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Abstract

In this paper we use the analytic theory for 2 and 3— Toeplitz ma-
trices to obtain the explicit expressions for the eigenvalues, eigenvec-
tors and the spectral measure associated to the corresponding infinite
matrices. As an application we consider two solvable models related
with the so-called Chain Model. Some numerical experiments are also

included.
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1 Introduction

k—Toeplitz matrices are tridiagonal matrices of the form A = [a; ;]
(with n > k) such that

n
ij=1

Qjtkj+k = Qi j (Zvj = 1727'” 7n_k) )

so that they are k—periodic along the diagonals parallel to the main diagonal
[8]. When k = 1 it reduces to a tridiagonal Toeplitz matrix.

The interest of the study of k—Toeplitz matrices appears to be very im-
portant not only from a theoretical point of view (in linear algebra or nu-
merical analysis, e.g.), but also in applications. For instance, it is useful in
the study of sound propagation problems (see [2, 9]).

In this paper we present a complete study of the eigenproblems for tridi-
agonal 2 and 3—Toeplitz matrices, including the spectral measure associated
to the corresponding infinite Jacobi matrices, and then we apply the results
to the study of the so called chain models in Quantum Physics. Since we
hope that our discussion could be of interest both to readers working on Ap-
plied Mathematics and Orthogonal Polynomials as well as physicists, we will
further develop the works [5, 6, 14, 15, 16, 17] including several results on
tridiagonal k—Toeplitz matrices that follow from the results in those papers
but not explicitly included there. Of particular interest is the symmetric case
because of its interest in the study of quantum chain models.

In fact, one of the main problems in Quantum Physics is to find the

solutions of the stationary Schrodringer equation
H|D) — =[0), (1.1)

where H is the Hamiltonian of the system and ¢ is the energy corresponding
to the state |®). A usual method for solving the equation (1.1) is to expand
the unknown wave functions |®) in the “discrete” basis (not necessarily or-
thogonal) {|®x)}%2,, i.e.,

() = > Cnil®x) . (1.2)

Substituting Eq. (1.2) in (1.1) and multiplying by (®,,| and taking into

account the orthogonality of the functions |®;) we obtain the following linear
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system of equations

N
D Cni{ P H|Dk) = eCim. (1.3)

k=1
If we denote the matrix elements (®,,|H|®x) by h,ix then we can rewrite
(1.3) in the matrix form

hll h12 s hl N-1 th C’Nl C’Nl
h21 h22 s h2N—1 h2N CN2 C'N2
h hsa ... hsny-1 h C C
.31 i32 . 3].\7 1 3.N ].V3 . ].V3 (14)
hN—l hN—lQ---hN—lN—l hN—lN CVN—lN CVN—lN
th hN2 hNNfl hNN CNN C'NN

In general, the computation of the eigenvalues (and also the eigenvectors)
for an arbitrary matrix, as the previous one in (1.4), is very difficult since it
is equivalent to the problem of finding the roots of a polynomial of degree N
Moreover, the numerical algorithms (Newton’s Method, etc.) are, in general,
unstable for large N. For this reason simpler models (which are easier to solve
and numerically more stable and economic) have been introduced. One of
these models is the so called Chain Model which has been successfully used in
Solid State Physics [10], Nuclear Physics [21], and Quantum Mechanics [12],
etc. In fact, any quantum model can be transformed into the corresponding
Chain Model (see [11] and references therein).

In our previous paper [1] we have briefly considered the 2-Periodic Chain
Model —the Constant Chain Model, i.e., when the sequences {a,} and {b,}
are constants equal to a and b, respectively, has been considered in [11]—
i.e., when the sequences {a,} and {b,} are periodic sequences with period 2,
ie, {a,} = {a,b,a,b,---} and {b,} = {¢,d,c,d,---}. For such models it is
possible to obtain analytic formulae for the values of the energy (eigenvalues)
of H and its corresponding wave functions. Here we will conclude the study
started in [1] for the two chain model and will present the complete study of
the 3-periodic chain model.

The structure of the paper is as follows. In section 2 we give the needed
mathematical background. Section 3 is devoted to some applications of the

theory of tridiagonal k-Toeplitz matrices in quantum physics: concretely to
the so-called Chain Model.



2 Mathematical background

We start with some basic results from the general theory of orthogonal poly-
nomials (see e.g. [3]). It is known that any orthogonal polynomial sequence

(OPS) {P,}n>0 it is characterised by a three-term recurrence relation
2P, (x) = apPri1 () + BnPo(x) + Y Prei1(x), n=0,1,2,..., (2.1)

with initial conditions P_; = 0 and Py = 1 where {ay,}n>0, {8n}n>0 and
{Vn}n>1 are sequences of complex numbers such that a,y,11 # 0 for all

n > 0, or in matrix form
2P, (z) = Jui1Pr(z) + o Prii(2)e,, (2.2)

where P,,(z) = [Py(z),..., Pu(2)]", e, = [0,0,...,0,1]T € R*™ and J,; is

the tridiagonal matrix of order n + 1

[ By ap 0 0 0 0 |
N b oo 0 0
0 72 f a 0 0
Jog1=1 0 0 3 [ 0 0
0 0 ... Bp1 oy
i 0 0 ... Bn ]

If {x,;}1<j<n are the zeros of the polynomial P,, then it follows from (2.2)
that each z,; is an eigenvalue of the corresponding tridiagonal matrix J,, and

P, _1(xnj) :== [Po(xnj), .., Pu_1(xn;)]T is a corresponding eigenvector.

When «o,, = 1 and v, > 0 for all n = 1,2,... the (monic) polynomials
{P,}n>0 defined by the recurrence relation (2.1) arise as denominators of the

approximants of the continued fraction
1
g!
x— o —

r— [ —
[ e —

Y2

Yn—1
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Under these conditions, by Favard’s theorem [3], {P,},>0 constitutes an or-
thogonal polynomial sequence with respect to a positive definite moment
functional, and if the moment problem associated with the continued fraction
is determined, then this linear functional can be characterised by a unique
distribution function, i.e., a function ¢ : R — R which is nondecreasing, it
has infinitely many points of increase and all the moments fj;o r?"do(z),
n=20,1,2,..., are finite. The numerators of the continued fraction, denoted

by {P,gl)}nzo, can be given by the shifted recurrence relation
zPM(x) = P7(1,1+)1<x) + Bonn PV () + "Yn"rlPT(Llf)l("E)? n >0,

with initial conditions Pfll) = 0 and Pél) = 1. This continued fraction con-
verges to a function F'(z;0) and the general theory of the moment problem
ensures that F' is analytic in the complex plane with a cut along the support
of o (i.e., the set of points of increase of ). This fact can be summarised by

Markov-Stieltjes’s theorem

M, % do(x
poptld) pzo) = [ 9 eChuno) (23)

n—+o00 Pn(z) o L —Z

where 19 = fj;o do(x) is the first moment of the distribution o(x) and F is
its Stieltjes function. Now, the function o(z) can be recovered from (2.3) by

applying the Stieltjes inversion formula

1 xT
o(zr)—o(y) = lim —/ SF(t+ i€,0) dt,
y

e—0t+ T
where it is assumed that ¢ is normalised in the following way

o(z+0)+o(z—0)
2

and Sz denotes the imaginary part of z.

An important family of orthogonal polynomials are the orthonormal Cheby-
shev polynomials of second kind {U,,(x) },,>¢ defined in terms of trigonometric
polynomials in cos @ as

U, (x) = sin(n + 1)0

_ , x =cosf.
sin 6



For these polynomials (2.1) takes the form

U1=0, Uy=1, 2z2U,(x)=Upi1(x)+U,_1(x), n=0,1,2,.

They are orthonormal with respect to the distribution function
2
doy(z) = —v1— 22 dx, supp(oy)=[-1,1],
T

ie.,

/ Un(2)Up(z)doy(x) = 6y,

1

where 0, ,,, is the Kronecker symbol: dj,,,, = 1 for kK = m, elsewhere dy,,, = 0.

The corresponding Stieltjes function is

Fo(s) = ——=

ﬁ = —2<Z— 22—1), ZEC\[—]_,]_}7

(2.4)

where the complex square root is such that |z + /22 — 1| > 1 whenever

z & [—1,1].

The Chebychev polynomials U,, are closely related with the tridiagonal 2

and 3 Toeplitz matrices as it is shown in the next two sections.

2.1 Remarks on tridiagonal 2-Toeplitz matrices

Let By be the irreducible tridiagonal 2—Toeplitz matrix

aq b1 0 0 0
C1 Q9 bg 0 0
0 Cy Qq bl 0 ...
By = RN
N 0 0 C1 Q2 b2 Ce < ’

0 0 0 Co Qi

N e N,

where by, by, ¢; and ¢y are positive numbers. Define the polynomials

mo(r) = (z — a1)(x — ag),

and

n 93—6101 —bgCg)
P,(z) = (bib 2 U, . n=0,1,2...,
(l') ( ' 26162) ( 2¢/bibacrcy "

where U, is the Chebyshev polynomial of second kind.

The following theorem holds

(2.5)



Theorem 2.1 ([7, 14]) Let By, N =1,2,3,..., be the irreducible tridiag-
onal 2-Toeplitz matriz given by (2.5), where by, by, ¢1, and co are positive
numbers. The sequence {S,}n>0 of orthogonal polynomials associated with

the matrices By s
Sor(x) = (brba) " { Pr(ma(2)) + baca Pr1(ma())}
52k+1(x> = b;1<b1b2>_k(I — a1>Pk(772<I)), ]{Z = 0, 1, e

Then the eigenvalues Ay, of By are the zeros of Sy, and the corresponding

eigenvectors vV, , are given by

So(ANm)
R B I
SN-1(AN.m)
In particular', the eigenvalues Aopy1m 0f Banir (m = 1,2,...,2n+ 1) are

Aont1,1 = a1 and the solutions of the quadratic equations

km
n+1

772()\) — blCl + bQCQ + 2\/ b1b20102 COS = O, k= ]_, .o, N (26)

Notice that since the sequence {Si}y is an orthogonal polynomial sequence
corresponding to a positive definite case, then the zeros are simple and in-

terlace, i.e., if {$k,j}§:1 denotes the zeros of the polynomial S, then
Tryj < Tp—1,5 < Thkjt1, jI 1,2,...,k—1.

Therefore using the values (2.6) we can obtain bounds for the eigenvalues of

the corresponding matrices for the even case.

'For the case when bic; > baco the eigenvalues A2n,m of Bay, (m=1,2,...,2n) are the

solutions of the quadratic equations

7T2()\) — [blcl + baco + 24/ b1bacico cos an} =0, k=1,...,n,

where 6,;’s are the nonzero solutions of the trigonometric equation

Vbicrsin[(n + 1)8] + v/baca sin(nf) =0, (0 <6 < ).



Moreover (c.f. [20]; see also [15]), the Stieltjes function associated to the

sequence {5, },>0 reads as

Fo(z)= —— =i (m) () BP—a?),  (27)

a1 —z  2bycr 7z — ay

where oo = 2v/b1bycicy and 5 = bycy + bacy. Furthermore, {S),},>0 is orthog-
onal with respect to the distribution function

1 1

27TbQC2 |.’13‘ - CL1’

dog(x) = Mo(x — ay)dz + Va2 — (my(x) — )2 dv, (2.8)

where M = 1 —min{byc;,byca}/(bace) and which support is the union of two

intervals if M = 0 and the union of two intervals with a singular set if M > 0,

i.e.,
Xs if  bicr < bocy,
supp(os) =
Yg U {0,1} if bic; > bQCQ,
where Yg = [9592 — g @tz _ )y [@tez 4 @tz 4 g and

r=IVha - vVhal' + 252 s = y/[Vha + Vel + |25

2.2 Remarks on tridiagonal 3-Toeplitz matrices

Let us now consider the irreducible tridiagonal 3-Toeplitz matrix

aq bl 0 0 0 0 0
C1 Q3 b2 0 0 0 0
0 Cy Qs b3 0 0 0
0 0 C3 Q1 b1 0 0
By — RN N . 2.
Y10 000 e ay by 0 © . NeN (29)
0 0 0 0 Cy Qs bg
0 0 0 0 0 C3 Qi
Define

2\/ b1b2b3016203

Let & and & be the zeros of the quadratic polynomial

Pn<.1]) = (b1b2b301€203>§ Un (x 19 22 363) s n = O, 1, 2....

(x —ay)(z —az) — b1y (2.10)
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and define the polynomial

m3(z) = (v —a1)(x — a2)(x — az) — (brcy + baca + bscs) (v — az)+
baca(ar — agz) + bscs(ag — as) + bicy + bacy + bcs.
(2.11)

In this case we have the following

Theorem 2.2 ([16]) Let By, N =1,2,3,..., be the irreducible tridiagonal
3-Toeplitz matriz given by (2.9), where by, by, bs, ¢1, co and ¢z are positive
numbers. The sequence {Sy}n>0 of orthogonal polynomials associated with

the matrices By s

Ssi(x) = (bibabs) "{ Pe(ms(x)) + bscs(x — ag) Pro1(ms(x))},
Sngrl(l’) b;l(blbgb‘g,)ik{(l’ — al)Pk(ﬂ'g,(l’)) + blClbgcgpkfl(ﬂ'g(I))},
Sarta(x) = (biba) "' (bibabs) (v — &1)(x — &) Pe(ms(x)), k=0,1,...,

where & and & are the roots of the polynomial (2.10) and 73 is the polynomial
given by (2.11). Then the eigenvalues Ay, of By are the zeros of Sy, and

the corresponding eigenvectors vy, are given by

Sn-1(ANm)

In particular, when N = 3n + 2, the eigenvalues Agpiom Of Bspia (M =
1,2,...,3n+2) are Aspi21 = &1, Asnto2 = & and the solutions of the cubic

equations

k
7T3()\) — b101 + bQCQ + b303 + 2\/ b1b2b3016203 COS T =0 s k= 1, o,

n+1
(2.12)

As in the previous case, we can use the values (2.12) to give bounds for the
eigenvalues of the corresponding matrices in the N = 3n and N = 3n + 1

cases.



In this case [17] the Stieltjes function associated to the sequence {S, }n>0

18

S—a 1 +a1—€1 I
S—6& -2 L-&4&E—=2

1 (a1 =&)(a1 — &) —
m3(2) =P —/(T3(2)— —a? |,
2bicibscs (2 — &1)(2 — &) < 3(2) ==/ (m3(2) = 3) )
(2.13)
where a = 21/b1bsbscicacs and 3 = bycy + bycy + bscs. In (2.13) the square
root is such that [z — 8+ +/(z — §)2 — a2| > a whenever z & [6 — a, 3 + a].

Moreover, {S,},>0 is orthogonal with respect to the distribution function

FS(Z) =

dos(z) = Mid(x — &)dx + Myo (x — §2)dx

1 ( 51 a; —
" 2mbicibses |(z — &) (x — 52 \/a2 — 32 da,

which support is contained in the union of the three intervals ¥g = 73 (|3 —

a, 5+ a]) (see figure 1) with two possible mass points at £; and &, i.e.,

(

Yg if M;=0,M;=0,
YU {fg} if M, = 0, My > 0,
supp(os) =
YU {51} if M; >0, My,=0,
L ESU{§1,€2} if M, > 0, My > 0,
where
M, = —& [ 5202(51 - al) Fy <7T3(§1) - 5)}
51 3 « a
and
M,y — §1—m {1 o (& —al) £ <7T3(52) - ﬁ)} .
§1— & a a

If we now take into account the identity

A(m3(&1) — B)? — o?] = [(bscs — baca) A + (a1 — az)(bses + bacs)]?,

where A = \/ (ay — ag)? + 4byc; as well as the right choice of the branch of
the square root in the definition of Fy; (2.4) we find

maX{O, (b303 - bgCQ)A + ((11 - a2><b303 -+ b2€2)}

M, = =0
! Zbgch - (2 14)
M — max{0, (bscs — baca) A — (a1 — az)(bscs + baca)} >0 '
) = > 0.
2b303A

10



—

(8~ a,f+a))

Figure 1: The polynomial mapping [5 — a, 8 + o] — 7'['3_1([,8 —a, [+ al).

A simple inspection of the values of M; and M, leads to the following four

cases:
1. bscg > bacy and ay > ao. In this case

® M1 =0 iff a; = a9 and bgcg = bQCQ,

® M2 =0 iff b363 S bng + |a1 — a2|(b303 -+ bgCg)A_l.
2. bscs > bycy and a1 < ag. Then

® M1 =0 iff b303 S bQCQ + |(l1 - a2|(b303 + bQCQ)A_l,

[ ] M2 =0 iff a1 = Qa9 and b3Cg = bQCQ.
3. bscs < bycy and a; > as. Then

e M;=0 iff b303 < bycy — |CL1 — a2|(b303 -+ b202)A71,

e In this case always M; = 0.
4. b303 S b202 and aq S Q9.

e In this case always M; = 0,

® M2 =0 iff b3C3 S bQCg — ’CLl — CLQ‘(bgCg -+ b2€2)A71

2.3 Some remarks on a matrix theoretic approach

Here we want to emphasize another approach to the problem concerning the

study of the spectral properties (eigenvalues, eigenvectors and asymptotic

11



(limit) spectral measure) of the sequences of matrices defined by (2.5) and
(2.9), based on recent results by D. Fasino, A. Kuijlaars, S. Serra Capizzano,
and P. Tilli (cf. [4, 13, 18, 19]). To simplify we will consider the case when
the order N of the matrix By in (2.5) is even. Then By is the block Toeplitz

matrix

[ A, A,
Ay

By =

A

A, A

generated by the 2 x 2 matrix valued polynomial

fz(w) = Ao + Alem + A,lefim,

00 4 _|0el
by, 0 0 0

Since, in general, fo(x) is not hermitian then not very much can be said on

with

AO = “ bl s A1 =

C1 Q2

the eigenvalues. However, according to Theorem 2.1 the conditions byc; > 0
and byco > 0 hold, and so it is well-known that, under such conditions, By
is similar (via diagonal transformations) to the block Toeplitz matrix EN

generated by the 2 x 2 matrix valued polynomial

-~

f2<£lj') = A\O + A\lem + A\,le_w,

with
-~ aq vV b101 -~ 0 0 -~ 0 vV bQCQ
AO = y Al e y A,l = .
Vbier  ap Vbaca 0 0 0

Similar considerations remains true for the generalized case of a tridiagonal
k—Toeplitz matrix (see equation (2.1) in [4]). Now, the limit distribution is
described in Theorems 2.1 and 2.2 in [4]. In our specific case the spectra of

the matrix By distributes as the eigenvalues of /f\z(l'), which are

2
A (z) = a1t ds + \/(OL1 3 a2) + bicy 4 baca + 24/ bicibacy cos .

2

12



More precisely, it follows from Theorem 2.2 in [4] that, with possible ex-
ception of at most a denumerable set of point masses, the support of the
measure of orthogonality for the orthogonal polynomials corresponding to

By is contained in the set
S=[AATJU [ A]]
(and the zeros of the orthogonal polynomials are dense in this set), where
AT = min{A_(0),A_(m)},  Af = max{A\_(0),\_(m)},
Ay = min{AL(0), Au ()}, AS = max{A.(0), Ay (m)}.

Therefore, since

_ 2 2
A+(0) = Mty \/(a1 a2) + <\/ bier + 5202) ;

2

and

2 2

we see that S is the same union of two intervals given in the end of section

) = B2 \/<a1 _a2)2+ (Vbrer - @)2,

2.1. Also, the limit spectral measure follows from asymptotic spectral theory
of Toeplitz matrices.

We remark that the spectral distribution holds for odd N as well since
constant rank corrections do not modify the asymptotic spectral distribution.
Further, the results in [4] are true for every k—Toeplitz matrix sequences
(and so, in particular, for £k = 2 and k = 3), as well as for variable recurrence
coefficients (see also [13]) and in the multidimensional case (cf. also [18, 19]).
On the other hand, our results in Theorems 2.1 and 2.2 gives more precise
information on the localization of the zeros.

As a final remark, we would like to point out that in the present paper
the theory of orthogonal polynomials is used for giving spectral information,
while in [4, 13] the idea is exactly the opposite since matrix theoretic tools

are used for deducing information on the zeros of orthogonal polynomials.

3 Applications: the Chain Model

Here we will resume some important properties of the Chain model. For a

more detailed study we refer to the nice paper by Haydock [11].

13



Definition 3.1 [11] The Chain Model is a quantum model determined by
a sequence of orthonormal orbits (states) {ug,uy,---} and two sets of real
parameters {ay,as,---} and {by,by, -}, which describe the action of the
Hamiltonian H on the orbitals by a symmetric three-term recurrence relation
of the form

Hu, = b, 10,1 + a,u, + b,u,,_1. (3.1)

The sequence {ug,uy,---} may be finite or infinite. In the first case we
need to take the orbitals u_; and uy,; equal to zero. Moreover, in [11] it
has been shown that this model is equivalent to expressing the matrix H by

using an appropriate basis as a Jacobi (tridiagonal symmetric) matrix

ao b1 0 0
bl aq b2 0
H = 0 b2 a9 b3 e . (32)

0 0 b3 as

In the following we will suppose that the solution u of the Schrodinger
equation (1.1) can be written as a linear combination of the states ug, uy,

s, ..., i.e.,
k=0

For this model it is possible to obtain analytic formulae for the so-called
general diagonal Green function Go(e). In [11, 10] it is shown that Gg(¢) for
the Chain Model (3.1) is related to the continued fraction

1
Gole) = 72 , ¢€C. (34)
1

g — Qg — b%

E—ay — b2
E—Qg— -+ — n

£ — Qy, —

For the finite Chain Model, this continued fraction reduces to the ratio of
two polynomials which conforms the well known Padé Approximants of order
n of the infinite continued fraction. This and some other results concerning

the calculation of the Green function will be considered in detail in the next

14



section. Of particular interest are the function Gy(¢) — the real part of Gy(¢)
describes the response of the system to be driven at a given energy—, and
no(e) = — llir(l) %% (Go(e + i€)) —is the local density of the initial state— (see
[12] for more details).

In the case of the infinite chain, it is possible to obtain an analytic ex-
pression for the Green function Gy(e) (3.4). In this case, using Rational
Approximation Theory [22], we obtain that the continued fraction (3.4) con-
verges to the Stieltjes function associated with the measure of orthogonality
of the polynomial sequence {S,},>0, i.e., Go(¢) = Fs(e). Moreover, we can
obtain the local density ny(¢) which coincides with the corresponding mea-
sure of orthogonality dog(e).

3.1 The 2-Periodic Chain Model.

We will suppose that the sequences of coupling constants {a,} and {b,} are
periodic sequences with period 2, ie., {a,} = {a,b,a,b,---} and {b,} =
{¢,d,c,d,---}. Then the matrix (3.2) becomes

S o 2
< Q O

o O
o O O

c
b
d

o

3.1.1 The Eigenvalues and Eigenstates of the 2-Periodic Chain

In order to obtain the eigenvalues and eigenstates of the 2-Periodic Chain we

use (3.3). Then, (1.1) can be rewritten in the form

a c 0 00 Cl Cl
c b d 0O 02 Cg

=c , (3.5)
0 d acO 03 03

where Cj, are the coefficients in the linear combination (3.3), and ¢ is the
corresponding eigenvalue of the matrix Hamiltonian H. Here, it is important
to remark that we need to consider finite or infinite chains. The explicit
solution of this eigenvalue problem for the finite chain with N = 2n + 1

states is given by theorem 2.1.

15



In this case, we have a; = a, a3 = b, by = ¢; = c and by = ¢o = d and

then the eigenvalues of (3.5) are the following

_p)2
€0 = a, €ik=a+b:|:\/u+02+d2+2cdcos<nk—ﬂ>, (3.6)

2 4 +1
where k = 1,2,...,n. Moreover, the corresponding eigenvectors are
So(gr)
I e T (3.7)
Son(€0)
where

San(e) = (cd) ™" {Pi((e — a)(e = ) + d*Prr((e — a)(e — b))},
Sopy1(e) = ¢ Hed) ¥ (z —a)Pu((e —a)(e = b)), k=0,1,...,

r—c*—d?
d P,(x) = (cd)"U, | ————— ).
and (o) = (et U, (25 =)

For the particular case when a = b and ¢ = d the equation (3.6) gives

k
€0 = Q, E4 = G  2ccos (2 il

) for k = 1,2,...,n, which is in agreement
n—+ 2
with [11].

3.1.2 The Green function and the local density ng(¢)

Using (2.7) the following expression for the Green function follows

Gu(e) = gy 2+ (6~ /4(0) - (2ea?)

where @o(g) = (¢ —a)(e — b) — ¢* — d*. To obtain the local density ng(e), we

use the distribution function (2.8)

afe) = (1= S D s oy 4 e - )

(3.8)
that is located in the union of the following two intervals
at+b a+b U a+b+ a+b+
2 Tt 2 T— 2 T, 92 T+

with a possible mass point at & = a, where 74 = /(b — a)? + 4(c £ d).

16



3.1.3 Some numerical experiments

In this section we will show some numerical results corresponding to the case
of 2-Toeplitz matrix. To check the validity of the analytic formulas we have
computed numerically the eigenvalues of the matrix (3.5) using MATLAB and
compare them with the analytic values given, for the case N = 2n + 1 by
(3.6). The corresponding analytic expressions for the eigenvectors can be
obtained from (3.7). For the case N = 2n we can use the bounds €3,11; <

€m,j < Emtlj+1, J = 1,2,...,2n.

10

-10 : : . -10 . . .
0 20 40 60 80 0 300 600 900 1200

n n

Figure 2: The eigenvalues of the 2-chain model for a =2, b =1, c =4 and d = 3.

In figure 2 we show the eigenvalues of the 2-Toeplitz symmetric N x N
matrix, N =2n+1fora =2,b=1, c =4 and d = 3. We show the numerical
eigenvalues (stars) and the analytical ones (open circles) for n = 30 (left
panel) and n = 500 (right panel). With this choice of parameters the density
function ng of the initial state, represented in figure 4 (left panel), has not
any mass point at € = 1 (see (3.8)), i.e., it is an absolute continuous function
supported on two disjoint intervals.

In figure 3 we show the eigenvalues of the 2-Toeplitz symmetric N x N
matrix, N =2n+1fora=2,b=1, c = 3 and d = 4. We show the numerical
eigenvalues (stars) and the analytical ones (open circles) for n = 30 (left
panel) and n = 500 (right panel). With this choice of the parameters the
density function ng of the initial state has a mass point M = 7/16 at ¢ = 1,
i.e., it has an absolute continuous part supported on two disjoint intervals,

represented in figure 4 (right panel), plus a delta Dirac mass at x = 1.
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Figure 3: The eigenvalues of the 2-chain model fora =1,b=2,¢c=3 and d =4

Figure 4: The density function ng(e) of the 2-chain model fora =2,b=1,c=4
and d = 3 (left) and a =1, b= 2, ¢ =4 and d = 3 (right)

Here we have shown only the case of N = 2n + 1 matrices for which
always one has an isolate eigenvalue €; = a. For the case of matrices of order
N = 2n we have not this isolated eigenvalue. Also notice that the spectrum

of H has two branches.

3.2 The 3-Periodic Chain Model.

Let now suppose that the sequences of coupling constants {a,} and {b,}

are periodic sequences with period 3, i.e., {a,} = {a,b,c,a,b,¢c,---} and

18



{bn} = {d,e, f,d,e, f,---}. Then the matrix (3.2) becomes

o O o0 o o o 9
O oo o o o Q.
O OO0 =W o o o
O O QA R = OO
O 0 > Q O o o
—-—“ 0 0 O O o o

e - OO0 o0 o o

3.2.1 The Eigenvalues and Eigenstates of the 3-Periodic Chain

Again we will suppose that the solution u of the Schrédinger equation (1.1)
can be written as (3.3), thus (1.1) takes the form

a d 0 0 0 Ch Ch

d b e 00 Cs Cs

0 e c f O Cs | =¢| Cs |, (3.9)
00 f ad

Cy Cy

where C}, are the coefficients in the linear combination (3.3), and ¢ is the
corresponding eigenvalue of the matrix Hamiltonian H. In this case we use
Theorem 2.2 which gives an explicit expression for the eigenvalue problem in
the case of N = 3n + 2.

In this case, we have a1 = a, as = b, a3 =c¢, by =c1 =d, by = co = e, and
by = c3 = f and then the eigenvalues of (3.9) are the solutions ¢, , i = 1,2, 3,

=1,2,...,n, of the polynomial equations

3 —(a+b+c)x? + (ab+ ac+bec — d* — e* — [z

L (3.10)
+cd® + ae* + bf* — abc + 2def cos (—) =0,
n+1
and
a+b—\/(a—b)2+4d2 a+b+\/(a—b)2+4d2
E3n+1 = 5 ) E3nt2 = 5 )
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the corresponding eigenvectors are

So(Eg)
Sl(é‘g) . R
v, = : , Le{(i,k),3n+1,3n+2|i=1,2,3; k=1,...,n},
53n+1(€z)
(3.11)
where
Sa(x) = (def) " {Pu(ms(2)) + f*(x — b) Pey(m3(2))},
Saer1(x) = d~N(de f) M {(x — a) P(m3(x)) + d? f2 P—1 (m3(2)) },
Sapro(x) = (de)"Hdef) ™ (x — &) (x — &) Pr(ms(x)), k=0,1,...,
being
e g—d?—e2— f?
Puta) = (aepyo, (P )
and
@) =d*+e*+ fP4+(a—c)e+ (b—c) f? (312)

—(P+e+ ) (z—c)+(x—a)(x—b)(z—0).

k
The particular case a = b= cand d = e = f gives €1, = a+2d cos T ,
’ n+3

(n+1—-Fk)rm (n+14+k)m
2k =& “B< 3nt3 ) SRS TimmT )

for k =1,2,...n, €301 = a — d, €3,42 = a + d, that is in agreement with
[11].
3.2.2 The Green function and the local density ng(c)

Using (2.13) the following expression for the Green function follows

GO(E)Z@-@(S-b)—d2 (b o ( )= ~Gate) ))

where p3(e) = m3(e) — d? — e? — f2. To obtain the local density ng(e), we use
the distribution function (3.13)

no(E) = M15(€ — 51) + M25(€ — fg) +
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where

a+b+/(a—Db)*+ 4d? a+b—+/(a—0b)+4d

51: 9 ) 62: 9 )

which support is contained in the union of the three intervals defined by
73 ([d? + €2 4 f2 — 2def, d? + % + f? + 2def]), where 73 is the polynomial
defined in (3.12), and two possible mass points M; and M, (see (2.14))

(3.14)

max{(), (f2 — )y /(a —b)% + 42 + (a — b)(f* + €2)}

M= 2 /(@ — D)2 1 42/ ’
Ve max{O,(fQ—eZ) (@ —b)2+4d> — (a = b)(f* +e?)}

2/ (@ — b)2 + 4d2f>2

located at ¢ = & and € = &, respectively. Moreover, the following four
situations are possible (see Section 2.2):

1. f>eand a>b. In this case M; =0iff a=band f =e, and My =0
iff f2 < 62 + la—b|(f%+€*)

\/(a—b)2+4d2 "

NS 2 la-bl(f2+e?) _
2. f>eand a <b. Then My =0iff f* <e +\/m,andM2—O
iffa=0band f =e.

3. f<eanda>b. Then M, :OiffoSGQ—M. In this case
(a—b)2+4d2

always My = 0.

4. f < e and a < b. With this choice always M; = 0, and My = 0 iff
F2<e? la—bl(f2+e?)

\/(a—b)2+4d?"

3.2.3 Some numerical experiments

In this section we will present some numerical experiments related to the
three periodic chain model. As in the previous case we represent with stars
* the values obtained by using the analytic expression (3.10) and with circles
o the values obtained numerically. The eigenvectors can be easily obtained
using (3.11).

In figure 5 we show the eigenvalues of the three 3-Toeplitz symmetric
N x N matrix, N =3n+2witha=2,b=1,¢=3,d=4,e =2 and
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Figure 5: The 3-Chain model with a =2, b=1,¢=3,d=4,e=2and f =3

f =3 for n =20 (left panel) and for n = 300 (right panel). In figure 7 (left
panel) we represent the absolute continuous part of the density function ng
of the initial state. This case corresponds to the situation 1 discussed above

for which we have two mass points

25 + /65 25 — /65
My = 2V gy, = 2V

90 90 '

at & = % and & = %, respectively (see (3.14)). In this case ng is

supported in three disjoint intervals plus two isolated points at & and &,.

10 " " " 10

0 ¢ 0 ®
-2 M ] -2 /
-5 -5
0 20 40 60 80 0 200 400 600 800 1000
n n

Figure 6: The 3-chain model fora =3,b=2,¢c=1,d=2,e=3 and f =2

In figure 6 we show the eigenvalues of the 3-Toeplitz symmetric N x N
matrix, N =3n+2witha=3,0=2,¢c=1,d=2,e=3 and f = 2 for
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n = 20 (left panel) and for n = 300 (right panel). In figure 7 (right panel)
we represent the absolute continuous part of the density function ng of the
initial state. This case corresponds to the situation 3 discussed above for
which M; = 0 and M, = 0, i.e., there is not mass points, so the support of

ng are three disjoint intervals.

Figure 7: The function ng(e) of the 3-periodic chain model with a = 2, b = 1,
c=3,d=4,e=2and f=3 (left) anda=2,b=1,¢=3,d =4, e =2 and
f =3 (right).

Programs: For the numerical simulations presented here we have used the
commercial program MATLAB. The used source code can be obtained by

request via e-mail to niurka@euler.us.es or ran@us.es.
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