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R. Álvarez-Nodarse1,2, J. Petronilho3, and N.R. Quintero4,2
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Abstract

In this paper we use the analytic theory for 2 and 3− Toeplitz ma-

trices to obtain the explicit expressions for the eigenvalues, eigenvec-

tors and the spectral measure associated to the corresponding infinite

matrices. As an application we consider two solvable models related

with the so-called Chain Model. Some numerical experiments are also

included.
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1 Introduction

k−Toeplitz matrices are tridiagonal matrices of the form A = [ai,j ]
n
i,j=1

(with n ≥ k) such that

ai+k,j+k = ai,j (i, j = 1, 2, · · · , n − k) ,

so that they are k−periodic along the diagonals parallel to the main diagonal

[8]. When k = 1 it reduces to a tridiagonal Toeplitz matrix.

The interest of the study of k−Toeplitz matrices appears to be very im-

portant not only from a theoretical point of view (in linear algebra or nu-

merical analysis, e.g.), but also in applications. For instance, it is useful in

the study of sound propagation problems (see [2, 9]).

In this paper we present a complete study of the eigenproblems for tridi-

agonal 2 and 3−Toeplitz matrices, including the spectral measure associated

to the corresponding infinite Jacobi matrices, and then we apply the results

to the study of the so called chain models in Quantum Physics. Since we

hope that our discussion could be of interest both to readers working on Ap-

plied Mathematics and Orthogonal Polynomials as well as physicists, we will

further develop the works [5, 6, 14, 15, 16, 17] including several results on

tridiagonal k−Toeplitz matrices that follow from the results in those papers

but not explicitly included there. Of particular interest is the symmetric case

because of its interest in the study of quantum chain models.

In fact, one of the main problems in Quantum Physics is to find the

solutions of the stationary Schrödringer equation

H|Φ〉 = ε|Φ〉, (1.1)

where H is the Hamiltonian of the system and ε is the energy corresponding

to the state |Φ〉. A usual method for solving the equation (1.1) is to expand

the unknown wave functions |Φ〉 in the “discrete” basis (not necessarily or-

thogonal) {|Φk〉}∞k=1, i.e.,

|Φ〉 =

N∑

k=1

CNk|Φk〉 . (1.2)

Substituting Eq. (1.2) in (1.1) and multiplying by 〈Φm| and taking into

account the orthogonality of the functions |Φk〉 we obtain the following linear
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system of equations

N∑

k=1

CNk〈Φm|H|Φk〉 = εCNm. (1.3)

If we denote the matrix elements 〈Φm|H|Φk〉 by hmk then we can rewrite

(1.3) in the matrix form



h11 h12 . . . h1 N−1 h1 N

h21 h22 . . . h2 N−1 h2 N

h31 h32 . . . h3 N−1 h3 N

...
...

. . .
...

...

hN−1 hN−1 2 . . . hN−1N−1 hN−1 N

hN1 hN2 . . . hN N−1 hN N







CN1

CN2

CN3

...

CN−1N

CNN




= ε




CN1

CN2

CN3

...

CN−1N

CNN




. (1.4)

In general, the computation of the eigenvalues (and also the eigenvectors)

for an arbitrary matrix, as the previous one in (1.4), is very difficult since it

is equivalent to the problem of finding the roots of a polynomial of degree N

Moreover, the numerical algorithms (Newton’s Method, etc.) are, in general,

unstable for large N . For this reason simpler models (which are easier to solve

and numerically more stable and economic) have been introduced. One of

these models is the so called Chain Model which has been successfully used in

Solid State Physics [10], Nuclear Physics [21], and Quantum Mechanics [12],

etc. In fact, any quantum model can be transformed into the corresponding

Chain Model (see [11] and references therein).

In our previous paper [1] we have briefly considered the 2-Periodic Chain

Model —the Constant Chain Model, i.e., when the sequences {an} and {bn}
are constants equal to a and b, respectively, has been considered in [11]—

i.e., when the sequences {an} and {bn} are periodic sequences with period 2,

i.e., {an} = {a, b, a, b, · · · } and {bn} = {c, d, c, d, · · · }. For such models it is

possible to obtain analytic formulae for the values of the energy (eigenvalues)

of H and its corresponding wave functions. Here we will conclude the study

started in [1] for the two chain model and will present the complete study of

the 3-periodic chain model.

The structure of the paper is as follows. In section 2 we give the needed

mathematical background. Section 3 is devoted to some applications of the

theory of tridiagonal k-Toeplitz matrices in quantum physics: concretely to

the so-called Chain Model.
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2 Mathematical background

We start with some basic results from the general theory of orthogonal poly-

nomials (see e.g. [3]). It is known that any orthogonal polynomial sequence

(OPS) {Pn}n≥0 it is characterised by a three-term recurrence relation

xPn(x) = αnPn+1(x) + βnPn(x) + γnPn−1(x), n = 0, 1, 2, . . . , (2.1)

with initial conditions P−1 = 0 and P0 = 1 where {αn}n≥0, {βn}n≥0 and

{γn}n≥1 are sequences of complex numbers such that αnγn+1 6= 0 for all

n ≥ 0, or in matrix form

xPn(x) = Jn+1Pn(x) + αnPn+1(x)en , (2.2)

where Pn(x) = [P0(x), . . . , Pn(x)]T , en = [0, 0, . . . , 0, 1]T ∈ R
n+1 and Jn+1 is

the tridiagonal matrix of order n + 1

Jn+1 =




β0 α0 0 0 . . . 0 0

γ1 β1 α1 0 . . . 0 0

0 γ2 β2 α2 . . . 0 0

0 0 γ3 β3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . βn−1 αn−1

0 0 0 0 . . . γn βn




.

If {xnj}1≤j≤n are the zeros of the polynomial Pn, then it follows from (2.2)

that each xnj is an eigenvalue of the corresponding tridiagonal matrix Jn and

Pn−1(xnj) := [P0(xnj), . . . , Pn−1(xnj)]
T is a corresponding eigenvector.

When αn = 1 and γn > 0 for all n = 1, 2, . . . the (monic) polynomials

{Pn}n≥0 defined by the recurrence relation (2.1) arise as denominators of the

approximants of the continued fraction

1

x− β0 −
γ1

x− β1 −
γ2

x− β2 − · · · − γn−1

x− βn−1 −
γn

x− βn − . . .

.
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Under these conditions, by Favard’s theorem [3], {Pn}n≥0 constitutes an or-

thogonal polynomial sequence with respect to a positive definite moment

functional, and if the moment problem associated with the continued fraction

is determined, then this linear functional can be characterised by a unique

distribution function, i.e., a function σ : R → R which is nondecreasing, it

has infinitely many points of increase and all the moments
∫ +∞
−∞ x2ndσ(x),

n = 0, 1, 2, . . . , are finite. The numerators of the continued fraction, denoted

by {P (1)
n }n≥0, can be given by the shifted recurrence relation

xP (1)
n (x) = P

(1)
n+1(x) + βn+1P

(1)
n (x) + γn+1P

(1)
n−1(x), n ≥ 0,

with initial conditions P
(1)
−1 = 0 and P

(1)
0 = 1. This continued fraction con-

verges to a function F (z;σ) and the general theory of the moment problem

ensures that F is analytic in the complex plane with a cut along the support

of σ (i.e., the set of points of increase of σ). This fact can be summarised by

Markov-Stieltjes’s theorem

− lim
n→+∞

µ0P
(1)
n−1(z)

Pn(z)
= F (z;σ) :=

∫ +∞

−∞

dσ(x)

x− z
, z ∈ C\supp(σ), (2.3)

where µ0 =
∫ +∞
−∞ dσ(x) is the first moment of the distribution σ(x) and F is

its Stieltjes function. Now, the function σ(x) can be recovered from (2.3) by

applying the Stieltjes inversion formula

σ(x) − σ(y) = lim
ε→0+

1

π

∫ x

y

=F (t + iε, σ) dt,

where it is assumed that σ is normalised in the following way

σ(−∞) = 0 , σ(x) =
σ(x + 0) + σ(x− 0)

2

and =z denotes the imaginary part of z.

An important family of orthogonal polynomials are the orthonormal Cheby-

shev polynomials of second kind {Un(x)}n≥0 defined in terms of trigonometric

polynomials in cos θ as

Un(x) =
sin(n + 1)θ

sin θ
, x = cos θ.
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For these polynomials (2.1) takes the form

U−1 = 0, U0 = 1, 2xUn(x) = Un+1(x) + Un−1(x), n = 0, 1, 2, . . . .

They are orthonormal with respect to the distribution function

dσU (x) =
2

π

√
1 − x2 dx, supp(σU) = [−1, 1],

i.e., ∫ 1

−1

Un(x)Um(x)dσU(x) = δn,m,

where δn,m is the Kronecker symbol: δk,m = 1 for k = m, elsewhere δk,m = 0.

The corresponding Stieltjes function is

FU (z) =
−2

z +
√

z2 − 1
= −2(z −

√
z2 − 1), z ∈ C\[−1, 1], (2.4)

where the complex square root is such that |z +
√

z2 − 1| > 1 whenever

z 6∈ [−1, 1].

The Chebychev polynomials Un are closely related with the tridiagonal 2

and 3 Toeplitz matrices as it is shown in the next two sections.

2.1 Remarks on tridiagonal 2-Toeplitz matrices

Let BN be the irreducible tridiagonal 2−Toeplitz matrix

BN =




a1 b1 0 0 0 . . .

c1 a2 b2 0 0 . . .

0 c2 a1 b1 0 . . .

0 0 c1 a2 b2 . . .

0 0 0 c2 a1 . . .
...

...
...

...
...

. . .




∈ R
(N,N), N ∈ N, (2.5)

where b1, b2, c1 and c2 are positive numbers. Define the polynomials

π2(x) = (x− a1)(x− a2),

and

Pn(x) = (b1b2c1c2)
n

2 Un

(
x − b1c1 − b2c2

2
√

b1b2c1c2

)
, n = 0, 1, 2 . . . ,

where Un is the Chebyshev polynomial of second kind.

The following theorem holds
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Theorem 2.1 ([7, 14]) Let BN , N = 1, 2, 3, . . . , be the irreducible tridiag-

onal 2-Toeplitz matrix given by (2.5), where b1, b2, c1, and c2 are positive

numbers. The sequence {Sn}n≥0 of orthogonal polynomials associated with

the matrices BN is

S2k(x) = (b1b2)
−k {Pk(π2(x)) + b2c2Pk−1(π2(x))} ,

S2k+1(x) = b−1
1 (b1b2)

−k(x− a1)Pk(π2(x)), k = 0, 1, . . . .

Then the eigenvalues λN,m of BN are the zeros of SN , and the corresponding

eigenvectors vN,m are given by

vN,m =




S0(λN,m)

S1(λN,m)
...

SN−1(λN,m)




, m = 1, 2, . . . , N .

In particular1, the eigenvalues λ2n+1,m of B2n+1 (m = 1, 2, . . . , 2n + 1) are

λ2n+1,1 = a1 and the solutions of the quadratic equations

π2(λ) −
[
b1c1 + b2c2 + 2

√
b1b2c1c2 cos

kπ

n + 1

]
= 0, k = 1, . . . , n. (2.6)

Notice that since the sequence {Sk}k is an orthogonal polynomial sequence

corresponding to a positive definite case, then the zeros are simple and in-

terlace, i.e., if {xk,j}k
j=1 denotes the zeros of the polynomial Sk, then

xk,j < xk−1,j < xk,j+1, j = 1, 2, . . . , k − 1.

Therefore using the values (2.6) we can obtain bounds for the eigenvalues of

the corresponding matrices for the even case.

1For the case when b1c1 > b2c2 the eigenvalues λ2n,m of B2n (m = 1, 2, . . . , 2n) are the

solutions of the quadratic equations

π2(λ) −
[
b1c1 + b2c2 + 2

√
b1b2c1c2 cos θnk

]
= 0, k = 1, . . . , n,

where θnk’s are the nonzero solutions of the trigonometric equation

√
b1c1 sin[(n + 1)θ] +

√
b2c2 sin(nθ) = 0, (0 < θ < π).
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Moreover (c.f. [20]; see also [15]), the Stieltjes function associated to the

sequence {Sn}n≥0 reads as

FS(z) =
1

a1 − z
− 1

2b2c2

1

z − a1

(
π2(z)−β−

√
(π2(z)−β)2−α2

)
, (2.7)

where α = 2
√

b1b2c1c2 and β = b1c1 + b2c2. Furthermore, {Sn}n≥0 is orthog-

onal with respect to the distribution function

dσS(x) = Mδ(x− a1)dx +
1

2πb2c2

1

|x− a1|
√

α2 − (π2(x) − β)2 dx, (2.8)

where M = 1−min{b1c1, b2c2}/(b2c2) and which support is the union of two

intervals if M = 0 and the union of two intervals with a singular set if M > 0,

i.e.,

supp(σS) =





ΣS if b1c1 ≤ b2c2,

ΣS ∪ {a1} if b1c1 > b2c2,

where ΣS = [a1+a2

2
− s, a1+a2

2
− r] ∪ [a1+a2

2
+ r, a1+a2

2
+ s] and

r =
√∣∣√b1c1 −

√
b2c2

∣∣2 +
∣∣a1−a2

2

∣∣2, s =
√∣∣√b1c1 +

√
b2c2

∣∣2 +
∣∣a1−a2

2

∣∣2.

2.2 Remarks on tridiagonal 3-Toeplitz matrices

Let us now consider the irreducible tridiagonal 3-Toeplitz matrix

BN =




a1 b1 0 0 0 0 0 · · ·
c1 a2 b2 0 0 0 0 · · ·
0 c2 a3 b3 0 0 0 · · ·
0 0 c3 a1 b1 0 0 · · ·
0 0 0 c1 a2 b2 0 · · ·
0 0 0 0 c2 a3 b3 · · ·
0 0 0 0 0 c3 a1 · · ·
...

...
...

...
...

...
...

. . .




∈ R
(N,N), N ∈ N. (2.9)

Define

Pn(x) = (b1b2b3c1c2c3)
n

2 Un

(
x− b1c1 − b2c2 − b3c3

2
√

b1b2b3c1c2c3

)
, n = 0, 1, 2 . . . .

Let ξ1 and ξ2 be the zeros of the quadratic polynomial

(x− a1)(x− a2) − b1c1 (2.10)
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and define the polynomial

π3(x) := (x− a1)(x− a2)(x− a3) − (b1c1 + b2c2 + b3c3)(x− a3)+

b2c2(a1 − a3) + b3c3(a2 − a3) + b1c1 + b2c2 + b3c3.

(2.11)

In this case we have the following

Theorem 2.2 ([16]) Let BN , N = 1, 2, 3, . . . , be the irreducible tridiagonal

3-Toeplitz matrix given by (2.9), where b1, b2, b3, c1, c2 and c3 are positive

numbers. The sequence {Sn}n≥0 of orthogonal polynomials associated with

the matrices BN is

S3k(x) = (b1b2b3)
−k{Pk(π3(x)) + b3c3(x− a2)Pk−1(π3(x))},

S3k+1(x) = b−1
1 (b1b2b3)

−k{(x− a1)Pk(π3(x)) + b1c1b3c3Pk−1(π3(x))},
S3k+2(x) = (b1b2)

−1(b1b2b3)
−k(x− ξ1)(x− ξ2)Pk(π3(x)), k = 0, 1, . . . ,

where ξ1 and ξ2 are the roots of the polynomial (2.10) and π3 is the polynomial

given by (2.11). Then the eigenvalues λN,m of BN are the zeros of SN , and

the corresponding eigenvectors vN,m are given by

vN,m =




S0(λN,m)

S1(λN,m)
...

SN−1(λN,m)




, m = 1, 2, . . . , N .

In particular, when N = 3n + 2, the eigenvalues λ3n+2,m of B3n+2 (m =

1, 2, . . . , 3n + 2) are λ3n+2,1 = ξ1, λ3n+2,2 = ξ2 and the solutions of the cubic

equations

π3(λ) −
[
b1c1 + b2c2 + b3c3 + 2

√
b1b2b3c1c2c3 cos

kπ

n + 1

]
= 0 , k = 1, . . . , n .

(2.12)

As in the previous case, we can use the values (2.12) to give bounds for the

eigenvalues of the corresponding matrices in the N = 3n and N = 3n + 1

cases.
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In this case [17] the Stieltjes function associated to the sequence {Sn}n≥0

is

FS(z) =
ξ2 − a1

ξ2 − ξ1

1

ξ1 − z
+

a1 − ξ1

ξ2 − ξ1

1

ξ2 − z
−

1

2b1c1b3c3

(a1 − ξ1)(a1 − ξ2)

(z − ξ1)(z − ξ2)

(
π3(z)−β−

√
(π3(z)−β)2−α2

)
,

(2.13)

where α = 2
√

b1b2b3c1c2c3 and β = b1c1 + b2c2 + b3c3. In (2.13) the square

root is such that |z − β +
√

(z − β)2 − α2| > α whenever z 6∈ [β − α, β + α].

Moreover, {Sn}n≥0 is orthogonal with respect to the distribution function

dσS(x) = M1δ(x− ξ1)dx + M2δ(x− ξ2)dx

− 1

2πb1c1b3c3

(a1 − ξ1)(a1 − ξ2)

|(x− ξ1)(x− ξ2)|
√

α2 − (π3(x) − β)2 dx,

which support is contained in the union of the three intervals ΣS = π−1
3 ([β −

α, β + α]) (see figure 1) with two possible mass points at ξ1 and ξ2, i.e.,

supp(σS) =





ΣS if M1 = 0, M2 = 0,

ΣS ∪ {ξ2} if M1 = 0, M2 > 0,

ΣS ∪ {ξ1} if M1 > 0, M2 = 0,

ΣS ∪ {ξ1, ξ2} if M1 > 0, M2 > 0,

where

M1 = −a1 − ξ2

ξ1 − ξ2

[
1 − b2c2(ξ1 − a1)

α
FU

(
π3(ξ1) − β

α

)]

and

M2 =
ξ1 − a1

ξ1 − ξ2

[
1 − b2c2(ξ2 − a1)

α
FU

(
π3(ξ2) − β

α

)]
.

If we now take into account the identity

4[(π3(ξ1) − β)2 − α2] = [(b3c3 − b2c2)∆ + (a1 − a2)(b3c3 + b2c2)]
2,

where ∆ =
√

(a1 − a2)2 + 4b1c1 as well as the right choice of the branch of

the square root in the definition of FU (2.4) we find

M1 =
max{0, (b3c3 − b2c2)∆ + (a1 − a2)(b3c3 + b2c2)}

2b3c3∆
≥ 0,

M2 =
max{0, (b3c3 − b2c2)∆ − (a1 − a2)(b3c3 + b2c2)}

2b3c3∆
≥ 0.

(2.14)
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Figure 1: The polynomial mapping [β − α, β + α] 7→ π−1
3 ([β − α, β + α]).

A simple inspection of the values of M1 and M2 leads to the following four

cases:

1. b3c3 ≥ b2c2 and a1 ≥ a2. In this case

• M1 = 0 iff a1 = a2 and b3c3 = b2c2,

• M2 = 0 iff b3c3 ≤ b2c2 + |a1 − a2|(b3c3 + b2c2)∆
−1.

2. b3c3 ≥ b2c2 and a1 ≤ a2. Then

• M1 = 0 iff b3c3 ≤ b2c2 + |a1 − a2|(b3c3 + b2c2)∆
−1,

• M2 = 0 iff a1 = a2 and b3c3 = b2c2.

3. b3c3 ≤ b2c2 and a1 ≥ a2. Then

• M1 = 0 iff b3c3 ≤ b2c2 − |a1 − a2|(b3c3 + b2c2)∆
−1,

• In this case always M2 = 0.

4. b3c3 ≤ b2c2 and a1 ≤ a2.

• In this case always M1 = 0,

• M2 = 0 iff b3c3 ≤ b2c2 − |a1 − a2|(b3c3 + b2c2)∆
−1.

2.3 Some remarks on a matrix theoretic approach

Here we want to emphasize another approach to the problem concerning the

study of the spectral properties (eigenvalues, eigenvectors and asymptotic

11



(limit) spectral measure) of the sequences of matrices defined by (2.5) and

(2.9), based on recent results by D. Fasino, A. Kuijlaars, S. Serra Capizzano,

and P. Tilli (cf. [4, 13, 18, 19]). To simplify we will consider the case when

the order N of the matrix BN in (2.5) is even. Then BN is the block Toeplitz

matrix

BN =




A0 A−1

A1
. . . . . .
. . . . . . . . .

. . . . . . A−1

A1 A0




generated by the 2 × 2 matrix valued polynomial

f2(x) := A0 + A1e
ix + A−1e

−ix,

with

A0 :=

[
a1 b1

c1 a2

]
, A1 :=

[
0 0

b2 0

]
, A−1 :=

[
0 c2

0 0

]
.

Since, in general, f2(x) is not hermitian then not very much can be said on

the eigenvalues. However, according to Theorem 2.1 the conditions b1c1 > 0

and b2c2 > 0 hold, and so it is well-known that, under such conditions, BN

is similar (via diagonal transformations) to the block Toeplitz matrix B̂N

generated by the 2 × 2 matrix valued polynomial

f̂2(x) := Â0 + Â1e
ix + Â−1e

−ix,

with

Â0 :=

[
a1

√
b1c1√

b1c1 a2

]
, Â1 :=

[
0 0√
b2c2 0

]
, Â−1 :=

[
0

√
b2c2

0 0

]
.

Similar considerations remains true for the generalized case of a tridiagonal

k−Toeplitz matrix (see equation (2.1) in [4]). Now, the limit distribution is

described in Theorems 2.1 and 2.2 in [4]. In our specific case the spectra of

the matrix BN distributes as the eigenvalues of f̂2(x), which are

λ±(x) :=
a1 + a2

2
±

√(
a1 − a2

2

)2

+ b1c1 + b2c2 + 2
√

b1c1b2c2 cos x .

12



More precisely, it follows from Theorem 2.2 in [4] that, with possible ex-

ception of at most a denumerable set of point masses, the support of the

measure of orthogonality for the orthogonal polynomials corresponding to

BN is contained in the set

S :=
[
λ−

1 , λ+
1

]
∪

[
λ−

2 , λ+
2

]

(and the zeros of the orthogonal polynomials are dense in this set), where

λ−
1 := min{λ−(0), λ−(π)} , λ+

1 := max{λ−(0), λ−(π)} ,

λ−
2 := min{λ+(0), λ+(π)} , λ+

2 := max{λ+(0), λ+(π)} .

Therefore, since

λ±(0) =
a1 + a2

2
±

√(
a1 − a2

2

)2

+
(√

b1c1 +
√

b2c2

)2

,

and

λ±(π) =
a1 + a2

2
±

√(
a1 − a2

2

)2

+
(√

b1c1 −
√

b2c2

)2

,

we see that S is the same union of two intervals given in the end of section

2.1. Also, the limit spectral measure follows from asymptotic spectral theory

of Toeplitz matrices.

We remark that the spectral distribution holds for odd N as well since

constant rank corrections do not modify the asymptotic spectral distribution.

Further, the results in [4] are true for every k−Toeplitz matrix sequences

(and so, in particular, for k = 2 and k = 3), as well as for variable recurrence

coefficients (see also [13]) and in the multidimensional case (cf. also [18, 19]).

On the other hand, our results in Theorems 2.1 and 2.2 gives more precise

information on the localization of the zeros.

As a final remark, we would like to point out that in the present paper

the theory of orthogonal polynomials is used for giving spectral information,

while in [4, 13] the idea is exactly the opposite since matrix theoretic tools

are used for deducing information on the zeros of orthogonal polynomials.

3 Applications: the Chain Model

Here we will resume some important properties of the Chain model. For a

more detailed study we refer to the nice paper by Haydock [11].
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Definition 3.1 [11] The Chain Model is a quantum model determined by

a sequence of orthonormal orbits (states) {u0,u1, · · · } and two sets of real

parameters {a1, a2, · · · } and {b1, b2, · · · }, which describe the action of the

Hamiltonian H on the orbitals by a symmetric three-term recurrence relation

of the form

Hun = bn+1un+1 + anun + bnun−1. (3.1)

The sequence {u0,u1, · · · } may be finite or infinite. In the first case we

need to take the orbitals u−1 and uN+1 equal to zero. Moreover, in [11] it

has been shown that this model is equivalent to expressing the matrix H by

using an appropriate basis as a Jacobi (tridiagonal symmetric) matrix

H =




a0 b1 0 0 . . .

b1 a1 b2 0 . . .

0 b2 a2 b3 . . .

0 0 b3 a3 . . .
...

...
...

...
. . .




. (3.2)

In the following we will suppose that the solution u of the Schrödinger

equation (1.1) can be written as a linear combination of the states u0, u1,

u2, . . . , i.e.,

u =

∞∑

k=0

Ckuk. (3.3)

For this model it is possible to obtain analytic formulae for the so-called

general diagonal Green function G0(ε). In [11, 10] it is shown that G0(ε) for

the Chain Model (3.1) is related to the continued fraction

G0(ε) =
1

ε − a0 −
b2
1

ε − a1 −
b2
2

ε − a2 − · · · − b2
n

ε − an − . . .

, ε ∈ C. (3.4)

For the finite Chain Model, this continued fraction reduces to the ratio of

two polynomials which conforms the well known Padé Approximants of order

n of the infinite continued fraction. This and some other results concerning

the calculation of the Green function will be considered in detail in the next
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section. Of particular interest are the function G0(ε) — the real part of G0(ε)

describes the response of the system to be driven at a given energy—, and

n0(ε) = − lim
ε→0

1

π
= (G0(ε + iε)) —is the local density of the initial state— (see

[12] for more details).

In the case of the infinite chain, it is possible to obtain an analytic ex-

pression for the Green function G0(ε) (3.4). In this case, using Rational

Approximation Theory [22], we obtain that the continued fraction (3.4) con-

verges to the Stieltjes function associated with the measure of orthogonality

of the polynomial sequence {Sn}n≥0, i.e., G0(ε) = FS(ε). Moreover, we can

obtain the local density n0(ε) which coincides with the corresponding mea-

sure of orthogonality dσS(ε).

3.1 The 2-Periodic Chain Model.

We will suppose that the sequences of coupling constants {an} and {bn} are

periodic sequences with period 2, i.e., {an} = {a, b, a, b, · · · } and {bn} =

{c, d, c, d, · · · }. Then the matrix (3.2) becomes

H =




a c 0 0 0 . . .

c b d 0 0 . . .

0 d a c 0 . . .
...

...
...

...
...

. . .




.

3.1.1 The Eigenvalues and Eigenstates of the 2-Periodic Chain

In order to obtain the eigenvalues and eigenstates of the 2-Periodic Chain we

use (3.3). Then, (1.1) can be rewritten in the form



a c 0 0 0 . . .

c b d 0 0 . . .

0 d a c 0 . . .
...

...
...

...
...

. . .







C1

C2

C3

...




= ε




C1

C2

C3

...




, (3.5)

where Ck are the coefficients in the linear combination (3.3), and ε is the

corresponding eigenvalue of the matrix Hamiltonian H. Here, it is important

to remark that we need to consider finite or infinite chains. The explicit

solution of this eigenvalue problem for the finite chain with N = 2n + 1

states is given by theorem 2.1.
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In this case, we have a1 = a, a2 = b, b1 = c1 = c and b2 = c2 = d and

then the eigenvalues of (3.5) are the following

ε0 = a, ε±k =
a + b

2
±

√
(a− b)2

4
+ c2 + d2 + 2cd cos

(
kπ

n + 1

)
, (3.6)

where k = 1, 2, . . . , n. Moreover, the corresponding eigenvectors are

v` =




S0(ε`)

S1(ε`)
...

S2n(ε`)




, ` = 0,±1,±2, . . . ,±n, (3.7)

where

S2k(ε) = (cd)−k {Pk((ε− a)(ε− b)) + d2Pk−1((ε− a)(ε− b))} ,

S2k+1(ε) = c−1(cd)−k(x− a)Pk((ε− a)(ε− b)), k = 0, 1, . . . ,

and Pn(x) = (cd)nUn

(
x − c2 − d2

2cd

)
.

For the particular case when a = b and c = d the equation (3.6) gives

ε0 = a, ε±k = a ± 2c cos

(
kπ

2n + 2

)
for k = 1, 2, ..., n, which is in agreement

with [11].

3.1.2 The Green function and the local density n0(ε)

Using (2.7) the following expression for the Green function follows

G0(ε) =
1

2d2(a− ε)

(
2 + ϕ2(ε) −

√
ϕ2

2(ε) − (2cd)2

)
,

where ϕ2(ε) = (ε− a)(ε− b)− c2 − d2. To obtain the local density n0(ε), we

use the distribution function (2.8)

n0(ε) =

(
1 − min(c2, d2)

d2

)
δ(ε− a) +

1

2πd2

1

|ε − a|

√
(2cd)2 − ϕ2

2(ε),

(3.8)

that is located in the union of the following two intervals
[
a + b

2
− τ+,

a + b

2
− τ−

]
∪

[
a + b

2
+ τ−,

a + b

2
+ τ+

]
,

with a possible mass point at ε = a, where τ± = 1
2

√
(b − a)2 + 4(c ± d)2.

16



3.1.3 Some numerical experiments

In this section we will show some numerical results corresponding to the case

of 2-Toeplitz matrix. To check the validity of the analytic formulas we have

computed numerically the eigenvalues of the matrix (3.5) using Matlab and

compare them with the analytic values given, for the case N = 2n + 1 by

(3.6). The corresponding analytic expressions for the eigenvectors can be

obtained from (3.7). For the case N = 2n we can use the bounds ε2n+1,j <

ε2n,j < ε2n+1,j+1, j = 1, 2, . . . , 2n.
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Figure 2: The eigenvalues of the 2-chain model for a = 2, b = 1, c = 4 and d = 3.

In figure 2 we show the eigenvalues of the 2-Toeplitz symmetric N × N

matrix, N = 2n+1 for a = 2, b = 1, c = 4 and d = 3. We show the numerical

eigenvalues (stars) and the analytical ones (open circles) for n = 30 (left

panel) and n = 500 (right panel). With this choice of parameters the density

function n0 of the initial state, represented in figure 4 (left panel), has not

any mass point at ε = 1 (see (3.8)), i.e., it is an absolute continuous function

supported on two disjoint intervals.

In figure 3 we show the eigenvalues of the 2-Toeplitz symmetric N × N

matrix, N = 2n+1 for a = 2, b = 1, c = 3 and d = 4. We show the numerical

eigenvalues (stars) and the analytical ones (open circles) for n = 30 (left

panel) and n = 500 (right panel). With this choice of the parameters the

density function n0 of the initial state has a mass point M = 7/16 at ε = 1,

i.e., it has an absolute continuous part supported on two disjoint intervals,

represented in figure 4 (right panel), plus a delta Dirac mass at x = 1.
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Figure 3: The eigenvalues of the 2-chain model for a = 1, b = 2, c = 3 and d = 4
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Figure 4: The density function n0(ε) of the 2-chain model for a = 2, b = 1, c = 4

and d = 3 (left) and a = 1, b = 2, c = 4 and d = 3 (right)

Here we have shown only the case of N = 2n + 1 matrices for which

always one has an isolate eigenvalue ε1 = a. For the case of matrices of order

N = 2n we have not this isolated eigenvalue. Also notice that the spectrum

of H has two branches.

3.2 The 3-Periodic Chain Model.

Let now suppose that the sequences of coupling constants {an} and {bn}
are periodic sequences with period 3, i.e., {an} = {a, b, c, a, b, c, · · · } and
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{bn} = {d, e, f, d, e, f, · · · }. Then the matrix (3.2) becomes

H =




a d 0 0 0 0 0 · · ·
d b e 0 0 0 0 · · ·
0 e c f 0 0 0 · · ·
0 0 f a d 0 0 · · ·
0 0 0 d b e 0 · · ·
0 0 0 0 e c f · · ·
0 0 0 0 0 f a · · ·
...

...
...

...
...

...
...

. . .




3.2.1 The Eigenvalues and Eigenstates of the 3-Periodic Chain

Again we will suppose that the solution u of the Schrödinger equation (1.1)

can be written as (3.3), thus (1.1) takes the form




a d 0 0 0 . . .

d b e 0 0 . . .

0 e c f 0 . . .

0 0 f a d . . .
...

...
...

...
...

. . .







C1

C2

C3

C4

...




= ε




C1

C2

C3

C4

...




, (3.9)

where Ck are the coefficients in the linear combination (3.3), and ε is the

corresponding eigenvalue of the matrix Hamiltonian H. In this case we use

Theorem 2.2 which gives an explicit expression for the eigenvalue problem in

the case of N = 3n + 2.

In this case, we have a1 = a, a2 = b, a3 = c, b1 = c1 = d, b2 = c2 = e, and

b3 = c3 = f and then the eigenvalues of (3.9) are the solutions εi,k, i = 1, 2, 3,

k = 1, 2, . . . , n, of the polynomial equations

x3 − (a + b + c)x2 + (ab + ac + bc − d2 − e2 − f2)x

+cd2 + ae2 + bf2 − abc + 2def cos

(
k π

n + 1

)
= 0,

(3.10)

and

ε3n+1 =
a + b −

√
(a − b)2 + 4 d2

2
, ε3n+2 =

a + b +
√

(a − b)2 + 4 d2

2
,
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the corresponding eigenvectors are

v` =




S0(ε`)

S1(ε`)
...

S3n+1(ε`)




, ` ∈ {(i, k), 3n + 1, 3n + 2 | i = 1, 2, 3; k = 1, . . . , n},

(3.11)

where

S3k(x) = (def)−k{Pk(π3(x)) + f 2(x− b)Pk−1(π3(x))},
S3k+1(x) = d−1(def)−k{(x− a)Pk(π3(x)) + d2f2Pk−1(π3(x))},
S3k+2(x) = (de)−1(def)−k(x− ξ1)(x− ξ2)Pk(π3(x)), k = 0, 1, . . . ,

being

Pn(x) = (def)nUn

(
x− d2 − e2 − f2

2def

)
,

and

π3(x) = d2 + e2 + f2 + (a− c) e2 + (b − c) f 2

−
(
d2 + e2 + f2

)
(x− c) + (x− a) (x− b) (x − c) .

(3.12)

The particular case a = b = c and d = e = f gives ε1,k = a+2d cos

(
kπ

3n + 3

)
,

ε2,k = a−2d cos

(
(n + 1 − k)π

3n + 3

)
, ε3,k = a+2d cos

(
(n + 1 + k)π

3n + 3

)
,

for k = 1, 2, ..., n, ε3n+1 = a − d, ε3n+2 = a + d, that is in agreement with

[11].

3.2.2 The Green function and the local density n0(ε)

Using (2.13) the following expression for the Green function follows

G0(ε) =
1

(ε−a)(ε−b)−d2

(
b−ε+

1

2f2

(
ϕ3(ε)−

√
ϕ2

3(ε)−(2def)2

))
,

where ϕ3(ε) = π3(ε)− d2− e2 − f2. To obtain the local density n0(ε), we use

the distribution function (3.13)

n0(ε) = M1δ(ε− ξ1) + M2δ(ε − ξ2) +

√
(2def)2 − ϕ2

3(ε)

2f2π|(ε − a)(ε− b) − d2| , (3.13)
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where

ξ1 =
a + b +

√
(a − b)2 + 4d2

2
, ξ2 =

a + b −
√

(a− b)2 + 4d2

2
, (3.14)

which support is contained in the union of the three intervals defined by

π−1
3 ([d2 + e2 + f2 − 2def, d2 + e2 + f2 + 2def ]), where π3 is the polynomial

defined in (3.12), and two possible mass points M1 and M2 (see (2.14))

M1 =
max

{
0, (f2 − e2)

√
(a− b)2 + 4d2 + (a − b)(f 2 + e2)}

2
√

(a − b)2 + 4d2f2
,

M2 =
max

{
0, (f2 − e2)

√
(a− b)2 + 4d2 − (a − b)(f 2 + e2)}

2
√

(a− b)2 + 4d2f2
,

located at ε = ξ1 and ε = ξ2, respectively. Moreover, the following four

situations are possible (see Section 2.2):

1. f ≥ e and a ≥ b. In this case M1 = 0 iff a = b and f = e, and M2 = 0

iff f2 ≤ e2 + |a−b|(f2+e2)√
(a−b)2+4d2

.

2. f ≥ e and a ≤ b. Then M1 = 0 iff f2 ≤ e2 + |a−b|(f2+e2)√
(a−b)2+4d2

, and M2 = 0

iff a = b and f = e.

3. f ≤ e and a ≥ b. Then M1 = 0 iff f2 ≤ e2 − |a−b|(f2+e2)√
(a−b)2+4d2

. In this case

always M2 = 0.

4. f ≤ e and a ≤ b. With this choice always M1 = 0, and M2 = 0 iff

f2 ≤ e2 − |a−b|(f2+e2)√
(a−b)2+4d2

.

3.2.3 Some numerical experiments

In this section we will present some numerical experiments related to the

three periodic chain model. As in the previous case we represent with stars

∗ the values obtained by using the analytic expression (3.10) and with circles

◦ the values obtained numerically. The eigenvectors can be easily obtained

using (3.11).

In figure 5 we show the eigenvalues of the three 3-Toeplitz symmetric

N × N matrix, N = 3n + 2 with a = 2, b = 1, c = 3, d = 4, e = 2 and
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Figure 5: The 3-Chain model with a = 2, b = 1, c = 3, d = 4, e = 2 and f = 3

f = 3 for n = 20 (left panel) and for n = 300 (right panel). In figure 7 (left

panel) we represent the absolute continuous part of the density function n0

of the initial state. This case corresponds to the situation 1 discussed above

for which we have two mass points

M1 =
25 +

√
65

90
, M2 =

25 −
√

65

90
,

at ξ1 = 3+
√

65
2

and ξ2 = 3−
√

65
2

, respectively (see (3.14)). In this case n0 is

supported in three disjoint intervals plus two isolated points at ξ1 and ξ2.
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Figure 6: The 3-chain model for a = 3, b = 2, c = 1, d = 2, e = 3 and f = 2

In figure 6 we show the eigenvalues of the 3-Toeplitz symmetric N × N

matrix, N = 3n + 2 with a = 3, b = 2, c = 1, d = 2, e = 3 and f = 2 for
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n = 20 (left panel) and for n = 300 (right panel). In figure 7 (right panel)

we represent the absolute continuous part of the density function n0 of the

initial state. This case corresponds to the situation 3 discussed above for

which M1 = 0 and M2 = 0, i.e., there is not mass points, so the support of

n0 are three disjoint intervals.
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Figure 7: The function n0(ε) of the 3-periodic chain model with a = 2, b = 1,

c = 3, d = 4, e = 2 and f = 3 (left) and a = 2, b = 1, c = 3, d = 4, e = 2 and

f = 3 (right).

Programs: For the numerical simulations presented here we have used the

commercial program Matlab. The used source code can be obtained by

request via e-mail to niurka@euler.us.es or ran@us.es.
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