
ar
X

iv
:1

50
5.

02
94

5v
1 

 [
m

at
h.

A
T

] 
 1

2 
M

ay
 2

01
5

CYLINDERS FOR NON-SYMMETRIC DG-OPERADS VIA

HOMOLOGICAL PERTURBATION THEORY

FERNANDO MURO

Abstract. We construct small cylinders for cellular non-symmetric DG-oper-
ads over an arbitrary commutative ring by using the basic perturbation lemma
from homological algebra. We show that our construction, applied to the A-
infinity operad, yields the operad parametrizing A-infinity maps whose linear
part is the identity. We also compute some other examples with non-trivial
operations in arities 1 and 0.

Introduction

Cylinders are basic tools to do homotopy theory in any context. The existence
of cylinders is guaranteed by the axioms of model categories. In cofibrantly gener-
ated model categories, cylinders can be constructed out of generating cofibrations,
but they are huge, not useful for explicit computations. In many specific model
categories, there are nice and small cylinders for cofibrant objects, e.g. topological
spaces (the product with the interval), chain complexes (well known), differential
graded (DG) algebras, and connected commutative DG-algebras in characteristic
0, see [Bau89, §1].

Any DG-algebra has a cofibrant resolution of the form (T (V ), d + ∂), where
(T (V ), d) is the free DG-algebra on a chain complex V and ∂ is a perturbation
of the differential d. The cylinder of such a DG-algebra is (T (IV ), d + ∂I), where
(T (IV ), d) is the free DG-algebra on the cylinder IV of the chain complex V and
∂I is a perturbation defined from ∂ in a straightforward way, using a chain ho-
motopy compatible with the associative algebra structure. The commutative case
starts similarly, with a perturbed free commutative DG-algebra, but quickly di-
verges. The differential is defined in terms of locally nilpotent derivations and
formal exponentials, where factorial denominators appear.

DG-operads are closely related to DG-algebras, the arity 1 part O(1) of a DG-
operad O is a DG-algebra. However, one of the DG-operad laws contains a switch,

(x ◦i y) ◦j z = (−1)|y||z|(x ◦j z) ◦i+n−1 y, j < i, z ∈ O(n).

Therefore, in any possible construction of cylinders for DG-operads we can expect
some of the complications of the commutative DG-algebra case. We work with
non-symmetric DG-operads, which avoids further switches associated to symmetric
group actions. Unlike in the symmetric case, the category of non-symmetric DG-
operads is endowed with a model structure over any commutative ground ring
[Mur11, Lyu11].
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Any DG-operad has a cofibrant resolution of the form (F(V ), d + ∂), where
(F(V ), d) is the free DG-operad on a sequence of chain complexes V = {V (n)}n≥0

and ∂ is a perturbation of the differential d. We construct a cylinder for such a
DG-operad of the form (F(IV ), d+∂I), where (F(IV ), d) is the free DG-operad on
the sequence of chain cylinders IV = {IV (n)}n≥0 and ∂I is a perturbation defined
from ∂ by using tools from homological perturbation theory. The definition of ∂I is
recursive. We compute some examples in Sections 2 and 3. The most remarkable
one is the A-infinity operad A∞, which has the previous form. Maps from A∞ to an
endomorphism operad correspond to A-infinity algebra structures, and homotopies
with respect to our cylinder correspond to A-infinity morphisms whose linear part
is the identity.

Fresse [Fre09] defined cylinders for symmetric DG-operads arising as the cobar
construction of a coaugmented connected DG-cooperad. The A-infinity operad
A∞ arises in this way, it is the cobar construction of the Koszul dual cooperad
of the associative operad. Fresse’s cylinder of A∞ coincides with ours, modulo
symmetrization. His formulas are closed, not recursive, and work for symmetric
operads. Our construction does not rule out operads with non-trivial operations in
arities 0 and 1, such as the unital A-infinity operad [HM12, Lyu11, MT14] or the
DG-operad for homotopy associative algebras with derivation [Lod10], considered
in Example 2.20, and works straightaway in the relative case. We actually describe
the cylinder of a DG-operad concentrated in arities 0 and 1, observing that our con-
struction generalizes the classical cylinder of DG-algebras. In the final section, we
consider a family of DG-operads, called linear, where our formulas greatly simplify.
This family contains interesting examples, mainly in the relative case.

Acknowledgments. The author was partially supported by the Andalusian Min-
istry of Economy, Innovation and Science under the grant FQM-5713 and by the
Spanish Ministry of Economy under the MEC-FEDER grant MTM2013-42178-P.

1. Cylinders

We work over an arbitrary commutative ground ring k. The symmetry constraint
in the monoidal categories of (Z-)graded (k-)modules and chain complexes uses the
Koszul sign rule. Differentials have degree −1. As a graded module, the suspension
ΣX of a chain complex X is (ΣX)n = Xn−1 with differential dΣX = −dX . We
denote by σ : X → ΣX the degree +1 isomorphism that is the identity degreewise,
which satisfies dΣXσ = −σdX . Therefore, given x ∈ Xn−1 we often write σ(x) for
x itself regarded as an element in (ΣX)n.

Definition 1.1. A strong deformation retraction, or simply an SDR, consists of
two chain complexes X and Y and a diagram

X
i

//
Y

p
oo h

ee

where i and p are chain maps, h is a chain homotopy from ip to the identity in Y ,
i.e. a degree +1 map satisfying

ip− 1Y = dh+ hd,

and the following equations are satisfied,

pi = 1X , ph = 0, hi = 0, h2 = 0.
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A strong pseudo-cylinder of a chain complex X is a diagram

X
i0

//

i1

// C
p

//

h

��

X

where C is a chain complex, i0, i1 and p are chain maps, h is a chain homotopy
such that

X
i0

//
C

p
oo h

ee

is an SDR, and pi1 = 1X . We call it a strong cylinder if (i0, i1) : X ⊕X → C is a
cofibration in the projective model structure on chain complexes [Hov99, Theorem
2.3.11], and hence the underlying diagram obtained by forgetting h is a cylinder
object factorization in the model theoretic sense.

The canonical strong pseudo-cylinder of a chain complex X is given by

X
i0

//

i1

// IX
p

//

hI

��

X

where IX , as a graded module, is

IX = X ⊕ ΣX ⊕X.

The differential of IX is

dIX =

(
dX 1 0
0 −dX 0
0 −1 dX

)

and the structure maps are

i0 =
(

1
0
0

)
, i1 =

(
0
0
1

)
, p = ( 1 0 1 ) , hI =

(
0 0 0
0 0 σ
0 0 0

)
.

The canonical strong pseudo-cylinder is a strong cylinder if and only if X is a
cofibrant chain complex.

Definition 1.2. In this paper, all operads are non-symmetric. Hence, a graded
operad or DG-operadO is a sequence of objects {O(n)}n≥0 equipped with structure
maps

O(n) ⊗O(p1)⊗ · · · ⊗ O(pn) −→ O(p1 + · · ·+ pn), n ≥ 1, p1, . . . , pn ≥ 0,

x0 ⊗ x1 ⊗ · · · ⊗ xn 7→ x0(x1, . . . , xn),

satisfying

x0(x1, . . . , xn)(y1, . . . , yp1+···+pn
) =(1.3)

(−1)ǫx0(x1(y1, . . . , yp1), . . . , xn(yp1+···+pn−1+1, . . . , yp1+···+pn
)),

where the sign is simply determined by the Koszul rule

ǫ =

n∑

i=2

i−1
∑

k=1

pk

∑

j=1

|xi||yj|,

and an identity element id = idO ∈ O(1) satisfying

id(x) = x = x(id, . . . , id).
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We call O(n) the arity n part of O. In the case of DG-operads, the structure maps
being chain maps translates in the operadic Leibniz rule,

d(x0(x1, . . . , xn)) = d(x0)(x1, . . . , xn) +
n∑

i=1

(−1)

i−1
∑

j=0

|xj|

x0(. . . , xi−1, d(xi), xi+1, . . . ),

which implies d(id) = 0. In x0(x1, . . . , xn) we usually omit those xi, 1 ≤ i ≤ n,
which are xi = id. Operads can also be definied in terms of operadic compositions,

◦i : O(p) ⊗O(q) −→ O(p+ q − 1), 1 ≤ i ≤ p, q ≥ 0, x ◦i y = x(i−1. . ., y, p−i. . .).

In this case, the laws are

x ◦i (y ◦j z) = (x ◦i y) ◦i+j−1 z;

(x ◦i y) ◦j z = (−1)|y||z|(x ◦j z) ◦i+n−1 y, j < i, z ∈ O(n);(1.4)

id ◦1 x = x = x ◦i id;

and, for DG-operads, the operadic Leibniz rule is equivalent to

d(x ◦i y) = d(x) ◦i y + (−1)|x|x ◦i d(y).(1.5)

Definition 1.6. A strong pseudo-cylinder of a DG-operad O is a sequence of strong
pseudo-cylinders of chain complexes

O
i0

//

i1

// P
p

//

h

��

O

such that P is a DG-operad and i0, i1 and p are DG-operad maps. We call it a
strong cylinder if (i0, i1) : O ∐ O → P is a cofibration in the model structure on
DG-operads transferred from the projective model structure on chain complexes,
see [Mur11, Theorem 1.1] or [Lyu11, Proposition 1.8]. Abusing terminology, we
sometimes say that P is a strong (pseudo-)cylinder of O. We sometimes write
h = hO in order to avoid ambiguity.

No compatibility condition with the DG-operad structure is required for the
chain homotopy h. Many explicit constructions below will however satisfy h(id) =
0. There seems to be no canonical strong pseudo-cylinders for arbitrary DG-
operads. The aim of this paper is to construct nice strong pseudo-cylinders for
a big class of quasi-free DG-operads, i.e. DG-operads with free underlying graded
operad. Nice means that they are strong cylinders under some extra assumptions,
like canonical strong pseudo-cylinders of chain complexes. As a toy example, we
will start with honestly free DG-operads.

We consider planted planar trees with leaves, that we simply call trees, and
endow the set of inner vertices with the path order. Two vertices satisfy v ≤ w

if, when we draw the paths from the root to v and w, the path to v bifurcates to
the left or is contained in the path to w, e.g. in the following tree the path order is
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indicated by the subscripts

(1.7)

v3

v4

v2 v5

v1

see [Mur11, §3] for formal definitions. The arity of a vertex v is the number ṽ of
edges adjacent from above, e.g. in the previous tree ṽ1 = 2, ṽ2 = 3, ṽ3 = 0, ṽ4 = 3,
and ṽ5 = 1. We just depict inner vertices, i.e. we do not draw the top vertices of the
leaves or the bottom vertex of the root. An inner edge is an edge which is neither
a leaf nor the root, i.e. such that the two adjacent vertices are inner vertices.

Given a sequence of graded modules or chain complexes V = {V (n)}n≥0 and a
tree T , we denote

V (T ) =
⊗

v

V (ṽ).

This tensor product is indexed by the inner vertices of T , and it is taken in the
path order. A tensor in V (T ) is usually denoted by labeling each inner vertex v

with an element in V (ṽ), e.g.

x3

x4

x2 x5

x1

= x1⊗x2⊗x3⊗x4⊗x5 ∈ V (T ) = V (2)⊗V (3)⊗V (0)⊗V (3)⊗V (1).

Labeled trees are also used to denote iterated compositions in operads. There
is only one bracketing compatible with the path order, e.g. in the previous tree
x1(x2(−, x3, x4), x5). This bracketing, that we call nested, is the only one with no

. . . )(. . .

We can nest any bracketing by iterating (1.3). As we will next see, the previous
labeled tree can be regarded as an iterated composition in the free operad.

The underlying sequence of the free operad F(V ) spanned by a sequence of
graded modules or chain complexes V is

F(V )(n) =
⊕

T

V (T ),

see for instance [Mur11, §5]. This direct sum is indexed by the trees with n leaves.
The natural sequence of maps V → F(V ) is the inclusion of the direct summands
indexed by corollas, n ≥ 0,

· · ·
n leaves
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The composition law ◦i is given by the symmetry isomorphisms V (T ) ⊗ V (T ′) ∼=
V (T ◦i T

′), where T ◦i T
′ is the tree obtained by grafting T ′ in the ith leaf of T

(notice that the inner vertices of T ◦i T
′ are the disjoint union of the inner vertices

of T and T ′). Using labeled trees, this is just grafting up to sign determined by the
path order and the Koszul rule. The identity element is id = 1 ∈ V (|) = k.

Lemma 1.8 ([Lam93, Lemma 2.3]). Given two SDRs

X
i

//
Y

p
oo h

ff
, X ′

i′
//
Y ′

p′

oo h′

ff
,

the following diagram is also an SDR, that we call tensor product SDR,

X ⊗X ′
i⊗i′

//
Y ⊗ Y ′

p⊗p′

oo h⊗1Y ′+ip⊗h′

ff
.

Tensor product SDRs behave well with respect to associativity constraints, so
we can define tensor products of several SDRs by iteration without specifying a
bracketing. However, this construction is not symmetric, so the order of tensor
factors does matter. This is why we insisted on the path order in the definition of
free operads. We could have equally worked with the chain homotopy h⊗i′p′+1Y ⊗
h′, but we must fix some convention, and we have decided to fix that in Lemma
1.8.

Tensor products of strong pseudo-cylinders of chain complexes are defined by
using tensor products of SDRs in the obvious way. The canonical strong pseudo-
cylinder of a sequence of chain complexes is defined aritywise as in Definition 1.1.
The empty tensor product is the trivial strong pseudo-cylinder of k, regarded as a
chain complex concentrated in degree 0,

k
1

//

1
// k

1
//

0

��

k.

Definition 1.9. The canonical strong pseudo-cylinder of a free DG-operad F(V )
on a sequence V of chain complexes

F(V )
F(i0)

//

F(i1)
// F(IV )

F(p)
//

hV

��

F(V )

is defined on each V (T ) as the tensor product (in the path order) of the canonical
strong pseudo-cylinders of the sequence of chain complexes V .

The empty tensor product appears when T = |, hence hV (id) = 0.
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Remark 1.10. It is very easy to evaluate hV on labeled trees, e.g.

hV




x3

x4

x2 x5

x1




=

x3

x4

x2 x5

hI(x1)

+ (−1)|x1|

x3

x4

hI(x2) x5

i0p(x1)

+ (−1)|x1|+|x2|

hI(x3)

x4

i0p(x2) x5

i0p(x1)

+ (−1)|x1|+|x2|+|x3|

i0p(x3)

hI(x4)

i0p(x2) x5

i0p(x1)

+ (−1)|x1|+|x2|+|x3|+|x4|

i0p(x3)

i0p(x4)

i0p(x2) hI(x5)

i0p(x1)

.

In terms of formulas, given x0 ∈ IV (n) and x1, . . . , xn ∈ F(IV ),

hV (x0(x1, . . . , xn)) = hI(x0)(x1, . . . , xn)

(1.11)

+

n∑

i=1

(−1)

i−1
∑

j=0
|xj|

i0p(x0)(i0p(x1), . . . , i0p(xi−1), hV (xi), xi+1, . . . , xn).

This yields a straightforward way of computing hV on nested bracketings of ele-
ments in V . This equation need not hold if x0 ∈ F(IV ) is an arbitrary element.

The canonical strong pseudo-cylinder of a free operad is a strong cylinder when
V is a sequence of cofibrant chain complexes.

We now consider strong pseudo-cylinders on the coproduct of an arbitrary DG-
operad and a free one.

Given two sequences of graded modules or chain complexes, U and V , and a tree
T , we define

(U, V )(T ) ∼=
⊗

u odd

U(ũ)⊗
⊗

v even

V (ṽ).

The first (resp. second) tensor product is indexed by the inner vertices of odd
(resp. even) level, and the order of tensor factors should be the path order (in the
right hand side of the formula we have separated odd and even inner vertices for
lack of a better notation, the isomorphism is defined by the symmetry constraint).
In (1.7), v1 has level 1, v2 and v5 have level 2, and v3 and v4 have level 3. As above,
a tensor in (U, V )(T ) is usually denoted by labeling each inner vertex u of odd level
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with an element in U(ũ) and each inner vertex v of even level with an element in
V (ṽ), e.g.

x3

x4

y2 y5

x1

= x1⊗y2⊗x3⊗x4⊗y5 ∈ (U, V )(T ) = U(2)⊗V (3)⊗U(0)⊗U(3)⊗V (1).

Given an arbitrary operad O and a sequence of graded modules or chain com-
plexes V , the sequence underlying the coproductO∐F(V ) in the category of graded
or DG-operads, see [Mur11, §5] or [Mur14, Remark 3.9], is

(1.12) (O ∐ F(V ))(n) =
⊕

T

(O, V )(T ).

This direct sum is indexed by the trees with n leaves, all of them in even level. In
(1.7), the three topmost leaves have level 4, and the two other leaves have level 3,
so this not an indexing tree here, but the following similar example is,

(1.13)

v3

v4

v2

v1

Using (labeled) trees, structure maps are easily defined as follows. The inclusion
of the first factor O → O ∐F(V ) is the inclusion of the direct summands indexed
by corollas. The canonical map V → O ∐F(V ) sends an element y ∈ V (n) to the
following labeled tree,

idO · · · idO

y

idO

n leaves

Composition ◦i is given by grafting into the ith leaf (taking into account the path
order and the Koszul sign rule) and, if u (resp. v) is the bottom (resp. top) vertex
of the inner edge created by grafting and v is in the jth edge adjacent to u from
above, then contracting this inner edge and labelling the vertex obtained by merging
u and v with the element in O obtained by applying ◦j to the labels of u and v

(this also involves a sign, according to the standing conventions, which is −1 up to
the product of the degree of the label of v by the sum of the degrees of the labels
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of the vertices strictly between u and v), e.g.

y2 y3

x1

◦2

x′

3
x′

4

y′

2

x′

1

= (−1)|y3|(|x
′

1|+|y′

2|+|x′

3|+|x′

4|)

y2

x′

3
x′

4

y′

2

x′

1

y3

x1

= (−1)|y3|(|x
′

1|+|y′

2|+|x′

3|+|x′

4|)+|y2||x
′

1|

y2

x′

3
x′

4

y′

2

y3

x1◦3x
′

1

Definition 1.14. Given a DG-operad O equipped with a strong pseudo-cylinder

O
i0

//

i1

// P
p

//

hO

��

O

and a sequence of chain complexes V , the canonical induced strong pseudo-cylinder
of the coproduct O ∐ F(V )

O ∐ F(V )
i0=i0∐F(i0)

//

i1=i1∐F(i1)
// P ∐ F(IV )

p=p∐F(p)
//

hO,V

��

O ∐ F(V )

is defined on each (O, V )(T ) as the tensor product of the strong pseudo-cylinder of
O and the canonical strong pseudo-cylinder of the sequence of chain complexes V .

If O is the initial DG-operad and we take the trivial strong pseudo-cylinder on
it (Definition 1.25), with P = O, i0 = i1 = p = 1O, and hO = 0, then we recover
the canonical strong pseudo-cylinder of F(V ).
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Remark 1.15. Computing hO,V on labeled trees is as easy as with hV above, e.g.

hO,V




x3

x4

y2

x1




=

x3

x4

y2

hO(x1)

+ (−1)|x1|

x3

x4

hI(y2)

i0p(x1)

+ (−1)|x1|+|y2|

hO(x3)

x4

i0p(y2)

i0p(x1)

+ (−1)|x1|+|y2|+|x3|

i0p(x3)

hO(x4)

i0p(y2)

i0p(x1)

For x0 ∈ IV (n) and x1, . . . , xn ∈ P ∐F(IV ), formula (1.11) holds, replacing hV

with hO,V .
Formula (1.11) also holds if x0 ∈ P(n) and each xi ∈ P ∐ F(IV ), 1 ≤ i ≤ n,

is either xi = id or xi = yi,0(yi,1, . . . , yi,pi
) with yi,0 ∈ IV (pi), replacing hV with

hO,V and hI with hO.

We now consider a class of DG-operads obtained by perturbing the differential
on a coproduct of the form O∐F(V ), and define strong pseudo-cylinders for them.

Definition 1.16. Given a DG-operad O, a sequence of chain complexes V , and a
sequence of degree −1 maps ∂ : V → O satisfying

∂dV + dO∂ = 0,

the twisted coproduct O∐∂F(V ) is the DG-operad with the same underlying graded
operad as O ∐ F(V ) and differential d∂ satisfying

d∂(x) = dO(x), x ∈ O; d∂(y) = dV (y) + ∂(y), y ∈ V.

Using the structure of the coproduct with a free operad, recalled above, it is
straightforward to check that the differential of the twisted coproduct is unique and
well defined by the two last equations. The following is an alternative homotopical
argument. The first equation is equivalent to say that ∂ is a sequence of chain
maps from the desuspension Σ−1V → O. This sequence of maps extends to an
operad map F(Σ−1V ) → O, and O ∐∂ F(V ) is the mapping cone of this operad
map. For this, we use the cone on F(Σ−1V ) obtained as the free operad on the
sequence of usual chain cone on Σ−1V . These are model theoretic cones whenever
V is a sequence of cofibrant complexes. Hence, in that case, the canonical inclusion
O → O ∐∂ F(V ) is a principal cofibration.

A DG-operad map f : O ∐∂ F(V ) → Q is the same as pair formed by a DG-
operad map fO : O → Q and a sequence of maps of graded modules fV : V → Q
such that dQfV = fV dV + fO∂. For ∂ = 0, the twisted coproduct is the plain
coproduct.

In the construction of canonical induced strong pseudo-cylinders of twisted co-
products, we will use the following well-known lemma from homological algebra.
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Lemma 1.17 (Basic Perturbation Lemma [Bro65]). Given an SDR

(X, dX)
i

// (Y, dY )
p

oo h
gg

and a degree −1 map ∂ : Y → Y , called perturbation, such that ∂2+dY ∂+∂dY = 0
and the infinite sum Σ∞ =

∑
n≥0(∂h)

n∂ is well defined, i.e. almost all summands
vanish when evaluated at a given y ∈ Y , then there is a new SDR

(X, dX + pΣ∞i)
i+hΣ∞i

// (Y, dY + ∂)
p+pΣ∞h
oo h+hΣ∞h

gg
.

Remark 1.18. The vanishing condition is fulfilled if Y is equipped with an exhaus-
tive increasing filtration

0 = F−1Y ⊂ F0Y ⊂ · · · ⊂ FnY ⊂ Fn+1Y ⊂ · · · ⊂ Y, Y =
⋃

n≥0

FnY,

such that for n ≥ 0

∂(FnY ) ⊂ Fn−1Y, h(FnY ) ⊂ FnY.

This implies that, if y ∈ FnY , then Σ∞(y) =
∑n−1

j=0 (∂h)
j∂(y). The maps i and p

often preserve the filtration, like h.

Remark 1.19. The new chain homotopy h′ = h + hΣ∞h satisfies the following
equation,

h′ = h+ h′∂h.

Remark 1.20. The differential of the twisted coproduct O ∐∂ F(V ) is obtained by
perturbing the differential of the honest coproductO∐F(V ). The perturbation d∂−
dO∐F(V ), that we also call ∂, is the only degree −1 self-map of O∐F(V ) satisfying
∂(O) = 0, the operadic Leibniz rule, and restricting to the original ∂ : V → O on
V . Applying ∂ to a labeled tree with m inner vertices of even level, we obtain a
sum of labeled trees with the same shape (with signs coming from the path order
and the Koszul sign rule), one for each 1 ≤ i ≤ m, where all labels are the same
except for label of the ith inner vertex of even level, which changes from y to ∂(y).
These labeled trees are to be regarded as iterated compositions in O∐F(V ), since
there may be adjacent labels in O, e.g.

∂




x3

y2

y4

x1




= (−1)|x1|

x3

∂(y2)
y4

x1

+ (−1)|x1|+|y2|+|x3|

x3

y2

∂(y4)

x1

= (−1)|x1|

y4

x1◦1(∂(y2)◦1x3)
+ (−1)|x1|+|y2|+|x3|+(|y4|−1)(|y2|+|x3|)

x3

y2

x1◦4∂(y4)
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Theorem 1.21. Let O ∐∂ F(V ) be a twisted coproduct as in Definition 1.16. As-
sume we have chosen a strong pseudo-cylinder for O as in Definition 1.6. Then
there is a strong pseudo-cylinder for O ∐∂ F(V ), that we call canonical induced
strong pseudo-cylinder,

O ∐∂ F(V )
i0=i0∐F(i0)

//

i1=i1∐F(i1)
// P ∐∂I

F(IV )
p=p∐F(p)

//

h∂

��

O ∐∂ F(V )

such that the degree −1 map ∂I : V ⊕ ΣV ⊕ V → P is

∂I = ( i0∂ −hOi1∂ i1∂ )

and
h∂ =

∑

n≥0

(hO,V ∂I)
nhO,V ,

where ∂I denotes here the extension to P ∐ F(IV ) in Remark 1.20.

Proof. We first check the necessary equation to define the twisted coproduct P ∐∂I

F(IV ),

∂IdIV + dP∂I = ( i0∂ −hOi1∂ i1∂ )

(
dV 1 0
0 −dV 0
0 −1 dV

)
+ dP ( i0∂ −hOi1∂ i1∂ )

= ( i0∂dV i0∂+hOi1∂dV −i1∂ i1∂dV ) + ( dPi0∂ −dPhOi1∂ dPi1∂ )

= (−i0dO∂ i0∂−hOi1dO∂−i1∂ −i1dO∂ ) + ( i0dO∂ −dPhOi1∂ i1dO∂ )

= ( 0 i0pi1∂−i1∂−hOdPi1∂−dPhOi1∂ 0 )

= ( 0 (i0p−1−hOdP−dPhO)i1∂ 0 )

= ( 0 0 0 ) .

Here we use the equations ∂dV +dO∂ = 0, i0p−1P = dPhO+hOdP , and pi1 = 1O,
and the fact that i0, i1 : O → P are DG-maps. The perturbation equation in Lemma
1.17 is a consequence of this. We want to apply this lemma to the sequence of SDRs

O ∐ F(V )
i0

// P ∐ F(IV )
p

oo hO,V
gg

The vanishing condition follows from the criterion in Remark 1.18. The sequence of
subcomplexes Fn(P ∐ F(IV )) is aritywise the direct subsum indexed by the trees
T with ≤ n vertices of even level. The chain homotopy hO,V preserves filtration
levels since it restricts to each direct summand. It is easy to see that the extension
of ∂I to P ∐F(IV ) strictly decreases filtration levels by using the Leibniz rule and
the facts that ∂I(P) = 0 and ∂I(IV ) ⊂ P .

The perturbation lemma applies, but we still have to check that the maps i0 and
p do not change and that the induced perturbation on O ∐ F(V ) is ∂, i.e.

hO,V Σ∞i0 = 0, pΣ∞hO,V = 0, pΣ∞i0 = ∂.

Since ∂I i0 = i0∂ : O ∐ F(V ) → P ∐ F(IV ), hO,V ∂I i0 = hO,V i0∂ = 0∂ = 0.
This clearly proves the first equation. Also the third one, since it implies that
pΣ∞i0 = p∂I i0 = pi0∂ = ∂.

The middle equation follows from p∂IhO,V = 0, that we now check. Since
phO = 0: P → O and phI = 0: IV → V , p applied to a labeled tree containing a
label of the form hO(x), x ∈ P , or hI(y), y ∈ IV , yields 0. If we apply ∂IhO,V to
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a labeled tree in P ∐F(IV ), we obtain a linear combination of labeled trees, many
of them containing labels of the previous form, except for those where the label of
an inner vertex of even degree has changed from y ∈ IV to ∂IhI(y), but

p∂IhI = p ( i0∂ −hOi1∂ i1∂ )
(

0 0 0
0 0 σ
0 0 0

)
= ( 0 0 −phOi1∂σ ) = ( 0 0 −0i1∂σ ) = ( 0 0 0 ) .

Therefore, p∂IhO,V = 0. �

For ∂ = 0, we recover the canonical induced strong pseudo-cylinder of the co-
product. The differential in the canonical strong pseudo-cylinder of an element of
the form σ(x), x ∈ V , is

(1.22) dσ(x) = i0(x)− i1(x)− hOi1∂(x).

In general, the computation of h∂ is somewhat involved. Let us just check that
it extends the chain homotopies of the canonical strong pseudo-cylinder of V and
the chosen strong pseudo-cylinder of O.

Lemma 1.23. If P ∐∂I
F(IV ) is the canonical induced strong pseudo-cylinder of

a twisted coproduct, x ∈ P, and y ∈ IV , then

h∂(x) = hO(x), h∂(y) = hI(y).

Proof. We use Remark 1.18 and the filtration in the proof of Theorem 1.21. As an
element of P ∐∂I

F(IV ), x ∈ P has filtration degree 0, hence

h∂(x) = hO,V (x) = hO(x).

Moreover, y ∈ IV has filtration degree 1, so

h∂(y) = hO,V (y) + hO∂IhO,V (y)

= hI(y) + hO∂IhI(y)

= hI(y) + hO ( i0∂ −hOi1∂ i1∂ )
(

0 0 0
0 0 σ
0 0 0

)
(y)

= hI(y) + ( 0 0 −h2
O
i1∂σ ) (y)

= hI(y).

Here we use that h2
O = 0. �

We finally consider strong pseudo-cylinders on DG-operads constructed as iter-
ated twisted coproducts.

Definition 1.24. A DG-operad O is relatively pseudo-cellular if it is equipped
with an increasing filtration {Oβ}β≤α indexed by an ordinal α, that we call length,
which is exhaustive, i.e. O = Oα, continuous, i.e. if β ≤ α is a limit ordinal then
Oβ = colimγ<β Oγ (here colim can be replaced with ∪), and such that if β+1 ≤ α

then Oβ+1 is a twisted coproduct of the following form,

Oβ+1 = Oβ ∐∂β
F(Vβ).

We say that O is (absolutely) pseudo-cellular if in addition O0 is the initial DG-
operad.

If the complexes of the sequences Vβ are cofibrant for all β < α, then the inclusion
O0 → O is a cofibration. In particular, O is cofibrant in the absolute case. If the
Vβ are sequences of free graded modules with trivial differential, then O0 → O is a
relative cell complex with respect to the standard set of generating cofibrations in
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the model category of DG-operads, see [Hov99, Theorem 2.3.11] and [Mur11, proof
of Theorem 1.1].

Strong pseudo-cylinders are closed under filtered colimits, for both chain com-
plexes and DG-operads (filtered colimits of DG-operads are computed in the un-
derlying sequences of chain complexes).

Definition 1.25. The canonical strong pseudo-cylinder of a relatively pseudo-
cellular DG-operad O

O
i0

//

i1

// IO
p

//

hO

��

O

is defined by induction on the length α in the following way. If α = 0, we take the
trivial strong pseudo-cylinder,

O
1

//

1
// O

1
//

0

��

O.

If α is a limit ordinal, we define the canonical strong pseudo-cylinder of O as the
colimit of the canonical strong pseudo-cylinders of Oβ , β < α. If α = β + 1,
the canonical strong pseudo-cylinder of O = Oβ ∐∂β

F(Vβ) is defined by applying
Theorem 1.21 to the canonical strong pseudo-cylinder of Oβ ,

Oβ ∐∂β
F(Vβ)

i0=i0∐F(i0)
//

i1=i1∐F(i1)
// IOβ ∐∂β,I

F(IVβ)
p=p∐F(p)

//

hO=h∂β

��

Oβ ∐∂β
F(Vβ),

in particular, IO = IOβ ∐∂β,I
F(IVβ).

The DG-operad IO is relatively pseudo-cellular of the same length as O and
(IO)0 = O0. In particular, if O is absolutely pseudo-cellular, then so is IO.

If the complexes of the sequences Vβ , β < α, are cofibrant, the canonical
strong pseudo-cylinder of O is a relative cylinder in the model theoretic sense,
i.e. (i0, i1) : O∪O0 O → IO is a cofibration. In particular, if O is absolutely pseudo-
cellular, its canonical strong pseudo-cylinder is a strong cylinder.

As a graded operad, any relatively pseudo-cellular DG-operad of length α is
O = O0 ∐F(V ), V =

⊕
β<α Vβ , and the differential on the free part is determined

by the equations d(x) = dVβ
(x) + ∂β(x), x ∈ Vβ . The canonical strong pseudo-

cylinder, as a graded operad, is IO = O0 ∐ F(IV ). On elements of the form i0(x)
and i1(x), x ∈ Vβ , the differential is simply given by

dij(x) = ijd(x) = ijdVβ
(x) + ij∂β(x), j = 0, 1,

since i0, i1 : O → IO are DG-operad maps. On elements of the form σx, x ∈ Vβ ,
the differential depends on the involved inductive definition of the chain homotopy

(1.26) dσ(x) = i0(x)− i1(x) − hOβ
i1∂β(x),

see (1.22). The chain homotopy is easy on O0 and on generators of the free part,
as a corollary of Lemma 1.23.
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Corollary 1.27. If O is a relatively pseudo-cellular DG-operad of length α, x ∈ O0,
and y ∈ IVβ for some β < α, then

hO(x) = 0, hO(y) = hI(y).

In particular, hO(id) = 0.

The underlying graded operad of an absolutely pseudo-cellular DG-operad O
is free, O = F(V ), V =

⊕
β<α Vβ , since O0 is initial and hence it dissapears in

coproducts. In order to prove a useful vanishing condition for the chain homotopy,
we introduce the following set of linear generators of IO = F(V ) (as a sequence of
graded modules).

Definition 1.28. Let O be an absolutely pseudo-cellular DG-operad of length α

as above. A standard labeled tree in IO is a labeled tree such that each label is of
the form i0(x), i1(x) or σ(x), x ∈ Vβ , β < α.

Lemma 1.29. Let O be an absolutely pseudo-cellular DG-operad and t ∈ IO a
standard labeled tree satisfying one of the two following conditions:

(1) The bottommost label is σ(x).

...
· · ·

...

σ(x)

(2) The bottommost label is i0(x)

...
· · ·

...

i0(x)

and t does not contain any forbidden edge, i.e. an inner edge with bottom
label i0(y) and top label i1(z).

...

...
· · · · · ·

...
· · ·

...

i1(z)
· · ·

...

i0(y)

Then, hO(t) = 0.

Proof. By induction on the length α. If α = 0, then the chain homotopy is hO = 0,
so there is nothing to check. If α is a limit ordinal, then hO(t) = hOβ

(t) for some
β < α, and hOβ

(t) = 0 by induction hypothesis.
Suppose α = β + 1. We prove, by induction on the number of inner vertices,

that hOβ ,Vβ
(t) = 0. This clearly suffices.
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Suppose t satisfies (1). If x ∈ Vβ , we can write t = σ(x)(x1 , . . . , xn). The formula
in the second paragraph of Remark 1.15 yields

hOβ ,Vβ
(σ(x)(x1 , . . . , xn)) = hI(σ(x))(x1 , . . . , xn)

± terms of the form i0p(σ(x))(. . . , hOβ ,Vβ
(xi), . . . ).

All summands vanish since hIσ = 0 and pσ = 0.
Otherwise, we can write t = x0(x1, . . . , xn). Here, x0 ∈ IOβ is a standard

labeled tree with the same bottommost label as t, σ(x). Hence, hOβ
(x0) = 0 by the

first induction hypothesis, and p(x0) = 0 since pσ = 0. The formula in the third
paragraph of Remark 1.15 yields

hOβ,Vβ
(x0(x1, . . . , xn)) = hOβ

(x0)(x1, . . . , xn)(1.30)

± terms of the form i0p(x0)(. . . , hOβ ,Vβ
(xi), . . . ),

which therefore vanishes.
Suppose now that t satisfies (2). If x ∈ Vβ , we can write the standard labeled

tree as i0(x)(x1, . . . , xn), where the elements x1, . . . , xn are standard labeled trees
with less inner vertices than t. We will check that hOβ,Vβ

(xi) = 0, 1 ≤ i ≤ n.
Hence, the formula in the second paragraph of Remark 1.15 yields

hOβ,Vβ
(i0(x)(x1, . . . , xn)) = hI i0(x)(x1, . . . , xn)

± terms of the form i0pi0(x)(. . . , hOβ ,Vβ
(xi), . . . ),

which vanishes since hI i0 = 0.
If the standard labeled tree xi has no inner vertices, then xi = id and hOβ ,Vβ

(id) =
h0(id) = 0. If it has inner vertices, let us look at the bottommost label. It cannot
be i1(y), since it is adjancent to i0(x) in t, and we are assuming that t does not
contain forbidden edges. Hence it is σ(y) or i0(y). Not containing a forbidden edge
is a property inherited by subtrees. Hence, xi does not contain forbidden edges.
Therefore, xi satisfies (1) or (2) and has less inner vertices than t, so hOβ,Vβ

(xi) = 0
by the second induction hypothesis.

If x ∈ Vγ for some γ < β, then we can write the standard labeled tree as
x0(x1, . . . , xn), where x0 ∈ IOβ is a standard labeled tree and, for 1 ≤ i ≤ n,
either xi = id or xi = yi,0(yi,1, . . . , yi,pi

) is a standard labeled tree with less inner
vertices than t where yi,0 is i0(y

′
i), σ(y

′
i) or i1(y

′
i) for some y′i ∈ Vβ . Formula (1.30)

also applies in this case. Hence, it sufficies to prove that hOβ
(x0) = 0 and either

p(x0) = 0 or hOβ ,Vβ
(xi) = 0 for all 1 ≤ i ≤ n.

The bottommost label of x0 is the same as in t, i0(x), and x0 cannot contain a
forbidded edge, since it is a subtree of t. Hence hOβ

(x0) = 0 by the first induction
hypothesis. For 1 ≤ i ≤ n, if xi = id then we know that hOβ,Vβ

(xi) = 0. Otherwise,
let us argue with the possible values of yi,0. Being a subtree of t, xi does not contain
any forbidden edge. Hence, if yi,0 is i0(y

′
i) or σ(y

′
i), hOβ ,Vβ

(xi) = 0 by the second
induction hypothesis, since xi has less inner vertices than t. The bottommost vertex
of xi is adjacent to a vertex in x0. Therefore, if yi,0 = i1(y

′
i) then the adjacent vertex

in x0 is σ(z), otherwise t would contain a forbidden edge. In this case p(x0) = 0
since pσ = 0. �

2. Examples

We start this section on examples by illustrating how our canonical strong cylin-
der construction works on the most widely used cellular DG-operad.
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Definition 2.1. The A-infinity DG-operad A∞ is freely generated as a graded
operad by

µn ∈ A∞(n)n−2, n ≥ 2,

with differential defined by

d(µn) =
∑

p+q=n+1
1≤i≤p

(−1)p−i+q(i−1)µp ◦i µq.

Here we use the sign conventions in [LH03], but we should point out that
Lefèvre-Hasegawa uses cohomological grading and, modulo this, an A-infinity alge-
bra (X,m1,m2, . . . ,mn, . . . ) in his sense is an A∞-algebra structure on the chain
complex (X,−m1). This DG-operad is cellular. The following result computes its
canonical strong cylinder.

Theorem 2.2. The canonical strong cylinder of the A-infinity DG-operad is the
DG-operad IA∞, freely generated as a graded operad by

i0µn, i1µn ∈ IA∞(n)n−2, σµn ∈ IA∞(n)n−1, n ≥ 2,

with differential determined by the fact that i0, i1 : A∞ → IA∞ are DG-operad maps
and by the following formula, n ≥ 2,

d(σµn) = i0µn − i1µn −
∑

p+q=n+1
1≤j≤p

(−1)p−j+q(j−1)σµp ◦j i1µq

+
∑

1≤s≤r
j0+t1+j1+···+ts+js=n

(−1)

s
∑

k=1

(tk−1)(j0+
k−1
∑

l=1

(tl+jl))
i0µr( j0. . ., σµt1 ,

j1. . ., σµt2 , . . . , σµts ,
js. . .).

This theorem follows from (1.26) and the last formula in Lemma 2.10.

Corollary 2.3. Given a chain complex X and two maps to its endomorphism
operad ϕ, ϕ′ : A∞ → E(X), see Remark 2.5 below, which correspond with two A-
infinity structures on X, (X, {mn}n≥2) and (X, {m′

n}n≥2), respectively, a homotopy
H : IA∞ → E(X) between them, Hi0 = ϕ′, Hi1 = ϕ, is the same as an A-infinity
morphism [LH03, Définition 1.2.1.2]

{fn}n≥1 : (X, {mn}n≥2) −→ (X, {m′
n}n≥2)

whose linear part is the identity in X, f1 = 1X .

Proof. The correspondence is simply given by m′
n = ϕ′(µn) = H(i0µn), mn =

ϕ(µn) = H(i1µn), and fn = H(σµn), n ≥ 2. �

In order to simplify computations, we use the formalism of operadic suspensions
and brace algebras.

Definition 2.4. Given a DG-operad O, its operadic suspension is the DG-operad
ΛO such that ΛO(n) = O(n) as plain modules, n ≥ 0, with the following new
grading

‖x‖= |x|+ 1− arity of x.

The differential is the same as in O. Compositions in ΛO, that we here denote by
•i in order to avoid confusion, are defined as follows, x ∈ O(p), y ∈ O(q),

x •i y = (−1)‖y‖(p−i)+|y|(i−1)x ◦i y,

and the identity is the same idΛO = idO.
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Remark 2.5. The functor Λ is an an automorphism of the category of DG-operads.
It preserves free operads, ΛF(V ) = F(ΛV ), where ΛV is defined as above, (twisted)
coproducts, (relatively) pseudo-cellular DG-operads, (canonical) strong (pseudo-
)cylinders, etc. It also preserves the homotopical structure (fibrations, cofibrations,
and weak equivalences).

Recall that, given chain complexes X and Y , the inner Hom(X,Y ) is the chain
complex consisting of the modules Hom(X,Y )n of degree n maps f : X → Y with
differential d(f) = dY f − (−1)|f |fdX , in particular chain maps X → Y are 0-cycles
in Hom(X,Y ). The endomorphism operad of a chain complex X is

E(X) = {Hom(X⊗n, X)}n≥0,

the operation ◦i is composition at the ith slot, the operadic identity is the identity
map idE(X) = 1X , and an O-algebra structure on X is an operad map O → E(X).
There is an isomorphism of DG-operads

ΛE(X) ∼= E(ΣX),

defined by mapping f : X⊗n → X to (−1)|f |σf(σ−1)⊗n : (ΣX)⊗n → ΣX , n ≥ 0.
Therefore, an O-algebra structure on X is the same as a ΛO-algebra structure on
ΣX .

The Hadamard product of two DG-operads O⊗HP is the DG-operad with (O⊗H

P)(n) = O(n)⊗ P(n), n ≥ 0, compositions

(x1 ⊗ x2) ◦i (y1 ⊗ y2) = (−1)|x2||y1|(x1 ◦i y1)⊗ (x2 ◦i y2),

and identity idO⊗HP = idO ⊗ idP . The operadic suspension ΛO can be naturally
identified with O ⊗H E(Σk). The natural isomorphism

ΛO ∼= O ⊗H E(Σk)

maps x ∈ O(n) to x ⊗ (σϕn(σ
−1)⊗n), where ϕn : k

⊗n → k is defined by ϕn(1 ⊗
· · · ⊗ 1) = 1.

Definition 2.6. A graded or DG-brace algebra is a graded module or chain complex
B equipped with maps, called braces, n ≥ 1,

B⊗(n+1) −→ B,

x0 ⊗ x1 ⊗ · · · ⊗ xn 7→ x0{x1, . . . , xn},

satisfying

x{y1, . . . , yp}{z1, . . . zq} =
∑

0≤i1≤j1≤···≤ip≤jp≤q

(−1)ǫx{z1, . . . , zi1 , y1{zi1+1, . . . zj1}, . . .

. . . , yp{zip+1, . . . zjp}, zjp+1, . . . zq}.

The sign (−1)ǫ is simply determined by the Koszul sign rule,

ǫ =

p∑

k=1

ik∑

l=1

|yk||zl|.

In the DG-case, the fact that braces are chain maps is equivalent to the following
brace Leibniz rule:

d(x0{x1, . . . , xn}) = d(x0){x1, . . . , xn}+
n∑

i=1

(−1)

i−1
∑

j=0

|xi|

x0{x1, . . . , d(xi), . . . , xn}.
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Remark 2.7. If O is a graded or DG-operad, then
⊕

n≥0 O(n) has a brace algebra

structure defined as follows. Given x0, . . . , xn ∈ O, with x0 ∈ O(m),

x0{x1, . . . , xn} =
∑

i0+···+in=m−n

x0( i0. . ., x1,
i1. . ., x2, . . . . . . , xn,

in. . .).

Note that x0{x1, . . . , xn} = 0 if n > m, since the summation is empty in this case.

Remark 2.8. The DG-operad ΛA∞ is freely generated as a graded operad by

µn ∈ (ΛA∞)(n)−1, n ≥ 2,

with differential defined by

d(µn) =
∑

p+q=n+1

µp{µq}.

This is a cellular DG-operad with ΛA0 = ΛA1 the initial DG-operad and, for n ≥ 2,

ΛAn = ΛAn−1 ∐∂n−1 F(k · µn), ∂n−1(µn) = d(µn).

Here k · µn denotes the sequence of graded modules freely generated by µn in arity
n and degree −1 endowed with the trivial differential.

Remark 2.9. The chain homotopy hV of the canonical strong pseudo-cylinder of a
free DG-operad F(V ) is well behaved with respect to braces. Given x0 ∈ IV and
x1, . . . , xn ∈ F(IV ),

hV (x0{x1, . . . , xn}) = hI(x0){x1, . . . , xn}

+
n∑

i=1

(−1)

i−1
∑

j=0

|xj|

i0p(x0){i0p(x1), . . . , i0p(xi−1), hV (xi), xi+1, . . . , xn}.

This follows from Remark 1.10.
The chain homotopy hO,V of the canonical induced strong pseudo-cylinder of a

coproduct O ∐ F(V ), see Definition 1.14, satisfies the previous formula if x0 ∈ IV

and x1, . . . , xn ∈ P ∐ F(IV ), replacing hV with hO,V . Also if x0 ∈ P and each
xi ∈ P ∐ F(IV ), 1 ≤ i ≤ n, is either xi = id or xi = yi,0{yi,1, . . . , yi,pi

} with
yi,0 ∈ IV , replacing hV with hO,V and hI with hO. This follows from Remark 1.15.

The following lemma contains the formulas which prove Theorem 2.2. The first
technical series of formulas is auxiliary. What really matters is the last one.

Lemma 2.10. The following equations hold in IΛAn,

hΛAn
(i0µr(. . . , σµt1 , . . . , σµtj−1 , . . . , i1µq, . . . , σµtj , . . . , σµts , . . . ))

= hΛAn−1,k·µn
(the same element) for n = max{r, q, t1, . . . , ts},

= −i0µr(. . . , σµt1 , . . . , σµtj−1 , . . . , σµq, . . . , σµtj , . . . , σµts , . . . )

if t1, . . . , tj−1 > r ≥ q,
or if t1, . . . , tj−1 > q > r and q ≤ tj , . . . , ts;

(2.11)

= 0 otherwise;

hΛAn
i1d(µn+1) =

∑

p+q=n+2

σµp{i1µq} −
∑

1≤s≤r
t1+···+ts=n+1+s−r

i0µr{σµt1 , . . . , σµts}.
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Proof. We simultaneously prove all equations by induction on n. Notice that there
is nothing to check for n = 0, 1. Take a bigger n and assume that the formulas are
true for smaller values. We start with the first series of equations. For the sake of
simplicity, let us denote

x = i0µr(. . . , σµt1 , . . . , σµtj−1 , . . . , i1µq, . . . , σµtj , . . . , σµts , . . . ).

If n > r, q, then n is reached at some of the tis. Hence,

x = i0µr(. . . , i1µq, . . . )(. . . , σµn, . . . , σµn, . . . ),

where i0µr(. . . , i1µq, . . . ) has been obtained by removing all σµns from x. There-
fore, by Remark 1.15,

hΛAn−1,k·µn
(x) = hΛAn−1(i0µr(. . . , i1µq, . . . ))(. . . , σµn, . . . , σµn, . . . )

+
∑

i0p(i0µr(. . . , i1µq, . . . ))(. . . , hIσµn, . . . ).

We do not index the summation since all terms vanish anyway (recall that hIσ =
0). The maximum subscript in i0µr(. . . , i1µq, . . . ) is smaller than n. Moreover,
i0µr(. . . , i1µq, . . . ) satisfies assumption (2.11) if and only if x does. Therefore,
using the induction hypothesys, we obtain that

hΛAn−1,k·µn
(x) = −i0µr(. . . , σµq, . . . )(. . . , σµn, . . . , σµn, . . . )

= −i0µr(. . . , σµt1 , . . . , σµtj−1 , . . . , σµq, . . . , σµtj , . . . , σµts , . . . )

if (2.11) holds,

= 0 otherwise.

If q = n > r and there is some ti < n, then

x = i0µr(. . . , σµti , . . . )(. . . , σµn, . . . , i1µn, . . . , σµn, . . . ),

where i0µr(. . . , σµti , . . . ) has been obtained by removing i1µn and all σµns from
x. By Remark 1.15,

hΛAn−1,k·µn
(x) = hΛAn−1(i0µr(. . . , σµti , . . . ))(. . . , σµn, . . . , i1µn, . . . , σµn, . . . )

−
∑

i0p(i0µr(. . . , σµti , . . . ))(. . . )

= 0.

The first term is 0 by Lemma 1.29 (2). The summation vanishes since pσ = 0. In
this case (2.11) cannot hold.

If q = t1 = · · · = ts = n > r, then by Remark 1.15,

hΛAn−1,k·µn
(x) = hΛAn−1(i0µr)(. . . , σµn, . . . , i1µn, . . . , σµn, . . . )

−
∑

i0p(i0µr)(. . . , hIσµn, . . . , i1µn, . . . , σµn, . . . )

− i0p(i0µr)(. . . , i0pσµn, . . . , hI i1µn, . . . , σµn, . . . )

+
∑

i0p(i0µr)(. . . , i0pσµn, . . . , i0pi1µn, . . . , hIσµn, . . . ).

Using that hΛAn−1 i0 = 0, hIσ = 0, and pσ = 0, we see that all factors vanish unless
i1µn is the first element in the brackets in x, i.e. j = 1. In that case, there is a
single non-vanishing term:

hΛAn−1,k·µn
(x) = −i0p0i0(µr)(. . . , hI i1µn, . . . , σµn, . . . )

= −i0(µr)(. . . , σµn, . . . , σµn, . . . ).
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If r = n, Remark 1.15 also applies directly, and using Corollary 1.27,

hΛAn−1,k·µn
(x) = hI i0µn(. . . , σµt1 , . . . , σµtj−1 , . . . , i1µq, . . . , σµtj , . . . , σµts , . . . )

−
∑

i0pi0(µn)(. . . , hIσµti , . . . , i1µq, . . . )

− i0pi0(µn)(. . . , i0pσµti , . . . , hI i1µq, . . . )

+
∑

i0pi0(µn)(. . . , i0p0i1µq, . . . , hIσµti , . . . ).

Using again that hI i0, hIσ = 0, and pσ = 0, we deduce that all terms vanish unless
i1µq is the first element in the brackets in x, i.e. j = 1. In that case, there is again
a single non-vanishing term,

hΛAn−1,k·µn
(x) = −i0pi0(µn)(. . . , hIi1µq, . . . , σµt1 , . . . , σµts , . . . )

= −i0(µn)(. . . , σµq, . . . , σµt1 , . . . , σµts , . . . ).

We have finally established the formula for hΛAn−1,k·µn
(x). Let us see that

it concides with hΛAn
(x). Using the induction hypothesys for the formula of

hΛAn−1i1d(µn), we see that ∂n−1,IhΛAn−1,k·µn
(x) is a linear combination of stan-

dard labeled trees satisfying the hypotheses of Lemma 1.29 (2). Therefore,

hΛAn
∂n−1,IhΛAn−1,k·µn

(x) = 0.

This implies hΛAn
(x) = hΛAn−1,k·µn

(x) by Remark 1.19.
We now attack the final formula. In order to apply hΛAn

, we divide i1d(µn+1)
in two three blocks, according to the parity of n,

i1d(µn+1) =
∑

p+q=n+2
p<q

i1µp{i1µq}+
∑

p+q=n+2
p>q

i1µp{i1µq}

+ i1µn
2 +1{i1µn

2 +1} if n is even,

which will be consiered in this order.
If p < q, i1µp{i1µq} ∈ IΛAq is in filtration degree 1, hence

hΛAn
(i1µp{i1µq}) = hΛAq

(i1µp{i1µq})

= hΛAq−1,k·µq
(i1µp{i1µq})

+ hΛAq−1∂q−1,IhΛAq−1,k·µq
(i1µp{i1µq}).(2.12)

By Remark 2.9 and Corollary 1.27, the first summand is

hΛAq−1,k·µq
(i1µp{i1µq}) = hΛAq−1 i1µp{i1µq} − i0pi1µp{hIi1µq}

= σµp{i1µq} − i0µp{σµq}.(2.13)

Let us see that (2.12) = 0. If we apply ∂q−1,I to the summands in (2.13), we obtain

∂q−1,I(σµp{i1µq}) = σµp{i1d(µq)}, ∂q−1,I(i0µp{σµq}) = i0µp{hΛAq−1 i1d(µq)}.

The first element is a linear combination of standard labeled trees as in Lemma
1.29 (1). Moreover, using the induction hypothesis for hΛAq−1 i1d(µq) we see that
the second term is a linear combination of standard labeled trees as in Lemma 1.29
(2). Therefore, this lemma proves that

hΛAq−1 (σµp{i1d(µq)}) = 0, hΛAq−1 (i0µp{hΛAq−1 i1d(µq)}) = 0.
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If p > q, i1µp{i1µq} ∈ IΛAp is in filtration degree 1 and

hΛAn
(i1µp{i1µq}) = hΛAp

(i1µp{i1µq})

= hΛAp−1,k·µp
(i1µp{i1µq})

+ hΛAp−1∂p−1,IhΛAp−1,k·µp
(i1µp{i1µq}).(2.14)

As above,

hAp−1,k·µp
(i1µp{i1µq}) = hI i1µp{i1µq} − i0pi1µp{hΛAp−1i1µq}

= σµp{i1µq} − i0µp{σµq}.(2.15)

In this case, (2.14) need not be 0. Using the induction hypothesis for hΛAp−1 i1d(µp),
we see that ∂p−1,I of the two summands in (2.15) is

∂p−1,I(i0µp{σµq}) = i0d(µp){σµq},

∂p−1,I(σµp{i1µq}) = − hΛAp−1 i1d(µp){i1µq}

= −
∑

k+l=p+1

σµk{i1µl}{i1µq}

+
∑

1≤s≤r
t1+···+ts=p+s−r

i0µr{σµt1 , . . . , σµts}{i1µq}.

The brace relation yields

σµk{i1µl}{i1µq} = σµk{i1µl, i1µq}+ σµk{i1µl{i1µq}}

− σµk{i1µq, i1µl},

i0µr{σµt1 , . . . , σµts}{i1µq} =

s∑

j=1

i0µr{. . . , σµtj{i1µq}, . . . }

+

s+1∑

j=1

i0µr{. . . , σµtj−1 , i1µq, σµtj , . . . } if s < r,

see Remark 2.7.
By Lemma 1.29,

hΛAp−1(σµk{i1µl}{i1µq}) = 0, hΛAp−1(i0µr{. . . , σµtj{i1µq}, . . . }) = 0.

Moreover, by the first series of equations in the statement, already checked up to
n,

hΛAp−1(i0µr{. . . , σµtj−1 , i1µq, σµtj , . . . }) =





−i0µr{. . . , σµtj−1 , σµq, σµtj , . . . }
if t1, . . . , tj−1 > r ≥ q,

or if t1, . . . , tj−1 > q > r

and q ≤ tj , . . . , ts;

0, otherwise.

If n is even, by Remark 1.19,

hΛAn
(i1µn

2 +1{i1µn
2 +1}) = hΛAn

2
,k·µn

2
+1
(i1µn

2 +1{i1µn
2 +1})

+ hΛAn
2

+1
∂n

2 ,IhΛAn
2
,k·µn

2
+1
(i1µn

2 +1{i1µn
2 +1}).
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The first summand is computed as in the previous two cases,

hΛAn
2
,k·µn

2
+1
(i1µn

2
+1{i1µn

2
+1}) = hI i1µn

2
+1{i1µn

2
+1} − i0pi1µn

2
+1{hI i1µn

2
+1}

= σµn
2
+1{i1µn

2
+1} − i0µn

2
+1{σµn

2
+1},

Let us check that the second one vanishes. We have

∂n
2 ,I(i0µn

2 +1{σµn
2 +1}) = i0d(µn

2 +1){σµn
2 +1}+ i0µn

2 +1{hΛAn
2
i1d(µn

2 +1)},

∂n
2 ,I(σµn

2 +1{i1µn
2 +1}) = −hΛAn

2
i1d(µn

2 +1){i1µn
2 +1}+ σµn

2 +1{i1d(µn
2 +1)}.

Clearly i0d(µn
2
+1){σµn

2
+1} and σµn

2
+1{i1d(µn

2
+1)} are linear combinations of stan-

dard labeled trees as in Lemma 1.29. Using the formula for hΛAn
2
i1d(µn

2
+1), that

we know by induction hypothesis, we see that i0µn
2
+1{hΛAn

2
i1d(µn

2
+1)} too. There-

fore,

hΛAn
2

+1
(i0d(µn

2 +1){σµn
2 +1}) = 0, hΛAn

2
+1
(i0µn

2 +1{hi1d(µm)}) = 0,

hΛAn
2

+1
(σµn

2 +1{i1d(µn
2 +1)}) = 0.

Moreover,

hΛAn
2
i1d(µn

2
+1){i1µn

2
+1} =

∑

p+q= n
2 +2

σµp{i1µq}{i1µn
2
+1}

−
∑

1≤s≤r
t1+···+ts=

n
2 +1+s−r

i0µr{σµt1 , . . . , σµts}{i1µn
2
+1}.(2.16)

Using the brace equation, we can check as above that σµp{i1µq}{i1µn
2 +1} is a linear

combination of standard labeled trees as in Lemma 1.29 (1), so

hΛAn
2

+1
(σµp{i1µq}{i1µn

2 +1}) = 0.

Furthermore, the summands in (2.16) are

i0µr{σµt1 , . . . , σµts}{i1µn
2 +1} =

s∑

j=1

i0µr{. . . , σµtj{i1µn
2 +1}, . . . }

+
s+1∑

j=1

i0µr{. . . , σµtj−1 , i1µn
2
+1, σµtj , . . . } if s < r,(2.17)

see Remark 2.7. Here, i0µr{. . . , σµtj{i1µn
2 +1}, . . . } is a linear combination of stan-

dard labeled trees as in Lemma 1.29 (2), so

hΛAn
2

+1
(i0µr{. . . , σµtj{i1µn

2
+1}, . . . }) = 0.

Looking at the index of the summation in (2.16), we see that, in (2.17), r, t1, . . . , ts ≤
n
2 . Therefore, by the first series of equations in the statement, already checked up
to n, we see that

hΛAn
2

+1
(i0µr{. . . , σµtj−1 , i1µn

2
+1, σµtj , . . . }) = 0.
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Collecting previous equations, we obtain

hi1d(µn+1) =
∑

p+q=n+2

(σµp{i1µq} − i0µp{σµq})

−

(⋆)︷ ︸︸ ︷
∑

p+q=n+2
p>q

r−1∑

s=1

s+1∑

j=1

∑

t1+···+ts=p+s−r
and either

t1,...,tj−1>r≥q
or

t1,...,tj−1>q>r
and tj ,...,ts≥q

i0µr{. . . , σµtj−1 , σµq, σµtj , . . . } .

Now, it is enough to check that

(⋆) =
∑

2≤s̄≤r̄
t̄1+···+t̄s̄=n+1+s̄−r̄

i0µr̄{σµt̄1 , . . . , σµt̄s̄}.(2.18)

The summand in (⋆) corresponding to certain p, q, j, r, s, t1, . . . , ts is the same as
the summand on the right hand side of (2.18) corresponding to

r̄ = r, s̄ = s+ 1, t̄i = ti for 1 ≤ i < j, t̄j = q, t̄i = ti−1 for j < i ≤ s̄.

Obviously s̄ = s + 1 ≥ 1 + 1 = 2; s̄ = s + 1 ≤ r − 1 + 1 = r̄; and, using that
p+ q = n+ 2,

t̄1 + · · ·+ t̄s̄ = t1 + · · ·+ ts + q = p+ s− r + q = n+ 1+ s+ 1− r = n+ 1+ s̄− r̄.

Consider now a summand on the right hand side of (2.18), corresponding to
certain r̄, s̄, t̄1, . . . , t̄s̄. Suppose that some t̄i is smaller or equal than r̄. Let j be the
smallest value 1 ≤ j ≤ s̄ such that t̄j ≤ r̄, in particular t̄1, . . . , t̄j−1 > r̄ ≥ t̄j. Then
the summand on the right hand side of (2.18) is the same as the summand in (⋆)
corresponding to

r = r̄, ti = t̄i for 1 ≤ i < j,(2.19)

s = s̄− 1, ti−1 = t̄i for j < i ≤ s̄,

q = t̄j , p = t̄1 + · · ·+ t̄j−1 + t̄j+1 + · · ·+ t̄s̄ + r̄ − s̄+ 1.

Note that s = s̄ − 1 ≥ 2 − 1 = 1; 1 ≤ j ≤ s̄ = s + 1; r = r̄ ≥ s̄ > s̄ − 1 = s;
p+ q = t̄1 + · · · + t̄s̄ + r̄ − s̄ + 1 = n + 2; for 1 ≤ i < j, ti = t̄i > r̄ = r ≥ t̄j = q;
and, since t̄i > 1 for all i, p > s̄− 1 + r̄ − s̄+ 1 = r̄ ≥ t̄j = q.

Othwerwise, all t̄is are bigger than r̄. Let j be the smallest 1 ≤ j ≤ s̄ such that
t̄j attains the minimum value among all t̄is, in particular t̄1, . . . , t̄j−1 > t̄j > r̄ and
t̄j+1, . . . , t̄s̄ ≥ t̄j . Once again, one can straightforwardly check that the summand
on the right hand side of (2.18) is the same as the summand in (⋆) corresponding
to the formulas in (2.19). �

We now compute examples with non-trivial operations in arities 1 and 0.

Example 2.20. We can consider the following extension AD
∞ of the A-infinity operad

which has non-trivial elements in arity 1. As a graded operad, it is freely generated
by

µn ∈ AD
∞(n)n−2, n ≥ 2; Dn ∈ AD

∞(n)n−1, n ≥ 1.
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The differential on the new generators is given by

d(Dn) =
∑

p+q=n+1
1≤i≤p

((−1)(q−1)(i−1)µp ◦i Dq − (−1)p−i+q(i−1)Dp ◦i µq).

This is the Koszul resolution of the operad whose algebras are associative algebras
equipped with a degree 0 derivation, considered by Loday in [Lod10]. We have
simplified notation and adapted sign conventions to our setting. We should warn the
reader that [Lod10] contains an obvious mistake in the grading of generators coming
from the A-infinity operad (in fact, Loday’s differential would not be homogeneous
with his grading). We have fixed this mistake and its consequences on signs. Let
us sketch how the canonical strong cylinder IAD

∞ can be computed as above, by
using operadic suspensions.

The operadic suspension ΛAD
∞ is freely generated as a graded operad by

µn ∈ ΛAD
∞(n)−1, n ≥ 2; Dn ∈ ΛAD

∞(n)0, n ≥ 1.

The differential of the generators not coming from ΛA∞ is then

d(Dn) =
∑

p+q=n+1

(µp{Dq} −Dp{µq}).

This operad is cellular with ΛAD
0 = ΛAD

1 the initial DG-operad and

ΛAD
n = ΛAD

n−1 ∐∂n−1 F(k · {Dn−1, µn}), n ≥ 2.

Here ∂n−1 is defined as the differential. Lemma 2.10 can be extended to show

hΛAD
n
i1d(Dn) =

∑

p+q=n+1

σµp{i1Dq}

−
∑

0≤s<r
t1+···+ts+q=n+1+s−r

1≤j≤s+1

i0µr{σµt1 , . . . , σµtj−1 , σDq, σµtj , . . . , σµts}

−
∑

p+q=n+1

σDp{i1µq} −
∑

1≤s≤r
t1+···+ts=n+s−r

i0Dr{σµt1 , . . . , σµts}.

This formula, together with (1.26) and the fact that the inclusions IΛA∞ ⊂
IΛAD

∞ and i0, i1 : ΛA
D
∞ → IΛAD

∞ are DG-operad morphisms, completely deter-
mines IΛAD

∞ as a DG-operad, and hence IAD
∞.

Our canonical strong pseudo-cylinder generalizes the classical cylinder of DG-
algebras, regarded as DG-operads concentrated in arity 1. This is a consequence
the following result, see (1.26) and [Bau89, §I.7].

Lemma 2.21. Let O be an absolutely pseudo-cellular DG-operad of length α as in
Definition 1.24, such that Vβ is concentrated in arities 0 and 1, β < α. Then, the
following equation holds for any x ∈ O(1) and any y ∈ O,

hOi1(x ◦1 y) = hOi1(x) ◦1 i1(y) + (−1)|x|i0(x) ◦1 hOi1(y).
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Proof. A simple computation shows that the statement follows if we prove that,
given xi ∈ Vβi

(1), 1 ≤ i < n, and xn ∈ Vβn
,

hOi1(x1 ◦1 · · · ◦1 xn)

= hOγ+1i1(x1 ◦1 · · · ◦1 xn)

= hOγ ,Vγ
i1(x1 ◦1 · · · ◦1 xn)

=
n∑

j=1

(−1)

j−1
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn),

where γ = max{β1, . . . , βn}. The first equation holds by definition. We check
the other two ones by induction, first on γ and then on the filtration degree of
x1 ◦1 · · · ◦1xn ∈ Oγ∐∂γ

F(Vγ) with respect to the filtration in the proof of Theorem
1.21, i.e. on the (positive) amount of numbers 1 ≤ i ≤ n with βi = γ. Let i be the
smallest 1 ≤ i ≤ n such that βi = γ. Then

hOγ ,Vγ
(x1 ◦1 · · · ◦1 xn)

= hOγ
i1(x1 ◦1 · · · ◦1 xi−1) ◦1 i1(xi ◦1 · · · ◦1 xn)

+ (−1)

i−1
∑

j=0

|xj|

i0pi1(x1 ◦1 · · · ◦1 xi−1) ◦1 hOγ ,Vγ
i1(xi ◦1 · · · ◦1 xn)

= hOγ
i1(x1 ◦1 · · · ◦1 xi−1) ◦1 i1(xi ◦1 · · · ◦1 xn)

+ (−1)

i−1
∑

j=1

|xj|

i0pi1(x1 ◦1 · · · ◦1 xi−1) ◦1 hI i1(xi) ◦1 i1(xi+1 ◦1 · · · ◦1 xn)

+ (−1)

i
∑

j=1

|xj|

i0pi1(x1 ◦1 · · · ◦1 xi−1) ◦1 i0pi1(xi) ◦1 hOγ ,Vγ
i1(xi+1 ◦1 · · · ◦1 xn)

=

i−1∑

j=1

(−1)

j−1
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn)

+ (−1)

i−1
∑

j=1

|xj|

i0(x1) ◦1 · · · ◦1 i0(xi−1) ◦1 σ(xi) ◦1 i1(xi+1) ◦1 · · · i1(◦1xn)

+

n∑

j=i+1

(−1)

j−1
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn)

=
n∑

j=1

(−1)

j−1
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn).

In the first two equations, we use Remark 1.15. In the third one, we apply the two
induction hypotheses. Indeed, x1 ◦1 · · · ◦1 xi−1 ∈ Oγ and either xi+1 ◦1 · · · ◦1 xn ∈
Oγ ∐F(Vγ) has positive but smaller filtration degree or xi+1 ◦1 · · · ◦1 xn ∈ Oγ .
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In order to check that hOγ+1(x1 ◦1 · · · ◦1 xn) = hOγ ,Vγ
(x1 ◦1 · · · ◦1 xn), observe

that

∂γ,I(i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn))

= − (−1)

j−1
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 hOγ

i1∂γ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn)

− (−1)

j
∑

k=1

|xk|
i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1∂γ(xj+1 ◦1 · · · ◦1 xn).

The second summand is clearly a linear combination of standard labeled trees as
in Lemma 1.29, hence

hOγ+1(i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 σ(xj) ◦1 i1∂γ(xj+1 ◦1 · · · ◦1 xn)) = 0.

Moreover, using the induction hypothesis on hOγ
i1, we see that the first summand

is also such a linear combination, therefore

hOγ ,Vγ
(i0(x1) ◦1 · · · ◦1 i0(xj−1) ◦1 hOγ

i1∂γ(xj) ◦1 i1(xj+1) ◦1 · · · ◦1 i1(xn)) = 0.

This proves that hOγ+1(x1 ◦1 · · ·◦1xn) = hOγ ,Vγ
(x1 ◦1 · · ·◦1xn) by Remark 1.19. �

In the conditions of the previous lemma, the operad O consists of just a DG-
algebra O(1) and a left O(1)-module O(0). It is trivial in higher arities. The full
computation of hOi1 has been possible in this case since all labeled trees in O are
linear and the path order coincides with the linear order.

3. Linear DG-operads

In this section we analyze the canonical strong pseudo-cylinder construction in a
class of relatively pseudo-cellular DG-operads, that we call linear, where formulas
are easy. Classical examples, such as the A-infinity DG-operad, are not linear, but
relative examples do show up, as we will see below.

Given a graded operad O, recall that an O-module [Mar96, Definition 1.4] is a
sequence of graded modules M = {M(n)}n≥0 equipped with compositions, 1 ≤ i ≤
p, q ≥ 0

◦i : M(p)⊗O(q) −→ M(p+ q − 1), ◦i : O(p)⊗M(q) −→ M(p+ q − 1),

satisfying the same laws as graded operads (1.4) when one of the variables is in M

and the rest in O. These are the same as the linear modules introduced in [BJT97,
Definition 2.13] and the infinitesimal bimodules from [MV09a, §3.1]. Any graded
operad is a module over itself, and restriction of scalars is defined in the obvious
way.

The (aritywise) suspension ΣM of an O-module M is again an O-module with
structure

(σx) ◦i y = σ(x ◦i y), y ◦i (σx) = (−1)|y|σ(y ◦i x), x ∈ M, y ∈ O.

Suppose now that O is a relatively pseudo-cellular DG-operad of length α, as
in Definition 1.24. Recall that its underlying graded operad is O0 ∐ F(V ), V =⊕

β<α Vβ . The sub-O0-module of O spanned by the identity element idO is O0.

The sub-O0-module 〈V 〉O0 ⊂ O spanned by V corresponds, in the direct sum
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decomposition for graded operad coproducts (1.12), to the direct subsum indexed
by the trees with exactly one inner vertex of even level,

· · · · · ·

· · ·
· · ·

· · ·

· · ·

and it is freely generated by V , compare [MV09b, Proposition 18]. Moreover, it
clearly satisfies

Σ〈V 〉O0 = 〈ΣV 〉O0 .

We say that O is linear if the restriction of the differential to the generators of
the free part decomposes as

V

(

d0

d1

)

// O0 ⊕ 〈V 〉O0 ⊂ O.

We call d0 the constant part of the differential. If d0 = 0, we say that O is strictly
linear.

Proposition 3.1. If O is a linear DG-operad as above, the canonical strong pseudo-
cylinder IO has underlying graded operad O0∐F(IV ), and the differential is defined
on the free part by the following formulas, x ∈ V ,

di0(x) = i0d(x), di1(x) = i1d(x), d(σx) = i0(x)− i1(x)− σd1(x).

Proof. The proof of this proposition is intertwined with the proof of the following
technical statement. We check, by induction on the length α, that the chain homo-
topy hO : IO → IO (co)restricts to the following O0-module morphism of degree
+1,

O0 ⊕ 〈IV 〉O0 = O0 ⊕ 〈V 〉O0 ⊕ 〈ΣV 〉O0 ⊕ 〈V 〉O0

(

0 0 0 0
0 0 0 σ
0 0 0 0

)

��

〈IV 〉O0 = 〈V 〉O0 ⊕ 〈ΣV 〉O0 ⊕ 〈V 〉O0 .

The case α = 0 is obvious since we are taking the trivial strong pseudo-cylinder
on O0. If α is a limit ordinal, it follows by continuity. Let α = β+1 be a successor.
The restriction of hO to O0 coincides with hO0 = 0. Hence, it suffices to prove
that, for any y ∈ IVβ(n), and x0, . . . , xn ∈ O0,

hO




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0




= (−1)|x0| · · · · · ·

· · ·

x1
· · ·

· · ·

xn

hI (y)
· · ·

x0

.
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The element

· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0

∈ IO = IOβ ∐∂β,I
F(IVβ)

has filtration level 1, with respect to the filtration in the proof of Theorem 1.21.
Therefore, by Remark 1.18,

hO




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0




= hOβ ,Vβ




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0




+ hOβ
∂β,IhOβ ,Vβ




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0




.

By Remark 1.15, since we are taking the trivial strong pseudo-cylinder on O0,

hOβ ,Vβ




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

y
· · ·

x0




= (−1)|x0| · · · · · ·

· · ·

x1
· · ·

· · ·

xn

hI (y)
· · ·

x0

.

Moreover, by Remark 1.20,

∂β,I




· · · · · ·

· · ·

x1
· · ·

· · ·

xn

hI (y)
· · ·

x0




= (−1)|x0|

· · ·

x1
· · ·

· · ·

xn

∂β,IhI (y) · · ·

x0

.

By linearity, ∂β factors as

∂β : Vβ

(

∂0
β

∂1
β

)

// O0 ⊕ 〈
⊕

γ<β Vγ〉O0 ⊂ Oβ .

The maps i0, i1 : Oβ → IOβ (co)restrict to the left and right vertical O0-module
maps in the following diagram, respectively,

O0 ⊕ 〈
⊕

γ<β Vγ〉O0

( 1 0
0 1
0 0
0 0

)

��

( 1 0
0 0
0 0
0 1

)

��

O0 ⊕ 〈
⊕

γ<β Vγ〉O0 ⊕ 〈
⊕

γ<β ΣVγ〉O0 ⊕ 〈
⊕

γ<β Vγ〉O0
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Since ∂β,I = ( i0∂β −hOβ
i1∂β i1∂β ), using the induction hypothesis on hOβ

, we deduce
that

hOβ




· · ·

x1
· · ·

· · ·

xn

∂β,IhI (y) · · ·

x0




= (−1)|x0| · · · · · ·

· · ·

x1
· · ·

· · ·

xn

φ(y)
· · ·

x0

,

where φ = hOβ
∂β,IhI is the following product of (block) matrices,

φ =
(

0 0 0 0
0 0 0 σ
0 0 0 0

)


(

1 0
0 1
0 0
0 0

)(
∂0
β

∂1
β

) −
(

0 0 0 0
0 0 0 σ
0 0 0 0

)(
1 0
0 0
0 0
0 1

)(
∂0
β

∂1
β

)

0

(
1 0
0 0
0 0
0 1

)(
∂0
β

∂1
β

)



(
0 0 0
0 0 σ
0 0 0

)
.

A straightforward computation shows that φ = 0, hence the previous claim follows.
As part of the proof of the previous statement, we have shown that, for any linear

DG-operad O of any length α, and for any β < α, hOβ
i1∂β : Vβ → IOβ corestricts

to
(

0 0 0 0
0 0 0 σ
0 0 0 0

)(
1 0
0 0
0 0
0 1

)(
∂0
β

∂1
β

)
=

(
0

σ∂1
β

0

)
: Vβ −→ 〈

⊕

γ<β

Vγ〉O0 ⊕ 〈
⊕

γ<β

ΣVγ〉O0 ⊕ 〈
⊕

γ<β

Vγ〉O0 .

The statement of the proposition is equivalent to this, see (1.26). �

Example 3.2. Let O be the operad obtained by quotienting out µn, n ≥ 3, from AD
∞

in Example 2.20. Its algebras are non-unital DG-algebras with an up-to-homotopy
derivation. As a graded operad, O is generated by

µ2 ∈ O∞(2)0, Dn ∈ O∞(n)n−1, n ≥ 1,

with a single relation

µ2 ◦1 µ2 = µ2 ◦2 µ2,

and differential

d(µ2) = 0, d(Dn) = µ2 ◦1 Dn−1 + (−1)nµ2 ◦2 Dn−1 +
n−1∑

i=1

(−1)n+iDn−1 ◦i µ2.

The operadic suspension ΛO is therefore generated by

µ2 ∈ ΛO∞(2)−1, Dn ∈ ΛO∞(n)0, n ≥ 1,

with a single relation, the same as above, and differential

d(µ2) = 0, d(Dn) = µ2{Dn−1} −Dn−1{µ2}.

We regard ΛO as a relatively cellular DG-operad with O0 the associative DG-
operad, i.e. ΛO0 is the sub-DG-operad generated by µ2, and

ΛOn = ΛOn−1 ∐∂n−1 F(k ·Dn), ∂n−1(Dn) = d(Dn).

Then it is strictly linear with

d1(Dn) = d(Dn), n ≥ 1.
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Therefore, Proposition 3.1 yields

d(σDn) = i0(Dn)− i1(Dn)− σd(Dn)

= i0(Dn)− i1(Dn)− σ(µ2{Dn−1} −Dn−1{µ2})

= i0(Dn)− i1(Dn) + µ2{σDn−1}+ σDn−1{µ2}.

It is easy to check that this is indeed the formula obtained from (1.26) and the
formula for hΛAD

∞
i1d(Dn) in Example 2.20, killing σµn for n ≥ 2, i0µn, i1µn for

n ≥ 3, and identifying i0µ2 = i1µ2 = µ2.

In the following example, a non-strict linear DG-operad is also considered.

Example 3.3. The following linear relatively pseudo-cellular DG-operad O appears
in [Mur14]. Fix some m > 0. As a graded operad, O is generated by

u ∈ O(0)0, µ ∈ O(2)0, νSn ∈ O(n−m)n−2+m,

where n ≥ m and S ⊂ {1, . . . , n} runs over all subsets of cardinality m, with
relations

µ ◦1 µ = µ ◦2 µ, µ ◦1 u = id = µ ◦2 u.

The differential is defined by

d(u) = 0, d(µ) = 0;

if (n,m) 6= (2, 1), (1, 1),

d(νSn ) = (−1)nµ ◦1 ν
S
n−1 unless lm = n

+ µ ◦2 ν
S−1
n−1 unless l1 = 1

+
∑

1≤v≤m+1
lv−1<i+v−1<lv−1

(−1)i+v−1ν
Sv∪(S′

v−1)
n−1 ◦i µ;

and if m = 1 also

d(ν
{1}
1 ) = 0, d(ν

{1}
2 ) = µ ◦1 ν

{1}
1 − id, d(ν

{2}
2 ) = µ ◦2 ν

{1}
1 − id.

Here we denote S = {l1, . . . , l|S|}, l0 = 0, l|S|+1 = n+1, S+ t = {l1+ t, . . . , l|S|+ t},
and

Sv = {l1, . . . , lv−1}, S′
v =S \ Sv = {lv, . . . , l|S|}, 1 ≤ v ≤ |S|+ 1.

Unlike in previous cases, operadic suspension and braces do not simplify the defi-
nition of O.

This DG-operad is relatively cellular with O0 = · · · = Om−1 the unital associa-
tive operad, i.e. the suboperad generated by u and µ, and

On = On−1 ∐∂n−1 F(k · {νSn}S⊂{1,...,n}
|S|=m

), n ≥ m.

Here ∂n−1 is defined as the differential above. Note that O is clearly linear, even
strictly for m > 1, but not for m = 1, since the constant part of the differential
satisfies

d0(ν
{1}
2 ) = d0(ν

{2}
2 ) = −id.

Consider the retraction r : O → O0 defined as follows,

r(νSn ) = 0 if (n,m) 6= (1, 1), r(ν
{1}
1 ) 7→ u if m = 1.
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Compatibility with differentials is checked in [Mur14, Lemma 5.9]. Denote by
j : O0 → O the inclusion. The equations in the proof of [Mur14, Lemma 5.9] show
that there is a homotopy H : IO → O, relative to O0, from the identity in O to jr,
defined by

H(i0ν
S
n ) = νSn , H(σνSn ) = (−1)l1+1νS+1

n+1 ◦l1 u, H(i1ν
S
n ) = jr(νSn ).

Therefore j is the inclusion of a strong deformation retract, in particular a homotopy
equivalence.

We finally compute some structure maps on canonical strong pseudo-cylinders
of linear DG-operads.

Definition 3.4. Let O be a relatively pseudo-cellular DG-operad. Consider the
pasting of two canonical strong pseudo-cylinders IOi1∪i0IO obtained by identifying
the top copy of O (i1O) in the first IO with the bottom copy of O (i0O) in the
second IO. A doubling map is a map

ν : IO −→ IOi1∪i0 IO,

compatible with the projections onto O, sending the bottom (resp. top) copy of O
in the source to the bottom (resp. top) copy of O in the first (resp. second) IO in
the target. A reversing map is a map

ι : IO −→ IO

compatible with the projections onto O, sending the bottom (resp. top) copy of O
in the source to the top (resp. bottom) copy of O in the target.

Doubling and reversing maps allow to vertically compose and invert homotopies.
They are important since, ifO is based, i.e. equipped with a retractionO → O0, they
give rise to the up-to-homotopy cogroup structure of the model theoretic (relative)
suspension ΣO of O and to the coaction of ΣO on the relative cone CO. Using the
chain homotopy in IO, we could give formulas for doubling and reversing maps in
all cases. Formulas are not easy in general, so we will content ourserlves with the
linear case.

Proposition 3.5. Let us place ourselves in the context of Proposition 3.1. Denote
by j0, j1 : IO → IOi1∪i0 IO the inclusion of the first and second factor, respectively,
which satisfy j0i1 = j1i0. The following formulas define a doubling map and a
reversing map in the sense of Definition 3.4, x ∈ V ,

νi0(x) = j0i0(x), νi1(x) = j1i1(x), ν(σx) = j0σx+ j1σx,

ιi0(x) = i1(x), ιi1(x) = i0(x), ι(σx) = −σx.

Proof. The conditions for ν to be a doubling map are (p, p)ν = p, νi0 = j0i0, and
νi1 = j1i1. The only part about ν which is not completely trivial is compatibility
with differentials in the third case. In order to check this, note that the third
formula is actually true for any x ∈ 〈V 〉O0 , since i0, i1, j0, j1 are maps relative to
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O0. Therefore,

dν(σx) = dj0σx+ dj1σx

= j0d(σx) + j1d(σx)

= j0i0(x)− j0i1(x)− j0σd
1(x)

+ j1i0(x) − j1i1(x)− j1σd
1(x)

= j0i0(x)− j1i1(x)− j0σd
1(x) − j1σd

1(x)

= νi0(x)− νi1(x) − νσd1(x)

= νd(σx).

One can similarly check that ι is a reversing map. �
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