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Abstract. We study the commutation relations and normal ordering
between families of operators on symmetric functions. These operators
can be naturally defined by the operations of multiplication, Kronecker
product, and their adjoints. As applications, we give a new proof of
the skew Littlewood–Richardson rule and prove an identity about the
Kronecker product with a skew Schur function.

1. Introduction

Due to their connection to representation theory, Schubert calculus, and
their beautiful combinatorial description, Schur functions are ubiquitous.
For this reason, it is not surprising that identities involving Schur functions
greatly improve the understanding of other subjects.

There are two important products defined on symmetric functions: the or-
dinary and the Kronecker product. The well-known Littlewood–Richardson
coefficients are the structure coefficients for the ordinary product, while the
elusive Kronecker coefficients are the structure coefficients for the Kronecker
product. They naturally define linear operators on symmetric functions.

Let f be a symmetric function. Then, define Uf to be the operator “mul-
tiplication by f”, and Kf be “Kronecker multiplication by f .” Explicitly,
the operators act on a symmetric function g by

Uf pgq “ fg, Kf pgq “ f ˚ g.

The Hall inner product allows us to define the adjoint of Uf , which is denoted
by Df , and sometimes called the skewing operator. With respect to this
inner product, Kf is self-adjoint. We will also consider another intriguing
operator related to the Kronecker product, Kλ, defined on the Schur basis
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as follows: let λ be a partition and g any homogeneous symmetric function
of degree n. Then

Kλpgq “ spn´|λ|,λq ˚ g ,

where pn ´ |λ|, λq :“ pn ´ |λ|, λ1, λ2, . . .q. This sequence of integers is not
always decreasing. To deal with this issue, we define the Schur function
spn´|λ|,λq by means of the Jacobi–Trudi formula:

spα1,α2,...,αN q “ detphαi`j´iqi,j“1...N .

This determinant coincides with the Schur function sα when α is weakly
decreasing (i.e., is a partition) but makes sense even when α is not. Using
linearity, we can define Kf for any symmetric function f .

In this paper, we study identities involving four families of operators on the
ring of symmetric functions, Sym: Uλ, Dλ, Kλ, and Kλ. We seek to address
the following questions: what are the commutation relations between these
operators? Given a word involving these operators, how can we put it in a
normal form? Is this expression unique? Is it possible to express some of
these operators in terms of the other ones?

For a motivating example, let us look at the operators Up1q and Dp1q. They
are well-known to satisfy the commutation relation Dp1qUp1q “ Up1qDp1q ` 1.
That is Leibniz’s rule for multiplication, when Up1q is multiplication by x,

and Dp1q “
B

Bx
. This identity is the defining relation for the algebra of Weyl,

and the building identity for Stanley’s theory of differential posets [16].
Our first result is the following theorem that gives beautiful commutation

relations for the operators.

Theorem 1.1. For any partitions α and β we have the following identities
(where λ, τ and ν each run over the set of all partitions).

DβUα “
ÿ

λ

Uα{λDβ{λ(1.1)

UαDβ “
ÿ

λ

p´1q|λ|Dβ{λ1Uα{λ(1.2)

KβUα “
ÿ

λ

Usβ{λ˚sαKλ(1.3)

DαKβ “
ÿ

λ

KλDsβ{λ˚sα(1.4)

KβUα “
ÿ

τ,ν

Upsβ{ν˚sτ qsα{τKν(1.5)

DαKβ “
ÿ

τ,ν

KνDpsβ{ν˚sτ qsα{τ(1.6)
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The operators Kµ and Kν commute. To the best of our knowledge, the
commutation relations for the pairs of operators pU,Kq, pU,Kq , pK,Dq,
and pK ,Dq are new results. Section 2.7 discusses the historical context of
the results stated in Theorem 1.1.

With this paper, we aim to show the important role that generating func-
tions can play, providing unified tools to deal with symmetric functions.
Towards this end, we associate a generating series with each of our opera-
tors. This allows us to obtain a uniform and elegant method to derive our
results.

More precisely, let P be any of the operators U, D, K and K . We as-
sociate with P a formal series of operators

ř

λ sλrAsPλ. We call this series
the Schur generating series of P . The Schur generating series of P defines a
linear map that sends any symmetric function g P SympXq to the expression
ř

λ sλrAsPλpgq. Then, we first study the existing relations between the Schur
generating functions obtained in this way. For example, to derive our first
expression we show that DσrBXsUσrAXs “ σrABsUσrAXsDσrBXs.

Unexpectedly, given the common nature of these results, and of their
proofs, the different pairs of operators behave quite differently with regards
to the question of uniqueness. In Proposition 2.6, we show that finite expan-
sions with respect to the ordered pairs of operators pU,Dq, pD,Uq, pU,Kq,
pK,Dq, pU,Kq and pK,Dq are unique. In contrast, observe that expansions
with respect to pK,Uq or to pD,Kq are not unique. For instance we have the
relation Kp2Up1 “ 0, where pi denotes the power sum symmetric function
ř

j x
i
j, which is equivalent to the relation K2U1 “ K1,1U1. Taking adjoints,

we have the relation D1K2 “ D1K1,1. An open problem is to determine
what happens for the remaining pairs of operators: are the corresponding
expansions unique?

The charming identity Kp1q “ Up1qDp1q ´ 1 describes a relation between

the operators K,U, and D. In the second part of this work, we will see how
it translates to one of the few known cases where it is possible to give a
combinatorial description for a Kronecker product. Note that this identity
shows that Kp1q can be rewritten in terms of the much simpler operators
Up1q and Dp1q. In Proposition 2.10 we vastly generalize this observation,

and show that for any symmetric function f the operator Kf lies in the
subalgebra of EndpSymq generated by the operators Ug and Dg.

Dealing with naturally defined objects, like our families of operators, one
is bound to recover some classical results. A testimony of the elegance of
this approach is that both Foulkes’ (Eq. (2.22)) and Littlewood’s identities
(Eq. (2.23)) can be easily derived from Theorem 2.11. However, a new iden-
tity of the same nature (Eq. (2.24)) relating the skewing and the Kronecker
operators is also obtained, as described in the following table that shows
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how the identities fit in relation to the different products and coproducts of
symmetric functions. This is discussed in Section 2.7.

Product Coproduct equivalent identities

Ordinary, ¨ Adjoint of the ordinary product (1.1) and (2.22)
Kronecker, ˚ Adjoint of the ordinary product (1.3) and (2.23)
Ordinary, ¨ Adjoint of the Kronecker product (1.4) and (2.24)

Table 1.1. The three bialgebra structures on Sym and the
corresponding identities Bx ˝ µ “ µ ˝ B∆pxq.

The second part of our work is of combinatorial nature. Written for the
reader with a combinatorial mind, it explores some applications of our re-
sults. The first application is a new proof of the skew Littlewood–Richardson
rule, a combinatorial rule that gives the product of two skew Schur functions
as a linear combination of skew Schur functions, based on counting Young
tableaux (Theorem 3.1). This rule was conjectured in [1], and proved in
[7]. Our proof relies on the normal ordering relation that decomposes the
products UαDβ as linear combinations of products of the form Dβ{λ1Uα{λ. It
generalizes the algebraic proof given by Thomas Lam of the skew Pieri rule
(a particular case of the skew Littlewood–Richardson rule) in the appendix
of [1]. Indeed, Lam’s proof relies on the same normal ordering relation, in
the special case of β having only one part.

The second application exploits our normal ordering relation for the prod-
ucts K1Dλ. We extend the combinatorial rule for the expansion in the Schur
basis of the Kronecker product of spn´1,1q with a Schur function to the Kro-
necker product of spn´1,1q with any skew Schur function (Theorem 3.2). This
might be the only known instance of a combinatorial rule for the Kronecker
product of a Schur function with a skew Schur function. We also give a
combinatorial proof of this result.

2. Part I: Algebraic results

In this section, we prove all six identities of Theorem 1.1. We begin with
an overview of the method of proof. Let P be any of the families of operators
U, D, K and K . These operators act on Sym “ SympXq, the symmetric
functions in some alphabet X. Introduce an auxiliary alphabet A. The
Schur generating series of P is defined as

ÿ

λ

sλrAsPλ.
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This can be interpreted as the linear map that sends any symmetric function
g P SympXq to the expression

ÿ

λ

sλrAsPλpgq.

For each of the four operators under consideration, the effect of the Schur
generating function operator is described nicely by means of operations on
alphabets (Lemma 2.2). The identities of Theorem 1.1 are derived at the
level of generating series. The result is then recovered by extracting coeffi-
cients by means of the appropriate scalar product.

2.1. Preliminaries: operations on alphabets. Let X “ tx1, x2, . . .u be
the underlying alphabet for the symmetric functions in Sym. Any infinite
alphabet A gives rise to a copy SympAq of Sym. In this copy, the correspond-
ing scalar product will be denoted by x | yA, and the element corresponding
to f P Sym, by f rAs. Accordingly, the scalar product x | y of Sym and
elements f P Sym will be denoted sometimes by x | yX and f rXs.

If A and B are two alphabets, the tensor product SympAq b SympBq is
endowed with the induced scalar product x | yA,B .

Both the Kronecker product ˚ and the adjoint Df of the operator of mul-
tiplication by a symmetric function f will be only considered with respect
to Sym “ SympXq.

Given an algebra homomorphism A from Sym to some commutative alge-
bra R, it will be convenient to write it as f ÞÑ f rAs (rather than f ÞÑ Apfq)
for any algebra homomorphism and consider it as a “specialization at the
virtual alphabet A.”

Since the power sum symmetric functions pk (k ě 1) generate Sym and
are algebraically independent, the map

(2.1) A ÞÑ pp1rAs, p2rAs, . . .q

is a bijection from the set of all algebra homomorphisms from Sym to R
to the set of infinite sequences of elements from R. This set of sequences
is endowed with its operations of component-wise sum and product, and
multiplication by a scalar. The bijection (2.1) is used to lift these operations
to the set of homomorphisms from Sym to R. This defines expressions
like f rA ` Bs and f rABs, where f is a symmetric function and A and B
are two “virtual alphabets,” and more general expressions f rP pA,B, . . .qs,
where P pA,B, . . .q is a polynomial in several virtual alphabets A, B . . . with
coefficients in the base field. Note that, by definition, for any power sum pk
(k ě 1), virtual alphabets A and B, and scalar z,

pkrA`Bs “ pkrAs ` pkrBs, pkrABs “ pkrAs ¨ pkrBs, pkrzAs “ z pkrAs.
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In our calculations below, the homomorphism f ÞÑ f r1s will appear: it is
the specialization at x1 “ 1, x2 “ 0, x3 “ 0 . . . , sending each pk to 1. The
homomorphism f ÞÑ f rXs is just the identity of Sym. The homomorphism
f ÞÑ f rXKs “ fK “ Df associates to f the adjoint of the operator Uf .

Let σ be the generating series for the complete homogeneous symmetric
functions hn, meaning σ “

ř8

n“0 hn , where h0 “ 1. Recall from [9, I.§2]
that we also have

σ “ exp

˜

8
ÿ

k“1

pk
k

¸

“
ÿ

λ

pλ
zλ
,

where the last sum is over all partitions λ. We will make use of the following
well–known identities.

Lemma 2.1. Let A and B be two alphabets, and f and g be two symmetric
functions. Then we have the following identities:

σrA`Bs “ σrAsσrBs ,(2.2)

σrABs “
ÿ

λ

sλrAssλrBs, (Cauchy identity)(2.3)

σr´ABs “
ÿ

λ

p´1q|λ|sλ1rAssλrBs,(2.4)

DσrAXspf rXsq “ f rX ` As,(2.5)

σrAXs ˚ f rXs “ f rAXs,(2.6)

x f rAXs | grXs yX “ pf ˚ gqrAs,(2.7)

xσrABs | grBs yB “ grAs. (Reproducing Kernel)(2.8)

2.2. Generating series. Let P be any of the families of operators U , D,
K and K , and let A be an auxiliary alphabet. We introduce the generating
series for P as

ÿ

λ

sλrAsPλ.

Using the linearity of f ÞÑ Pf and the Cauchy identity (2.3), we may simplify
this expression as follows:

ÿ

λ

sλrAsPλ “
ÿ

λ

sλrAsPsλrXs “ Př

λ sλrAssλrXs
“ PσrAXs.

Note that any operator Pλ can be recovered from the generating series by a
coefficient extraction using a scalar product:

Pλpfq “
@

PσrAXspf rXsq
ˇ

ˇ sλrAs
D

A
.

The generating series PσrAXs also acts linearly on symmetric functions.
The following lemma describes the effect of all four generating series UσrAXs,

DσrAXs, KσrAXs and KσrAXs.
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Lemma 2.2. Let f rXs be any symmetric function. Then

UσrAXspf rXsq “ σrAXs ¨ f rXs,(2.9)

DσrAXspf rXsq “ f rX ` As,(2.10)

KσrAXspf rXsq “ f rAXs,(2.11)

KσrAXspf rXsq “ σr´As ¨ f rXpA` 1qs.(2.12)

Proof. Equation (2.9) follows by definition. Equation (2.10) is (2.5). Equa-
tion (2.11) is (2.6). We prove (2.12). For any symmetric functions f and g,
Kf pgq “ Γ1f ˚ g, where Γ1 is the vertex operator

(2.13) Γ1 “

˜

8
ÿ

i“0

Upiq

¸˜

8
ÿ

j“0

p´1qjDp1jq

¸

.

We will make use of the following identity (see [13, §3]; for a combinatorial
approach to this identity see [11]):

(2.14) Γ1f “ σrXsf rX ´ 1s.

Therefore, we have

KσrAXspfq “ pΓ1 σrAXsq ˚ f rXs

“ σrX ` ApX ´ 1qs ˚ f rXs by (2.2),

“ σr´As pσrXpA` 1qs ˚ f rXsq by (2.2),

“ σr´As ¨ f rXpA` 1qs by (2.6). �

2.3. Operators U and D. We now prove (1.1) and (1.2) of Theorem 1.1.
The following lemma establishes the commutation relation between U and

D.

Lemma 2.3. Let A and B be two alphabets. We have

DσrBXsUσrAXs “ σrABsUσrAXsDσrBXs,(2.15)

UσrAXsDσrBXs “ σr´ABsDσrBXsUσrAXs.(2.16)

Proof. Notice that (2.16) follows from (2.15) and the fact that σr´ABs is
the inverse of σrABs (see (2.2)). We prove (2.15) using Lemmas 2.1 and 2.2.
For any symmetric function f rXs, we have

DσrBXsUσrAXspf rXsq “ σrApX `Bqsf rX `Bs by (2.10),

“ σrABsσrAXsf rX `Bs by (2.2),

“ σrABsσrAXsDσrBXspf rXsq by (2.10),

“ σrABsUσrAXsDσrBXspf rXsq. �
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Proof of (1.1). We use that, since U and D : Sym Ñ EndpSymq are algebra
homomorphisms, for any symmetric function f we may write that Uf “ f rU s
and Df “ f rDs. In particular, for the generating series we have UσrAXs “
σrAU s and DσrBXs “ σrBDs.

In (2.15), the operator DβUα is the coefficient of sαrAssβrBs in the ex-
pansion in the Schur basis of σrABsUσrAXsDσrBXs, which is extracted by
performing the scalar product with sαrAssβrBs. Thus,

DβUα “
@

σrABsUσrAXsDσrBXs

ˇ

ˇ sαrAssβrBs
D

A,B

“
ÿ

λ

@

sλrAssλrBsUσrAXsDσrBXs

ˇ

ˇ sαrAssβrBs
D

A,B
by (2.3),

“
ÿ

λ

@

σrAU s
ˇ

ˇ sα{λrAs
D

A

@

σrBDs
ˇ

ˇ sβ{λrBs
D

B

“
ÿ

λ

sα{λrU ssβ{λrDs “
ÿ

λ

Uα{λDβ{λ. �

Identity (1.2) is derived from (2.16) analogously.

2.4. Operators U and K. We now turn to the proof of (1.3). Identity (1.4)
follows from (1.3) by taking adjoints.

The following lemma gives the commutation relations for the generating
series of K and U .

Lemma 2.4. Let A and B be two alphabets. We have

(2.17) KσrBXsUσrAXs “ UσrABXsKσrBXs.

Proof. For any symmetric function f , we have

KσrBXsUσrAXspf rXsq “ KσrBXspσrAXsf rXsq

“ σrABXsf rBXs by (2.11),

“ UσrABXsKσrBXspf rXsq by (2.11). �

Proof of (1.3). We get KβUα from (2.17) by extracting the coefficient of
sβrBssαrAs in its expansion in terms of Schur functions:

KβUα “
@

UσrABXsKσrBXs

ˇ

ˇ sβrBssαrAs
D

A,B

“
ÿ

λ

@

UσrABXssλrBs
ˇ

ˇ sβrBssαrAs
D

A,B
Kλ

“
ÿ

λ

@

sαrBU s
ˇ

ˇ sβ{λrBs
D

B
Kλ by (2.8),

“
ÿ

λ

psα ˚ sβ{λqrU sKλ by (2.7),
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“
ÿ

λ

Usα˚sβ{λKλ. �

2.5. Operators U and K . We now proceed to proving (1.5). Identity (1.6)
is deduced by taking adjoints.

Again, we compute commutation relations for the generating series of the
families of operators involved.

Lemma 2.5. Let A and B be two alphabets. We have

(2.18) KσrBXsUσrAXs “ UσrApB`1qXsKσrBXs.

Proof. For any symmetric function f , we have

KσrBXsUσrAXspfq “ KσrBXspσrAXsf rXsq

“ σr´BsσrAXpB ` 1qsf rXpB ` 1qs by (2.12),

“ σrAXpB ` 1qsKσrBXspfq by (2.12),

“ UσrApB`1qXsKσrBXspfq. �

Proof of (1.5). From (2.18) we extract the term KβUα by taking the scalar
product with sαrAs sβrBs. This yields

KβUα “
@

UσrApB`1qXsKσrBXs

ˇ

ˇ sαrAssβrBs
D

A,B
.

Expanding the generating function KσrBXs in the scalar product and sim-
plifying, we get

KβUα “
ÿ

ν

@

UσrApB`1qXssνrBs
ˇ

ˇ sαrAssβrBs
D

A,B
Kν ,

“
ÿ

ν

@ @

UσrApB`1qXs

ˇ

ˇ sαrAs
D

A
sνrBs

ˇ

ˇ sβrBs
D

B
Kν

“
ÿ

ν

@

sαrpB`1qUssνrBs
ˇ

ˇ sβrBs
D

B
Kν by (2.8),

“
ÿ

ν,τ

@

sτ rBU s
ˇ

ˇ sβ{νrBs
D

B
sα{τ rU sKν

“
ÿ

ν,τ

psτ ˚ sβ{νqrU ssα{τ rU sKν by (2.7),

“
ÿ

ν,τ

Upsτ˚sβ{νqsα{τKν . �

In Section 3.5 we present as an application a combinatorial rule for the
Kronecker product of any skew Schur function by spn´1,1q. Other interesting
particular cases of (1.5) correspond to the cases when λ “ pkq (Kronecker
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product with a two-row shape) and λ “ p1kq (Kronecker product with a
hook), where we get

KBpkqUα “
k
ÿ

j“0

˜

ÿ

ρ$k´j

Uα{ρUρ

¸

Kpjq,

Kp1kqUα “
k
ÿ

j“0

˜

ÿ

ρ$k´j

Uα{ρUρ1

¸

Kp1jq.

Setting n “ |α| and m “ |γ|, the same identities can be restated as

spn`m´k,kq ˚ psαsγq “
k
ÿ

j“0

˜

ÿ

ρ$k´j

sα{ρsρ

¸

psγ ˚ spm´j,jqq,

spn`m´k,1kq ˚ psαsγq “
k
ÿ

j“0

˜

ÿ

ρ$k´j

sα{ρsρ1

¸

psγ ˚ spm´j,1jqq.

The terms of the form
ř

ρ$q sα{ρsρ and
ř

ρ$q sα{ρsρ1 in these identities can

be rewritten using Littlewood’s identity (2.21) as follows:
ÿ

ρ$q

sα{ρsρ “ sα ˚ hpn´q,qq, and likewise
ÿ

ρ$q

sα{ρsρ1 “ sα ˚ phn´qeqq.

2.6. Uniqueness of expansions. The identities appearing in Theorem 1.1
and Corollary 2.11 express some operators as linear combinations of opera-
tors UµDν , DνUµ, UµKν , etc. Are such expressions unique?

To answer this question, we associate with any pair pP,Qq of linear maps
from Sym to EndpSymq a generating series depending on four independent
alphabets X, A, B, T . This generating series is

ÿ

α,β,λ

PαpQβpsλrXsqqsαrAssβrBssλrT s “ PσrAXsQσrBXspσrXT sq.

We also associate with the pair pP,Qq the linear map ΦP,Q from SympAqbQ
SympBq to the set of formal series of the form

ř

α,β aα,βsαrXssβrT s, defined
on simple tensors by

ΦP,Qpf rAsgrBsq “
@

PσrAXsQσrBXspσrXT sq
ˇ

ˇ f rAsgrBs
D

A,B
.

Let us say that finite expansions with respect to pP,Qq are unique if, for any
M P EndpSymq, there is at most one expansion M “

ř

α,β aα,βPαQβ. That

is, finite expansions with respect to pP,Qq are unique when the operators
PαQβ, for α and β partitions, are linearly independent.

Proposition 2.6. Finite expansions with respect to the pairs of operators
pU,Dq, pD,Uq, pU,Kq, pK,Dq, pU,Kq and pK,Dq are unique.
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Example 2.7. In contrast, observe that expansions with respect to pK,Uq
or to pD,Kq are not unique. For instance, we have the relation Kp2Up1 “ 0,
that is straightforwardly equivalent to the relation K2U1 “ K1,1U1. Taking
adjoints, we have the relation D1K2 “ D1K1,1.

Proposition 2.6 will be proved using the following lemma.

Lemma 2.8. Let P and Q be linear maps from Sym to EndpSymq.

(1) Finite expansions with respect to pP,Qq are unique if and only if
ΦP,Q is injective.

(2) Let M P EndpSymq.
˝ For f , g P Sym, the operator M is in the linear span of the

operators PfQg, if and only if MpσrXT sq lies in the image of
ΦP,Q.

˝ If MpσrXT sq “ ΦP,QpF q then M is the image of F under the
linear map defined on the Schur basis by sαrAssβrBs ÞÑ PαQβ.

Proof. We start with a computation: let M P EndpSymq. We have that
M “

ř

α,β aα,βPαQβ if and only if for any partition λ,

MpsλrXsq “
ÿ

α,β

aα,βPαQβpsλrXsq

ô
ÿ

λ

MpsλrXsqsλrT s “
ÿ

α,β,λ

aα,βPαQβpsλrXsqsλrT s

ôMpσrXT sq “
ÿ

α,β

aα,βPαQβpσrXT sq

ôMpσrXT sq “ ΦP,Q

˜

ÿ

α,β

aα,βsαrAssβrBs

¸

.

This proves (2), since the linear span of the operators PfQg, for f , g P Sym,
is also the linear span of the operators PαQβ, for α and β partitions.

To obtain (1), take M “ 0 in the above equivalence. �

Proof of Proposition 2.6. For each of the pairs pU,Dq, pD,Uq, pU,Kq and
pU,Kq, we use Lemma 2.2 in order to compute the corresponding generating
series. Next we deduce a description of the corresponding map Φ to show
that it is injective. The uniqueness of finite expansions follows then from
(1) in Lemma 2.8.

For pU,Dq, the details of the calculation are as follows. The generating
series is

UσrAXsDσrBXspσrXT sq “ UσrAXspσrpX `BqT s “ σrAX `XT `BT s.
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We deduce from this a formula for ΦU,D. Let f and g be two symmetric
functions. We have

ΦU,Dpf rAsgrBsq “ x σrAX `XT `BT s | f rAsgrBs yA,B

“ σrXT s xσrAXsσrBT s | f rAsgrBs yA,B

“ σrXT sf rXsgrT s by (2.8).

This shows that ΦU,D is injective, since the series σrXT s is invertible. For
the other three pairs, we skip the details of the calculations.

The generating series for pD,Uq is DσrBXsUσrAXspσrXT sq “ σrpA`T qpB`
Xqs. The map ΦD,U is given by f rAsgrBs ÞÑ σrXT sσrXKTKspf rXsgT sq.

The map ΦD,U is injective, since the series σrXT s is invertible, and the
operator σrXKTKs is invertible as well (its inverse is σr´XKTKs).

The generating series for pU,Kq is given by UσrAXsKσrBXspσrXT sq “
σrBpX ` AqT s. The map ΦU,K is f rAsgrBs ÞÑ f rXsgrXT s. To check that
ΦU,K is injective, post–compose it with the specialization of T at T {X: the
map obtained is f rAsgrBs ÞÑ f rXsgrT s, which is injective. Thus ΦU,K is
injective.

The generating series for pU,Kq is UσrAXsKσrBXspσrXT sq “ σrAX `

BpXT ´ 1q ` XT s. The map ΦU,K is f rAsgrBs ÞÑ σrXT sf rXsgrXT ´ 1s.
This map ΦU,K is injective. Indeed, post–composing first with the product
with the inverse of σrXT s, and next by the specialization of T at pT `1q{X,
we obtain the map f rAsgrBs ÞÑ f rXsgrT s, which is injective.

This proves the uniqueness of finite expansions with respect to pU,Dq,
pD,Uq, pU,Kq and pU,Kq. The uniqueness of finite expansions with respect
to pK,Dq and pK,Dq is obtained by taking adjoints. �

Remark 2.9. The uniqueness of finite expansions with respect to pU,Dq
and pD,Uq can alternatively be proved by switching to the basis of power
sums. The algebra generated by the operators Ug and Dg is also generated
by 1, the Upk and the Dpk (k ą 0). The following maps define an isomor-
phism between this algebra and, firstly, the bosonic creation and annihilation
operator algebra (this appears for instance in [6]) and, secondly, the Weyl
algebra in infinitely many generators.

Upk ÞÑ a:k ÞÑ pxk , Dpk ÞÑ k ak ÞÑ k
B

Bxk
,

where the ak are the creation operators, and the a:k are the annihilation
operators. It is well-known that, in the bosonic creation and annihilation
operator algebra, the monomials in normal order pa:1q

m1pa:2q
m2 ¨ ¨ ¨ an1

1 a
n2
2 ¨ ¨ ¨

as well as the monomials in antinormal order an1
1 a

n2
2 ¨ ¨ ¨ pa

:

1q
m1pa:2q

m2 ¨ ¨ ¨ are
linearly independent. This shows that the operators UpλDpµ are linearly
independent, and so are the operators DpµUpλ . From this, one deduces
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that finite expansions with respect to pU,Dq and with respect to pD,Uq are
unique.

We finish this section with an expansion of the operators Kf in terms of
operators Ug and Dg. From (2) in Lemma 2.8, we get the following result.

Proposition 2.10. Let f be a symmetric function. The operator Kf lies
in the subalgebra of EndpSymq generated by the operators Ug and Dg (for
g P Sym). More precisely,

Kf “
ÿ

λ

Uf rX´1s˚sλDλ.

Proof. The subalgebra of EndpSymq generated by the operators Ug and Dg,
for g P Sym, is the linear span of the operators UαDβ, for α and β parti-
tions. According to (2) in Lemma 2.8, and the calculations in the proof of
Proposition 2.6, it is the set of operators M such that MpσrXT sq is σrXT s
times an element of SympXq bQ SympT q.

According to (2.14), Kf pσrXT sq “ σrXsf rX´1s ˚σrXT s, which is equal,
according to (2.6), to σrXT sf rXT ´ 1s. This proves Proposition 2.10.

To get an explicit decomposition of Kf , we decompose f rXT ´ 1s as an
element of SympXqbQSympT q. We start with f rXT´1s “ f rX´1s˚σrXT s.
(The Kronecker product ˚ is relative to the symmetric functions inX). Thus,

f rXT ´ 1s “ f rX ´ 1s ˚
ÿ

λ

sλrXssλrT s “
ÿ

λ

f rX ´ 1s ˚ sλrXssλrT s.

Therefore, Kf pσrXT sq “ ΦU,D p
ř

λ f rA´ 1s ˚ sλrAssλrBsq . We conclude the
proof by applying the second part of (2) in Lemma 2.8. �

For instance, for f “ hk we have: Kpkq “
ř

λ$k UλDλ ´
ř

λ$k´1 UλDλ,
since hkrX ´ 1s “ hk ´ hk´1. The simplest case is k “ 1. Here we obtain

(2.19) Kp1q “ Up1qDp1q ´ 1 .

By the Pieri rule, for any partition α,

Up1qDp1qsα “
ÿ

β

sβ,

where each term in the sum corresponds to a choice of a corner in the diagram
of α that is removed, and then a choice of a box that is added, to give the
diagram of a partition β. There are two cases: the box can be added where
the corner was removed, or not. Accordingly the sum splits: Up1qDp1qsα “
#cornerspαqsα`

ř

βPα¯ sβ , where α¯ denotes the set of partitions not equal
to α that can be obtained by removing a corner of α and then adding a box
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to the result. Therefore,

Kp1qsα “ Up1qDp1qsα ´ sα “ p#cornerspαq ´ 1qsα `
ÿ

βPα¯

sβ ,

which will reappear in (3.6).

2.7. Historical context. Theorem 1.1 can be rewritten in an equivalent
way using the Littlewood–Richardson coefficients cαλ,µ and the Kronecker
coefficients gα,λ,µ (the structural constants for the product and the Kronecker
product of Schur functions), see [9].

Theorem 2.11. For any partitions α and β, we have the following identi-
ties:

DβUα “
ÿ

µ,ν

˜

ÿ

λ

cαλ,µ c
β
λ,ν

¸

UµDν ,

UαDβ “
ÿ

µ,ν

˜

ÿ

λ

p´1q|λ|cαλ,µ c
β
λ1,ν

¸

DνUµ,

KβUα “
ÿ

µ,ν

˜

ÿ

λ

gα,λ,µ c
β
λ,ν

¸

UµKν ,

DαKβ “
ÿ

µ,ν

˜

ÿ

λ

gα,λ,µ c
β
λ,ν

¸

KνDµ,

KβUα “
ÿ

µ,ν

˜

ÿ

λ,σ,τ,θ

gλ,τ,θ c
β
λ,ν c

α
τ,σ c

µ
θ,σ

¸

UµKν ,

DαKβ “
ÿ

µ,ν

˜

ÿ

λ,σ,τ,θ

gλ,τ,θ c
β
λ,ν c

α
τ,σ c

µ
θ,σ

¸

KνDµ.

Identities (1.1) and (1.3) are avatars of well-known identities of Foulkes
and Littlewood. Indeed, if we apply the operators in (1.1) and (1.3) to the
Schur function sγ, we get

Dβpsαsγq “
ÿ

λ

sα{λDβ{λpsγq,(2.20)

sβ ˚ psαsγq “
ÿ

λ

psβ{λ ˚ sαqpsλ ˚ sγq.(2.21)
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By linearity, we can replace sα and sγ with arbitrary symmetric functions f

and g. Moreover, if we expand sβ{λ “
ř

µ c
β
λ,µsµ, we obtain

Dβpfgq “
ÿ

λ,µ

cβλ,µDλpfqDµpgq,(2.22)

sβ ˚ pfgq “
ÿ

λ,µ

cβλ,µpsµ ˚ fqpsλ ˚ gq.(2.23)

Formula (2.22) was obtained by Foulkes ([3, §3.b], also mentioned in [9, I.§5,
Ex. 25.(d)], while (2.23) is due to Littlewood ([8, Theorem III], see also [9,
I.§7, Ex. 23.(c)]).

An expression similar to (2.22) and (2.23) can be derived in the same way
from (1.4). This is,

(2.24) Dβpf ˚ gq “
ÿ

λ

gβ,λ,µDλpfq ˚Dµpgq.

The similarity between (2.22), (2.23) and (2.24) has a nice explanation. It
is provided by Thibon for (2.22) and (2.24), see [17, p. 554], [18, Propo-
sition 6.4], and [19], but applies as well to (2.23). The explanation is as
follows: let B be a bialgebra with product d and coproduct ∆. The co-
product ∆ induces a product µ on the dual space B˚. For any x P B or in
B bB, let Bx be the adjoint of the d–product by x. Then, for any x P B,

(2.25) Bx ˝ µ “ µ ˝ B∆pxq.

See the aforementioned references by Thibon for a proof.
Consider Sym with a product that is either the ordinary product or the

Kronecker product, and a coproduct that is either the adjoint of the ordinary
product or the adjoint of the ordinary coproduct. This gives four possibil-
ities, but only three of them make Sym a bialgebra. The three identities
(2.22), (2.23) and (2.24) are obtained by applying (2.25) to these three bial-
gebra structures, with x “ sβ. See Table 1.1. Note that, for any symmetric
function f , the operator Kf is its own adjoint.

In [19], Thibon also relates Identity (2.23) to Mackey’s formula in group
theory (see [5, 18.15]). Let us mention that Cummins [2, Identity (13)] also
derives an identity very close to (1.4).

Formula (1.2) can be restated as

(2.26) sαsγ{β “
ÿ

λ

p´1q|λ|Dβ{λ1psα{λsγq.

In Section 3.1, we will show that Formula (1.2) happens to be closely
related to the skew Littlewood–Richardson rule. In [7, Lemma 1.1], Lam,
Lauve, and Sottile obtain a more general version of Formula (1.2) valid for
arbitrary pairs of dual Hopf algebras.
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As mentioned in the introduction, Ira Gessel [4] established special cases
of (1.1) and (1.2) when the Schur functions are indexed by one-row or one-
column shapes. He showed that

DnUm “
ÿ

i

Um´iDn´i ,

UmDn “ DnUm ´Dn´1Um´1 ,

Dp1nqUm “ UmDp1nq ` Um´1Dp1n´1q.

Since Kβ and Kβ are self-adjoint, and Uα and Dα are adjoints of each
other, (1.4) and (1.6) are obtained from (1.3) and (1.5), respectively, by
taking adjoints.

An interesting and elegant way of stating some of the results of Theo-
rem 1.1 is in terms of commutators.

Corollary 2.12. For any two partitions α and β, we have

rDβ, Uαs “
ÿ

λ‰H

Uα{λDβ{λ “
ÿ

λ‰H

p´1q|λ|´1Dβ{λ1Uα{λ ,

rKβ, Uαs “
ÿ

pτ,νq‰pH,βq

Upsβ{ν˚sτ qsα{τKν ,

rDα, Kβs “
ÿ

pτ,νq‰pH,βq

KνDpsβ{ν˚sτ qsα{τ ,

where H denotes the empty partition.

3. Part II: Combinatorial applications

3.1. Application to the skew Littlewood–Richardson rule. In this
section, we present our first application of Theorem 1.1: a new proof of the
skew Littlewood–Richardson rule as conjectured by Assaf and the second
author [1] and proved by Lam, Lauve and Sottile [7]. As in [7], our start-
ing point is (1.2). In [7], first an “algebraic skew Littlewood–Richardson
rule” is derived, involving sums of products of Littlewood–Richardson co-
efficients. Then, the combinatorial skew Littlewood–Richardson rule is ob-
tained by interpreting these Littlewood–Richardson coefficients as the num-
ber of semistandard Young tableaux with given rectification. Our proof fits
more closely with the statement of the skew Littlewood–Richardson rule: we
avoid going through the algebraic skew Littlewood–Richardson rule and use
the interpretation of the Littlewood–Richardson coefficients as the number
of semistandard Young tableaux with certain constraints on their content
and reverse reading words.

Our proof appears in Subsections 3.3 and 3.4 and is largely combinatorial.
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For a positive integer k and a partition γ, the classical Pieri rule [10] gives
a simple and beautiful expression for the product spkqsγ as a sum of Schur
functions. A k-horizontal (respectively k-vertical) strip is a skew shape with
k boxes that has at most one box in each column (respectively row). The
Pieri rule states that

spkqsγ “
ÿ

pγ

s
pγ ,

where the sum is over all partitions pγ such that pγ{γ is a k-horizontal strip.
In [1], Assaf and the second author generalized the Pieri rule to the setting
of skew shapes as follows:

(3.1) spkqsγ{β “
k
ÿ

i“0

p´1qi
ÿ

pγ,qβ

s
pγ{qβ ,

where the sum is over all partitions pγ and qβ such that pγ{γ is a pk ´ iq-

horizontal strip, and β{qβ is an i-vertical strip. We will use the skew Pieri
rule with k “ 1 in Section 3.5.

For the next level of generality, it is natural to ask for a similarly com-
binatorial expression for sαsβ{γ for any partition α. Equation (2.26) gives
one expression, but it does not mimic (3.1) in the sense that it does not
give the answer as a signed sum of skew Schur functions. Instead, the skew
Littlewood–Richardson rule [7] gives an expression for the even more general
product sα{δsβ{γ as a signed sum of skew Schur functions. In this section, we
will derive the skew Littlewood–Richardson rule from (1.2) in the following
way. In Subsection 3.3, we will use a combinatorial approach to obtain from
(1.2) the skew Littlewood–Richardson rule in the case when δ is empty, and
then we will use a linearity argument to derive the result for general δ in
Subsection 3.4.

3.2. The combinatorial skew Littlewood–Richardson rule. In order
to state the skew Littlewood–Richardson rule, we first need some termi-
nology. As usual, a sequence of positive integers ω is said to be a lattice
permutation if any prefix of ω contains at least as many appearances of i as
i`1, for all i ě 1. For a partition δ, we say that ω is a δ-lattice permutation
if the word obtained by prefixing ω with δ1 copies of 1 followed by δ2 copies
of 2, etc., is a lattice permutation.

We draw our Young tableaux in French notation, implying that the entries
of an SSYT weakly increase along the rows and strictly increase up the
columns. An anti-semistandard Young tableau (ASSYT) T1 of shape α{β is
a filling of the boxes of α{β so that the entries strictly decrease along the
rows and weakly decrease up the columns. Equivalently, T1 is an ASSYT if
the tableau pT 11q

r obtained by transposing T1 and then rotating it 180˝ is an
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SSYT. The reverse reading word of an SSYT T2 is defined as usual as the
word obtained by reading right-to-left along the rows of T2, taking the rows
from bottom to top. In contrast, the reverse reading word of an ASSYT T1

is the word obtained by reading up the columns of T1, taking the columns
from right-to-left. Equivalently, we can take the usual reverse reading word
of the SSYT pT 11q

r. Given a pair of tableaux pT1, T2q, where T1 is an ASSYT
and T2 is an SSYT, we define the reverse reading word of the pair as the
concatenation of the reading word of T1 with that of T2. We will encounter
such pairs as in (3.2) below, where the entries in the bottom left form an
ASSYT, and the entries above or to the right of the outlined skew shape
form an SSYT.

(3.2) 2
1

3
35

2 4
1 4 4 5

3
5 6

The reverse reading word of pT1, T2q shown in (3.2) is 21335425441365, which
is certainly not a lattice permutation but is a 5321-lattice permutation.

We are now ready to state the skew Littlewood–Richardson rule.

Theorem 3.1 ([1, Conjecture 6.1]; [7, Theorem 3.2 and Remark 3.3(ii)]).
For skew shapes α{δ and γ{β,

(3.3) sα{δsγ{β “
ÿ

T1PASSYTpβ{ qβq
T2PSSYTppγ{γq

p´1q|β{
qβ|s

pγ{qβ ,

where the sum is over all ASSYT T1 of shape β{qβ for some qβ Ď β, and
SSYT T2 of shape pγ{γ for some pγ Ě γ, with the following properties:

(a) the combined content of T1 and T2 is the component-wise difference
α ´ δ, and

(b) the reverse reading word of pT1, T2q is a δ-lattice permutation.

For example, the ASSYT and SSYT pair of (3.2) contribute ´s9953{1 to the
product s755431{5321s7541{33. Note that, when β and δ are empty, we recover
the classical Littlewood–Richardson rule. Indeed, this case corresponds to
counting SSYT whose reverse reading words are lattice permutations; we
call such SSYT LR-fillings.

3.3. Recovering a special case of the combinatorial skew Little-
wood–Richardson rule. Our first step to reproving Theorem 3.1 is to
start with (1.2) and show that it implies Theorem 3.1 in the case when
δ “ H, the empty partition. Instead of (1.2), we work with the equivalent
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identity in (2.26):

sαsγ{β “
ÿ

λ

p´1q|λ|Dβ{λ1psα{λsγq.

First, let us examine the product sα{λsγ from the right–hand side, and ex-
pand it in terms of Schur functions. Note that only those sν with ν Ě γ will
appear in the Schur expansion with nonzero coefficient. Thus we can write

sα{λsγ “
ÿ

pγĚγ

a
pγspγ ,

for some coefficients a
pγ. We have

a
pγ “

@

s
pγ

ˇ

ˇ sα{λsγ
D

“
@

s
pγ{γ

ˇ

ˇ sα{λ
D

“
@

s
pγ{γsλ

ˇ

ˇ sα
D

.

The product s
pγ{γsλ is equal to the skew Schur function of the shape ppγ{γq‘λ.

(The notation ‘means that pγ{γ is positioned so that its bottom-right corner
box is immediately northwest of the top-left corner box of λ.) Therefore,
the coefficient a

pγ is equal to the number of LR-fillings of that skew shape
that have content α. Any LR-filling of that shape must just fill the ith row
of λ with the number i, for all i. Thus a

pγ equals the number of SSYT of
shape pγ{γ whose reverse reading word is a λ-lattice permutation and whose
content is the component-wise difference α ´ λ. Hence (2.26) is equivalent
to

(3.4) sαsγ{β “
ÿ

λ

p´1q|λ|Dβ{λ1

ÿ

T2

s
pγ ,

where the second sum is over all SSYT T2 of shape pγ{γ for some pγ Ě γ, and
content α ´ λ, whose reverse reading word is a λ-lattice permutation.

Next, we examine the term sβ{λ1 . The coefficient of sν in this term is

exactly the Littlewood–Richardson coefficient cβλ1ν , which is only nonzero if

ν Ď β. Thus we wish to determine the coefficient cβ
λ1 qβ

of s
qβ in sβ{λ1 when

qβ Ď β, which equals the number of LR-fillings of β{qβ of content λ1. We
claim that such fillings T are in a shape-preserving bijection with ASSYT
whose reverse readings word is a lattice permutation and whose content is λ
(as opposed to content λ1 previously). Indeed the bijection ψ is defined by
mapping the ith appearance (in the reverse reading word of the SSYT T ) of
the number j to the number i, for all i and j. For example,

3 4
2 3 3

1 2 2
1 1 1 1

ÝÑ

3 1
3 2 1

5 2 1
4 3 2 1

.

Then one can check that ψ has the following necessary properties:
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˝ The inverse of ψ is given by the ASSYT analogue of ψ: map the jth
appearance (in the reverse reading word, now in the ASSYT sense)
of the number i to the number j, for all i and j.

˝ The image ψpT q of an LR-filling T is indeed an ASSYT whose reverse
reading word is a lattice permutation.

˝ Such a ψpT q maps to an LR-filling under the inverse map.
˝ Both ψ and its inverse transpose the content partition.

Thus (3.4) is equivalent to

sαsγ{β “
ÿ

λ

p´1q|λ|
ÿ

T1

D
qβ

ÿ

T2

s
pγ “

ÿ

λ

p´1q|λ|
ÿ

T1,T2

s
pγ{qβ ,

where the relevant sums are over all T1 and T2 such that

˝ T1 is an ASSYT of content λ, whose reverse reading word is a lattice

permutation, and with shape β{qβ for some qβ Ď β, and
˝ T2 is an SSYT of content α ´ λ, whose reverse reading word is a
λ-lattice permutation, and with shape pγ{γ for some pγ Ě γ.

Note that T1 tells us that |λ| “ |β{qβ|, and we have arrived at Theorem 3.1
in the case when δ “ H.

3.4. Recovering the full combinatorial skew Littlewood–Richardson
rule. Our second step is to use a linearity argument to derive Theorem 3.1

for general δ. For this, observe that the coefficient of p´1q|β{
qβ|s

pγ{qβ on the

right-hand side of (3.3) is the number of pairs of tableaux pT1, T2q with
T1 an ASSYT and T2 a SSYT, fulfilling conditions (a) and (b) in Theo-
rem 3.1. But T1 being an ASSYT is equivalent to pT 11q

r being an SSYT,
and the reverse reading word of the ASSYT T1 is defined so that pT 11q

r has
the same reverse reading word as an SSYT. Therefore, the coefficient of

p´1q|β{
qβ|s

pγ{qβ on the right-hand side of (3.3) equals the number of SSYT

of shape ppγ{γq ‘ pβ1{qβ1qr and content α whose reverse reading word is a δ–

lattice permutation. This is the number of SSYT of shape ppγ{γq‘pβ1{qβ1qr‘δ
and content α whose reverse reading word is a lattice permutation. By the
Littlewood–Richardson rule, this quantity equals the coefficient of sα in the
Schur expansion of s

ppγ{γq‘pβ1{ qβ1qr‘δ. This skew Schur function being equal to

the product s
pγ{γspβ1{ qβ1qrsδ means that the coefficient of sα is

A

s
pγ{γspβ1{ qβ1qrsδ

ˇ

ˇ

ˇ
sα

E

,

which is equal to
A

s
pγ{γspβ1{ qβ1qr

ˇ

ˇ

ˇ
sα{δ

E

.
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Therefore, (3.3) is equivalent to

(3.5) sα{δsγ{β “
ÿ

pγ, qβ1

p´1q|β{
qβ|
A

s
pγ{γspβ1{ qβ1qr

ˇ

ˇ

ˇ
sα{δ

E

s
pγ{qβ ,

where the sums are over all partitions pγ and qβ1 such that pγ Ě γ and qβ Ď β.
The key observation is that (3.5) is linear in sα{δ. Since the Schur func-

tions form a basis for the space of symmetric functions, Equation (3.5) is
equivalent to

f ¨ sγ{β “
ÿ

pγ, qβ1

p´1q|β{
qβ|
A

s
pγ{γspβ1{ qβ1qr

ˇ

ˇ

ˇ
f
E

s
pγ{qβ ,

for any symmetric function f , and any partitions β and γ. Hence, we see
that in order to prove (3.3), it suffices to check the above equation for f “ sα,
for all partitions α. This is what we have done in Subsection 3.3.

3.5. A combinatorial interpretation for the Kronecker product of a
skew Schur function by spn´1,1q. As another application of the identities
of Section 2.7, our goal for this section is to derive a combinatorial formula for
Kronecker products involving skew Schur functions. Let α be a partition of
n, and let us speak of partitions and their Young diagrams interchangeably.

A well-known case ofKλ is when λ “ p1q. We pause to describe an identity
that we will generalize in Section 3.5 using the normal ordering relations. A
corner of α is a box of α whose removal results in another partition, and we
denote by #cornerspαq the number of corners of α. Denote by α´ the set of
partitions that result from removing a corner of α. Similarly, α` will denote
the set of those partitions β such that α P β´. We use α¯ to denote the set of
partitions not equal to α that can be obtained by removing a corner of α and
then adding a box to the result. Equivalently, α¯ is the set of partitions that
can be obtained from α by first adding a box and then removing a different
box. For example, p31q has two corners, and p31q¯ “ tp4q, p22q, p211qu. We
finished Subsection 2.6 by relating the combinatorial identity

(3.6) Kp1qsα “ p#cornerspαq ´ 1qsα `
ÿ

βPα¯

sβ

to the decomposition of the operators Kf in terms of the operators Up1q and
Dp1q.

We aim to generalize (3.6) to skew Schur functions. This leads to our
next use of the identities of Section 2. Corollary 2.12 implies the relation
rDθ, Kp1qs “ Dsθ{p1qs1 , which gives

Kp1qDθpsαq “ DθKp1qpsαq ´Dsθ{p1qs1psαq.
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Applying (3.6) and the fact that

sθ{p1qs1 “ #cornerspθqsθ `
ÿ

φPθ¯

sφ,

we get

sα{θ ˚spn´|θ|´1,1q “ p#cornerspαq´#cornerspθq´1qsα{θ`
ÿ

βPα¯

sβ{θ´
ÿ

φPθ¯

sα{φ ,

Thus we have an algebraic proof of the following result.

Theorem 3.2. Suppose α $ n and θ $ k with θ Ď α. Then

sα{θ ˚spn´k´1,1q “ p#cornerspαq´#cornerspθq´1qsα{θ`
ÿ

βPα¯

sβ{θ´
ÿ

φPθ¯

sα{φ .

This identity begs for a combinatorial proof. We offer a proof which is
“two-thirds” combinatorial. The part which is non-combinatorial makes use
of (2.19), which in turn is proved using Littlewood’s identity (2.23).

Second proof of Theorem 3.2. The proof proceeds in three stages. In the
short first stage, which is the non-combinatorial one, we apply (2.19) to
express sα{θ ˚spn´k´1,1q in a form (3.7) not involving any Kronecker products.
Then, using the skew Pieri rule (3.1), we reduce the problem to showing an
identity (3.8) that is effectively purely about SSYT. This identity is proved
in the third stage using jeu de taquin (first defined in [14]; can also be found
in [12, 15], for example).

First, we need to determine the result of applying Dp1q to the skew Schur
function sα{θ. We have

@

sβ
ˇ

ˇDp1qsα{θ
D

“
@

sβsp1q
ˇ

ˇ sα{θ
D

“
ÿ

δPθ`

x sβsδ | sα y “

C

sβ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

δPθ`

sα{δ

G

,

and so Dp1qsα{θ “
ř

δPθ` sα{δ. Applying (2.19) to sα{θ, we immediately de-
duce

(3.7) sα{θ ˚ spn´k´1,1q “ sp1q
ÿ

δPθ`

sα{δ ´ sα{θ .

We next wish to apply the skew Pieri rule to sp1q
ř

δPθ` sα{δ, but it will
prove worthwhile to perform a preliminary step. By definition, sα{δ “ 0
unless δ Ď α, so it suffices to sum over the δ’s with δ P θ` and δ Ď α. We
write δ P θ`α if δ satisfies these two conditions. So we now apply the skew
Pieri rule (3.1) to

sα{θ ˚ spn´k´1,1q “ sp1q
ÿ

δPθ`α

sα{δ ´ sα{θ
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to obtain

sα{θ ˚ spn´k´1,1q “
ÿ

γPα`

δPθ`α

sγ{δ ´
ÿ

δPθ`α

φPδ´

sα{φ ´ sα{θ .

Let us examine the second sum. For any δ in θ`α, we can choose φ “ θ.
We see that the other φ’s that arise will be exactly those elements of θ¯ that
are contained in α. Therefore,

sα{θ ˚ spn´k´1,1q “
ÿ

γPα`

δPθ`α

sγ{δ ´ |θ
`α
|sα{θ ´

ÿ

φPθ¯

sα{φ ´ sα{θ .

Thus, to prove Theorem 3.2, it remains to show that

(3.8)
ÿ

γPα`

δPθ`α

sγ{δ ´ |θ
`α
|sα{θ “ p#cornerspαq ´#cornerspθqqsα{θ `

ÿ

βPα¯

sβ{θ .

Our main tool for proving the above identity is jeu de taquin but, as
with our application of the skew Pieri rule, it is worthwhile to rewrite (3.8)
in a slightly different form. Observe that, for any partition α, we have
#cornerspαq “ |α`| ´ 1. For θ Ď α, denote the set of elements of θ` that
are not contained in α by θ`α

c
; we can check that θ`α

c
can be non-empty

only if α{θ has some empty rows or columns.
We can now rewrite (3.8) as

(3.9)
ÿ

γPα`

δPθ`α

sγ{δ “ p|α
`
| ´ |θ`α

c

|qsα{θ `
ÿ

βPα¯

sβ{θ .

For intuition, we call the positions of those boxes of the form λ{α for some
λ P α` the outside corners of α. Then the term |α`| ´ |θ`α

c
| is the number

of outside corners of α, excluding those that are also outside corners of θ.
See Example 3.3 below for a fully worked out example of the remainder of
the proof.

To prove (3.9) using jeu de taquin (jdt), consider an SSYT T that con-
tributes to the left-hand side, meaning that T has shape γ{δ, where γ P α`

and δ P θ`α. Notice that the unique box b of δ{θ is not an element of T , and
that the unique box c of γ{α is in T . Perform a jdt slide of T into b, and let
T 1 denote the resulting SSYT. There are three possibilities that can arise:

(a) T 1 “ T , meaning that there is no way to fill b under a jdt slide of T .
(b) T 1 contains b, and the single vacated box under the jdt slide is not c.
(c) T 1 contains b, and the single vacated box under the jdt slide is c.

By definition of jdt, Case (a) can happen if and only if b is a corner of γ.
Since b P δ Ď α Ă γ, the box b must be a corner of α. Therefore, since b is
the unique box of δ{θ and is not an element of T 1 while c is the unique box
of γ{α and is in T 1, the shape γ{δ of T 1 can be written in the equivalent form
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β{θ, where β is obtained from α by removing b and adding c. In particular,
β P α¯, and so such T 1s contribute part of the sum on the right of (3.9).

We claim that Case (b) contributes the rest of the sum on the right of
(3.9). We see that the shape of T 1 is obtained from the shape of T by making
exactly two changes: T 1 contains b, and a box c1 different from c has been
vacated. As a result, T 1 has shape β{θ for some β P α¯.

To prove our claim from the start of the previous paragraph, let T 1 be
an SSYT of shape β{θ, where β P α¯. We wish to show that T 1 arises as
the image under jdt of exactly one T from Cases (a) and (b). In short, the
reason is that jdt slides are reversible, but let us be more precise. Suppose
β is obtained from α by removing a box d and adding a different box e.
Perform a jdt slide of T 1 into d. (Some references would call this a reverse
jdt slide, since d is outside β.) There are two possibilities that can arise:

(i) There is no way to fill d under a jdt slide of T 1. This can happen
if and only if d is an outside corner of θ. Thus β{θ can be written
in the equivalent form γ{δ, where γ equals α with e added, and δ
equals θ with d added. Since d is a corner of α, it is also a corner
of γ. These are exactly the conditions for T 1 to arise as an image
under jdt of a T from Case (a) (where in fact T “ T 1 and our d here
corresponds to b in Case (a)).

(ii) Performing a jdt slide of T 1 into d fills d and vacates an outside corner
of θ. This is exactly the reverse of the jdt slide from Case (b) (where
d is playing the role of c1).

Thus T 1 arises as the image of a single T from Cases (a) and (b).
It remains to consider Case (c). Note that all T 1 in Case (c) are of shape

α{θ. We would like to show that each T 1 is the image under jdt of k dis-
tinct T , where k “ p|α`| ´ |θ`α

c
|q. This would show that the T 1s from Case

(c) together contribute the term p|α`| ´ |θ`α
c
|qsα{θ from the right-hand side

of (3.9), and (3.9) would be proved.
So pick a T 1 from Case (c). Pick an outside corner c of α, and perform a

(reverse) jdt slide of T 1 into c. If c is not an outside corner of θ, then this jdt
slide will fill c, and the result will be an SSYT T of shape γ{δ with γ P α`

and δ P θ`α. These are exactly the conditions for T 1 to arise in Case (c).
On the other hand, if c is an outside corner of α and also of θ, then T 1

will remain fixed under the (reverse) jdt slide. Thus any T that maps to
such a T 1 under a jdt slide must also have shape α{θ. Such a T from the
left-hand side of (3.9) does not exist, since T would contain the single box
γ{α whereas T 1 does not. We conclude that each T 1 in Case (c) is the image
of exactly k distinct T s, as required. �
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Case (a) Case (b) Case (c)

γ{δ
b
c

b

c b

c

c1 b
c

c1 b c

b
c

T
b
A
BC

b

ABC b

A
B

C b

A
B

C b

A

BC

b
A

BC

T 1
d
A
BC

d

ABC C

A
B

d C

A
B

d B

A

C c

A
c

BC

Table 3.1. The full set of skew shapes and SSYTs for Exam-
ple 3.3. In the first row, the dashed boxes are those in δ, and
the solid boxes are those in γ{δ. Lowercase letters correspond
to notation in the proof of (3.9), while the uppercase A, B
and C denote entries of the SSYTs that we assume satisfy the
necessary inequalities but are otherwise any positive integers.

Example 3.3. Suppose α “ p4, 1, 1q and θ “ p2, 1q. We have

α{θ “

The complete set of shapes γ{δ, and SSYT T and T 1 from the proof of (3.9)
are shown in Table 3.1. Deliberately omitted from the table is the scenario
from the last paragraph of the proof, where c is an outside corner of both
α and θ, which does not contribute to either side of (3.9). In this example,
there is 1 “ |θ`α

c
| such situation, shown below.

α{θ “ c
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