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Rotating Optical Lattices

• Bose-Einstein condensates (BECs) trapped in an optical lattice
(OL) can be described by the Gross-Pitaevskii equation (GPE).

• If the OL is strong enough, the underlying (GPE) for the wave
function in the continuum may be approximated by its DNLS
counterpart [1, 2, 3, 4].

• Discrete solitons of various kinds have been studied in detail the-
oretically in 1D, 2D, and 3D versions of the DNLS equation [5].

• All these localized states have their counterparts in continuum
models with periodic potentials that emulate the lattices. 2D soli-
tons of both the fundamental and vortex types, which are unstable
in uniform continua, can be stabilized by the OL potential [6].

• 2D solitons obeying the GPE in the 2D continuum can also be
supported by a rotating OL [7, 8].

• These solitons may be fully localized solutions to the equation
with the self-focusing/attractive cubic nonlinearity, placed at some
distance from the rotation pivot and revolving in sync with the
holding 2D lattice.

• These co-rotating strongly localized solitons are stable provided
that the rotation frequency does not exceed a critical value.

The model

• The starting point is the normalized 2D GPE including the po-
tential in the form of an OL rotating at angular velocity Ω, and
thus stirring a “pancake”-shaped BEC trapped in a narrow gap
between two strongly repelling optical sheets.

• The GPE is written in the reference frame co-rotating with the
lattice (and the rotation pivot located at the center of the lattice);
hence the potential does not contain explicit time dependence:
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= σ|ψ|2ψ −

(

1

2
∇2 + ΩL̂z

)

ψ − ǫ [cos (kx) + cos(ky)]ψ (1)

• L̂z = i(x∂y−y∂x) is the operator of the z-component of the orbital
momentum; σ determines the sign of the interaction, attractive
(σ = −1) or repulsive (σ = +1).

• In the limit of a very deep OL, a discrete model can be derived
from the underlying GPE in the tight-binding approximation [2].
Eventually, it amounts to a straightforward discretization of the
GPE.

• Thus, the discrete counterpart of Eq. (1) is

i
dψm,n
dt

= σ|ψm,n|
2ψm,n −

C

2
{(ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1 − 4ψm,n)

−iΩ [m (ψm,n+1 − ψm,n−1) − n (ψm+1,n − ψm−1,n)]} (2)

• (m,n) are discrete coordinates; C > 0 is the corresponding cou-
pling constant, which accounts for the linear tunneling of atoms
between BEC droplets trapped in deep nodes of the lattice; Ω,
which takes positive values, is the rotation frequency.

• As in the usual 2D DNLS equation (with Ω = 0), values σ = ±1
in Eq. (2) may be transformed into each other by the staggering

transformation (ψm,n → (−1)m+nψm,n). Therefore we fix σ ≡
−1 (self-attraction).

• Our first objective is to find stationary localized solutions to (2) in
the form of FSs (fundamental solitons) and VSs (vortex solitons).

• We substitute the standing wave ansatz, ψm,n = e−iµtφm,n
(where µ is the normalized chemical potential); then, the station-
ary lattice field φm,n obeys the equation

−µφm,n = |φm,n|
2φm,n +

C

2
(φm+1,n + φm−1,n + φm,n+1 + φm,n−1 − 4φm,n)

+i
C

2
Ω [m (φm,n+1 − φm,n−1) − n (φm+1,n − φm−1,n)] (3)

• The second objective is to examine the stability of the discrete
solitons, assuming small perturbations in the form of δψm,n ∼
exp (−iµt + iλt). the onset of instability indicated by the emer-
gence of Im(λ) 6= 0.

• To parameterize the soliton families, the scales are fixed by setting
µ ≡ −1, while C is varied.

Fundamental solitons

• Rotation makes the discrete lattice inhomogeneous, hence proper-
ties of solitons strongly depend of the location of their centers.

• Without the rotation, FSs are stable at C ≤ Ccr = −2µ ≡ 2 (see
Ref. [5]).

• The onset of their instability is accounted for by a pair of eigen-
frequencies of small perturbations with finite imaginary and zero
real parts, i.e., the instability leads to the exponential growth of
perturbations.

• Numerical simulations of the instability development show spon-
taneous transformation of unstable FSs into lattice breathers [9].

• Our analysis aims to determine the stability border for the FSs,
Ccr, for each set of values of the discrete coordinates of the soliton’s
center, {m0, n0}.

• We present results for angular velocity Ω = 0.1. This choice makes
it possible to explore the existence and stability of FSs in a clear
form; larger values of Ω give rise to a resonance with linear lat-
tice modes, leading to Wannier-Stark ladders and hybrid solitons
[13] and making the continuation in C and identification of Ccr

difficult.

• We carried out the calculations on the lattice of size 21 × 21.
To avoid effects of the boundaries, the range of the soliton-center
coordinates was restricted to |m0| , |n0| ≤ 8.

• The figure displays the dependence of the imaginary part of eigen-
frequencies of small perturbations Im(λ) on the lattice coupling
constant, for the FS with its center set at point (m0 = 3, n0 = 2)
and Ω = 0 (left) and Ω = 0.1 (right).
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• The instability sets in at C = Ccr = 1.70, which is smaller than

the critical value in the ordinary model, C
(Ω=0)
cr = 2.

• Next figure summarizes the results obtained for the FSs placed
at different positions, in the form of dependences of Ccr on the

distance of the FS’s center from the pivot, R ≡
√

m2
0 + n2

0, and

on one coordinate, n0, while m0 is fixed.
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• It is observed that Ccr monotonously decreases with R. Note
that there are different pairs (m0, n0) which have equal values of
R and give slightly different Ccr.

• Direct simulations of the dynamical evolution of unstable FSs
demonstrate that the instability does not destroy the solitary wave.
Instead, it transforms the waveform into a persistent breathing
structure, as shown in the figure.
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• A quasi-continuum approximation predicts an estimated depen-
dence Ccr ∼ 1/R2 [10], which is qualitatively consistent with the
numerical findings showing the decrease of Ccr with R.

• That quasi-continuum approximation makes it also possible to es-
timate the order of magnitude of the rotation frequency Ω = 0.1
in physical units. Assuming a lattice spacing ∼ 1 µm and the
condensate of 7Li or 85Rb [11, 12], corresponds, respectively, to
∼ 100 Hz or 10 Hz.

Vortex solitons

• Discrete vortex solitons (VSs) of the 2D DNLS equation are sta-
tionary solutions which feature a phase circulation of 2πS around
the central point, at which the amplitude vanishes, with integer S
identified as the vorticity [14].

• VS crosses with S = 1 are stable for C < C
(S=1)
cr = 0.781; the

instability above this points transforms the VS into an ordinary
FS, with S = 0. All VSs with S = 2 are unstable in the ordi-
nary 2D DNLS equation. In all cases, the instability sets in via a
Hamiltonian Hopf bifurcation.

• We consider here only on-axis VSs, whose centers coincide with
the rotation pivot (R = 0). On the contrary, Ω is varied.

• The stability region of VSs with S = 1, for given Ω, features not

only the upper bound, C
(S=1)
cr but also a lower one, C̃

(S=1)
cr .

• At a given value of Ω, VSs are exponentially unstable for C <

C̃
(S=1)
cr , and they feature oscillatory (Hopf) instabilities for C >

C
(S=1)
cr . This situation takes place up at Ω < Ω

(S=1)
cr = 0.037.

•C
(S=1)
cr slightly increases with Ω, while the growth of C̃

(S=1)
cr with

Ω is fast. As a result, at Ω > Ω
(S=1)
cr the stability region does not

exist, coexisting exponential and Hopf instabilities.

• The overall stability region for the VSs with S = 1 in the plane
(C,Ω) is presented in the figure:
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• VSs at C > C
(S=1)
cr are transformed into persistent breathers,

which loses the vortical structure. For C < C̃
(S=1)
cr the nonlinear

development eventually leads to a persistently pulsating localized
state with zero vorticity. The transformation to a FS state is
also observed in the region of the coexistence of exponential and
oscillatory instabilities.

• At Ω = 0, VSs with S = 2 are unstable due to an imaginary
eigenfrequency. In the rotating lattice, the solitons with S = 2
acquire a finite stability region. Only an upper stability border
exists for the S = 2 solitons, i.e., the respective stability interval

is 0 < C < C
(S=2)
cr .

• The stability diagram for the VSs with S = 2 in the (C,Ω) plane
is presented in the figure, indicating the increasing stabilization
effect of larger rotation frequencies.
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• Instabilities of the VSs with S = 2 transform them into persistent
breathers without the vortical structure. In fact, a similar qual-
itative conclusion was made in the ordinary model, with Ω = 0,
where all VSs with S = 2 are unstable.
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39 (2002).

[5] P. G. Kevrekidis, K. Ø. Rasmussen, and A. R. Bishop, Int. J. Mod. Phys. B
15, 2833 (2001).

[6] B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys. Lett. 63, 642
(2003); J. K. Yang and Z. H. Musslimani, Opt. Lett. 28, 2094 (2003).

[7] H. Sakaguchi and B. A. Malomed, Phys. Rev. A 75, 013609 (2007).

[8] Y. V. Kartashov, B. A. Malomed, and L. Torner, Phys. Rev. A 75, 061602(R)
(2007)
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