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3 Simion Stoilow Institute of Mathematics of the Romanian Academy, Research group of the project PD-3-0152,

P.O. Box 1-764, RO-014700 Bucharest, Romania

E-mail: aurorafl@us.es, anicolae@math.ubbcluj.ro

Abstract

Given A and B two nonempty subsets in a metric space, a mapping T : A ∪ B → A ∪ B is
relatively nonexpansive if d(Tx, T y) ≤ d(x, y) for every x ∈ A, y ∈ B. A best proximity point
for such a mapping is a point x ∈ A ∪ B such that d(x, Tx) = dist(A,B). In this work, we
extend the results given in [A.A. Eldred, W.A. Kirk, P. Veeramani, Proximal normal structure
and relatively nonexpansive mappings, Studia Math. 171, 283–293 (2005)] for relatively nonex-
pansive mappings in Banach spaces to more general metric spaces. Namely, we give existence
results of best proximity points for cyclic and noncyclic relatively nonexpansive mappings in the
context of Busemann convex reflexive metric spaces. Moreover, particular results are proved in
the setting of CAT(0) and uniformly convex geodesic spaces. Finally, we show that proximal
normal structure is a sufficient but not necessary condition for the existence in A×B of a pair
of best proximity points.

MSC: Primary 54E40, 47H10.

Keywords: Relatively nonexpansive mapping, best proximity pair, best proximity point, proxi-
mal normal structure, Busemann convexity.

1 Introduction

Although metric fixed point theory is primary concerned with the existence of fixed points of map-
pings that satisfy certain restrictions, there exist many other related problems that have attracted
a high amount of interest from researchers in the area. One of such problems consists in studying
the existence of approximate solutions of the equation x = Tx in the absence of fixed points of the
mapping T . A point x ∈ X is said to be an approximate solution of the equation x = Tx if x is
“close” to Tx is some sense. Depending on the considered closeness condition between x and Tx,
results of different nature have been obtained in the literature. One classical result in this direction
due to Ky Fan [16] states that if A is a compact, convex and nonempty subset of a locally convex
Hausdorff topological vector space X and T is a continuous mapping from A to X, then there exists
a point x ∈ A such that d(x, Tx) = d(Tx,A), where d is the semi-metric induced by a continuous
semi-norm defined on X. If, instead of considering the condition d(x, Tx) = d(Tx,A), one requires
that x is an absolute optimal approximate solution, that is, d(x, Tx) = dist(A,B) either for non-self
mappings T : A → B or for mappings T : A ∪ B → A ∪ B such that T (A) ⊆ B, T (B) ⊆ A or
T (A) ⊆ A, T (B) ⊆ B, existence, uniqueness and convergence results for such points are known as
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best proximity point theorems. Note that the notion of best proximity point also refers to such a
type of approximate solution. In the present work we mainly focus on the study of best proximity
points for certain self-mappings T : A ∪ B → A ∪ B satisfying the above inclusion relations. The
first results concerning such mappings were given by Kirk, Srinivasan and Veeramani [21] in 2003.
More precisely, it was proved that if A and B are two nonempty and closed subsets of a complete
metric space, T : A∪B → A∪B is such that T (A) ⊆ B, T (B) ⊆ A and there exists k ∈ (0, 1) such
that

d(Tx, Ty) ≤ kd(x, y) for every x ∈ A, y ∈ B,

then A ∩B contains a fixed point of T .
In the last years, many generalizations of this problem have appeared under the assumption

A∩B = ∅. In this respect, weaker metric conditions have been considered for the mapping T . This
is, for instance, the case of cyclic contractions [9, 29, 13], cyclic Meir-Keeler contractions [8, 27] or
relatively nonexpansive mappings [10, 11, 28]. Relatively nonexpansive mappings were introduced
by Eldred, Kirk and Veeramani [10] in the following way: a self-mapping T : A ∪ B → A ∪ B is
relatively nonexpansive if

d(Tx, Ty) ≤ d(x, y) for every x ∈ A, y ∈ B.

If, in addition, T (A) ⊆ B and T (B) ⊆ A then T is said to be cyclic. Likewise, if T (A) ⊆ A and
T (B) ⊆ B, then T is called noncyclic.

In [10], several best proximity point results were given in Banach spaces for cyclic and noncyclic
relatively nonexpansive mappings. While many generalizations of best proximity point results from
the linear setting to metric spaces have appeared in the literature (see, among others, the works
[13, 17] on cyclic contractions in metric spaces), no result has been given for relatively nonexpansive
mappings in a nonlinear setting. Here we address this problem extending results proved in [10]
in the context of Banach spaces to Busemann convex reflexive metric spaces. We also give more
particular results in the setting of CAT(0) and uniformly convex geodesic spaces. Furthermore, we
prove an analogue of a result due to Karlovitz [20] showing that proximal normal structure is a
sufficient but not necessary condition for the existence in A×B of a pair of best proximity points.

2 Preliminaries

In this section we compile the main concepts and results we will work with along this paper. We
begin with some basic definitions and notations that are needed. Let (X, d) be a metric space and
consider A and B two subsets of X. Define

d(x,A) = inf{d(x, y) : y ∈ A};
dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B};

δ(x,A) = sup{d(x, y) : y ∈ A};
δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B}.

From now on, B(a, r) denotes the closed ball in the space X centered at a ∈ X with radius r > 0.
The metric projection PA onto A is the mapping

PA(x) = {z ∈ A : d(x, z) = dist(x,A)} for every x ∈ X.

When this mapping is well-defined and singlevalued we use the same notation PA(x) to denote the
unique point belonging to this set.
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In the sequel, we say that a pair of sets (A,B) has a property if each of the sets A and B has
this property. For instance, we say that the pair (A,B) is closed and bounded if A and B are
both closed and bounded. A very important property in this paper for a pair of sets is the one of
proximity.

Definition 2.1. A pair (A,B) of subsets of a metric space is said to be proximal if for each
(a, b) ∈ A×B there exists (a′, b′) ∈ A×B such that d(a, b′) = d(a′, b) = dist(A,B).

In this context, given a pair of sets (A,B) in a metric space, we say that the point p ∈ A is
a proximal point of q ∈ B (with respect to A and B) if d(p, q) = dist(A,B). Then, (p, q) is also
called pair of proximal points.

In this paper we will mainly work with geodesic spaces. A metric space (X, d) is said to be a
(uniquely) geodesic space if every two points x and y of X are joined by a (unique) geodesic, i.e, a
map c : [0, l] ⊆ R → X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l].
The image c([0, l]) of such a geodesic forms a geodesic segment which joins x and y and it is not
necessarily unique. If no confusion arises, we use [x, y] to denote a geodesic segment joining x and
y. A point z in X belongs to a geodesic segment [x, y] if and only if there exists t ∈ [0, 1] such that
d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y) and we write z = (1− t)x+ ty for simplicity. Notice
that this point may not be unique. When t = 1

2 , we often use the notation x+y
2 to denote 1

2x+ 1
2y.

Any Banach space is a geodesic space with usual segments as geodesic segments. A subset A of a
geodesic space X is said to be convex if any geodesic segment that joins each pair of points x and
y of A is contained in A. A geodesic triangle △(x, y, z) in X consists of three points x, y, z ∈ X
(the vertices of △) and three geodesic segments joining each pair of vertices (the edges of △). For
more about geodesic spaces the reader can check [3, 5, 26].

A metric d : X ×X → R is said to be convex if for any x, y, z ∈ X one has

d(x, (1 − t)y + tz) ≤ (1− t)d(x, y) + td(x, z) for all t ∈ [0, 1].

A geodesic space (X, d) is Busemann convex (introduced in [6]) if given any pair of geodesics
c1 : [0, l1] → X and c2 : [0, l2] → X one has

d(c1(tl1), c2(tl2)) ≤ (1− t)d(c1(0), c2(0)) + td(c1(l1), c2(l2)) for all t ∈ [0, 1].

It is well-known that Busemann convex spaces are uniquely geodesic and with convex metric.
Given two geodesic segments [x, z] and [y,w] in a uniquely geodesic space (X, d), we say that

[x, z] is parallel to [y,w], and we denote it by [x, z]‖[y,w], if d(x, y) = d(m1,m2) = d(z, w), where
m1 and m2 are the midpoints of [x, z] and [y,w], respectively (that is, m1 = x+z

2 and m2 = y+w
2 ).

The following property was given by Busemann in [7]. For the convenience of the reader we include
a proof of this fact.

Proposition 2.2. Let x, y, z, w be four points in a Busemann convex geodesic space. Suppose
[x, z]‖[y,w]. Then, [x, y]‖[z, w].
Proof. Letm1 =

x+z
2 , m2 =

y+w
2 , m3 =

x+y
2 andm4 =

z+w
2 . Let r = d(x, y) = d(z, w) = d(m1,m2).

By using the Busemann convexity of the space we have that d(m1,
y+z
2 ) ≤ r/2, d(m1,

w+x
2 ) ≤ r/2,

d(m2,
y+z
2 ) ≤ r/2 and d(m2,

w+x
2 ) ≤ r/2, which implies

r = d(m1,m2) ≤ d

(

m1,
y + z

2

)

+ d

(

y + z

2
,m2

)

≤ r

2
+

r

2
= r

and

r = d(m1,m2) ≤ d

(

m1,
w + x

2

)

+ d

(

w + x

2
,m2

)

≤ r

2
+

r

2
= r.
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Consequently, y+z
2 = m1+m2

2 = w+x
2 . Let m5 = m1+m2

2 . Again by the Busemann convexity,
d(m4,m5) ≤ 1/2d(x, z) and d(m4,m5) ≤ 1/2d(w, y), which implies d(m4,m5) ≤ 1/2min{d(x, z),
d(w, y)}. Since m5 is also the midpoint between m3 and m4, d(m3,m4) ≤ min{d(x, z), d(w, y)}.
Suppose now that d(x, z) < d(y,w). Then d(m3,m4) ≤ d(x, z) < d(y,w). Since [m3,m4]‖[y,w], we
can proceed similarly to get p1 =

m3+y
2 and s1 =

m4+w
2 such that d(p1, s1) ≤ d(x, z) < d(y,w). By

repeating the process, we obtain the sequences {pn}, {sn} ⊆ X, where, for n ≥ 2, pn = y+pn−1

2 and

sn = w+sn−1

2 , with d(sn, w) = d(pn, y) = r/2n+1 and d(pn, sn) ≤ d(x, z) < d(y,w).
Since d(y,w) ≤ d(y, pn) + d(pn, sn) + d(sn, w) for every n ∈ N, we may take superior limit in

the previous inequality to get d(y,w) ≤ d(x, z) < d(y,w), which is a contradiction and the result
follows.

In the sequel, we will also need the notion of uniformly convex geodesic space (see also [18,
pg. 107]). A geodesic metric space (X, d) is said to be uniformly convex if for any r > 0 and any
ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X with d(x, a) ≤ r, d(y, a) ≤ r and
d(x, y) ≥ εr,

d(m,a) ≤ (1− δ)r,

where m stands for a midpoint of x and y. A mapping δ : (0,+∞)× (0, 2] → (0, 1] providing such
a δ = δ(r, ε) for a given r > 0 and ε ∈ (0, 2] is called a modulus of uniform convexity of X. If δ
decreases with r (for each fixed ε) we say that δ is a monotone modulus of uniform convexity of X
(introduced in [23]). If δ is lower semicontinuous from the right with respect to r (for each fixed
ε), then we say δ is a lower semicontinuous from the right modulus of uniform convexity of X.

If in the above definition we drop the uniformity conditions then we find the notion of strict
convexity in metric spaces. Consequently, every uniformly convex geodesic space is strictly convex.
Moreover, it is easy to see that every Busemann convex metric space is strictly convex [15] and
that strictly convex metric spaces are uniquely geodesic.

A very important class of geodesic spaces are CAT(0) spaces, that is, metric spaces of non-
positive curvature in the sense of Gromov. These spaces play an essential role in several areas
of mathematics [3] and find applications in other branches of science such as biology and com-
puter science [1, 25]. CAT(0) spaces are defined in terms of comparison with E

2, the Euclidean
plane, as follows: given (X, d) a geodesic metric space, a comparison triangle for a geodesic tri-
angle △(x1, x2, x3) in (X, d) is a triangle △(x̄1, x̄2, x̄3) in E

2 such that dE2(x̄i, x̄j) = d(xi, xj) for
i, j ∈ {1, 2, 3}. Such a comparison triangle always exists in E

2 and is unique up to isometry. A
geodesic triangle △ in X is said to satisfy the CAT(0) inequality if, given △̄ a comparison triangle
in E

2 for △, for all x, y ∈ △
d(x, y) ≤ dE2(x̄, ȳ),

where x̄, ȳ ∈ △̄ are the comparison points of x and y, respectively. A geodesic space X is a CAT(0)
space if all its geodesic triangles satisfy the CAT(0) inequality.

The following four point condition was used by Berg and Nikolaev [2] to characterize CAT(0)
spaces.

Theorem 2.3. Let (X, d) be a geodesic space. X is a CAT(0) space if and only if for every
x, y, z, p ∈ X,

d(x, z)2 + d(y, p)2 ≤ d(x, y)2 + d(y, z)2 + d(z, p)2 + d(p, x)2.

In complete CAT(0) spaces, the metric projection onto closed and convex subsets behaves as in
Hilbert spaces in a certain sense.

Proposition 2.4 ([3], Proposition 2.4, p. 176). Let X be a complete CAT(0) space, x ∈ X and
C ⊂ X nonempty closed and convex. Then the following facts hold:
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1. The metric projection PC(x) of x onto C is a singleton.

2. If y ∈ [x, PC(x)], then PC(x) = PC(y).

3. If x /∈ C and y ∈ C with y 6= PC(x) then ∠PC(x)(x, y) ≥ π/2.

4. The mapping PC is a nonexpansive retraction from X onto C. Further, the mapping H :
X×[0, 1] → X associating to (x, t) the point at distance td(x, PC(x)) on the geodesic [x, PC(x)]
is a continuous homotopy from the identity map of X to PC .

For a thorough treatment of CAT(0) spaces and related topics the reader can check [3, 19].
In the next section we will also work with reflexive metric spaces which extend the notion of

reflexivity from Banach to metric spaces. A geodesic metric space X is said to be reflexive if for
every decreasing chain {Cα} ⊂ X with α ∈ I such that Cα is closed convex bounded and nonempty

for all α ∈ I we have that
⋂

α∈I

Cα 6= ∅. Notice that every complete uniformly convex metric space

with either a monotone or lower semicontinuous from the right modulus of uniform convexity is
reflexive (see [24, 12]). Also note that a reflexive and Busemann convex geodesic space is complete
(see [14, Lemma 4.1]). Moreover, in such a context the metric projection onto closed and convex
subsets is well-defined and singlevalued.

Next we give the definition of relatively nonexpansive mapping on the union of two sets.

Definition 2.5. Suppose A and B are two nonempty subsets of a metric space X. A mapping
T : A ∪B → A ∪B is relatively nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B.

We say that a relatively nonexpansive mapping T is cyclic if T (A) ⊆ B and T (B) ⊆ A and
noncyclic if T (A) ⊆ A and T (B) ⊆ B.

In [10], the notion of proximal normal structure was introduced as a counterpart of the well-
known concept of normal structure. This concept plays the same role for relatively nonexpansive
mappings as normal structure plays for nonexpansive mappings. We state below this notion in the
setting of geodesic metric spaces.

Definition 2.6. A convex pair (K1,K2) in a geodesic space is said to have proximal normal struc-
ture if for any closed bounded convex proximal pair (H1,H2) ⊆ (K1,K2) for which dist(H1,H2) =
dist(K1,K2) and δ(H1,H2) > dist(H1,H2), there exists (x1, x2) ∈ H1 ×H2 such that

δ(x1,H2) < δ(H1,H2) and δ(x2,H1) < δ(H1,H2).

As in the linear case, a pair (K,K) has proximal normal structure if and only if K has normal
structure in the sense of Brodski and Milman [4].

3 Main results

Given a pair of sets (A,B) in a metric space X, let A0 and B0 be the subsets defined as follows:

A0 = {x ∈ A : d(x, y′) = dist(A,B) for some y′ ∈ B},

B0 = {y ∈ B : d(x′, y) = dist(A,B) for some x′ ∈ A}.

Proposition 3.1. Let X be a reflexive and Busemann convex metric space and let (A,B) be a
nonempty closed convex pair of subsets in X. Suppose additionally B is bounded. Then A0 and B0

are closed, convex, bounded and nonempty.
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Proof. First we see that B0 is closed, convex, bounded and nonempty. Given any real number
ε > 0, consider the set

A′
ε = {x ∈ X : d(x,A) ≤ dist(A,B) + ε}.

It is easy to see that A′
ε is nonempty and closed. Moreover, A′

ε is convex. Let x and y be two points
in A′

ε and m the midpoint between them. Since the space is Busemann convex, we have that

d(m,A) = d(m,PA(m)) ≤ d

(

m,
PA(x) + PA(y)

2

)

≤ max{d(x,A), d(y,A)} ≤ dist(A,B) + ε.

Thus m ∈ A′
ε.

Now consider the set Aε = A′
ε ∩ B. It is immediate that Aε is closed, convex and bounded.

Moreover, by definition of A′
ε, Aε is also nonempty. Then, by means of the reflexivity of the space,

we conclude that ∩ε>0Aε 6= ∅. Since B0 = ∩ε>0Aε, we see that B0 is closed, convex, bounded and
nonempty. Notice that A0 is bounded and nonempty since B0 is so. The fact that A0 is also closed
and convex follows by a straightforward verification.

Remark 3.2. Notice that in the previous result we just need one of the sets A and B to be bounded,
no matter which of them.

Theorem 3.3. Let X be a reflexive and Busemann convex metric space and let (A,B) be a
nonempty closed convex pair of subsets of X such that A is bounded. Let T : A ∪ B → A ∪ B
be a cyclic relatively nonexpansive mapping. Suppose (A,B) has proximal normal structure. Then
there exists a pair (x, y) ∈ A×B such that d(x, Tx) = d(y, Ty) = dist(A,B).

Proof. This result follows by applying similar patterns as in the proof of Theorem 2.1 in [10].
However, in this more general setting, several changes and new techniques must be considered to
get the result. From Proposition 3.1 we have that (A0, B0) is closed, convex, bounded and nonempty.
Moreover, we may notice that this pair is also proximal and satisfies dist(A0, B0) = dist(A,B). It
is easy to see that T (A0) ⊆ B0 and T (B0) ⊆ A0. Since (A,B) has proximal normal structure, so
does (A0, B0).

Consider the family Γ of sets F ⊆ A0 ∪B0 such that F ∩A0 and F ∩B0 are closed, convex and
nonempty and satisfy T (F∩A0) ⊆ F∩B0 and T (F∩B0) ⊆ F∩A0, dist(F∩A0, F∩B0) = dist(A0, B0)
and the pair (F ∩A0, F ∩B0) is proximal. Since A0 ∪B0 ∈ Γ, we have that Γ 6= ∅.

Let {Fα}α∈I be a decreasing chain in Γ. We see that F0 = ∩α∈IFα ∈ Γ. Since F0 ∩ A0 =
∩α∈I(Fα ∩A0) and X is reflexive, we have that F0 ∩A0 is closed, convex and nonempty. Similarly
F0 ∩ B0 is closed, convex and nonempty. It can be easily proved that T (F0 ∩ A0) ⊆ F0 ∩ B0 and
T (F0∩B0) ⊆ F0∩A0. Thus, to see that F0 ∈ Γ, it remains to prove that the pair (F0∩A0, F0∩B0)
is proximal and dist(F0∩A0, F0∩B0) = dist(A0, B0). Let p ∈ F0∩A0. By definition, p ∈ Fα∩A0 for
every α ∈ I. Since (A0, B0) is proximal and X is strictly convex, there exists a unique point q ∈ B0

such that d(p, q) = dist(A0, B0). Moreover, by using the proximity of (Fα ∩A0, Fα ∩B0), we have
that there exists a point qα ∈ Fα ∩ B0 such that d(p, qα) = dist(Fα ∩ A0, Fα ∩ B0) = dist(A0, B0)
for every α ∈ I. However, since qα ∈ B0, we have that qα = q for every α ∈ I and therefore
q ∈ F0 ∩B0. Consequently, F0 ∈ Γ and applying Zorn’s Lemma we obtain a minimal element K in
Γ.

Let K1 = K ∩ A0 and K2 = K ∩ B0. If δ(K1,K2) = dist(K1,K2), then d(p, q) = dist(K1,K2)
for every pair (p, q) ∈ K1 × K2. In particular, d(x, Tx) = dist(K1,K2) = dist(A0, B0) for every
x ∈ K and the result holds. Suppose now δ(K1,K2) > dist(K1,K2). Since (A0, B0) has proximal
normal structure, there exists (y1, y2) ∈ K1 ×K2 and λ ∈ (0, 1) such that δ(y1,K2) ≤ λδ(K1,K2)
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and δ(y2,K1) ≤ λδ(K1,K2). Since K ∈ Γ, (K1,K2) is proximal. In fact, we may notice by the
strict convexity of X that for every point p ∈ K there exists only one point q ∈ K such that
d(p, q) = dist(K1,K2). Let (y′1, y

′
2) ∈ K1 × K2 such that d(y1, y

′
2) = d(y′1, y2) = dist(K1,K2).

Denote by x1 and x2 the midpoints of y1,y
′
1 and y2,y

′
2, respectively. By the Busemann convexity it

follows that d(x1, x2) = dist(K1,K2). Since the metric in X is convex, for every z ∈ K2 we have

d(z, x1) ≤
1

2
d(z, y1) +

1

2
d(z, y′1) ≤

1

2
(δ(y1,K2) + δ(K1,K2))

≤ (1 + λ)

2
δ(K1,K2).

Similarly, for every z ∈ K1 we have d(z, x2) ≤ (1+λ)
2 δ(K1,K2). Thus, there exists a pair of proximal

points (x1, x2) ∈ K1 ×K2 and α ∈ (0, 1) satisfying

δ(x1,K2) ≤ αδ(K1,K2) and δ(x2,K1) ≤ αδ(K1,K2).

Now consider the sets L1 ⊆ K1 and L2 ⊆ K2 defined as

L1 = {x ∈ K1 : δ(x,K2) ≤ αδ(K1,K2) and for its proximal point y ∈ K2,

δ(y,K1) ≤ αδ(K1,K2)},

L2 = {y ∈ K2 : δ(y,K1) ≤ αδ(K1,K2) and for its proximal point x ∈ K1,

δ(x,K2) ≤ αδ(K1,K2)}.

Since x1 ∈ L1 and x2 ∈ L2, Li 6= ∅ for i = 1, 2. Next we show that Li is closed and convex
for i = 1, 2. We just give the details for L1 since for L2 the proof follows similar patterns. Let
{vn} ⊆ L1 be a sequence that converges to a point v ∈ K1. Since d(vn, z) ≤ αδ(K1,K2) for every
n ∈ N and z ∈ K2, we get δ(v,K2) ≤ αδ(K1,K2). The fact that vn ∈ L1 implies

δ(wn,K1) ≤ αδ(K1,K2), (3.1)

where wn ∈ K2 is the proximal point of vn ∈ K1. Let w ∈ K2 such that d(v,w) = dist(K1,K2).
By the Busemann convexity, we get

d

(

vn + v

2
,
wn + w

2

)

= dist(K1,K2).

Now, by Proposition 2.2, we have d(wn, w) = d(vn, v) for n ∈ N, from where wn → w. Taking limit
in (3.1), we may conclude δ(w,K1) ≤ αδ(K1,K2). Consequently v ∈ L1 and then L1 is closed.
Let p1, q1 ∈ L1. Next we see that m1 = p1+q1

2 ∈ L1. Let p2, q2 ∈ K2 be the proximal points of p1
and q1, respectively. Consider m2 =

p2+q2
2 . Since (K1,K2) is proximal and the space is Busemann

convex, d(m1,m2) = dist(K1,K2). Let z ∈ K2. The convexity of the metric implies

d(z,m1) ≤
1

2
d(p1, z) +

1

2
d(q1, z) ≤ αδ(K1,K2).

Thus, δ(m1,K2) ≤ αδ(K1,K2). The fact that δ(m2,K1) ≤ αδ(K1,K2) follows similarly since
δ(p2,K1) and δ(q2,K1) are both ≤ αδ(K1,K2). Then m1 ∈ L1 and so L1 is convex.
From d(x1, x2) = dist(K1,K2) we get dist(L1, L2) = dist(A0, B0). Moreover, by the definition of
the sets Li with i = 1, 2, it is immediate that (L1, L2) is a proximal pair.
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In the sequel we see that T (L1) ⊆ L2 and T (L2) ⊆ L1. Let x ∈ L1 and y ∈ L2 such that
d(x, y) = dist(L1, L2). We prove that Tx ∈ L2. Let z ∈ K2. Since d(Tx, Tz) ≤ d(x, z) ≤
δ(x,K2) ≤ αδ(K1,K2), we get

T (K2) ⊆ B(Tx, αδ(K1,K2)) ∩K1 := K ′
1.

Then K ′
1 is closed, convex and nonempty. Let K ′

2 ⊆ K2 be the set defined as

K ′
2 = {y′ ∈ K2 : there exists x′ ∈ K ′

1 with d(x′, y′) = dist(K1,K2)}.
Similarly as we proved before that L1 is closed and convex, we get that K ′

2 is closed, convex and
nonempty.

Now we see that T (K ′
1) ⊆ K ′

2 and T (K ′
2) ⊆ K ′

1. The fact that T (K ′
2) ⊆ K ′

1 is immediate.
Let p ∈ K ′

1 and q ∈ K ′
2 such that d(p, q) = dist(K ′

1,K
′
2). Then d(Tp, T q) = dist(K ′

1,K
′
2). Since

q ∈ K ′
2, we have Tq ∈ K ′

1 and therefore Tp ∈ K ′
2. Consequently, T (K ′

1) ⊆ K ′
2. Notice that,

by definition, the pair (K ′
1,K

′
2) is also proximal and satisfies dist(K ′

1,K
′
2) = dist(K1,K2). Thus,

K ′
1 ∪ K ′

2 ∈ Γ and by minimality of K it follows that K ′
1 = K1 and K ′

2 = K2. Consequently,
K1 ⊆ B(Tx, αδ(K1,K2)) and therefore δ(Tx,K1) ≤ αδ(K1,K2). To conclude that Tx ∈ L2

it remains to see that the proximal point z ∈ K1 of Tx ∈ K2 satisfies δ(z,K2) ≤ αδ(K1,K2).
Since T is relatively nonexpansive, we have that z = Ty. Thus, we only need to show that
δ(Ty,K2) ≤ αδ(K1,K2). However, notice that this inequality holds if we repeat the previous
construction of K ′

1 and K ′
2 starting from the point y ∈ L2 and considering any point z ∈ K1.

Thus, we have Tx ∈ L2 and therefore T (L1) ⊆ L2. In a similar way, we may see that T (L2) ⊆ L1.
As a consequence, L1 ∪ L2 ∈ Γ. Since, δ(L1, L2) ≤ αδ(K1,K2), we get a contradiction with the
minimality of K.

Theorem 3.4. Let X be a reflexive and Busemann convex metric space and let (A,B) be a
nonempty closed convex pair of subsets of X such that A is bounded. Let T : A ∪ B → A ∪ B
be a noncyclic relatively nonexpansive mapping. Suppose (A,B) has proximal normal structure.
Then there exists a pair (x, y) ∈ A×B such that x = Tx, y = Ty and d(x, y) = dist(A,B).

Proof. Proceeding as in the previous theorem, we may see that (A0, B0) is proximal, closed, convex
and nonempty. Moreover, it is also immediate that dist(A0, B0) = dist(A,B), T (A0) ⊆ A0 and
T (B0) ⊆ B0. Now let Γ be the collection of sets F ⊆ A0 ∪ B0 such that F ∩ A0 and F ∩ B0

are closed, convex and nonempty and satisfy T (F ∩ A0) ⊆ F ∩ A0 and T (F ∩ B0) ⊆ F ∩ B0,
dist(F ∩A0, F ∩B0) = dist(A0, B0) and the pair (F ∩A0, F ∩B0) is proximal. Since A0 ∪B0 ∈ Γ,
Γ 6= ∅.

Let {Fα}α∈I be a decreasing chain in Γ. Following similar patterns as in the previous proof, we
get that F0 = ∩α∈IFα ∈ Γ. Then, applying Zorn’s Lemma, we find a minimal element K in Γ.

Let K1 = K ∩ A0 and K2 = K ∩ B0. If δ(K1,K2) = dist(K1,K2), then d(p, q) = dist(K1,K2)
for every pair (p, q) ∈ K1 × K2. Let (p, q) ∈ K1 × K2. Since T is relatively nonexpansive,
d(Tp, T q) = dist(K1,K2) = dist(A0, B0). Let m ∈ K2 be the midpoint between q and Tq. Then,
since d(m,Tp) = d(m, p) = dist(A0, B0) and X is strictly convex, we get that Tp = p and Tq = q
with d(p, q) = dist(A0, B0), so that the result holds. Suppose now δ(K1,K2) > dist(K1,K2).
Repeating the reasoning of the previous theorem, we may find a pair of proximal points (x1, x2) ∈
K1 ×K2 such that

δ(x1,K2) ≤ αδ(K1,K2) and δ(x2,K1) ≤ δ(K1,K2).

We consider now the sets L1 ⊆ K1 and L2 ⊆ K2 defined as

L1 = {x ∈ K1 : δ(x,K2) ≤ αδ(K1,K2) and for its proximal point y ∈ K2,

δ(y,K1) ≤ αδ(K1,K2)},
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L2 = {y ∈ K2 : δ(y,K1) ≤ αδ(K1,K2) and for its proximal point x ∈ K1,

δ(x,K2) ≤ αδ(K1,K2)}.

Since the definition of these sets is as in Theorem 3.3, we have that (L1, L2) is closed, convex,
nonempty, proximal and satisfies dist(L1, L2) = dist(K1,K2). To see that T (L1) ⊆ L1 and T (L2) ⊆
L2 we may follow a similar reasoning to the one considered in Theorem 3.3 where the cyclic inclusion
is proved. Although we omit some technical details, we include the proof for completeness. Let
x ∈ L1 and y ∈ L2 such that d(x, y) = dist(L1, L2). We prove that Tx ∈ L1. Let z ∈ K2. Since
d(Tx, Tz) ≤ d(x, z) ≤ δ(x,K2) ≤ αδ(K1,K2), we get

T (K2) ⊆ B(Tx, αδ(K1,K2)) ∩K2 := K ′
2.

Then K ′
2 is closed, convex and nonempty. Let K ′

1 ⊆ K1 be the set

K ′
1 = {x ∈ K1 : there exists y ∈ K ′

2 with d(x, y) = dist(K1,K2)}.

Then K ′
2 is closed, convex and nonempty. Moreover, (K ′

1,K
′
2) is proximal and satisfies dist(K ′

1,K
′
2)

= dist(K1,K2) and T (K ′
1) ⊆ K ′

1 and T (K ′
2) ⊆ K ′

2. Therefore, K ′
1 ∪ K ′

2 ∈ Γ and by minimality
of K it follows that K2 ⊆ B(Tx, αδ(K1,K2)) and therefore δ(Tx,K2) ≤ αδ(K1,K2). Proceeding
similarly, we may see that δ(Ty,K1) ≤ αδ(K1,K2). Since Ty ∈ K2 is the proximal point of
Tx ∈ K1, we conclude that Tx ∈ L1 and therefore T (L1) ⊆ L1. Similarly, T (L2) ⊆ L2. As
a consequence, L1 ∪ L2 ∈ Γ. Since, δ(L1, L2) ≤ αδ(K1,K2), we get a contradiction with the
minimality of K.

As a consequence of any of the two previous results, we get Kirk’s fixed point theorem in the
setting of reflexive and Busemann convex metric spaces when dist(A,B) = 0. Notice that, in this
particular case, the fact that (A,B) has proximal normal structure implies that A∩B has normal
structure in the sense of Brodski and Milman [4].

Proposition 3.5. Every closed convex pair in a uniformly convex metric space X has proximal
normal structure.

Proof. Let (H1,H2) be a closed convex bounded proximal pair in X with δ(H1,H2) > dist(H1,H2).
Let x, y ∈ H1 such that d(x, y) > 0. Consider the points x′, y′ ∈ H2 such that d(x, x′) = d(y, y′) =

dist(H1,H2). Let m = x+y
2 ∈ H1 and m′ = x′+y′

2 ∈ H2. Since X is strictly convex, d(x′, y′) > 0.
Let ε = min{d(x, y), d(x′, y′)} and z ∈ H2. Denote by δX a modulus of uniform convexity of X.
Then,

d(z,m) ≤
(

1− δX

(

δ(H1,H2),
ε

δ(H1,H2)

))

δ(H1,H2).

Similarly, if we take z ∈ H1, we get

d(z,m′) ≤
(

1− δX

(

δ(H1,H2),
ε

δ(H1,H2)

))

δ(H1,H2).

Thus, δ(m,H2) ≤ αδ(H1,H2) and δ(m′,H1) ≤ αδ(H1,H2), for α = 1 − δX

(

δ(H1,H2),
ε

δ(H1,H2)

)

.

Corollary 3.6. Let (A,B) be a closed convex pair in a complete Busemann convex metric space
X. Suppose that X is uniformly convex with a monotone or lower semicontinuous from the right
modulus of uniform convexity and B is bounded. Let T : A ∪ B → A ∪ B be a cyclic relatively
nonexpansive mapping. Then there exists a pair (x, y) ∈ A × B such that d(x, Tx) = d(y, Ty) =
dist(A,B).
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Corollary 3.7. Let (A,B) be a closed convex pair in a complete Busemann convex metric space
X. Suppose that X is uniformly convex with a monotone or lower semicontinuous from the right
modulus of uniform convexity and B is bounded. Let T : A ∪B → A ∪ B be a noncyclic relatively
nonexpansive mapping. Then there exists a pair (x, y) ∈ A × B such that x = Tx, y = Ty and
d(x, y) = dist(A,B).

Proposition 3.8. Let (A,B) be a closed convex pair in a complete Busemann convex metric space
X. Suppose that X is uniformly convex with δX being a monotone or lower semicontinuous from
the right modulus of uniform convexity and B is bounded. Let T : A ∪ B → A ∪ B be a noncyclic
relatively nonexpansive mapping. Let x0 ∈ A0 and define xn+1 = xn+Txn

2 for every n ≥ 1. Then
limn d(xn, Txn) = 0. Moreover, if T (A) ⊆ C, where C is a compact set in X, then {xn} converges
to a fixed point of T .

Proof. By Corollary 3.7 we can find a point y ∈ B0 such that y = Ty. Since the metric of the space
is convex, we get that {d(y, xn)} is nonincreasing and so convergent to some d ≥ 0. Suppose first
that d = 0. In this case, the result is immediate since {Txn} also converges to y. Now we consider
d > 0. Suppose that there exists a subsequence {xnk

} of {xn} such that d(xnk
, Txnk

) ≥ ε > 0 for
every k ≥ 0.

Suppose first δX is monotone. Let 0 < ρ < min

{

dδX(d+1, ε

d+1
)

1−δX(d+1, ε

d+1
) , 1

}

. Then, from the uniform

convexity of the space, there exists k0 ∈ N such that

d(y, xnk+1) ≤
(

1− δX

(

d+ ρ,
ε

d+ 1

))

(d+ ρ) for every k ≥ k0.

By the definition of ρ, we have d(y, xnk+1) < d for every k ≥ k0, which is a contradiction.
Suppose now δX is lower semicontinuous from the right. In this case, let ε∗ > 0 such that

0 < ε∗ < δX(d, ε
d+1 ). For such ε∗ > 0, consider µ(ε∗) > 0 such that δX(d, ε

d+1) ≤ δX(r, ε
d+1 ) + ε∗

for every r ∈ (d, d + µ(ε∗)). Let 0 < ρ < min

{

dδX(d, ε

d+1
)−dε∗

1−δX(d, ε

d+1
)+ε∗

, 1, µ(ε∗)

}

. By using the uniform

convexity as before, there exists k0 ∈ N such that

d(y, xnk+1) ≤
(

1− δX

(

d+ ρ,
ε

d+ 1

))

(d+ ρ) for every k ≥ k0.

Similarly we get a contradiction. The rest of the proof follows similar patterns to those given in
[10, Proposition 2.3].

Next we provide a bound for the existence of approximate fixed points for the mapping T .
Recall that having a metric space (X, d), a mapping T : X → X and {xn} ⊆ X, a mapping
Φ : (0,∞) → N is called an approximate fixed point bound for {xn} (see also [22]) if

∀ε > 0,∃n ≤ Φ(ε) such that d(xn, Txn) ≤ ε.

We don’t include the proof of the result below since it can be obtained by following a similar
reasoning as in the main result of [23].

Proposition 3.9. Let (A,B) be a closed convex pair in a complete Busemann convex metric space
X. Suppose that X is uniformly convex with δX being a monotone modulus of uniform convexity
and B is bounded. Let T : A ∪ B → A ∪ B be a noncyclic relatively nonexpansive mapping. Let
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x0 ∈ A0 and b > 0 such that there exists y ∈ B0 with y = Ty for which d(x0, y) ≤ b. Define
xn+1 =

xn+Txn

2 for every n ≥ 1. Then Φ : (0,∞) → N,

Φ(ε) =

[

2b

εδX
(

b, ε
b

)

]

is an approximate fixed point bound for {xn}.
Proposition 3.10. Let (A,B) be a compact convex pair in a geodesic space with convex metric.
Then (A,B) has proximal normal structure.

Proof. Let (H1,H2) ⊆ (A,B) be a closed convex bounded and proximal pair in X with δ(H1,H2) >
dist(H1,H2). Suppose δ(x,H2) = δ(H1,H2) for every x ∈ H1. Let x0 ∈ H1. Then there exists y0 ∈
H2 such that δ(x0,H2) = δ(H1,H2) = d(x0, y0). Let x1 ∈ H1 such that d(x1, y0) = dist(H1,H2).
Then d(x1, x0) ≥ d(x0, y0)− d(x1, y0) = δ(H1,H2)− dist(H1,H2). Let y1 ∈ H2 such that

d

(

x1 + x0
2

, y1

)

= δ(H1,H2).

Since the metric is convex, the fact that

δ(H1,H2) = d(y1,
x1 + x0

2
) ≤ 1

2
(d(y1, x0) + d(y1, x1))

implies d(y1, x0) = d(y1, x1) = δ(H1,H2). Let m0,1 = x1+x0

2 . Take x2 ∈ H1 such that d(y1, x2) =
dist(H1,H2) and y2 ∈ H2 such that d(y2,

1
3x2 +

2
3m0,1) = δ(H1,H2). Let m1,2 = 1

3x2 +
2
3m0,1. By

using again the convexity of the metric, we obtain δ(H1,H2) = d(y2, x2) = d(y2,m0,1) = d(y1,m0,1).
Moreover, this last equality also implies

d(y2, x0) = d(y2, x1) = δ(H1,H2).

Suppose we have {x1, . . . , xn} in H1, {m0,1,m1,2, . . . ,mn−1,n} in H1, where

mi−1,i =
1

i+ 1
xi +

i

i+ 1
mi−2,i−1

for every i ≥ 2, and {y1, . . . , yn−1} in H2 such that

d(xi+1, yi) = dist(H1,H2) for every i = 1 . . . n− 1,

d(yi,mi−1,i) = δ(H1,H2) for every i = 1 . . . n− 1

and
d(yi, xj) = δ(H1,H2) for every i = 0 . . . n− 1 and 0 ≤ j ≤ i.

Now consider the point yn ∈ H2 such that

d(yn,mn−1,n) = δ(H1,H2).

Take xn+1 ∈ H1 such that
d(xn+1, yn) = dist(H1,H2).

By using again the convexity of the metric, we may see that

d(yn, xi) = δ(H1,H2) for every i = 0 . . . n.

As a consequence,

d(xn+1, xi) ≥ d(xi, yn)− d(xn+1, yn) = δ(H1,H2)− dist(H1,H2)

for every n ∈ N and for every i = 1 . . . n. Finally, by considering a convergent and, therefore,
Cauchy subsequence of {xn} we get a contradiction.
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4 CAT(0) spaces

Proposition 4.1. Let (A,B) be a closed convex pair in a CAT(0) space. Consider the mapping
P : A ∪B → A ∪B defined as

P (x) =

{

PB(x) x ∈ A,
PA(x) x ∈ B.

Then P is a cyclic relatively nonexpansive mapping.

Proof. The fact that P is cyclic is immediate. Let x ∈ A and y ∈ B. For simplicity, denote
a = d(x, PAy), b = d(y, PBx), c = d(y, PAy), e = d(x, PBx), h = d(x, y) and r = d(PAy, PBx).
Next we prove that r ≤ h.

Let α = ∠PBx(x, y) and β = ∠PAy(x, y). By Proposition 2.4, cosα, cos β ≤ 0. By the Cosine
Law in CAT(0) spaces, we get

d(x, y)2 = h2 ≥ e2 + b2 and d(x, y)2 = h2 ≥ a2 + c2.

If we apply Theorem 2.3 to the four points {x, PBx, y, PAy} and consider the two previous inequal-
ities, we obtain

h2 + r2 ≤ a2 + b2 + c2 + e2 ≤ 2h2,

and the result follows.

As a consequence of the previous result, we may reason as in [10] to conclude that in the setting
of CAT(0) spaces Theorem 3.4 is a consequence of Theorem 3.3.

Since every pair of closed and convex sets in a CAT(0) space satisfies property UC (see [13] for
more details on this property), we may assert that every noncyclic or cyclic relatively nonexpansive
mapping is also continuous if the pair (A,B) is in addition proximal. Next we see that, as it
happens in Hilbert spaces [10, Proposition 3.2], a noncyclic relatively nonexpansive mapping is
even nonexpansive if the pair (A,B) is proximal.

Proposition 4.2. Let (A,B) be a closed convex bounded proximal pair of sets in a CAT(0) space.
Let T : A ∪B → A ∪B be a noncyclic relatively nonexpansive mapping. Then T is nonexpansive.

Proof. Let x1, x2 ∈ A. Let d1 = d(x1, PBx2), d2 = d(x2, PBx1),

α = ∠PBTx1
(Tx1, TPBx2) and β = ∠PBTx2

(Tx2, TPBx1).

Note that d(x1, x2) = d(PBx1, PBx2), d(Tx1, Tx2) = d(PBTx1, PBTx2), d(x1, PBx1) = d(x2, PBx2)
= dist(A,B) and α, β ≥ π/2.

Let △1 = △(TPBx2, TPBx1, Tx1) and △2 = △(TPBx1, TPBx2, Tx2). Since d(Tx1, TPBx1) ≤
d(x1, PBx1) it follows by Proposition 2.4, (1) that TPBx1 = PBTx1. Similarly, TPBx2 = PBTx2.
If we apply the Cosine Law in CAT(0) spaces to △1 and △2, we obtain

d(Tx1, Tx2)
2 + dist(A,B)2 = d(PBTx1, PBTx2)

2 + dist(A,B)2

≤ d(Tx1, TPBx2)
2 ≤ d21

and

d(Tx1, Tx2)
2 + dist(A,B)2 = d(PBTx1, PBTx2)

2 + dist(A,B)2

≤ d(Tx2, TPBx1)
2 ≤ d22.
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Thus,
d(Tx1, Tx2)

2 + dist(A,B)2 ≤ min{d21, d22}. (4.2)

If we apply Theorem 2.3 to the four points {x1, PBx1, x2, PBx2}, we obtain

2min{d21, d22} ≤ d21 + d22 ≤ 2(d(x1, x2)
2 + dist(A,B)2). (4.3)

By using (4.2) and (4.3), we get that T is nonexpansive on A. In a similar way, we get that T
is nonexpansive on B and then the result holds.

Next we see that a similar result also holds for cyclic relatively nonexpansive mappings.

Proposition 4.3. Let (A,B) be a closed convex bounded proximal pair of sets in a CAT(0) space.
Let T : A ∪B → A ∪B be a cyclic relatively nonexpansive mapping. Then T is nonexpansive.

Proof. Let x1, x2 ∈ A. Let d1 = d(x1, PBx2), d2 = d(x2, PBx1)

α = ∠PATx1
(Tx1, TPBx2) and β = ∠PATx2

(Tx2, TPBx1).

Note that d(x1, x2) = d(PBx1, PBx2), d(Tx1, Tx2) = d(PBTx1, PBTx2), d(x1, PBx1) = d(x2, PBx2)
= dist(A,B) and α, β ≥ π/2.

Let △1 = △(TPBx2, TPBx1, Tx1) and △2 = △(TPBx1, TPBx2, Tx2). By Proposition 2.4, (1),
we get that TPBx1 = PATx1 and TPBx2 = PATx2. By applying now the Cosine Law to △1 and
△2 and Theorem 2.3 to {x1, PBx1, x2, PBx2} as in the previous theorem we get the result.

5 Proximal normal structure: a sufficient but not necessary con-
dition

In 1979, Karlovitz [20] proved that the normal structure of the domain of a nonexpansive self-
mapping T is a sufficient but not necessary condition to guarantee existence of fixed points of such
a mapping in the context of reflexive Banach spaces. For this aim, a very specific family of reflexive
spaces which originated with R. C. James was considered. In the same setting we see now that
the proximal normal structure behaves similarly with respect to relatively nonexpansive mappings.
First we give an example of a closed convex bounded pair of sets in a reflexive Banach space that
does not have proximal normal structure.

Example 5.1. Let X denote the Banach space given by the set ℓ2 endowed with the norm

‖x‖ = max{‖x‖∞, ‖x‖2/
√
2}.

Let
A = B(θ, 1) ∩ {x = {xn}n≥1 ∈ X : x1 = 1, xi ≥ 0 for every i ≥ 1}

and
B = B(θ, 2) ∩ {x = {xn}n≥1 ∈ X : x1 = 2, xi ≥ 0 for every i ≥ 1},

where θ denotes the origin of the space ℓ2. It is easy to see that (A,B) is closed, convex, bounded
and proximal. From the definition we have ‖x − y‖ ≥ 1 for every x ∈ A and y ∈ B. Notice that
e1 ∈ A, 2e1 ∈ B and ‖e1−2e1‖ = 1. Then dist(A,B) = 1. We claim δ(A,B) = 2. Let x = {xi} ∈ A
and y = {yi} ∈ B. Since x ∈ A, 0 ≤ xi ≤ 1 for every i ≥ 1. Equally, y ∈ B implies 0 ≤ yi ≤ 2.
Thus, ‖x− y‖∞ ≤ 2. Note that ‖x− y‖22 =

∑∞
i=1 x

2
i +

∑∞
i=1 y

2
i − 2(x1y1)− 2

∑∞
i=2 xiyi ≤ 6. Then

‖x − y‖2/
√
2 ≤

√
3 < 2 and therefore ‖x − y‖ ≤ 2. It is easy to see that {e1 + en}n≥2 ⊆ A and
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{2e1 + 2en}n≥2 ⊆ B. Since d(e1 + en, 2e1 + 2em) = 2 for n 6= m, we have δ(A,B) = 2. On the
other hand, we have δ(x,B) = 2 for every x = {xi}i≥1 ∈ A . This is a consequence of

lim
n→∞

d(x, 2e1 + 2en) ≥ lim
n→∞

|xn − 2| = 2.

Then (A,B) does not have proximal normal structure.

Remark 5.2. Let A∗ = conv({e1 + en : n ≥ 2}) and B∗ = conv({2e1 + 2en : n ≥ 2}). Note that
the pair (A∗, B∗) ⊆ (A,B) does not have proximal structure either.

Next we see that proximal normal structure is a sufficient but not necessary condition to obtain
the existence of best proximity points in Theorem 2.1 in [10] and therefore also in Theorem 3.3.

Proposition 5.3. Let (A,B) be the pair of sets considered in the previous example and suppose
T : A ∪ B → A ∪ B is a cyclic relatively nonexpansive mapping. Then there exists a pair (x, y) ∈
A×B such that d(x, Tx) = d(y, Ty) = dist(A,B).

Proof. Consider the point 2e1 ∈ B. Notice that d(2e1, A) = δ(2e1, A) = 1. Thus,

1 ≤ d(T (2e1), T
2(2e1)) ≤ d(2e1, T (2e1)) = 1

and the result follows.

Remark 5.4. Notice that the previous result also holds whenever we have a cyclic relatively non-
expansive mapping defined on a pair (A,K) ⊆ (A,B) with 2e1 ∈ K.
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