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Abstract

In this article, we study the controllability of a class of parabolic systems of the form Yt = (D∆+A)Y +Bχωu with
Dirichlet conditions on the boundary of a bounded domain Ω, where ω ⊂ Ω is a subdomain. Here D,A ∈ L(Rn),
B ∈ L(Rm;Rn) and we prove that the algebraic Kalman condition extends to such systems. To cite this article:

A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser.

Résumé

Dans cet article, on étudie la contrôlabilité d’une classe de systèmes paraboliques de la forme Yt = (D∆+A)Y +
Bχωu avec des conditions de Dirichlet sur le bord d’un domaine born Ω, où ω ⊂ Ω est un sous-domaine. Ici
D,A ∈ L(Rn), B ∈ L(Rm;Rn) et on montre que la condition algbrique de Kalman s’étend à de tels systèmes.
Pour citer cet article : A. Name1, A. Name2, C. R. Acad. Sci.Paris, .

Version française abrégée

Le critère de Kalman est une condition nécessaire et suffisante de contrôlabilité de systèmes différentiels
linéaires à coefficients constants. Ce travail a pour objectif de donner une extension de ce critère aux
systèmes d’équations aux dérivées partielles, plus précisément aux systèmes paraboliques linéaires de la
forme (1) dont les coefficients sont indépendants du temps.
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La contrôlabilité de systèmes paraboliques est étudiée depuis les années 2000, essentiellement pour des
systèmes de deux équations (voir [11], [1], [2], [5]). Le résultat principal de ce travail est de démontrer
que la condition de Kalman (dans un sens à préciser) est nécessaire et suffisante pour la contrôlabilité
aux trajectoires de systèmes (1) satisfaisant aux hypothèses suivantes : Ω ⊂ R

d est un ouvert borné
régulier, ω ⊂ Ω est sous-ensemble ouvert de Ω, T > 0, M = PDP−1, où D = diag(dii > 0)n×n ∈ L(Rn),
R un opérateur elliptique autoadjoint donné par (2), A = (aij)1≤i,j≤n ∈ L(Rn), B ∈ L (Rm,Rn), v ∈
L2(ΩT )

m (ΩT = (0, T )× Ω), y0 = (y0,i)1≤i≤n ∈ L2(Ω)n.
Dans (1), y = (yi)1≤i≤n est la variable d’état et 1ω la fonction caractéristique de ω. L’opérateur de

Kalman, K est défini dans (3) et (K∗) désigne son adjoint dans L2(Ω)n. Notre principal résultat est :
Théorème Le système (1) est contrôlable aux trajectoires en tout temps T > 0 si et seulement si

Ker(K∗) = {0} .

La condition nécessaire se vérifie aisément. La démonstration de la partie suffisante se fait en deux
étapes. Dans un premier temps, la définition de l’opérateur K permet de transformer le système adjoint
de (1) en un système en cascade pour lequel on démontre une inégalité d’observabilité de type Carleman.
Celle-ci est obtenue via une inégalité de Carleman pour des opérateurs paraboliques d’ordre n et une
inégalité d’observabilité pour des systèmes d’ordre 2. Dans une deuxième partie, on conclut en revenant
au système initial grâce à (4).
Le contrôle aux trajectoires de tels systèmes par le bord est ouvert.

1. Introduction

Controllability of linear differential systems is well-known. In particular we have at our disposal the
famous Kalman rank condition (see for example [8, Chapter 2, p. 35]), that is to say, if A ∈ L(Rn),
B ∈ L(Rm,Rn), then the system Y ′ = AY +Bu is controllable at time T > 0 if and only if rank [A |B] =
rank

[
B,AB, ..., An−1B

]
= n. Our main goal is to extend this algebraic condition to partial differential

systems. For n,m ∈ N
∗ and T > 0, we consider the following n× n parabolic system





∂ty = (MR+A)y +Bv1ω in ΩT = Ω× (0, T ),

y = 0 on ΣT = ∂Ω× (0, T ), y(·, 0) = y0(·) in Ω,
(1)

where Ω ⊂ R
d is a bounded open set with a C2-boundary ∂Ω, ω ⊂ Ω is an open subset, T > 0,

M = PDP−1, where D = diag (dii)n×n ∈ L(Rn), R is the second order elliptic self adjoint operator given
by

R = Σi,j∂irij(x)∂j + c(x) (2)

with rij ∈ C1(Ω), c ∈ L∞(Ω). A = (aij)1≤i,j≤n ∈ L(Rn), B ∈ L (Rm,Rn), v ∈ L2(ΩT )
m (ΩT =

(0, T ) × Ω), y0 = (y0,i)1≤i≤n ∈ L2(Ω)n. In (1), y = (yi)1≤i≤n is the state variable while 1ω denotes
the characteristic function of the open subset ω. We assume that dii > 0, ∀i ∈ {1, ..., n}. The exact
controllability to zero reads as follows: For given T > 0 and y0 ∈ L2(Ω)n can we find v ∈ L2(ΩT )

m such
that the corresponding solution y of (1) satisfies y(T ) = 0 a.e. in Ω? In the linear case, this property is
equivalent to the controllability to trajectories. There are few results on null controllability of system (1)
when n > 1 and most of them are proved for n = 2: see, for instance, [11], [1], [2] and [5]. Also see [6] where
the authors provide a null controllability result for a general cascade parabolic system of n equations.
To be clear, we will present our result in the case where M = D (i.e., P ≡ Id) and R = ∆. All the

proofs can be adapted to the general case. Let us now introduce the Kalman operator. If we denote by
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L := D∆ + A with D(L) = D(∆)n =
(
H2(Ω) ∩H1

0 (Ω)
)n

, then the Kalman operator associated with
(L,B) is the operator matrix





K := [L |B] =
[
Ln−1B,Ln−2B, ..., LB,B

]
: D(K) ⊂ L2(Ω)nm → L2(Ω)n, with

D(K) := {u ∈ L2(Ω)nm : Ku ∈ L2(Ω)n},
(3)

Our main result is the following:
Theorem 1.1 System (1) is exactly controllable to trajectories at any time T if and only if the Kalman
operator K satisfies

Ker(K∗) = {0} . (4)

Of course, this result is still true if ∆ is replaced by R (defined in (2)). If (λp)p∈N∗ is the sequence of
eigenvalues of −∆ with Dirichlet boundary conditions, we consider the matrices Lp = −λpD+A ∈ L(Rn)
and Kp = [Lp |B] =

[
Ln−1
p B, ..., LpB,B

]
∈ L(Rnm,Rn), for every p ∈ N

∗. It is not difficult to see that (4)
is equivalent to

rankKp = n, ∀p ∈ N
∗. (5)

Note that either (5) reduces to a finite number of conditions or it is never satisfied.
Remark 1 (i) The closest result of this kind we know is due to H. Leiva [9] which gives a necessary

and sufficient condition for the approximate controllability of (1) in the case where A ≡ 0, D
is not diagonal and B(x) ∈ R

n (m ≡ 1).
(ii) A necessary and sufficient condition (if it exists) of controllability to trajectories in the case of

controls acting on a subset of the boundary is still open for such systems.
(iii) To our knowledge, the null controllability problem of (1) when the operators are time dependent

is still open. We will address in details this question in a forthcoming paper. On the other hand,
the case in which A,B depend on x seems to be much more complicated. A necessary and sufficient
condition for the controllability of (1) is open even if there are some partial results (see [11], [2], [1],
[5], [6]). The methods used in this paper would hardly provide general results for non-autonomous
systems since the proofs take advantage in a crucial way of the fact that the matrices considered are
constant in time and space variables.

2. Sketch of the proof of Theorem 1.1

Controllability of System (1) is equivalent (see for instance [10], [3], ...) to the existence of a positive
constant C such that, for every ϕ0 ∈ L2(Ω)n, the solution ϕ ∈ C0([0, T ];L2(Ω)n) of the following adjoint
system





−∂tϕ = (D∆+A∗)ϕ in ΩT ,

ϕ = 0 on ΣT , ϕ(·, T ) = ϕ0(·) in Ω,
(6)

(where we have used thatD∗ = D) satisfies the observability inequality (with the notation ωT = ω×(0, T ))

||ϕ(·, 0)||2L2(Ω) ≤ C

∫∫

ωT

|B∗ϕ(x, t)|2 dx dt. (7)

We will need, in an essential way, the following properties of the Kalman operator:
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Proposition 2.1 (i) If u ∈ D(∆n−1)nm then Ku ∈ L2(Ω)n and ‖Ku‖L2(Ω)m ≤ C ‖u‖D(∆n−1)nm.

(ii) Assume Ker (K∗) = {0}. Let r ∈ R. There exists C > 0 such that for every ϕ ∈ L2(Ω)n satisfying
K∗ϕ ∈ D(∆r)nm, one has :

‖ϕ‖
2

D(∆r−(n2
−1)/2)n

≤ C ‖∆rK∗ϕ‖
2
L2(Ω)nm .

2.1. Necessary condition

Suppose that Ker(K∗) 6= {0}. It follows from (5) that there exists p0 ∈ N
∗ such that 0 ∈ σ(Kp0

).
Therefore, thanks to Kalman’s rank condition applied to the pair (−λp0

D +A,B) , there exists a non
zero solution zp0

(t) ∈ R
n of the adjoint system associated with (−λp0

D +A,B)




− z′ = (−λp0
D +A∗)z in (0, T ),

z(0) = zp0 ∈ R
n = 0,

satisfying B∗zp0
(t) = 0, ∀t ∈ [0, T ]. Then, letting ϕ0 = zp0

(T )φp0
, where φp0

is an eigenfunction associated
with λp0

, it is easy to check that ϕ(t, x) = zp0
(t)φp0

(x) is the solution of (6). It is non zero and satisfies
B∗ϕ(t) = 0, ∀t ∈ [0, T ]. Obviously this solution does not satisfy the observability inequality (7), and thus
(1) is not null controllable. �

2.2. Sufficient condition

2.2.1. A Carleman inequality for a parabolic equation of order n
Let us denote by D = ∩p≥0D(∆p). If we set X = Dn then, one has:

Proposition 2.2 If ϕ = (ϕ1, · · · , ϕn)
∗
is the solution to (6) corresponding to ϕ0 ∈ X, then

det (Id∂t +D∆+A∗)ϕi = 0 in ΩT , ∀i : 1 ≤ i ≤ n. (8)

This proposition can be deduced as in the case of an ordinary differential system (see [7, §6.4, p. 144]).
In order to state our second result, let us introduce some additional notations. If s, τ ∈ R, we define

the following functionals




I(s, ϕ) = τs−1

∫ ∫

ΩT

ρs−1e−2τα
(
|ϕt|

2 + |∆ϕ|2 + τ2ρ2 |∇ϕ|2 + τ4ρ4 |ϕ|2
)
dx dt,

I(s, φ) = I(s+ 3(n− 1), φ) +
n−1∑

p=1

∑

1≤i1<...<ip≤n

I(s+ 3(n− p− 1), Pip . . . Pi1φ),

where ρ = ρ(x, t) and α = α(x, t) are suitable weight functions defined in ΩT and where the operator Pi

is given by Pi ≡ ∂t + di∆ (1 ≤ i ≤ n). We will obtain the proof of the observability inequality (7) as a
consequence of the following result:
Theorem 2.1 Let us assume that n, k1, k2 ∈ N and s0 ∈ R are given. Then, there exist two positive
functions α0, α1 ∈ C2(Ω) (only depending on Ω and ω), two positive constants C and σ (only depending
on Ω, ω, n, s0, k1 and k2) and r0 = r0(n) ∈ N such that

k1∑

i=0

k2∑

j=0

I(s0 − 4(i+ j),∆i∂jtφ) ≤ Cτs0+r0

∫∫

ωT

ρs0+r0e−2τα |φ|
2
, ∀τ ≥ σ(T + T 2), (9)
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for every φ ∈ C∞((0, T );D) solution to (8). In (9), the functions α and ρ are given by α(x, t) =
α0(x)/t(T − t) and ρ(x, t) = α1(x)/t(T − t).
Sketch of the proof: We will present a sketch of the proof in the particular case in which k1 ≡ k2 ≡ 0.
Let us fix s0 ∈ R and φ ∈ C∞((0, T );D) a solution to (8). If we develop the determinant in (8) we deduce
that φ also satisfies


Pn · · ·P1 +

n−1∑

p=2

∑

1≤i1<...<ip≤n

αi1,...,ipPi1 . . . Pip +

n∑

i=1

αiPi + α


φ = 0 in ΩT (10)

where the coefficients αi1,...,ip , αi and α are real numbers that only depend on the coefficients of D and A .
If we perform the following change of variables ψ1 = φ, ψi = Pi−1ψi−1 = (∂t + di−1∆)ψi−1, for 2 ≤ i ≤ n,
it follows from (10) that (ψ1, . . . , ψn)

∗ solves the cascade parabolic system






(∂t + d1∆)ψ1 = ψ2 in ΩT ,

(∂t + d2∆)ψ2 = ψ3 in ΩT ,

· · ·

(∂t + dn∆)ψn = f in ΩT ,

ψi = 0, on ΣT ,

(11)

with

f = f(φ) = −

n−1∑

p=2

∑

1≤i1<...<ip≤n

αi1,...,ipPi1 . . . Pipφ+

n∑

i=1

αiPiφ+ αφ ∈ L2(ΩT ). (12)

Thanks to the cascade structure of system (11) and following the ideas in [6] (also see [5]), we can
prove that there exist r0 = r0(n) ∈ N and positive constants σ = σ(Ω, ω, s0, n) and C = C(Ω, ω, s0, n)
such that

n∑

i=1

I(s0 + 3(n− i), ψi) ≤ C


τs0+r0

∫∫

ωT

ρs0+r0e−2τα |ψ1|
2 dx dt+ τs0

∫ ∫

ΩT

ρs0e−2τα |f |2 dx dt


 ,(13)

for every τ ≥ σ(T +T 2). The key point in the proof of this last inequality is the following global Carleman
estimate for the heat equation

I(s0, ϕ) ≤ C


τs0

∫ ∫

ΩT

ρs0e−2τα |ϕt ± c∆ϕ|
2
dx dt+ τs0+3

∫∫

ωT

ρs0+3e−2τα |ϕ|
2
dx dt


 ,

valid for any τ ≥ σ(T +T 2) and any function ϕ ∈ L2(0, T ;H1
0(Ω)) such that ϕt± c∆ϕ ∈ L2(ΩT ) (see [4]).

Now, if Π denotes any permutation of {1, 2, . . . , n}, one can consider the new functions ψ̃1 = φ, ψ̃i =

PΠ(i−1)ψ̃i−1, deducing that ψ̃ = (ψ̃1, . . . , ψ̃n)
∗ is a solution to system (11) with dΠ(i) instead of di. We

can apply the previous argument, deducing that (13) holds for ψ̃. Finally, using the definition of f (see
(12)), we infer (9) in the particular case k1 = k2 = 0. This ends the proof. �
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2.2.2. Use of the Kalman condition
From Proposition 2.1 we deduce that X ⊂ D(K∗). We also have that X is dense in L2(Ω)n and, since

the constant C in (7) is independent of ϕ0, it is sufficient to prove inequality (7) for ϕ0 ∈ X . Under this
assumption, the corresponding solution to (6) satisfies ϕ ∈ C∞((−∞, T );X) and

K∗ϕ(·, t) ≡
(
(−1)n−1∂n−1

t w, (−1)n−2∂n−2
t w, · · · ,−∂tw,w

)∗
(·, t), ∀t ∈ [0, T ),

where w = B∗ϕ. From Proposition 2.1 and using inequality (8) for w = B∗ϕ, if Ker (K∗) = {0} , the
following inequality holds:

||ϕ(·, 0)||2L2(Ω)n ≤ C

3T/4∫

T/4

||ϕ(·, t)||2L2(Ω)n dt ≤ C

3T/4∫

T/4

∥∥∥∆(n−1)(2n−1)K∗ϕ(·, t)
∥∥∥
2

L2(Ω)nm
dt

≤ C

n−1∑

j=0

∫ ∫

ΩT

e−2τα|∆(n−1)(2n−1)∂jtwℓ|
2 dx dt.

On the other hand, thanks to Proposition 2.2, we can apply Theorem 2.1 with k1 = (n − 1)(2n− 1),
k2 = n− 1 and s0 = 8n(n− 1) to each component wℓ = (B∗ϕ)ℓ, 1 ≤ ℓ ≤ m, obtaining

n−1∑

j=0

∫ ∫

ΩT

e−2τα|∆(n−1)(2n−1)∂jtwℓ|
2 dx dt ≤ Cτr0+8n(n−1)

∫∫

ωT

e−2ταρr0+8n(n−1)|B∗ϕ|2 dx dt,

which is valid for τ ≥ σ(T + T 2). Choosing τ = σ(T + T 2) and combining these two last inequalities we
can infer that inequality (7) is satisfied. Therefore, system (1) is null controllable at time T . This ends
the proof of Theorem 1.1.
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