Discrete solitons in optical BEC lattices. Effects of n-body interactions
Jesús Cuevas-Maraver
Nonlinear Physics Group - University of Sevilla(Spain)
P.G.Kevrekidis (University of Massachusetts), N.I.Karachalios (University of the Aegean),
T.R.O.Melvin, A.R.Champneys (University of Bristol), J.C.Eilbeck (Heriot-Watt University - Edinburgh)

where λ is the trap wavelenth (the latite space is $\lambda / 2)$. The trap
depth at the enter of the beam is V_{0} that can e measured in units
 han the hemical potentials,, tight-binding approximation can be
,sed (Trombettoni and Smerzi 2001). The order parameter Φ call ised (Trombettoni and Sierrid 2001). The order parameter Φ can
be eceocmposed as a sum of wavefunctions located at each well of the periodic potenti
$\phi(\vec{r} t)=\sqrt{N_{T}} \sum \psi_{n}(t)\left(\vec{r}-\vec{r}_{\pi}\right)$

 into a Disc
et al. 2002):
en
$\left.{ }_{i n} \frac{\partial b_{n}}{\partial t}=-K\left(\phi_{n-1}+\psi_{n+1}\right)+\left(\varepsilon_{n}+U \mid \psi_{n}\right)^{2}\right) \psi_{n}$
where the tumeling rate is
$K=-\int \mathrm{dr} \tau\left[\frac{h^{2}}{2 m} \nabla \phi_{n} \cdot \nabla \phi_{n+1}+\phi_{n} V V_{d x+1}\right]$
the on-site energies are
$n_{n}=\int d i\left[\frac{h^{2}}{2 m}\left(\nabla \phi_{n}\right)^{2}+V_{\cos \phi_{n}^{2}}\right]$
$U=g_{0} N_{T} \iint_{\text {dro }}^{n}$
Stationary solutions of the DNLS equation have the form

BECs in two-dimensional optical lattices	Thresholds for discrete solitons in the DNLS
DNLS equation can also by derived for BECs confined in 2D optical lattices (Kalosakas et al. 2002). Starting from the single-mod boson-Hubbard Hamiltonian	equation with saturable/photorefractive (nonlinearity nonlinearity
	Discrete solitons has recently been observed in one-dimensional waveguides arrays (Fleischer et al. 2003) and two-dimensional photonic lattices (Fleischer et al. 2003) made of photorefractive mater
$b_{i}\left(b^{\dagger}\right)$ is the bosonic annibilation (creation) operator at the	als as SBN:75,
A mean field approximation leads to the following DNLS equation for the wave function $\psi_{n, m}$ of the condensate at the n-th trap	with a saturable nonlinearity term, which we call, for abbreviation, the PR-DNLS equation:
with $\Delta \psi_{n, m}=\psi_{n+1, m}+\psi_{n-1, m}+\psi_{n+1, m}+\psi_{n, m-1}+\psi_{n, m+1}$ being the discrete Laplacian in two dimensions.	Note that this equation can be transformed into the cubic DNLS or the CQ-DNLS equation by means of a Taylor series expansion of
	the nonimear term. ${ }_{\text {This equation has never been applied to }}^{\text {to }}$ BECs, but it might mot
	the n -body interactions of a condensate.
	The main featue of discrete solitons in the PR-DNLS equation is $_{\text {d }}$ (tat their quadratic norm does not follows a monotone tendency
	when Λ is varied, contrary to the cubic DNLS equation where the
	norm grows when $\|\Lambda\|$ is increased. This is explained by the fact
	that, for small norms, the equation behaves as the cubic DNLS but
	extibits saturation for higher norms due to the competition with
	has very impotant

This result is independent of the dimension of the lattice and the coupling constant K. The following figure compares the hreshodds analyticicaly calculated with the real soliton norm

