continuation arguments.
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1 Introduction
Throughout this work we consider the following problem −∆u = λup +

∫
Ω
uβ in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ IRN is a bounded regular domain, λ ∈ IR and p, β > 0.
During recent years the so called non-local elliptic problems have attracted the at-

tention of a lot of researchers due two main aspects: Firstly due to their mathematical
importance. The presence of non-local terms provokes some difficulties which, sometimes,
do not appear in the local ones. So, the behaviour of these problems may be, in general,
distinct of their local counterpart. Secondly, these problems arise from practical moti-
vations from Biology, Physics, Heat Transfer, Mechanics and so on, which makes their
studies particularly interesting. See, for instance, the review paper [8].

In particular, in problem (1.1) there exists a combination of a local and a non-local
terms in additive way. Observe that while for λ = 0 equation (1.1) is a non-local elliptic
equation, when λ < 0 there is a competition between both terms. It is interesting to study

1AS have been supported by the Spanish Ministry of Science and Technology under Grant MTM2009-
12367.
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the behaviour of the set of positive solutions of (1.1) depending of the size of p and β and
of course of the sign of λ.

Problem (1.1) has been previously analyzed in [14] and [12], at least to our knowledge,
only the case λ ≤ 0, β > 1 and p ≥ 1. In both works, the parabolic problem related to
(1.1) was studied. In particular, both works showed the value p = β represents a critical
blow-up exponent. Indeed, they proved that if β > p or β = p and λ > −|Ω|, the blow-up
can occur in finite time. However, when β < p or β = p and λ ≤ −|Ω| all the solutions
are global and bounded.

With respect to the elliptic problem (1.1), the authors proved the existence of positive
solution for λ small in the particular case λ < 0, p > β > 1. In this paper, we complete
this study, and give results for all the values of p and β.

Before proceeding to the statement of the main results, we need to introduce some
notation. Given regular, non-negative and non-trivial functions a, b and m, we denote by
λ1(−∆ + m; a, b) the principal eigenvalue of the following integro-differential eigenvalue
problem

−∆u+m(x)u− a(x)
∫

Ω
b(x)u = λu in Ω, u = 0 on ∂Ω, (1.2)

(see Section 2 for a detailed study of this problem). Denote also

λ1 := λ1(−∆; 0, 0) and σ1 := λ1(−∆; 1, 1).

We use the principal eigenvalues of (1.2) to characterize the stability of the solutions with
respect to the parabolic counterpart problem. We say that a positive solution u0 of (1.1)
is stable (resp. unstable) if the principal eigenvalue of the linearization of (1.1) around u0

is positive (resp. negative), i.e.,

λ1(−∆− λpup−1
0 ;β;uβ−1

0 ) > 0 (resp. < 0.)

We also say that u0 is neutrally stable if it is zero. Observe that p and β can be less than
one, and so the eigenvalue problem (1.2) can have singular terms.

We can now state our main results, which depend on the size of p and β.
First, it is clear that if (p, β) = (1, 1) then (1.1) is an eigenvalue problem and it

possesses positive solution if λ = σ1. So, we assume that (p, β) 6= (1, 1).
In the case p = 1 we can obtain:

Theorem 1.1. Assume that p = 1. Then, there exists a unique positive solution of (1.1)
for λ < λ1, and no positive solutions for λ ≥ λ1. Moreover, the solution is stable for β < 1
and unstable for β > 1. Finally,

lim
λ→λ1

‖u‖∞ =

{
0 when β > 1,
+∞ when β < 1.

and lim
λ→−∞

‖u‖∞ =

{
+∞ when β > 1,
0 when β < 1.

In Figure 1 we have represented the bifurcation diagrams corresponding to the case
p = 1. Case 1 represents the solutions of (1.1) when β < 1 and and Case 2 shows the case
β > 1. Observe that we have a bifurcation from zero when β > 1 and a bifurcation from
infinity when β < 1 at λ = λ1.

In the case p < 1, we get:

Theorem 1.2. Assume that p < 1.

2



Combining local and non-local terms August 14, 2010

u u

1 1

Case Case

Figure 1: Bifurcation diagrams for equation (1.1) for p = 1.

a) Assume also that β = 1.

(a) If σ1 > 0 there exists a positive solution of (1.1) if, and only if, λ > 0. The
solution is unique and stable. Moreover,

lim
λ→0
‖uλ‖∞ = 0, lim

λ→∞
‖uλ‖∞ =∞.

(b) If σ1 = 0 there exists a positive solution of (1.1) if, and only if, λ = 0. There
are infinite positive solutions and they are neutrally stable.

(c) If σ1 < 0 there exists a positive solution of (1.1) if, and only if, λ < 0. The
solution is unique and unstable. Moreover,

lim
λ→0
‖uλ‖∞ = 0, lim

λ→−∞
‖uλ‖∞ =∞.

b) Assume also that β > 1. There exists a value λ > 0 such that there exists a positive
solution of (1.1) if and only if λ ≤ λ. There is a unique and unstable positive solution
for λ ≤ 0 and at least two solutions, uλ1 < uλ2 , for λ > 0 and small, uλ1 is stable and
uλ2 unstable. Moreover,

lim
λ→−∞

‖uλ‖∞ =∞ and lim
λ→0
‖uλ1‖∞ = 0.

c) Assume now that β < 1.

(a) If β < p there exists a positive solution of (1.1) for all λ ∈ IR. The solution is
unique and stable. Moreover,

lim
λ→−∞

‖uλ‖∞ = 0 and lim
λ→∞

‖uλ‖∞ =∞.

(b) If β = p there exists λ0 < 0 such that there exists positive solution if and only if
λ > λ0. In fact, λ0 ∈ (−|Ω|,−

∫
Ω ϕ

p
1), being ϕ1 > 0 the eigenfunction associated

to λ1 such that ‖ϕ1‖∞ = 1. Furthermore, the solution is unique and stable and

lim
λ↓λ0

‖uλ‖∞ = 0 and lim
λ→∞

‖uλ‖∞ =∞.
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(c) If p < β there exists λ0 < 0 such that there exists positive solution if and only
if λ ≥ λ0. Moreover, for λ ≥ 0 the solution is unique and stable, and for λ
negative and small there exist at least two positive solutions, uλ1 < uλ2 , uλ1 is
unstable and uλ2 stable. Moreover,

lim
λ→0
‖uλ2‖∞ = 0 and lim

λ→∞
‖uλ‖∞ =∞.

In Figure 2 we have drawn the bifurcation diagrams of (1.1) corresponding to the case
p < 1. Cases 1, 2 and 3 represent the solutions when β = 1 and σ1 > 0, σ1 = 0 and
σ1 < 0, respectively. Case 4 shows the case β > 1, and when β < 1 we have the Cases 5,
6 and 7 when β > p, β = p and β < p, respectively.

u

u

u

u
u

Case 1                                            Case 2                                    Case 3

Case 4

u

Case 6

Case 5

u

Case 7

Figure 2: Bifurcation diagrams for equation (1.1) for p < 1.

Let us compare some of our results with the well-known ones of the local equation

−∆u = λup + uβ.

In the case p = 1 the existence results are rather similar to the local case. However, for the
case β > 1 in the non-local case we do not need impose the condition β < (N +2)/(N −2)
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to obtain the existence of a priori bounds. Moreover, in this case we show that the solution
is unstable (similar to the local case) but the solution is unique, unlike the local case.

With respect to the case p < 1 we would like to point out that in the non-local case
any non-negative and non-trivial solution is positive in all Ω. This contrasts with the
local case in which for λ negative could exist non-negative and non-trivial solutions that
vanishes in a part of Ω, the dead core.

Observe that in the case p < 1 < β the result obtained is rather similar to the case of
the local equation studied in [1]. However, again in our case we do not need to impose the
condition β < (N + 2)/(N − 2). Also, the result obtained in the case p < β < 1 is similar
to the local equation analyzed in [7].

Let us remark that to obtain the existence results in the previous results, we can not
use the variational methods due to the equation (1.1) has not a variational structure. In
fact, we have used basically a fixed point argument and the sub-supersolution method to
obtain above results.

For the case p > 1 we are not able to use the fixed point argument. So, we have
introduced our equation (1.1) in a more general equation, see equation (4.18), and use
bifurcation methods and classical results from [2]. For that, we need to obtain a priori
bounds of positive solutions of (1.1). This is not a trivial problem. We distinguish two
cases. When λ < 0 we obtain a priori bounds except in the case β = p ≥ 1. The case
λ > 0 is harder. Basically, we have used to different arguments: boot-strapping and
blow-up arguments to obtain the results. For the case λ > 0 we have proved that if

p < 1, ∀β > 0 or p = 1, β > 1, (1.3)

or,
1 < p < (N + 2)/(N − 2), ∀β > 0, (1.4)

or
p ≥ (N + 2)/(N − 2), and β > (N/2)(p− 1), (1.5)

then there exist a priori bounds of (1.1). Observe that (1.4) is the classical restriction in
the local case. On the other hand, (1.3) means that when p is small, we obtain a priori
bounds for all the values of β; while (1.5) gives a priori bounds when β is large, even when
p is greater that critical exponent (N + 2)/(N − 2).

Moreover, these results are optimal in some way, because for λ negative and β = p >
and for λ positive and β < 1 = p we prove that there exist a bifurcation from infinity
for some λ, and so a priori bounds do not exist. Moreover, we show that for p = β >
(N + 2)/(N − 2) there is not positive solution for λ large.

Theorem 1.3. Assume that p > 1.

a) Assume that β = 1.

(a) Suppose that σ1 > 0. If there exists a positive solution then λ > 0. If λ > 0 and
p < (N + 2)/(N − 2) then there exists at least a positive solution. The solution
is unstable and

lim
λ→0
‖uλ‖∞ =∞ and lim

λ→∞
‖uλ‖∞ = 0. (1.6)

(b) If σ1 = 0 there exists a positive solution if, and only if, λ = 0. There are
infinite positive solutions and they are neutrally stable.
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(c) If σ1 < 0 there exists a positive solution if, and only if, λ < 0. The solution is
unique and stable and and

lim
λ→−∞

‖uλ‖∞ = 0, lim
λ→0
‖uλ‖∞ =∞. (1.7)

b) Assume also that β > 1.

(a) If β > p there exists a unique and unstable positive solution for λ ≤ 0. If,
moreover, there exist a priori bounds, there exists positive solutions for λ > 0
and it is unstable. Moreover,

lim
λ→−∞

‖uλ‖∞ =∞.

(b) If β = p, there exists λ0 < 0 such that (1.1) possesses positive solution for
λ ∈ (λ0, 0] and

lim
λ→λ0

‖u‖∞ = +∞. (1.8)

Moreover, this solution is unique and unstable.

If, moreover, there exist a priori bounds, there exists positive solutions for λ > 0
and it is unstable.

(c) If β < p, there exists λ0 < 0 such that (1.1) possesses positive solution for
λ ∈ [λ0, 0]. Moreover, if λ is small and negative, there exist at least two positive
solutions, uλ1 < uλ2 , uλ1 is unstable and uλ2 stable and

lim
λ↑0
‖uλ2‖∞ = +∞.

If, moreover, there exist a priori bounds, there exists positive solutions for λ > 0
and it is unstable.

c) Assume now that β < 1. There exists a unique and stable positive solution of (1.1)
for λ ≤ 0. Assume now the existence of a a priori bounds. There exists λ > 0 such
that there exists a positive solution if, and only if, λ ≤ λ. Moreover, λ > 0 and small
there exist at least two positive solutions uλ1 , u

λ
2 , uλ1 is stable and

lim
λ→−∞

‖uλ‖∞ = +0, lim
λ↑0
‖uλ2‖∞ = +∞.

In Figure 3 we have represented the bifurcation diagrams of (1.1) corresponding to the
case p > 1. Cases 1, 2 and 3 represent the solutions when β = 1 and σ1 > 0, σ1 = 0 and
σ1 < 0, respectively. Cases 4, 5 and 6 show the cases β > p, β = p and β < p, respectively.
Finally, Case 7 represents β < 1.

An outline of the paper is: in Section 2 we study the eigenvalue problem and some
preliminaries results; Section 3 is devoted to obtain a priori bounds of positive solutions
of (1.1) and in the last Section we prove Theorems 1.1, 1.2 and 1.3.
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Figure 3: Bifurcation diagrams for equation (1.1) for p > 1.

2 The eigenvalue problem and preliminaries results

In this section we study a non-local and singular eigenvalue problem, which appears
when one linearizes around a positive solution of (1.1). Specifically, we study the following
problem  −∆u+m(x)u− a(x)

∫
Ω
b(x)u = σu in Ω,

u = 0 on ∂Ω,
(2.1)

where m ∈ C1(Ω), a ∈ C(Ω) and b ∈ C1(Ω) and verify: for some α ∈ (−1, 1) and γ < 1

(Hm) |∂im|d(x, ∂Ω)2−α are bounded for all x ∈ Ω and i = 1, ..., N ;

(Hb) there exists K > 0 such that b(x) ≤ Kd(x, ∂Ω)−γ ,

where d(x, ∂Ω) := dist(x, ∂Ω) The next result was proved in [4]:

7
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Theorem 2.1. Assume that m verifies (Hm), a ∈ C1(Ω) ∩ C(Ω), is a non-negative and
non-trivial function, b ∈ C1(Ω) is a non-negative and non-trivial function and it verifies
(Hb). Then, there exists a principal eigenvalue of (2.1), denoted by λ1(−∆ + m; a; b),
which has an associated positive eigenfunction ϕ1 ∈ C2(Ω) ∩ C1,δ

0 (Ω) for some δ ∈ (0, 1),
and

∂ϕ1

∂n
< 0 on ∂Ω, (2.2)

where n denotes the outward unit normal vector. Moreover, λ1(−∆ + m; a; b) is simple,
and it is the unique eigenvalue having an associated eigenfunction without change of sign.

In the following result we give a criteria to ascertain the sign of λ1(−∆ +m; a; b), see
also [4]:

Proposition 2.2. a) Assume that there exists a positive function u ∈ C2(Ω)∩C1,δ
0 (Ω),

δ ∈ (0, 1), such that

−∆u+m(x)u− a(x)
∫

Ω
b(x)u > 0 in Ω.

Then,
λ1(−∆ +m; a; b) > 0.

b) Assume that there exists a positive function u ∈ C2(Ω) ∩ C1,δ
0 (Ω), δ ∈ (0, 1), such

that
−∆u+m(x)u− a(x)

∫
Ω
b(x)u < 0 in Ω.

Then,
λ1(−∆ +m; a; b) < 0.

Along the paper, we are going to denote by

λ1 := λ1(−∆; 0; 0) and σ1 := λ1(−∆; 1; 1).

The next result characterizes the sign of λ1(−∆ +m; a; b) on terms of the solution of the
problem {

−∆ζ +m(x)ζ = b(x) in Ω,
ζ = 0 on ∂Ω.

(2.3)

Thanks to Proposition 2.5 in [11] if λ1(−∆ + m; 0; 0) > 0 there exists a unique positive
solution ζ ∈ C2(Ω) ∩ C1,δ

0 (Ω), δ ∈ (0, 1), of (2.3).

Lemma 2.3. Assume that λ1(−∆ +m; 0; 0) > 0. Then,

sgn (λ1(−∆ +m; a; b)) = sgn
(

1−
∫

Ω
a(x)ζ

)
.

Proof. Denote by ϕ1 a positive eigenfunction associated to λ1(−∆ +m; a; b). Multiplying
(2.3) by ϕ1, and integrating we obtain that(

1−
∫

Ω
a(x)ζ

)∫
Ω
b(x)ϕ1 = λ1(−∆ +m; a; b)

∫
Ω
ϕ1ζ.

This concludes the result.
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The next result shows the monotony of the principal eigenvalue with respect to the
domain.

Lemma 2.4. Consider a sub-domain Ω0 ⊂ Ω, and that the functions a, b and m verify the
conditions of Theorem 2.1. Denote by λ0 and λ1 the principal eigenvalues λ1(−∆+m; a; b)
in Ω0 and Ω, respectively. Then, λ1 < λ0.

Proof. Consider ϕ∗0 the adjoint positive eigenfunction associated to λ0, that is

−∆ϕ∗0 +m(x)ϕ∗0 − b(x)
∫

Ω0

a(x)ϕ∗0 = λ0ϕ
∗
0 in Ω0, ϕ∗0 = 0 on ∂Ω0.

Then, prolonging ϕ∗0 by zero at Ω, and multiplying by ϕ1, a positive eigenfunction associ-
ated to λ1, we get∫

Ω0

a(x)ϕ∗0

[∫
Ω0

b(x)ϕ1 −
∫

Ω
b(x)ϕ1

]
+
∫
∂Ω0

∂ϕ∗0
∂n

ϕ1 = (λ1 − λ0)
∫

Ω0

ϕ∗0ϕ1,

whence, using (2.2), we deduce that λ1 < λ0.

With respect to the monotony on the potentials, we have:

Lemma 2.5. Assume that m1 ≤ m2, a1 ≥ a2 and b1 ≥ b2. Then,

λ1(−∆ +m1; a1; b1) ≤ λ1(−∆ +m2; a2; b2).

Proof. Let ϕ > 0 an eigenfunction associated to λ1(−∆ +m1; a1; b1). Then

−∆ϕ+m2ϕ−λ1(−∆+m1; a1; b1)ϕ−a2

∫
Ω
b2ϕ = (m2−m1)ϕ+a1

∫
Ω
b1ϕ−a2

∫
Ω
b2ϕ ≥ 0,

and so, by Proposition 2.2, λ1(−∆ +m2 − λ1(−∆ +m1; a1; b1); a2; b2) ≥ 0, that is,

λ1(−∆ +m2; a2; b2) ≥ λ1(−∆ +m1; a1; b1).

Finally, the following result will be very useful during the work:

Lemma 2.6. Assume a > 0 in Ω. It holds that

lim
λ→+∞

λ1(−∆ +m;λa; b) = −∞.

Proof. Consider a ball B ⊂ Ω such that b ≥ b0 > 0 in B and such that λB1 (−∆+m; 0; 0) >
0. By Lemma 2.4

λΩ
1 (−∆ +m;λa; b) < λB1 (−∆ +m;λa; b).

We are going to prove that λB1 (−∆+m;λa; b)→ −∞ as λ→ +∞. Indeed, since λB1 (−∆+
m; 0; 0) > 0 there exists a unique positive solution, denoted by e, of the equation

−∆e+m(x)e = b(x) in B, e = 0 on ∂B.

9
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Denote by ϕ > 0 an eigenfunction associated to λB1 (−∆ + m;λa; b). Multiplying the
equation that verifies ϕ by e and integrating, we obtain

λB1 (−∆ +m;λa; b) =
(

1− λ
∫
B
ae

)
∫
B
b(x)ϕ∫
B
ϕe

 . (2.4)

Observe that ∫
B
ϕe ≤ ‖e‖∞

∫
B
ϕ =

‖e‖∞
b0

b0

∫
B
ϕ ≤ C

∫
B
ϕb(x),

and so

0 <
1
C
≤

∫
B
b(x)ϕ∫
B
ϕe

.

It suffices to take λ→ −∞ in (2.4).

Now, we prove some results concerning to the problem (1.1). First, we have the
following result about the positivity and bounds of the solutions of (1.1).

Lemma 2.7. Assume that u is a non-negative and non-trivial solution of (1.1). Then,

a) u is strictly positive.

b) It holds

−λ‖u‖p∞ ≤
∫

Ω
uβ. (2.5)

Proof. a) The result is evident if λ ≥ 0. So, assume that λ < 0 and fixed. Take a non-
negative and non-trivial solution u of (1.1). Then, if p ≥ 1 it is clear that there exists
M > 0 such that λup +Mu > 0. If p < 1 then

Mu+ λup +
∫

Ω
uβ = Mu+ λup +Rλ ≥Mp/(p−1)

(
1
−λ

)1/(p−1)

pp/(1−p)(p− 1) +Rλ > 0

taking M large. Then, in both cases

−∆u+Mu > 0 in Ω,

and the result concludes using the strong maximum principle.
b) By the maximum principle we obtain (2.5).

With respect to the behaviour as λ→ −∞ and λ→∞ we have:

Lemma 2.8. In the case that the solution exists

lim
λ→−∞

‖uλ‖∞ =

{
+∞ if β > p,
0 if β < p,

lim
λ→∞

‖uλ‖∞ =

{
+∞ if p < 1,
0 if 1 < p and β = 1.

10
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Proof. From (2.5) we get that
−λ ≤ |Ω|‖uλ‖β−p∞ .

This concludes the first limit.
For the second one, observe that −∆u ≥ λup and then u is supersolution of the

equation
−∆w = wp in Ω, w = 0 on ∂Ω. (2.6)

Denoting w1 the unique positive of (2.6) we arrive at

uλ ≥ λ1/(1−p)w1.

On the other hand, when β = 1 and assuming that there exists positive solution for all
λ > 0, we have that

uλ = λ1/(1−p)u1, (2.7)

where u1 is a positive solution of (1.1) when λ = 1. We finish the result.

In the following result we prove the stability of a positive solution of (1.1).

Proposition 2.9. Let u0 be a positive solution of (1.1). Then,

a) If β ≤ 1, λ(1− p) ≥ 0 and some inequality strict, u0 is stable.

b) If β ≥ 1, λ(1− p) ≤ 0 and some inequality strict, u0 is unstable.

c) If λ < 0, β ≤ p < 1, u0 is stable.

Proof. We have to study the sign of the eigenvalue problem −∆ξ − λpup−1
0 ξ − β

∫
Ω
uβ−1

0 ξ = σξ in Ω,

ξ = 0 on ∂Ω.

First, observe that by Lemma 2.7 u0 is strictly positive, so there exist positive constants
Ci > 0, i = 1, 2 such that

0 < C1d(x, ∂Ω) ≤ u0(x) ≤ C2d(x, ∂Ω),

and so the above eigenvalue problem is in the setting of (2.1).
Using Proposition 2.2 and taking now u = u0 we obtain

−∆u− λpup−1
0 u− β

∫
Ω
uβ−1

0 u = λ(1− p)up0 + (1− β)
∫

Ω
uβ0 .

So, if β ≤ 1 and λ(1 − p) ≥ 0 and some inequality strict, u0 is stable. Similarly in the
second case.

For the third paragraph, observe that using (2.5) we get

−λ(1− p)up0 < −λ(1− p)‖u0‖p∞ ≤ (1− β)
∫

Ω
uβ0 .

This concludes the result.

11
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3 A priori bounds

In this section we prove some results on a priori bounds of positive solutions of (1.1).
Firstly, we denote by e the unique positive solution of{

−∆e = 1 in Ω,
e = 0 on ∂Ω.

(3.1)

Lemma 3.1. Let u be a positive solution of (1.1). Then if λ ≥ 0 (resp. λ ≤ 0)

u ≥ e
∫

Ω
uβ (resp. u ≤ e

∫
Ω
uβ.)

Proof. Observe that if λ ≥ 0

−∆u = λup +
∫

Ω
uβ ≥

∫
Ω
uβ,

and so,

−∆

 u∫
Ω
uβ

 ≥ 1.

Whence we conclude that
u ≥ e

∫
Ω
uβ.

The case λ ≤ 0 is performed in a similar way. This completes the proof.

In the next result, we show the existence of a priori bounds of positive solutions of
(1.1) for λ negative.

Proposition 3.2. Assume λ ∈ Λ ⊂ (−∞, 0), Λ a compact, p, β > 0 and

(p, β) 6∈ {(p, β) : p = β ≥ 1}.

Then
‖u‖∞ ≤ C, for some positive constant C > 0 independent of u.

Proof. Assume first that β < 1. Then, by Lemma 3.1 we get that

u ≤ e
∫

Ω
uβ ≤ e

(∫
Ω
eβ
)1/(1−β)

.

On the other hand, observe that by (2.5) we have that

−λ‖u‖p−β∞ ≤ |Ω|,

and so the result follows for p > β.
Now, assume that β ≥ 1 and p ≤ β. Suppose that there exists a sequence (λn, un),

λn ∈ Λ, λn → λ0 < 0 and un positive solutions of (1.1) such that ‖un‖∞ →∞. Denote by

tn :=
∫

Ω
uβn,

12
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then un is the unique positive solution of the equation

−∆un = λnu
p
n + tn in Ω, un = 0 on ∂Ω. (3.2)

Observe that since λn < 0, the map s 7→ λns
p + tn is decreasing, and so the uniqueness

follows. By the maximum principle, we obtain that

λn‖un‖p∞ + tn ≥ 0,

and so tn →∞.
On the other hand, given δ > 0 for n ≥ n0 ∈ IN we get λ0− δ < λn < λ0 + δ. Consider

ε > 0 and ϕ1 > 0 a positive eigenfunction associated to λ1 such that ‖ϕ1‖∞ = 1, then εϕ1

is sub-solution of (3.2) for n ≥ n0 if

ελ1 = (λ0 − δ)εp + tn.

Hence, since tn →∞ we have that ε→∞ and in fact,

ε =
tn

λ1 − (λ0 − δ)
if p = 1,

εp

tn
→ 1
−(λ0 − δ)

if p > 1,
ε

tn
→ 1

λ1
if p < 1.

Now, using that εϕ1 ≤ un we get that

εβ
∫

Ω
ϕβ1 ≤ tn.

This is a contradiction for the cases 1 = p < β, 1 < p < β and p < 1 < β.
Finally, we consider the case p < 1 = β. Observe first that it there exists a positive

solution for λn < 0, then

−∆un −
∫

Ω
un < 0 in Ω, un = 0 on ∂Ω,

and so by Proposition 2.2 it follows that σ1 < 0. Denoting by

wn =
un
‖un‖∞

,

we have that
−∆wn −

∫
Ω
wn = λnw

p
n‖un‖p−1,

and so, passing to the limit, we get that wn → w in C2(Ω) with

−∆w −
∫

Ω
w = 0 in Ω, w = 0 on ∂Ω.

Since σ1 < 0 we conclude that w ≡ 0, a contradiction with ‖w‖∞ = 1.

Now we treat with the case λ positive.

Proposition 3.3. Assume λ ≥ 0, β > 1 and β > max{p, (N/2)(p−1)} and u is a positive
solution of (1.1). Then

‖u‖∞ ≤ C, for some positive constant C > 0 independent of u.

13
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Proof. We are going to use a boot-strapping argument. For that we set

f(u) := λup +
∫

Ω
uβ.

Thanks to Lemma 3.1, we have(∫
Ω
uβ
)β−1

≤
(∫

Ω
eβ
)−1

,

and then f(u) is bounded in Lβ/p(Ω) and which implies that u is bounded in W 2,β/p(Ω).
Consequently, if β/p ≥ N/2, then u is bounded in L∞(Ω). Assume that β/p < N/2. In
this case, u is bounded in Lβ1(Ω) with

1
β1

=
p

β
− 2
N

=
pN − 2β
βN

.

Then, f(u) is bounded in Lβ1/p(Ω) and so u in W 2,β1/p(Ω). Again, if

β1

p
≥ N/2,

we have the a priori bound. Assume that

β1

p
<
N

2
.

Now, u is bounded in Lβ2(Ω) where

1
β2

=
p

β1
− 2
N

=
p2N − 2β(p+ 1)

βN

and then f(u) is bounded in Lβ2/p(Ω). Applying this reasoning n times, we have a priori
bound if

β

p
≥ N

2
pn

pn + pn−1 + ...+ p+ 1
.

Since
lim
n→∞

pn

pn + pn−1 + ...+ p+ 1
=
p− 1
p

,

we conclude the result.

Consider now the following equation{
−∆u = λup + t in Ω,
u = 0 on ∂Ω,

(3.3)

where t > 0.

Proposition 3.4. Consider λ > 0, a sequence tn > 0 and a sequence of positive solutions
un of (3.3) such that ‖un‖∞ →∞. Then, if 1 < p < (N + 2)/(N − 2),

‖un‖∞ ≤ Ct1/pn for some positive constant C.

14



Combining local and non-local terms August 14, 2010

Proof. We are going to use a Gidas-Spruck argument, see [10]. Denote by

Mn := ‖un‖∞

and xn ∈ Ω such that Mn = un(xn).
Assume that

Mnt
−1/p
n →∞. (3.4)

Let

wn(y) :=
un(M

1−p
2

n y + xn)
Mn

,

defined in Ωn = {y ∈ IRN : xn +M
1−p
2

n y ∈ Ω}.
Then, it is easy to show that wn verifies

−∆wn = λwpn + (Mnt
−1/p
n )−p in Ωn,

and 0 ≤ wn ≤ 1, wn(0) = 1.
Using the compactness of Ω, we know that xn → x0 ∈ Ω, while Ωn → IRN if x0 ∈ Ω

and Ωn → IRN
+ if x0 ∈ ∂Ω. Using the elliptic regularity wn is bounded in C2,δ

loc (IRN ),
δ ∈ (0, 1). Therefore, passing to the limit through a subsequence and taking into account
(3.4) we get a solution 0 < w ≤ 1 of

−∆w = λwp in IRN if x0 ∈ Ω,

or
−∆w = λwp in IRN

+ if x0 ∈ ∂Ω,

(for the case x0 ∈ ∂Ω we need to straighten the boundary of Ω near x0 before introducing
the scaling, see for instance [10].)

If λ > 0 and 1 < p < (N + 2)/(N − 2), we arrive at a contradiction as consequence
of [10].

Corollary 3.5. Assume β > 1, λ > 0 and 1 < p < (N + 2)/(N − 2). Then, there exists
a priori bound of positive solutions of (1.1).

Proof. Assume that there exists a sequence of positive solutions un such that ‖un‖∞ →∞.
Then, by Proposition 3.4 we get

un ≤ ‖un‖∞ ≤ C
(∫

Ω
uβn

)1/p

,

and by Lemma 3.1 (∫
Ω
uβn

)1/p

≤ C.

The result is also true for any β < p.

15
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Proposition 3.6. Assume that 0 < β < p < (N + 2)/(N − 2), p > 1, and λ ∈ Λ, with
Λ ⊂ IR+ compact such that 0 /∈ Λ. Then, there exists a priori bound of positive solutions
of (1.1).

Proof. We use again a Gidas-Spruck argument. With the same notation that Proposition
3.4 we get

−∆wn = λwpn +M−pn

∫
Ω
uβn in Ωn.

But,

M−pn

∫
Ω
uβn ≤M−p+βn |Ω| → 0,

and so passing to the limit we again obtain

−∆w = λwp in IRN or IRN
+ .

Finally, we analyze the case p ≤ 1. Observe that when p = 1 > β we will show that
there exists bifurcation from infinity at λ = λ1 > 0 (see Theorem 1.1). So, we study the
case p < 1 and β ≤ 1.

Proposition 3.7. Assume that p < 1 and β ≤ 1, and λ ∈ Λ, with Λ ⊂ IR+ compact such
that 0 /∈ Λ. Then, there exists a priori bound of positive solutions of (1.1).

Proof. Assume that there exists a sequence λn → λ0 > 0 and positive solutions un of (1.1)
such that ‖un‖∞ →∞. Denote by

wn :=
un
‖un‖∞

.

It is clear that wn verifies

−∆wn = λnw
p
n‖un‖p−1

∞ + ‖un‖β−1
∞

∫
Ω
wβn in Ω, wn = 0 on ∂Ω.

Then, wn → w in C2(Ω) being w a solution of

−∆w = 0 if β < 1 −∆w −
∫

Ω
w = 0 if β = 1.

In the firs case, it is clear that w ≡ 0. In the second one, since there exists positive solution
for λn > 0 we get that σ1 > 0, and then w ≡ 0. In both cases, we arrive at contradiction
because ‖w‖∞ = 1.

In the following result, we show that (1.1) does not possess classical positive solutions
for β = p > (N + 2)/(N − 2) and λ large.

Proposition 3.8. Assume that Ω is bounded and starshaped with respect to some point
x0 ∈ Ω, β = p > (N + 2)/(N − 2) and λ > C(N), for some positive constant depending
on N . Then, (1.1) does not possess positive solution.
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Proof. We are going to use a Pohozaev’s argument, see for instance Chapter 1.5 in [12].
Multiplying (1.1) by x · ∇u we get

N − 2
2

∫
Ω
|∇u|2 +

1
2

∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣2 x · n = N

λ

p+ 1

∫
Ω
up+1 +N

∫
Ω
uβ
∫

Ω
u,

and then

0 <
1
2

∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣2 x · n = λ

(
N

p+ 1
− N − 2

2

)∫
Ω
up+1 +

(
N + 2

2

)∫
Ω
uβ
∫

Ω
u.

By Hölder inequality, we get (using β = p)

0 <
∫

Ω
uβ
∫

Ω
u ≤ C(Ω)

∫
Ω
up+1.

Hence

0 <
1
2

∫
∂Ω

∣∣∣∣∂u∂n
∣∣∣∣2 x · n ≤ [λ( N

p+ 1
− N − 2

2

)
+ C(Ω)

N + 2
2

] ∫
Ω
up+1,

an absurdum for λ large.

With a completely analogous argument, we can prove:

Corollary 3.9. Assume that Ω is bounded and starshaped with respect to some point
x0 ∈ Ω, β = p < (N + 2)/(N − 2) and λ < −C(N), for some positive constant depending
on N . Then, (1.1) does not possess positive solution.

4 Proof of the main results

In this section we prove the main results of the paper stated in Section 1. Firstly,
observe that if (p, β) = (1, 1) then (1.1) is an eigenvalue problem, and so there exist
positive solutions if, and only if,

λ = σ1.

Recall that sgn(σ1) = sgn(1−
∫

Ω e) where e is defined in (3.1).
So, from now on we assume that (p, β) 6= (1, 1).
Also, for λ = 0 and β 6= 1 there exists a unique positive solution

u = e

∫
Ω
uβ =⇒ u = e

(∫
Ω
eβ
)1/(1−β)

.

(the case β = 1 is an eigenvalue problem). Moreover, by Proposition 2.9, u is stable for
β < 1 and unstable for β > 1. So, we assume λ 6= 0.

4.1 Some useful results

A first attempt to study (1.1) is consider

R =
∫

Ω
uβ,

17



August 14, 2010 F. J. S. A. Corrêa and A. Suárez

and then we have to study the equation{
−∆u = λup +R in Ω,
u = 0 on ∂Ω,

(4.1)

and after that, to find a point fixed of

R =
∫

Ω
uβR ⇐⇒ 1 =

∫
Ω
wR

β ≡ h(R) (4.2)

being uR a positive solution of (4.1) and wR = uR/R
1/β and so positive solution of{

−∆w = λR(p−1)/βwp +R(β−1)/β in Ω,
w = 0 on ∂Ω.

(4.3)

In the following result we study in detail the map R 7→ h(R).

Proposition 4.1. Assume R > 0.

a) Assume p = 1. Then (4.3) possesses a positive solution, denoted by wR, if, and only
if, λ < λ1. The solution is unique. Moreover,

wR = eλR
β−1
β , (4.4)

being eλ the unique positive solution of{
(−∆− λ)eλ = 1 in Ω,
eλ = 0 on ∂Ω.

(4.5)

b) Assume p < 1. Then (4.3) possesses a unique positive solution, denoted by wR, for
all λ ∈ IR. Moreover, the map R ∈ (0,∞) 7→ h(R) is continuous and derivable. For
λ > 0

lim
R→0

h(R) =∞.

(a) When β = 1.

i. If λ > 0, R 7→ h(R) is decreasing and

lim
R→∞

h(R) =
∫

Ω
e.

ii. If λ < 0, R 7→ h(R) is increasing and

lim
R→0

h(R) = 0, lim
R→∞

h(R) =
∫

Ω
e.

(b) When β > 1,

i. If λ > 0
lim
R→∞

h(R) =∞.

18
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ii. If λ < 0, R 7→ h(R) is increasing and

lim
R→0

h(R) = 0, lim
R→∞

h(R) =∞.

(c) When β < 1 and λ > 0, R 7→ h(R) is decreasing, and for all λ

lim
R→∞

h(R) = 0.

Moreover,

i. If β < p and λ < 0, R 7→ h(R) is decreasing, and for all λ

lim
R→0

h(R) =∞.

ii. If β = p, the map R 7→ h(R) is decreasing and

lim
R→0

h(R) =

{
∞ if λ > 0,
ρ0(λ) if λ < 0,

where

ρ0(λ) ∈
(

(−1/λ)
∫

Ω
ϕβ1 , (−1/λ)|Ω|

)
, (4.6)

ϕ1 is the positive eigenfunction associated to λ1 such that ‖ϕ1‖∞ = 1, and
ρ0(λ) is a non-decreasing function in λ for λ < 0.

iii. If β > p,

lim
R→0

h(R) =

{
∞ if λ > 0,
0 if λ < 0.

c) Assume p > 1 and λ < 0, then there exists a unique positive solution, denoted by
wR, of (4.3). Moreover, the map R ∈ (0,∞) 7→ h(R) is continuous and derivable.

(a) When β = 1. The map R 7→ h(R) is decreasing and

lim
R→0

h(R) =
∫

Ω
e, lim

R→∞
h(R) = 0.

(b) When β > 1.

i. If β > p, R 7→ h(R) is increasing and

lim
R→0

h(R) = 0, lim
R→∞

h(R) = +∞.

ii. If β = p, the map R 7→ h(R) is increasing

lim
R→0

h(R) = 0, lim
R→∞

h(R) = ρ0(λ),

with ρ0(λ) as in (4.6).
iii. If β < p

lim
R→0

h(R) = 0, lim
R→∞

h(R) = 0.
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(c) When β < 1. The map R 7→ h(R) is decreasing and

lim
R→0

h(R) = +∞ lim
R→∞

h(R) = 0.

Proof. a) Assume that p = 1, then wR verifies

(−∆− λ)wR = R(β−1)/β

and the result of paragraph a) is obtained easily.
For the other cases, it is clear that (w,w) = (0,Ke) is a pair of sub-supersolution of

(4.3) for K verifying
K ≥ λKpepR(p−1)/β +R(β−1)/β. (4.7)

It is enough to take K large in any case.
On the other hand, for λ ≥ 0 and p < 1 the uniqueness follows by [3] and for λ < 0

thanks to λR(p−1)/βwp is a decreasing map in R.
The continuity and derivability of the map R 7→ wR is standard.
If λ ≥ 0 we have that −∆w ≥ R(β−1)/β and so

wR ≥ R(β−1)/βe. (4.8)

Analogously, if λ ≤ 0 we have that

wR ≤ R(β−1)/βe. (4.9)

Moreover, if λ ≥ 0 and p < 1 we have that −∆w ≥ λwpR(p−1)/β and then

wR ≥ R−1/βλ1/(1−p)w1, (4.10)

where w1 is the unique positive solution of (2.6).
Also, by the maximum principle for λ < 0 we get

‖wR‖p∞ ≤
R(β−p)/β

−λ
. (4.11)

Finally, εϕ1 is subsolution of (4.3), ‖ϕ1‖∞ = 1, if

ελ1 ≤ λεpϕp1R
(p−1)/β +R(β−1)/β. (4.12)

b) Assume that p < 1. Then, it is clear by (4.10) that for λ > 0

lim
R→0

h(R) = +∞,

and for β > 1 by (4.8)
lim
R→∞

h(R) = +∞.

Take now λ ≤ 0, then it is clear by (4.9) that

lim
R→0

h(R) = 0 if β > 1, lim
R→∞

h(R) = 0 if β < 1,

and by (4.11)

lim
R→0

h(R) = 0 if β > p, lim
R→∞

h(R) = 0 if β < p.
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Now, consider β > 1 and λ < 0. Observe that the map R 7→ λR(p−1)/β + R(β−1)/β is
increasing, and so R 7→ wR also. In this case, for (4.12) is enough

ελ1 − λεpR(p−1)/β = R(β−1)/β. (4.13)

From this equality we deduce that ε(R)→∞ as R→∞, and then h(R)→∞.
For β < 1 we have to distinguish several cases. If β < p and λ < 0 then again by

(4.13), we get that ε(R)→∞ as R→ 0. For the case β = p we have that

εp(R)→ − 1
λ

as R→ 0.

Moreover, by (4.11) we deduce that h(R) ≤ −1
λ |Ω|.

For λ > 0, for (4.7) is enough

K − λ‖e‖p∞KpR(p−1)/β = R(β−1)/β. (4.14)

If p, β < 1 it is clear that K(R)→ 0 as R→∞.
Finally, for β = 1 and λ > 0 observe that

e ≤ wR ≤ K(R)e

and K(R)→ 1 as R→∞ by (4.14).
For λ < 0, wR ≤ e and ε(R)e is subsolution if

ε− λεpCRp−1 = 1. (4.15)

It is clear that ε(R)→ 1 as R→∞.
Observe also that in the particular case β = p, wR verifies

−∆w = R(β−1)/β(λwp + 1)

and then, by the maximum principle

λwp(x) + 1 ≥ 0 for all x ∈ Ω. (4.16)

Indeed, if λ ≥ 0 then (4.16) is clear . If λ < 0 observe that

λwp(x) + 1 ≥ λ‖w‖p∞ + 1 ≥ 0.

Then, if R1 < R2 and β < 1, we get that wR2 is sub-solution of (4.3) for R = R1, and
then wR2 < wR1 . This proves that R 7→ h(R) is decreasing.

Hence, there exists the following limit

lim
R↓0

h(R) := ρ0(λ).

Moreover, if λ1 < λ2 < 0, wλ1,R is subsolution of the equation (4.3) with λ = λ2, and so
wλ1,R < wλ2,R. Taking limit we have that

ρ0(λ1) ≤ ρ0(λ2).
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Finally, assume that β ≤ p. Observe that wR verifies

−∆w = R(β−1)/β(λR(p−β)/βwp + 1).

Observe that by the maximum principle and since λ < 0 we get

λR(p−β)/βwp(x) + 1 ≥ λR(p−β)/β‖w‖p∞(x) + 1 ≥ 0.

Take R1 < R2, then

R
(β−1)/β
1 (λR(p−β)/β

1 wpR1
+ 1) ≥ R(β−1)/β

2 (λR(β−p)/β
2 wpR1

+ 1),

and then wR1 is a supersolution of the equation (4.3) with R = R2. We conclude that
wR1 ≥ wR2 .
c) Assume that p > 1 and λ < 0. From (4.9) we have that h(R) → 0 as R → 0 if β > 1
and h(R)→ 0 as R→∞ if β < 1.

In this case if β < 1 it is clear that ε(R)→∞ as R→ 0 from (4.13).
Now, assume β > 1. If p < β then ε(R)→∞ as R→∞, if p = β, εp(R)→ −1/λ and

for p > β we have that K(R)→ 0.
Finally, for β = 1, and using again (4.15), we have that h(R)→

∫
Ω e if R→ 0.

In the following result we prove a stability result of a positive solution u0 of (1.1),
obtained such that u0 = uR0 for some R0 > 0, in function on the map h defined in (4.2).

Proposition 4.2. Let u0 be a positive solution of (1.1) obtained such that u0 = uR0 for
some R0 > 0. Then, if

h′(R0) < 0 (resp. h′(R0) > 0) then u0 is stable (resp. u0 is unstable).

Proof. Let u0 = uR0 a positive solution of (1.1). Assume that h′(R0) < 0, we want to
show that

λ1(−∆− λpup−1
0 ;β;uβ−1

0 ) > 0, (4.17)

(analogous argument in the case h′(R0) > 0).
First, observe that the map R 7→ uR is increasing (uR defined in (4.1)), and so its

derivative u′R > 0 in Ω, being u′R the unique solution of

−∆u′R = λpup−1
R u′R + 1 in Ω, u′R = 0 on ∂Ω.

On the other hand, observe that since h′(R0) < 0 and using that h(R) = (1/R)
∫

Ω
uβR, we

get

β

∫
Ω
uβ−1
R0

u′R0
<

∫
Ω
uβR0

R0
= h(R0) = 1.

To prove (4.17) we use Proposition 2.2 with u = u′R0
> 0. Indeed, observe that

−∆u′R0
− λpup−1

0 u′R0
− β

∫
Ω
uβ−1

0 u′R0
= 1− β

∫
Ω
uβ−1

0 u′R0
> 0,

and then the stability follows.
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For the case p > 1 and λ > 0 we work with the original equation. In fact, assume
β ≥ 1 and consider the following auxiliar problem: −∆u = µu+ λup +

∫
Ω
uβ in Ω,

u = 0 on ∂Ω.
(4.18)

Lemma 4.3. Assume p > 1, β ≥ 1 and λ > 0. Then, for µ = λ1 when β > 1 and
µ = σ1 when β = 1 bifurcates from the trivial solution a non-bounded continuum C of
positive solutions of (4.18). Moreover, assuming the existence of a priori bound of (4.18)
for µ ∈ Λ, Λ a compact subset of IR, there exists a positive solution if, and only if, µ < λ1

if β > 1 and µ < σ1 for β = 1.

Proof. First, observe that if u is a positive solution of (4.18) we have

µ = λ1(−∆− λup−1; 1;uβ−1) < λ1(−∆; 1;uβ−1),

that is, µ < λ1 if β > 1 and µ < σ1 in the case β = 1.
That µ = λ1 for β > 1 and µ = σ1 for β = 1 is a bifurcation point from the trivial

solution is consequence of the Crandall-Rabinowitz Theorem [5], see also [6].
The existence of an unbounded continuum C follows by the classical Rabinowitz The-

orem [13].

4.2 Proof of Theorem 1.1

Assume that p = 1. It is clear that (1.1) does not possess positive solution for λ ≥ λ1.
By Proposition 4.1 a) there exists a unique positive solution for λ < λ1. The stability
results follow by Proposition 2.9 a) and b).

We study now the behaviour with respect to λ. Observe that if u is a positive solution
of (1.1) we have

(−∆− λ)u =
∫

Ω
uβ,

and so,

u = eλ

(∫
Ω
eβλ

)1/(1−β)

,

and so taking into account that for ϕ1 > 0 with ‖ϕ1‖∞ = 1, ϕ1 eigenfunction associated
to λ1,

1
λ1 − λ

ϕ1 ≤ eλ in Ω,

we get that for β < 1,

u ≥ 1
(λ1 − λ)1/(1−β)

ϕ1

(∫
Ω
ϕβ1

)1/(1−β)

and so ‖u‖∞ →∞ as λ→ λ1.
Assume that β > 1 and consider a sequence λn < λ1, λn → λ1 and un the positive

solution of (4.18) for λ = λn. We know by Proposition 3.3 that ‖un‖∞ is bounded, and so
passing to the limit we get that un → u0 in C2(Ω) as λn → λ1, with u0 positive solution
for λ = λ1. Then, u0 ≡ 0.

Finally, the behaviour as λ→ −∞ follows by Lemma 2.8.
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4.3 Proof of Theorem 1.2

a) Assume p < 1 = β. Assume that σ1 > 0, then it is clear that λ > 0. Observe that
since σ1 > 0, applying Lemma 2.3 with a ≡ b ≡ 1 and m ≡ 0 we get that

∫
Ω e < 1.

Now, the existence and uniqueness follow by Proposition 4.1 b). The stability follows by
Proposition 2.9. Finally, observe that (see (2.7))

uλ = λ1/(1−p)u1,

being u1 the unique solution of (1.1) for λ = 1. From here, we can deduce the behaviour
as λ→ 0 and λ→∞. The other cases can be treated similarly.
b) Assume p < 1 < β. The existence and uniqueness in the case λ < 0 follow by
Proposition 4.1. Also, the stability follows by Proposition 2.9. Now consider λ > 0.
Denote

eR := R(β−1)/βe.

Take R0 > 0 small such that ∫
Ω
eβR0

= Rβ−1
0

∫
Ω
eβ < 1.

Fix such R0 > 0. Now, it is clear wR0 → eR0 in L∞(Ω) as λ → 0, hence h(R0) < 1 for
λ ≤ λ0, with λ0 small. So, since

lim
R→0

h(R) = lim
R→∞

h(R) = +∞,

there exist at least two positive values R1
0 < R0 < R2

0 such that h(Ri0) = 1, i = 1, 2, and
so two positive solutions uλi = uRi0

of (1.1) for λ ≤ λ0 with u1 < u2, and

h′(R1
0) < 0 < h′(R2

0).

Thank to Proposition 4.2 we have that uλ1 is stable and uλ2 unstable.
Now, we show that there does not exist positive solutions of (1.1) for λ large. Observe

that
u ≥ λ1/(1−p)w1, (4.19)

where w1 is defined in (2.6), and then

−∆u ≥ λ1/(1−p)wp1 + λ(β−1)/(1−p)
∫

Ω
wβ−1

1 u

and so
λ1(−∆;λ(β−1)/(1−p);wβ−1

1 ) > 0.

This is an absurdum because by Lemma 2.6

λ1(−∆;λ(β−1)/(1−p);wβ−1
1 )→ −∞ as λ→∞.

Then, we can define

Λ := {λ ∈ IR : there exists at least a positive solution of (1.1)}.
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We have proved that 0 < λ := sup Λ < ∞. Thanks to the bounds by Proposition 3.3,
there exists positive solution for λ = λ. Now, it is clear that if λ ∈ (0, λ) then (εw1, uλ)
is a pair of sub-supersolution of (1.1) with ε small and uλ a positive solution of (1.1) for
λ = λ. Observe that this method works for non-local equation, see for instance [9].

On the other hand, consider uλ1 for λ ∈ (0, λ0). Since for λ = 0 the solution is unstable,
we can assure that

lim
λ→0
‖uλ1‖∞ = 1.

Finally, the behaviour of the solution as λ→ −∞ follows by Lemma 2.8.
c) Assume p, β < 1. In this case, it is clear by Propositions 4.1 and 4.2 the existence,
uniqueness and stability for λ > 0.
(a) Suppose that β < p. In this case we have again by Proposition 4.1 the existence and
uniqueness for all λ ∈ IR and the stability follows by Proposition 2.9.
(b) Suppose β = p. Observe that since the map h(R) is decreasing, in case of existence of
positive solution, it is unique. Moreover, by (4.6) and since ρ0(λ) is non-decreasing, there
exists a unique value λ0 < 0 such that

ρ0(λ) ≤ 1 for λ ≤ λ0 and ρ0(λ) > 1 for λ ∈ (λ0, 0).

Hence, there exists a positive solution of (1.1) if, and only if, λ > λ0. Then,

lim
R→0

h(R) ≤ 1 for λ < λ0, lim
R→0

h(R) > 1 for λ > λ0,

and
lim
λ→λ0

‖uλ‖∞ = 0.

Again, thanks to Proposition 4.2 we know that the solution is stable.
(c) Suppose β > p. With a similar argument to the used in the paragraph b) we can show
the existence of two positive solutions for λ negative and small. Indeed, in this case

lim
R→0

h(R) = lim
R→∞

h(R) = 0,

and there exist at least two positive values R1
0 < R0 < R2

0 such that h(Ri0) = 1, i = 1, 2,
and so two positive solutions uλi = uRi0

of (1.1) for λ ≤ λ0 with uλ1 < uλ2 , and

h′(R1
0) > 0 > h′(R2

0),

and then uλ1 is unstable and uλ2 stable.
We prove now the non-existence of positive solutions for λ very negative. Indeed,

observe that by (2.5) we have
−λ ≤ C‖u‖β−p∞ ≤ C (4.20)

this last inequality by Lemma 3.1. Then, if there exists a positive solution of (1.1) we get
that λ ≥ −C.

Again, we can define

Λ := {λ ∈ IR : there exists at least a positive solution of (1.1)}.

We know that λ := inf Λ > −∞ and λ < 0, and using as sub-supersolution the pair
(uλ,Ke) for K large, we prove the existence of positive solution for all λ ∈ (λ, 0). Finally,
by (4.20) it can not occur that for a sequence (λn, un) we have λn → λ0 < 0 and ‖un‖∞ →
0. Moreover, since the solution for λ = 0 we can conclude that

lim
λ→0
‖uλ1‖∞ = 0.

25



August 14, 2010 F. J. S. A. Corrêa and A. Suárez

4.4 Proof of Theorem 1.3

a) Assume β = 1 < p. If σ1 > 0 and there exists a positive solution of (1.1) then λ > 0.
Now, suppose that λ > 0. Then, thanks to that 1 < p < (N + 2)/(N − 2) we have a priori
bounds for the positive solutions of (4.18) by Proposition 3.6, and then applying Lemma
4.3 there exists at least a positive solution uµ for all µ < σ1. Since σ1 > 0, there exists a
positive solution u0 for µ = 0, that is, u0 is solution of (1.1). Finally, by (2.7) we conclude
the behaviour as λ→ 0 and λ→ +∞.

If σ1 = 0 then λ = 0, and so there exist infinite positive solutions of (1.1).
Finally, if σ1 < 0 then λ < 0, and by Lemma 2.3 we have that∫

Ω
e > 1,

and then the result follows by Proposition 4.1. By Lemma 2.8 we know the limit as
λ→ −∞.

Finally, again it can be proved that uλ = (−λ)
1

1−pu−1 being u−1 a positive solution of
(1.1) for λ = −1. We conclude (1.7).
b) Assume that p, β > 1. If β > p there exists a unique and unstable positive solution for
λ ≤ 0 by Proposition 4.1.

Consider now the case β = p. In this case the map h(R) is increasing, limR→0 h(R) = 0
and limR→∞ h(R) = ρ0(λ). Moreover, by (4.6) and since ρ0(λ) is non-decreasing, there
exists a unique value λ0 < 0 such that

ρ0(λ) ≤ 1 for λ ≤ λ0 and ρ0(λ) > 1 for λ ∈ (λ0, 0).

Hence, there exists a positive solution of (1.1) if, and only if, λ > λ0. The solution is
unique and, by Proposition 4.2, it is unstable. Finally, we get that

lim
λ→λ0

‖uλ‖∞ = +∞.

For the case β < p, first we show that wR → R(β−1)/βe as λ ↑ 0. Indeed, we can prove
that

wR ≤ K(R)e for λ < 0,

for some constant K(R) > 0 independent of λ. Take now R0 > 0 such that

R
(β−1)
0

∫
Ω
eβ > 1

and then for λ is small, h(R0) > 1. Hence, since

lim
R→0

h(R) = lim
R→∞

h(R) = 0,

there exist two values R1
0 < R0 < R2

0 such that

h(Ri0) = 1, h′(R2
0) < 0 < h′(R1

0).

This proves the existence of two positive solutions uλ1 < uλ2 for λ small and negative, with

uλi = uRi , R1
0 < R2

0,
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and uλ1 unstable and uλ2 stable. Observe also that since there exist a priori bounds for
λ < 0 and for λ = 0 the solution is unstable, the sequence ‖uλ2‖∞ →∞ as λ→ 0.

Also, observe that by (2.5) we get −λ ≤ ‖u‖β−p|Ω| and then ‖u‖∞ → 0 as λ → −∞
and then

∫
Ω u

β → 0, a contradiction with Lema 3.1. That is, there does not exist positive
solution of (1.1) for λ very negative. Hence, we can define the set

Λ := {λ ∈ IR : there exists at least a positive solution of (1.1)}.

We have proved that −∞ < inf Λ := λ < 0 and it can shown similarly to the other cases
the existence of solution for all λ ∈ [λ, 0).

Lemma 2.8 provides us with the behaviour as λ→ −∞ and λ→∞.
In all the cases, when β, p > 1, λ > 0 and assuming a priori bounds, we have solutions

of (4.18) for all µ < λ1, and then for µ = 0.
c) Assume now that β < 1 < p. Again, the existence, uniqueness and stability of positive
solution for λ ≤ 0 follow by Proposition 4.1. We prove the non-existence for λ large.
Observe that for λ > 0 we have by Lemma 3.1 that

u ≥ Ke,

for

K =
(∫

Ω
eβ
)1/(1−β)

.

Then,

−∆u ≥ λ(Ke)p−1u+
∫

Ω
uβ,

and hence
λ1(−∆− λ(Ke)p−1; 0; 0) > 0,

an absurdum for λ large.
We can define

Λ := {λ ∈ IR : there exists at least a positive solution of (1.1)}.

We know that λ := sup Λ <∞. Moreover, since there exists a unique and stable positive
solution for λ = 0, say u0, using again Proposition 20.6 in [2] we can conclude that in a
neighborhood N ⊂ IR × L∞(Ω) of (λ, u) = (0, u0) there exists a unique stable positive
solution. Then, λ > 0. Again, using the sub-supersolution method with (u, u) = (εϕ1, uλ)
and ε > 0 small, it can be proven that there exists at least a positive solution for all λ ≤ λ.

Finally, since for λ = 0 there exists a unique positive solution of (1.1), u0, and it is
stable, by Theorem 17.1 in [2], then there exists an unbounded subcontinuum Σ containing
(0, u0). Fix our attention in the case λ positive. Since there does not exist positive solution
for λ large, we get that ProjIR(Σ) is bounded. On the other hand, observe that since for
λ ∈ (0, λ0), for λ0 small, we have stable positive solutions uλ, for all λ ∈ (0, λ0) there exists
at least another positive solution wλ ∈ Σ with wλ 6= uλ. Moreover, since Σ is unbounded,
and for λ = 0 the solution is stable, we have that ‖wλ‖∞ → +∞ as λ ↓ 0.
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