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Diversities, hyperconvexity and fixed points

Bożena Pia̧tek and Rafa Esṕınola

Abstract. Diversities have been recently introduced as a generalization of metrics for which a
rich tight span theory could be stated. In this work we take up a number of questions about
hyperconvexity, diversities and fixed points of nonexpansive mappings. Most of these questions are
motivated by the study of the connection between a hyperconvex diversity and its induced metric
space for which we provide some answers. Examples are given, for instance, showing that such a
metric space need not be hyperconvex but still we prove, as our main result, that they enjoy the
fixed point property for nonexpansive mappings provided the diversity is bounded and that this
boundedness condition cannot be transferred from the diversity to the induced metric space.

Key words: Diversities, diversity tight spans, fixed points, hyperconvex metric space, metric tight
spans, nonexpansive mappings, phylogenetic.

1 Introduction

A general theory on diversities has recently been proposed by D. Bryant and P. Tupper in [3]. The
authors introduce diversities in this work as a sort of multi-way metrics which inherits its name
after some special appearances in works on phylogenetic and ecological diversity [8, 14, 15, 19]. In
[3] the authors aim to develop a theory of Tight Span Diversities parallel to the theory of Tight
Span for metric spaces independently given by A. Dress [4] and J.R. Isbell [10].

As explained by A. Dress, K.T. Huber and V. Moulton in [5], perhaps the first paper that
studied metric spaces as such was the work by J. Isbell [10] on metric tight spans. In this work,
J. Isbell finds a natural metric envelop with minimal and uniqueness properties for any given
metric space. This metric envelop is named hyperconvex hull by J. Isbell, later rediscovered by A.
Dress as metric tight span, who provides a construction for the unique (up to isometries) minimal
hyperconvex metric space where a given metric space may be isometrically embedded. Hyperconvex
metric spaces had been introduced some years earlier by N. Aronszajn and P. Panitchpakdi in [1]
as metric spaces which are absolute nonexpansive retracts. Since then a lot has been written on
hyperconvex metric spaces, the reader may find a gentle introduction to most of this information
in the recent surveys [6, 7] where hyperconvexity and its connections to existence of fixed points
for nonexpansive mappings are explained. These surveys do not deal however with the connection
of metric tight spans with phylogenetic problems. For this the reader may consult the delightful
exposition on this particular point given in [3].

Motivated by the big impact of tight spans in phylogenetic problems and given that there were
some particular natural examples of objects which could be understood as generalized metrics after
the name of diversities, D. Bryant and P. Tupper [3] took up the problem of developing a theory
of tight spans for diversities. This project first needed to introduce diversities as a general object
which contained the already known examples as particular cases. Then a whole new theory of
hyperconvexity for diversities needed to be created. Bryant and Tupper considered these questions
by providing us not only with a natural theory of hyperconvex diversities but also showing that a
beautifully parallel theory of tight spans existed in this new context. After developing this theory,
Bryant and Tupper particularized their approach in the final sections of [3] for the cases of the so-
called diameter and phylogenetic diversities. As a result, these last sections establish very powerful
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relations between metric tight spans and diversity tight spans of a same metric space when these
particular diversities were taken into consideration.

The work that we present here has been directly motivated by Bryant-Tupper seminal paper
on diversities [3] and references to it will be given throughout our work. Our aim is to find out
which general connections may be found between a hyperconvex diversity and its induced metric
space. In particular we wonder about the existence of fixed points for nonexpansive self-mappings
on such an induced metric space. In the way to give answers to this problem we will need to
show new properties and provide examples regarding diversities and induced metric spaces. The
work is organized as follows: in Section 2 we recall main facts and definitions from [3] which
are relevant to our discussion as well as main facts on hyperconvex metric spaces which can be
found in a more detailed way in any of [6, 7]. Section 2 is closed with a new fact on the problem
of extending nonexpansive mappings from an induced metric space to the diversity. In Section
3 we consider general hyperconvex diversities and want to study which properties the induced
metric space inherits. We prove that this metric space need not be hyperconvex itself and give a
sufficient condition that guarantees that this metric space is hyperconvex. As particular examples,
we show that both the diameter and the phylogenetic diversities satisfy this condition with respect
to their natural induced metrics. As our main result in this section we show that if the diversity is
hyperconvex then the induced metric space need not have the fixed point property for nonexpansive
mapping even if this metric space is bounded. In Section 4 we remove the boundedness condition
from the induced metric space to the diversity to show that, in this case, the induced metric space
actually has the fixed point property for nonexpansive mappings. We close the work with a positive
result on nonempty intersection of decreasing families of hyperconvex and bounded diversities in
the spirit of the one given by J.P. Baillon for hyperconvex metric spaces in [2].

2 Preliminaries

We begin with metric and hyperconvex metric spaces. Let (X, d) be a metric space, then B̄(a, r)
will stand for the closed ball of center a ∈ X and radius r ≥ 0. The Chebyshev radius of a set
A ⊆ X with respect to x ∈ X will be, as usual, given by

rx(A) = sup
a∈A

d(x, a).

A subset A of a metric space is said to be admissible if it can be written as an intersection of closed
balls. In many aspects admissible subsets of a metric space are a counterpart for convex subset of
a linear space. In fact, any subset A of a metric space has an admissible, or ball, hull given by:

B(A) =
⋂

{B : B is a closed ball containing A}.

Notice that a subset of a metric space is admissible if and only if A = B(A). Admissible subsets
enjoy a number of general properties, the interested reader may check [6] for more details on this,
however we will only need the following representation of admissible sets which is immediate to
show. If A is an admissible subset of X then

A =
⋂

x∈X

B̄(x, rx(A)).

Definition 2.1. A metric space M is said to be hyperconvex if given any family {xα}α∈A of points
of M and any family {rα}α∈A of nonnegative numbers satisfying

d(xα, xβ) ≤ rα + rβ

then
⋂

α∈A

B(xα, rα) 6= ∅.
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A particular class of hyperconvex spaces is given by R-trees (or real trees) which will be needed
in this work.

Definition 2.2. An R-tree is a metric space T such that:
(i) there is a unique geodesic segment (denoted by [x, y]) joining each pair of points x, y ∈ T ;

(ii) if [y, x] ∩ [x, z] = {x} , then [y, x] ∪ [x, z] = [y, z] .

From (i) and (ii) it is easy to deduce:

(iii) If p, q, r ∈ T, then [p, q] ∩ [p, r] = [p,w] for some w ∈ M.
Another notion very relevant in the study of hyperconvex spaces, and especially of metric fixed

point theory, is that of nonexpansive mapping.

Definition 2.3. Let (X, d1) and (Y, d2) be two metric spaces. A map T : X → Y is said to be
nonexpansive if

d2(Tx, Ty) ≤ d1(x, y)

for all x, y ∈ X.

Definition 2.4. A metric space (X, d) is said to have the fixed point property for nonexpansive
mappings if any nonexpansive T : X → X has a fixed point, that is, there exists x ∈ X such that
Tx = x.

A very well known fact, first indepently discovered by R. Sine [16] and P. Soardi [20] and then
revisited by J.B. Baillon in [2], is that bounded hyperconvex metric spaces have the fixed point
property for nonexpansive mappings. In fact a complete fixed point theory has been developed
on hyperconvex spaces since then, the interested reader may check the surveys [6, 7]. For a more
general treatment on metric fixed point theory the reader may check [9] or for a really exhaustive
and more recent monograph [13]. The reader may also find of interest the following references on
fixed points and hyperconvex metric spaces [11, 17, 18].

A very important property of hyperconvex spaces is their relation with injectivity.

Definition 2.5. A subset A of a metric space X is said to be a nonexpansive retract (of X) if
there exists a nonexpansive retraction from X onto A, that is, a nonexpansive mapping R : X → A
such that Rx = x for each x ∈ A. A is said to be injective if it is a nonexpansive retract of any
metric space where it is isometrically embedded.

Next we have the announced relation (see [1, 6] for proofs).

Theorem 2.6. A metric space is hyperconvex if, and only if, it is injective.

For a metric space X, J. Isbell defined in [10] the set of extremal functions ǫ(X) of X as the
set of all functions f : X → R such that it satisfies f(x)+ f(y) ≥ d(x, y) for all x and y in X and it
is pointwise minimal (see [10] or [6, Section 8] for details). The following theorem shows that ǫ(X)
can also be regarded as the hyperconvex hull or tight span of X.

Theorem 2.7. Let X be a metric space and ǫ(X) the set of extremal functions on X, then:

1. ǫ(X) is a hyperconvex metric space with the metric dǫ(X)(f, g) = supx∈X |f(x)− g(x)|.

2. X is isometrically embedded into ǫ(X) by the mapping IX : X → ǫ(X) defined by IX(x)(·) =
d(x, ·).

3. If X is isometrically embedded into a hyperconvex space H then ǫ(X) can also be isometrically
embedded into H.

In [3] the authors introduce a parallel theory of hyperconvexity, injectivity and construction of
diversity tight spans to the one existing for metric spaces. We recall first the notion of diversity.
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Definition 2.8. Let X be a set and denote 〈X〉 as the set of its finite subsets, then a diversity is
a pair (X, δ) where δ : 〈X〉 → R such that

1. δ(A) ≥ 0, and δ(A) = 0 if and only if |A| ≤ 1, where |A| stands for the cardinality of A.

2. If B 6= ∅ then δ(A ∪C) ≤ δ(A ∪B) + δ(B ∪ C).

A diversity will be said bounded if there exists M ≥ 0 such that δ(A) ≤ M for each A ∈ 〈X〉.

Proofs for statements in the following proposition may be found in [3].

Proposition 2.9. Let (X, δ) be a diversity, then:

1. δ is monotone, that is, δ(A) ≤ δ(B) whenever A ⊆ B.

2. δ induces a distance on X defined as d : X ×X → R given by d(x, y) = δ({x, y}).

3. If A ∩B 6= ∅ then δ(A ∪B) ≤ δ(A) + δ(B).

Statements 1 and 3 in the previous proposition will be often applied along this work in the
following way: given A ∈ 〈X〉 and z ∈ X then

δ(A) ≤ δ(A ∪ {z}) ≤
∑

a∈A

δ({z, a}) =
∑

a∈A

d(z, a).

After [3] we recall the following set of definitions.

Definition 2.10. 1. Let (X1, δ1) and (X2, δ2) be two diversities. A map π : X1 → X2 is an
embedding if it is one-to-one (injective) and for all A ∈ 〈X1〉 we have that δ1(A) = δ2(π(A)),
where π(A) = ∪a∈Aπ(a).

2. An isomorphism is an onto embedding between two diversities.

3. If (X, δ) is a diversity, then for each x we define the function hx : 〈X〉 → R by

hx(A) = δ(A ∪ {x})

for all A ∈ 〈X〉. Let κ be the map taking each x ∈ X to hx.

Natural examples of diversities are provided in [3]. Next we describe two of them, the diameter
and the phylogenetic ones. Both play a relevant role in [3] and both will be extensively used in our
work.

1. Diameter diversity. Let (X, d) be a metric space. For all A ∈ 〈X〉 let

δ(A) = max
a,b∈A

d(a, b) = diam(A).

Then (X, δ) is a diversity which is called the diameter diversity generated by (X, d). Therefore,
any metric space generates a diameter diversity.

2. Phylogenetic diversity. Consider (T, d) a real tree, let µ be the one-dimensional Hausdorff
measure on it. Notice that in this case µ([a, b]) = d(a, b) for any a, b ∈ T . If A ⊆ T then the
convex hull of A is defined as

conv(A) =
⋃

a,b∈A

[a, b]

and we say that A is convex if A = conv(A) (see [6] for details). Then it happens that

δt(A) = µ(conv(A))

defines a diversity on T which is called the real-tree diversity (T, δt) for (T, d). Finally, always
following [3], a diversity (X, δ) is a phylogenetic diversity if it can be embedded in a real-tree
diversity for some complete real tree (T, d).
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We would like to point out a couple of immediate properties of these diversities which will be
needed in Theorem 2.19.

Proposition 2.11. Let (T, d) be a real tree and (T, δdiam) and (T, δphyl) its corresponding diameter
and phylogenetic diversities. Then,

1. both diversities coincide when applied to a subset contained in a metric segment of T , and

2. both diversities are continuous with respect to the distance in the sense that if A ∈ 〈T 〉 and
(xn) ⊆ T is such that dist(xn, A) converges to 0 as n → ∞, then δ(A ∪ {xn}) → δ(A) with δ
either of these diversities.

Hyperconvexity for diversities is defined as follows in [3].

Definition 2.12. A diversity (X, δ) is said to be hyperconvex if for all r : 〈X〉 → R such that

δ

(

⋃

A∈A

A

)

≤
∑

A∈A

r(A) (1)

for all A ⊆ 〈X〉 finite, with r(∅) = 0, there is z ∈ X such that δ({z} ∪ Y ) ≤ r(Y ) for all finite
Y ⊆ X.

D. Bryant and P. Tupper [3] also give a counterpart of injectivity for diversities and show the
equivalence relation as in Theorem 2.6 but for hyperconvex and injective diversities. Even more,
they build diversity tight span for a given diversity with alike properties to metric tight span. For
this work we will not require anything about injectivity of diversities but we will use diversity tight
spans as a very useful tool to build examples.

Definition 2.13. Let (X, δ) be a diversity. Let PX denote the set of all functions f : 〈X〉 → R

such that f(∅) = 0 and
∑

A∈A

f(A) ≥ δ

(

⋃

A∈A

A

)

for all A finite subset of 〈X〉. Write f � g if f(A) ≤ g(A) for all A ∈ 〈X〉. The tight span of
(X, δ) is the set TX of functions in PX that are minimal under �.

This definition gives the tight span TX of a diversity as a set. Elements of TX are then charac-
terized in the following way.

Theorem 2.14. Let f : 〈X〉 → R such that f(∅) = 0. Then f ∈ TX if and only if for all A ∈ 〈X〉,

f(A) = sup
B⊆〈X〉

{

δ(A ∪
⋃

B∈B

B)−
∑

B∈B

f(B) : |B| < ∞

}

. (2)

Next an adequate natural diversity needs to be put on TX . The answer to this problem is also
given in [3]. It is interesting to compare it with Theorem 2.7.

Theorem 2.15. Let (X, δ) be a diversity. Define δT : 〈TX〉 → R as the function such that δT (∅) = 0
and

δT (F ) = sup
{Af}f∈F







δ





⋃

f∈F

Af



−
∑

f∈F

f(Af ) : Af ∈ 〈X〉 for all f ∈ F







,

for all finite subset F of 〈X〉. Then

1. (TX , δT ) is a hyperconvex diversity,
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2. function κ from Definition 2.10 is an embedding from (X, δ) into (TX , δT ),

3. for all A ∈ 〈X〉 and f ∈ TX ,

δT (κ(A) ∪ {f}) = f(A), and

4. if there is an embedding from (X, δ) into another hyperconvex diversity (Y, δY ) then there is
an embedding from (TX , δT ) into (Y, δY ).

The pair (TX , δT ) is called the diversity tight span of (X, δ).

For an easier exposition of our work we reformulate δT (F ) in the following way.

Lemma 2.16. Let (X, δ) be a diversity and (TX , δT ) its diversity tight span, then for each F ∈ 〈TX〉
we have

δT (F ) = sup
{Af}f∈F







δ





⋃

f∈F

Af



−
∑

f∈F

f(Af ) : Af ∈ 〈X〉 with Ag ∩Ah = ∅, g 6= h







.

Proof. From (2) it follows that any f in TX is monotone with respect to set inclusion. Now, given
{Af}f∈F as in the definition of δT it is always possible to take {A′

f}f∈F which is pairwise disjoint

such that A′
f ⊆ Af and still

⋃

f∈F

Af =
⋃

f∈F

A′
f . Then the monotonicity of each f implies that

δ





⋃

f∈F

Af



−
∑

fl∈F

f(Af ) ≤ δ





⋃

f∈F

A′
f



−
∑

fl∈F

f(A′
f ),

which states our lemma.

A big role in this work will be played by nonexpansive mappings between metric spaces and
diversities. The next definition is given in [3].

Definition 2.17. Let (X1, δ1) and (X2, δ2) be two diversities, then a mapping T : X1 → X2 is
said to be nonexpansive in the sense of diversities if δ1(A) ≥ δ2(T (A)) for any A ∈ 〈X〉, where

T (A) =
⋃

a∈A

T (a).

If T is a self-mapping defined on a diversity (X, δ), then a fixed point for T with respect to the
diversity is a set F ∈ 〈X〉 such that T (F ) = F .

Remark 2.18. There is still a second natural definition of nonexpansive mapping between diver-
sities that was not considered in [3] and that we are not going to consider in this work either.
A mapping T : 〈X1〉 → 〈X2〉 is said to be nonexpansive (of type II) in the sense of diversities if
δ1(A) ≥ δ2(T (A)). Notice that this mapping must send singletons to singletons but T (A) need not
be, at least formally, the union of each T ({a}) with a ∈ A.

It is clear that any nonexpansive mapping in the sense of diversities induces a nonexpansive
mapping relative to the induced metric spaces. That is, if T : X1 → X2 is nonexpansive with respect
to the diversities and d1 and d2 stand for the respective induced metrics, then d1(x, y) = δ1({x, y}) ≥
δ2({Tx, Ty}) = d2(Tx, Ty) for any x, y ∈ X1. The first question we consider in this work is related
to this fact. We will make the reasoning for self-mappings for simplicity. Consider (X, δ) a diversity
and T : X → X a nonexpansive mapping with respect to the induced metric space. The question is
whether its natural extension to the diversity as T (A) =

⋃

a∈A T (a) is nonexpansive in the diversity
sense. Due to the properties of hyperconvexity in relation to extension of nonexpansive mappings,
this question may even be more natural in the case when the metric space and the diversity are
both hyperconvex. We will show next a result in the negative where the diversity and the induced
metric space are both hyperconvex.
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Theorem 2.19. Let (X, δ) be a hyperconvex diversity such that its induced metric space (X, d)
is hyperconvex too. If T : (X, d) → (X, d) is nonexpansive then T : (X, δ) → (X, δ) need not be
nonexpansive.

Proof. To prove this result we will construct an adequate example. Let us consider a real tree
⋃

x∈{a,b,c,d,e,f}

[θ, x]

such that [θ, x] ∩ [θ, y] = {θ} if x 6= y. For the subtree X = conv{a, b, c} we consider diameter
diversity δ1 and for Y = conv{d, e, f} – the phylogenetic one δ2. Following a case by case study
with 27 possible cases, it is not difficult to see that

δ(A) =







δ1(A), A ∈ 〈X〉
δ2(A), A ∈ 〈Y 〉
δ1((A ∩X) ∪ {θ}) + δ2((A ∩ Y ) ∪ {θ}), otherwise

defines a diversity on Z = X ∪ Y . Obviously the induced metric coincides with the tree metric on
Z after gluing X and Y through θ. We show next that the diversity (Z, δ) is hyperconvex. Let us
consider a function r : 〈Z〉 → [0,∞) for which

δ

(

n
⋃

i=1

Ai

)

≤
n
∑

i=1

r(Ai), Ai ∈ 〈Z〉 , n ∈ N.

If it is the case that δ(A ∪ {θ}) ≤ r(A) for any A ∈ 〈Z〉 then we are done. Otherwise there is
G ∈ 〈Z〉 for which

δ(G ∪ {θ}) > r(G). (3)

Then obviously G ⊆ [x, θ] \ {θ} for a certain x ∈ {a, b, c, d, e, f}. If there are G1 and G2 for which
the (3) holds then it must be the case that both are contained in the same segment [x, θ] \{θ}. For
each A ∈ 〈[x, θ]〉 consider the set

{a ∈ [x, θ] : δ({a} ∪A) ≤ r(A)}. (4)

It is easy to see that each of these sets is a ball. Now, recalling the hyperconvexity of δ1 or δ2,
whatever applies in [x, θ], we have that the intersection of all those sets is nonempty and so, since
we are in a metric segment, a new metric interval which we denote as [s, t] with t the closest point
to θ. Moreover, since (3) holds for at least one set in 〈[x, θ]〉 and because δ coincides with the
diameter diversity on this interval, it follows that t 6= θ. We want to show next that

δ(H ∪ {t}) ≤ r(H)

for any H ∈ 〈Z〉.
For each H ∈ 〈Z〉 we may consider s(H) such that δ(H ∪ {s(H)}) ≤ r(H) and d(t, s(H))

is minimal. Clearly, if s(H) ∈ [y, θ] and x 6= y we obtain two G1 and G2 for which (3) holds,
a contradiction. So s(H) ∈ [t, θ] for any H ∈ 〈Z〉. Let us suppose there is H for which s(H) 6= t,
i.e.,

δ(H ∪ {t}) > r(H). (5)

We consider two cases. The first one for x ∈ {d, e, f} and the second one for x ∈ {a, b, c}.

1. Let x = f . Then r(H) = δ(H ∪ {s(H)}) and, by construction, we can choose G ∈ 〈[x, θ]〉
satisfying (3) and so that its corresponding ball in (4) does not contain s(H), so, considering
the continuity property given in Proposition 2.11,

δ(H ∪G) = δ(H ∪ {s(H)}) + d(s(H), t) + δ(G ∪ {t}) > r(H) + r(G),

which falls in contradiction with the definition of function r and so states our claim for this
case.
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2. Now let us consider the case of x = a. We assume first that θ ∈ H and write H = H1 ∪H2

with H1 ⊂ X and H2 ⊂ Y . Then δ(H) = δ1(H1) + δ2(H2) and we focus on the diameter
diversity on X. If H1 ⊂ [a, θ], we apply the same reasoning as in the previous case. Otherwise
there is b′ ∈ [θ, b] or c′ ∈ [θ, c] such that r(H) − δ2(H2) = max{d(s(H), b′), d(s(H), c′)}. So
suppose that r(H)− δ(H2) = d(s(H), b′) and choose G as above such that it satisfies (3) and
its corresponding ball in (4) does not contain s(H), then

δ(G ∪H1) = δ(G ∪ {t}) + d(t, s(H)) + d(s(H), b′) > r(G) + d(s(H), b′)

and
δ(G ∪H) = δ1(G ∪H1) + δ2(H2) = δ(G ∪H1) + δ(H2)

= δ(G ∪ {t}) + d(t, s(H)) + d(s(H), b′) + δ(H2) > r(G) + r(H)

what again leads to a contradiction with the definition of function r.

The case in which θ /∈ H is reduced to the above one since for an H satisfying (5) we have
that δ(H ∪ {θ}) = δ(H) and so nothing changes in the argument.

Assume now that d(x, θ) = 1 for x ∈ {a, b, c, d, e, f} and define the mapping T : X ∪Y → X ∪Y
as

T ([a, θ]) = [d, θ], T ([d, θ]) = [a, θ]
T ([b, θ]) = [e, θ], T ([e, θ]) = [b, θ]
T ([c, θ]) = [f, θ], T ([f, θ]) = [c, θ]

in such a way that δ({T (x), θ}) = δ({x, θ}). Hence T is an isometry with respect to the induced
metric d, so it is nonexpansive too.

On the other hand, if we consider the triple {a, b, c}, then its image under T is equal to the
triple {d, e, f} and

δ({d, e, f}) = δ({T (a), T (b), T (c)}) = 3 > 2 = δ({a, b, c}),

what implies that T is not nonexpansive with respect to δ and completes our proof.

Remark 2.20. Easier examples may be built for the same fact if we do not care about the hyper-
convexity of the spaces.

3 Hyperconvex diversities and induced metric spaces

The main motivation for this section is that of studying how the hyperconvexity of a given diversity
(X, δ) determines the geometry of the induced metric space (X, d). This problem is far from being
well-understood in general although in [3] very powerful relations were established for diameter and
phylogenetic diversities.

We begin with a first example showing that the induced metric space of a hyperconvex diversity
need not be hyperconvex.

Example 3.1. Let X = {x, y, z} and δ : 〈X〉 → R the function given by

δ(A) = |A| − 1,

where |A| stands for the cardinality of A. It is straightforward to see that (X, δ) is a diversity.
Consider, following the notation from Section 2, (TX , δT ) its diversity tight span with induced
metric space (TX , dT ). We claim that (TX , dT ) is not hyperconvex.

As stated in Theorem 2.15, given u, v ∈ X they can be seen as elements of TX through the
mapping κ, that is, as the respective functions hu and hv (see Definition 2.10) with the property
that

dT (hu, hv) = δ({u, v}) = 1

8



for u 6= v. Consider now the collection of balls {B̄(hu, 1/2): u ∈ X} in (TX , dT ). Hence, if we
make r(u) = 1/2 then, for each u, v ∈ X with u 6= v,

dT (hu, hv) = 1 = r(u) + r(v).

If (TX , dT ) is hyperconvex then there must exist a point f ∈ TX such that dT (f, hu) ≤ 1/2 for each
u ∈ X. However, from Theorem 2.15 we have that

dT (f, hu) = δT ({f, hu}) = f(u) ≤ 1/2

for each u ∈ X, and so

f(x) + f(y) + f(z) ≤ 3/2 < 2 = δ({x, y, z}).

Therefore f is not in TX and our claim is proved.

Remark 3.2. Notice that in the previous example both the induced metric space and the diversity
are bounded.

In contrast with the above example, next we give a condition relating the induced metric space
and the diversity which guarantees the hyperconvexity of the metric space.

Proposition 3.3. Let (X, δ) be a hyperconvex diversity and (X, d) its induced metric space. If for
any A = {x1, . . . , xn} ∈ 〈X〉 we have that

(|A| − 1) · δ(A) ≤
∑

1≤i<j≤n

d(xi, xj), (6)

then (X, d) is a hyperconvex metric space.

Proof. Let r : X → [0,+∞) such that r(x)+ r(y) ≥ d(x, y). It suffices to prove that there is x̄ ∈ X
such that d(x̄, x) ≤ r(x). Let us extent r to the whole 〈X〉 by

r(A) =
∑

x∈A

r(x).

From the relation given in the statement,

(|A| − 1) · δ(A) ≤
∑

1≤i<j≤n

d(xi, xj) ≤
∑

1≤i<j≤n

(r(xi) + r(xj))

= (|A| − 1) ·





∑

1≤i≤n

r(xi)



 = (|A| − 1)r(A).

Therefore, δ(A) ≤ r(A) for any A ∈ 〈X〉 and we only need to apply the hyperconvexity of the
diversity to find such x̄.

Notice that the hyperconvexity condition does not require the function r to be defined on the
whole X, however this is not a restriction since any such function defined on a subset Y of X can
be extended to the whole X. In fact, consider r defined on Y and z ∈ X \ Y then we can extend r
to Y ∪ {z} as

r(z) = sup{max{d(y, z) − r(y), 0} : y ∈ Y }.

To see that this supremum is finite, fix x0 ∈ Y , then for y ∈ Y

d(y, z) − r(y) ≤ d(y, x0) + d(x0, z)− r(y)

≤ r(x0) + d(x0, z).

Finally, a standard transfinite inductive reasoning allows us to define r on the whole X.
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We do not know whether condition (6) is also necessary, however we will show next that some
of the information given in Lemma 4.2 and Theorem 5.9 in [3] follows from the above proposition.

Proposition 3.4. The following statements hold:

1. If (X, d) is a metric space and (X, δdiam) is its diameter diversity then the pair (d, δdiam)
satisfies (6).

2. If δphyl is a phylogenetic diversity on X with induced metric d, then the pair (d, δphyl) satisfies
(6).

Proof. Take A = {x1, . . . , xn} ∈ 〈X〉.
1. It is obvious that condition (6) holds for A ∈ 〈X〉 with |A| ≤ 2. Assume that |A| > 2. Then

(|A| − 1)δdiam(A) = (|A| − 1) max
x,y∈A

d(x, y)

which, assuming diam(A) = d(x1, x2),

≤ d(x1, x2) +
∑

3≤i≤n

(d(x1, xi) + d(xi, x2)) ≤
∑

1≤i<j≤n

d(xi, xj).

2. From the definition of phylogenetic diversity, and since relation (6) is trivially inherited by
subsets, we can assume that (X, δphyl) is a tree diversity with a real tree (X, d) as induced metric
space. Again we only need to consider the case |A| > 2. We will prove it inductively on the
cardinality of A. Consider |A| = n and take A′ = A∪ {w} with w /∈ A. Consider C = conv(A) the
convex hull of A in the metric tree X. Take

PC(w) = u

the metric projection of w onto C (the closest point from C to w which always exists and is unique,
see [6] for details), then it is very well known that u is actually the gate from w to C, that is,

d(w, x) = d(w, u) + d(u, x)

for any x ∈ C. Clearly, δphyl(A) = δphyl(A ∪ {u}) and δphyl(A ∪ {w}) = δphyl(A) + d(u,w). So,
applying induction hypothesis in the next inequality, we have

nδphyl(A ∪ {w}) = (n− 1)δphyl(A) + δphyl(A) + nd(u,w)

≤
∑

1≤i<j≤n

d(xi, yj) +





∑

1≤i≤n

d(xi, u)



 + nd(u,w)

=
∑

x,y∈A

d(x, y) +





∑

1≤i≤n

d(xi, w)



 ,

what completes the proof.

Another tempting question when dealing with hyperconvex diversities is to try to find the hy-
perconvex structure of the diversity, that is, to reproduce a inner structure alike to the one existing
for hyperconvex metric spaces: distinguished subsets, best proximity properties, intersection prop-
erties,... A very first question in this regard would be to define what a hyperconvex subset of a
hyperconvex diversity is. Maybe one of the most obvious options is the one we take next.

Definition 3.5. Let (X, δ) be a hyperconvex diversity and A ⊂ X, then A is said to be hyperconvex
with respect to the diversity if the induced diversity of δ on A, that is, the diversity (A, δ|A), is
hyperconvex as a diversity.
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Under this definition we can show that any admissible subset of X is hyperconvex with respect
to the diversity.

Proposition 3.6. Let (X, δ) be a hyperconvex diversity and let A ⊆ X be an admissible subset of
X with respect to the induced metric, then (A, δ|A) is a hyperconvex diversity.

Proof. For simplicity we will write (A, δ) for the induced diversity on A. Since A is admissible then
A =

⋂

i∈I B̄(xi, Ri) for a certain family of centers {xi}i∈I ⊆ X and radii {Ri}i∈I ⊆ [0,+∞). To
show that (A, δ) is hyperconvex we need to consider a function r : 〈A〉 → [0,+∞) satisfying (1) for
any finite collection A = (Ak)

n
k=1 of elements of 〈A〉.

Now we define a new function r̄ : 〈X〉 → [0,+∞) by

r̄(C) =























r(C), if C ⊆ A and C 6= {xi} for any i ∈ I,

min{r({xi}), Ri}, if C = {xi} with xi ∈ A,

Ri, if C = {xi} with xi /∈ A,
∑

y∈C ry(A), otherwise,

where ry(A) is, as usual, the Chebyshev radius of y with respect to A. Let us check now that
r̄ satisfies the hyperconvexity condition for finite collections (Ck)

n
k=1 of finite subsets of X. For

simplicity we assume that for 1 ≤ k ≤ n1 we have that Ck is such that Ck ⊆ A and Ck 6= {xi} for
any i ∈ I or Ck = {xi} such that r̄({xi}) = r({xi}), for n1 < k ≤ n2 we have that Ck = {xi} for
some i ∈ I such that r̄({xi}) = Ri, and for n2 < k ≤ n we have that Ck ∩ (X \ A) 6= ∅. Assume
n1 ≥ 1, then, for any y ∈ C1, property 2 of diversities implies that

δ

(

n
⋃

k=1

Ck

)

= δ





n1
⋃

k=1

Ck ∪
n2
⋃

k=n1+1

Ck ∪
n
⋃

k=n2+1

Ck





≤ δ

(

n1
⋃

k=1

Ck ∪ {y}

)

+

n2
∑

k=n1+1

δ({xi(k), y}) +
n
∑

k=n2+1

∑

z∈Ck

δ({y, z})

≤
n1
∑

k=1

r̄(Ck) +

n2
∑

k=n1+1

r̄(Ck) +

n
∑

k=n2+1

r̄(Ck),

moreover, if n1 = 0 then y may be taken as any point in A, so we can conclude that there is a point
x̄ ∈ X such that δ(C ∪ {x̄}) ≤ r̄(C) ≤ r(C) for any C ∈ 〈A〉. At the same time,

d(xi, x̄) = δ({xi, x̄}) ≤ r̄(xi) ≤ Ri

for any i ∈ I, what implies that x̄ ∈ A.

Let (X, δ) be a diversity and Y ⊆ X nonempty and bounded with respect to the induced metric.
Suppose that we have r : 〈Y 〉 → R such that satisfies (1) for any finite subset A of 〈Y 〉. Extend r
to the whole 〈X〉

r(A) =

{

r(A), if A ∈ 〈Y 〉,

r(A ∩ Y ) +
∑

a∈A\Y ra(Y ), if A ∩ (X \ Y ) 6= ∅.

Consider now a finite subset A of 〈X〉. Then make I = {A ∈ A : A ⊆ 〈Y 〉}, II = {A ∈ A : A ∈
〈X〉 with A ∩ (X \ Y ) 6= ∅}, take y ∈ A1 ∈ I (if I = ∅ then take y any point in Y ) and proceed as
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follows,

δ

(

⋃

A∈A

A

)

= δ

(

(
⋃

A∈A

A ∩ Y ) ∪ (
⋃

A∈A

A ∩X \ Y )

)

≤ δ

(

⋃

A∈A

A ∩ Y

)

+ δ

(

(
⋃

A∈A

A ∩X \ Y ) ∪ {y}

)

≤
∑

A∈I

r(A) +
∑

A∈II

r(A ∩ Y ) +
∑

a∈
⋃

A∈II A\Y

δ({a, y})

≤
∑

A∈A

r(A).

Therefore the following statement has been proved.

Lemma 3.7. If (X, δ), Y and r are as above then it is possible to extend r to the whole 〈X〉 so
that (1) still holds by the equation

r(A) = r(A ∩ Y ) +
∑

a∈A\Y

ra(Y ). (7)

The next proposition gives new examples of hyperconvex subsets with respect to a hyperconvex
diversity. This result will be needed in Section 4.

Proposition 3.8. Let (X, δ) be a hyperconvex diversity and Z ⊆ X nonempty and bounded with
respect to the induced metric. Let r : 〈Z〉 → R satisfying the hyperconvexity condition (1) on 〈Z〉
and define

Y = {x ∈ X : δ(A ∪ {x}) ≤ r(A) for each A ∈ 〈Z〉}.

Then Y is nonempty and (Y, δ) is a hyperconvex diversity.

Proof. We consider r as given by Lemma 3.7. Since (X, δ) is hyperconvex then it is clear that Y is
nonempty. Moreover, take z ∈ Z then, for any y ∈ Y , it must be the case that δ({z, y}) ≤ r(z) so
Y is also bounded.

We need to show that given s : 〈Y 〉 → R satisfying (1) then there exists y ∈ Y such that
δ(A ∪ {y}) ≤ s(A) for each A ∈ 〈Y 〉. From s and r we define the following function on 〈X〉,

r̄(A) =























min{r(A), s(A)}, if A ∈ 〈Y ∩ Z〉,

s(A), if A ∈ 〈Y 〉 and A ∩ Y \ Z 6= ∅,

r(A), if A ∈ 〈Z〉 and A ∩ Z \ Y 6= ∅,
∑

a∈A ra(Y ), otherwise.

Notice that r̄(A) ≤ r(A) for A ∈ 〈Z〉 and r̄(A) ≤ s(A) for A ∈ 〈Y 〉. We want to see that r̄ satisfies
(1) on 〈X〉. Consider A ⊆ 〈X〉 finite with A = {A1, . . . , An1

, An1+1, . . . , An2
, An2+1, . . . , An} with

r̄(Ai) = s(Ai) for 1 ≤ i ≤ n1; r̄(Ai) = r(Ai) for n1 + 1 ≤ i ≤ n2 and r̄(Ai) =
∑

a∈A ra(Y ) for
i > n2. If n1 ≥ 1 then take y ∈ A1 ⊆ Y otherwise just make y any point in Y and proceed as
follows, with corresponding terms as 0 if n1 = n2 , n2 = n or n1 = n,

δ

(

⋃

A∈A

A

)

≤ δ





⋃

1≤i≤n1

Ai



+ δ





⋃

n1<i≤n2

Ai ∪ {y}



 + δ





⋃

n2<i≤n

Ai ∪ {y}





≤ δ





⋃

1≤i≤n1

Ai



+
∑

n1<i≤n2

δ(Ai ∪ {y}) +
∑

n2<i≤n

∑

a∈Ai

δ({y, a})

≤
∑

1≤i≤n1

s(Ai) +
∑

n1<i≤n2

r(Ai) +
∑

n2<i≤n

∑

a∈Ai

ra(Y ) =
∑

A∈A

r̄(Ai).
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Now we apply hyperconvexity of X to deduce that there exists ȳ such that δ(A ∪ {ȳ}) ≤ r̄(A)
for each A ∈ 〈X〉. But now, since r̄ ≤ r on 〈Z〉, it must be the case that ȳ ∈ Y and again, since
r̄ ≤ s on 〈Y 〉, we finally have that δ(A ∪ {ȳ}) ≤ s(A) for any A ∈ 〈Y 〉 what finishes our proof.

Remark 3.9. Sets given in Proposition 3.8 are a natural candidate for admissible subsets of a
diversity.

If (X, δ) is a hyperconvex diversity and (X, d) is its induced metric space then one may wonder
about which metric properties can be assured for (X, d). This seems to be a difficult task. So far
we know that this space need not be hyperconvex, however, next we show that such a metric space
must be complete. Remember that any hyperconvex metric space is complete too (for details see
[1, 6]).

Proposition 3.10. Let (X, δ) be a hyperconvex diversity and (X, d) its induced metric space, then
(X, d) is complete.

Proof. Let {xn} be a Cauchy sequence in (X, d). Given x ∈ X we can assume that there exists
N = N(x) ∈ N such that x 6= xn for any n ≥ N(x) (otherwise the sequence would be trivially
convergent). Since {xn} is bounded then

r(x) = sup
n≥N(x)

d(x, xn)

is a real number.
For each finite set {y1, y2, . . . , yn} ⊆ X, define

r(y1, y2, . . . , yn) =
n
∑

i=1

r(yi).

We want to show that for each such set we have that

δ({y1, y2, . . . , yn}) ≤ r(y1, y2, . . . , yn).

Since {y1, y2, . . . , yn} is finite then there ism such thatm > max{N(yi) : i = 1, 2, . . . , n}. Therefore,
r(yi) ≥ d(yi, xm) for i = 1, 2, . . . , n. On the other hand, from diversity properties,

δ({y1, y2, . . . , yn}) ≤
n
∑

i=1

δ({xm, yi}),

and so δ({y1, y2, . . . , yn}) ≤
n
∑

i=1

r(yi). Now, we can apply that (X, δ) is a hyperconvex diversity to

assure that there exists x̄ ∈ X such that

δ({y1, y2, . . . , yn, x̄}) ≤
n
∑

i=1

r(yi),

for any finite collection {y1, y2, . . . , yn} of points of X. From where, in particular, d(x̄, xn) ≤
r(xn) ≤ supm>n d(xn, xm) for each n ∈ N. Taking limit when n → ∞ and recalling that {xn} is
Cauchy completes the proof.

After Example 3.1 the question of whether a nonexpansive self-mapping from a bounded metric
space induced by a hyperconvex diversity has a fixed point is relevant. We close this section with
a negative result in this regard.

13



Theorem 3.11. Let (X, δ) be a hyperconvex diversity such that its induced metric space (X, d) is
bounded. Then (X, d) need not have the fixed point property for nonexpansive mappings.

Proof. We will show that there is such a metric space admiting a nonexpansive self-mapping which
is fixed point free. Let X = {x1, x2, . . .} an infinity and countable set provided with the diversity
δ(A) = |A| − 1 for A ∈ 〈X〉. Let (TX , δT ) be its diversity tight span. Now for each A ∈ 〈X〉 define
A+ as

A+ = {xk+1 : xk ∈ A}.

It is obvious that δ(A) = δ(A+) for any A ∈ 〈X〉. For each f ∈ TX define T (f) = f̄ as

f̄(A+) = f(A), f̄(A+ ∪ {x1}) = f(A) + 1.

We claim that f̄ ∈ TX . To show this we will check condition (2) in Theorem 2.14. Consider first a
set A in 〈X〉 such that x1 /∈ A, that is, a set of the form A+. Then, since f ∈ TX ,

f(A) = sup
B⊆〈X〉

{

δ(A ∪
⋃

B∈B

B)−
∑

B∈B

f(B) : |B| ≤ ∞

}

= sup
B⊆〈X〉

{

δ(A+ ∪
⋃

B∈B

B+)−
∑

B∈B

f̄(B+) : |B| ≤ ∞

}

= f̄(A+).

Therefore we can rewrite the above as

f̄(A+) = sup
B⊆〈X\{x1}〉

{

δ(A+ ∪
⋃

B∈B

B)−
∑

B∈B

f̄(B) : |B| ≤ ∞

}

.

Take B now without the previous restriction and make I = {B ∈ B : x1 /∈ B} and II = {B ∈
B : x1 ∈ B} where the cardinality of II is C ≥ 1. Then, for each such B,

δ(A+ ∪
⋃

B∈B

B)−
∑

B∈B

f̄(B) = δ(A+ ∪
⋃

B∈I

B ∪
⋃

B∈II

B)−
∑

B∈I

f̄(B)−
∑

B∈II

f̄(B)

= δ(A+ ∪
⋃

B∈I

B ∪
⋃

B∈II

(B \ {x1})) + 1−
∑

B∈I

f̄(B)−
∑

B∈II

f̄(B \ {x1})− C

≤ δ(A+ ∪
⋃

B∈I

B ∪
⋃

B∈II

(B \ {x1}))−
∑

B∈I

f̄(B)−
∑

B∈II

f̄(B \ {x1})

≤ f̄(A+),

which states our claim for sets A of the form A+.
Now, if x1 ∈ A then we can write A = C+ ∪ {x1}. We know that f̄(A) = f̄(C+ ∪ {x1}) =

f(C) + 1 = f̄(C+) + 1 and following the same line of argument as before the proof of our claim is
complete.

Next make X1 = T (TX) and consider the induced diversity by δT (denoted again by δT ) onto
X1, we want to show that T is an isomorphism (Definition 2.10) between diversities (TX , δX) and
(X1, δT ). Let F be a finite subset of TX , then, from Lemma 2.16,

δT (F ) = sup
{Af}f∈F







δ





⋃

f∈F

Af



−
∑

f∈F

f(Af ) : Ag ∩Ah = ∅, g 6= h







= sup
{Af}f∈F







δ





⋃

f∈F

A+
f



−
∑

f∈F

f̄(A+
f ) : A

+
g ∩A+

h = ∅, g 6= h







= sup
{Af̄}f̄∈F̄







δ





⋃

f̄∈F̄

A+
f̄



−
∑

f̄∈F̄

f̄(A+
f̄
) : A+

ḡ ∩A+
h̄
= ∅, ḡ 6= h̄







.
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We want to show that the last term gives the actual value of δT (F̄ ), where F̄ = T (F ). For that
it only rests to prove that we still have the same relation if we allow x1 ∈

⋃

f̄∈F̄ Af̄ . Since we can
assume these sets are pairwise disjoint, we have that x1 is in exactly one set of the collection which
we denote by A1 with corresponding f̄ as f̄1. Then

δ





⋃

f̄∈F̄

Af̄



−
∑

f̄∈F̄

f̄(Af̄ ) = δ





⋃

f̄∈F̄

Af̄



−
∑

f̄∈F̄\{f̄1}

f̄(Af̄ )− f̄1(A1)

= δ





⋃

f̄∈F̄

Af̄



−
∑

f̄∈F̄\{f̄1}

f̄(Af̄ )− f̄1(A1 \ {x1})− 1

= δ





⋃

f̄∈F̄

Af̄ \ {x1}



−
∑

f̄∈F̄\{f̄1}

f̄(Af̄ )− f̄1(A1 \ {x1}).

Therefore, adding {x1} to one of the sets does not increase the above supremum and so we have
that δT (F ) = δT (F̄ ). In consequence T is a nonexpansive mapping (actually an isomorphism)
between diversities which, in particular, implies that its restriction to respective induced metric
spaces is nonexpansive as a self-mapping on a metric space.

Now set X2 = T (X1). Any function f in X1 trivially satisfies that

f(A ∪ {x1}) = f(A) + 1

for any A ∈ 〈X〉 with x1 /∈ A. Consider now f ∈ X2 ⊆ X1, g ∈ X1 such that Tg = f and
A+ ∈ 〈{x3, x4, . . .}〉. Then f(A+ ∪ {x1}) = f(A+) + 1,

f(A+ ∪ {x2}) = Tg(A+ ∪ {x2}) = g(A ∪ {x1}) = g(A) + 1 = f(A+) + 1,

and

f(A+ ∪ {x1} ∪ {x2}) = Tg(A+ ∪ {x1} ∪ {x2}) = g(A ∪ {x1}) + 1 = g(A) + 2 = f(A+) + 2.

Iterating this process we may construct a decreasing sequence of such diversities (Xn, δT ) with
Xn = T (Xn−1). Assume now that there exists f ∈

⋂∞
n=1Xn. Then, since f ∈ Xn for each n,

f({x1}) = f(∅) + 1 = 1, . . . , f({xn}) = f(∅) + 1.

Take A ∈ 〈X〉, then there exists n ∈ N such that A ⊆ {x1, x2, . . . , xn}. Since f ∈ Xn, it must be
the case that

f(A) = f(∅) + |A| = |A|.

But then it must also be the case that, if x1 ∈ A,

f(A) = 1 + |A| − 1 = 1 + hx1
(A),

while otherwise
f(A) = |A| = hx1

(A),

where hx is as in Definition 2.10. Consequently hx1
< f and so f /∈ TX . So the intersection of all

sets Xn must be empty and T , as a nonexpansive self-mapping on the induced metric space, must
be fixed point free since any of its fixed point would be in all sets Xn.
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In the previous proof we have shown that nonexpansive self-mappings defined on a bounded
induced metric spaces by a hyperconvex diversity need not have fixed point. We have done it
by showing the failure of another relevant property for hyperconvex spaces, this is the fact that
decreasing sequences of bounded hyperconvex spaces have nonempty intersection (firstly proved in
[2]). Notice, however, that although the induced metric spaces are bounded the diversities under
consideration in our proof are not. In the next section we will study the case when the diversity
itself is assumed to be bounded. Now we give some consequences of the previous theorem.

Corollary 3.12. Decreasing sequences of hyperconvex diversities with induced bounded metric
spaces do not have the nonempty intersection property in general.

Remark 3.13. Since bounded hyperconvex metric spaces have the fixed point property for nonex-
pansive mappings, we can deduce the existence of spaces as the one given by Example 3.1 from the
above theorem. Notice, however, that Example 3.1 provides such an example where both the metric
space and the diversity are bounded.

Corollary 3.14. The mapping from Theorem 3.11 is also fixed point free as a mapping between
diversities, that is, there is no F ∈ 〈X〉 nonempty such that T (F ) = F .

Proof. Consider (TX , δT ), (X1, δT ) and T as in the proof of Theorem 3.11. If such a set F exists
then we can easily take it to be minimal (that is, it does not have a proper subset which is a fixed
point for T ). Assume further that the cardinality of F is k, then we can order its elements in such
a way that Tm(f1) = T i(f1) where m ≡ i mod(k) and i ∈ {1, 2, . . . , k}. In particular we would
have that f1 is in an infinite collection of sets Xn and, since this is decreasing collection, it is in
the intersection of all them too contradicting the proof of Theorem 3.11.

4 Bounded diversities and fixed points

In this section we consider the case when the diversity (X, δ) is bounded, i.e., there exists M ∈ R

such that δ(A) ≤ M for each A ∈ 〈X〉. Remember that B(A) stands for the ball hull of a subset
A of a metric space X. We need to recall the following immediate lemma for ball hulls.

Lemma 4.1. Let (X, d) be a metric space, A ⊆ X nonempty and B(A) the ball hull of A, then
rx(A) = rx(B(A)) for any x ∈ X.

In Theorem 5 of [2] it is proved that any bounded hyperconvex metric space has the fixed
point property for nonexpansive self-mappings. We present next a counterpart of this result for
diversities. Our proof follows the same patterns of that of Theorem 5 in [2] although, of course,
technical difficulties arise.

Theorem 4.2. Let (X, δ) be a hyperconvex and bounded diversity with induced metric space (X, d),
and T : (X, d) → (X, d) a nonexpansive mapping. Then T has a fixed point in X.

Proof. Let us consider

U = {A ⊆ X : A 6= ∅, A = B(A), T (A) ⊆ A}

partially ordered by set-inclusion ⊆. We want to show first that this family satisfies the hypothesis
of Zorn’s lemma. First, U is nonempty because X ∈ U . Let (Ai)i∈I be a decreasing chain ordered

by inclusion. We claim that its intersection is nonempty, that is,
⋂

i∈I

Ai 6= ∅. Notice that for each

admissible subset A of X we have

A =
⋂

x∈X

B̄(x, rx(A)).
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For each x ∈ X we have that rx(Ai) ≤ rx(Aj) for i ≥ j, and so we can define

r(x) = inf{rx(Ai) : i ∈ I}.

We can assume that r(x) > 0 since otherwise x is in the intersection of sets Ai. Let us consider
{y1, y2, . . . , yn} a finite collection of points in X and let ε > 0. Then, for each k ∈ {1, 2, . . . , n}
there exists i(k) such that

ryk(Ai(k)) ≤ r(yk) + ε.

We can agree that
Ai(1) ⊆ Ai(2) ⊆ . . . ⊆ Ai(n).

Hence
ryk(Ai(1)) ≤ r(yk) + ε.

So taking any a ∈ Ai(1) we have that d(yk, a) ≤ ryk(Ai(1)) ≤ r(yk) + ε and

δ({y1, y2, . . . , yn}) ≤
n
∑

k=1

δ({yk, a}) ≤
n
∑

k=1

r(yk) + nε.

Since this inequality stands for any positive ε, we have that

δ({y1, y2, . . . , yn}) ≤
n
∑

k=1

r(yk)

for any finite collection {y1, y2, . . . , yn} of points in X. Therefore, for a given finite collection
{x1, x2, . . . , xm} of elements of X define

r({x1, x2, . . . , xm}) =
m
∑

k=1

r(xk)

and, from the hyperconvexity of (X, δ), we have that there exists x̄ such that d(x̄, x) ≤ r(x) for
all x ∈ X. So, in particular, x̄ ∈ Ai for each i ∈ I and our claim is proved. Now it is immediate
that

⋂

i∈I Ai is also in U . Therefore we can apply Zorn’s lemma on U to deduce that there is a
minimal set A in U with respect to set-inclusion. Suppose this minimal set is not a singleton since
otherwise it would be a fixed point of T .

Since A is minimal and T (A) ⊂ A we also have that A = B(T (A)). Then

A =
⋂

x∈X

B̄(x, rx(T (A))).

Define

d = sup
n>1

supx1,...,xn∈A δ({x1, . . . , xn})

n
.

Since (X, δ) is bounded, d is attained at a certain N ∈ N. Fix N as that natural number and ε > 0
such that ε ≤ d

N
. Then there is {y1, y2, . . . , yN} ⊆ A such that

δ({y1, y2, . . . , yN})

N
> d− ε

and so
δ({y1, y2, . . . , yN}) > (N − 1)d.

Now, from property 2 of diversities,

N
∑

i=2

d(y1, yi) ≥ δ({y1, y2, . . . , yN}) > (N − 1)d
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and so, there exists a pair of points x, z ∈ {y1, y2, . . . , yN} such that d(x, z) > d. Consider these
two points fixed from now on.

Make A′ = A ∩
(
⋂

a∈A B̄(a, d)
)

. We will show next that A′ is nonempty. First notice that, as
any admissible set,

A =
⋂

x∈X

B̄(x, rx(A))

and consider the function

p(x) =

{

d, if x ∈ A and rx(A) > d,

rx(A), otherwise.

Take {y1, y2, . . . , yn} a finite subset of X. Order these points in such a way that there is i ∈
{0, 1, . . . , n} such that yj ∈ A and p(yj) = d if j ≤ i and p(yj) = ryj(A) if for j > i. Then

δ({y1, y2, . . . , yi}) ≤ sup
x1,...,xi∈A

δ({x1, x2, . . . , xi})

= i
supx1,...,xi∈A δ({x1, x2, . . . , xi})

i
≤ i · d,

and, for j ≥ i+ 1,
p(yj) = ryj (A) ≥ d(yj, y1) = δ({yj , y1}).

So, in any case, we can proceed as follows (if i = 0 turn y1 into y0 as any point in A)

δ({y1, y2, . . . , yn}) ≤ δ({y1, y2, . . . , yi}) +
n
∑

j=i+1

δ({y1, yj})

≤ i · d+
n
∑

j=i+1

ryj (A) =

n
∑

k=1

p(yk).

Now it suffices to define

p({x1, x2, . . . , xn}) =
n
∑

k=1

p(xk)

and apply the hyperconvexity of diversity δ to deduce that there exists x̄ ∈ X such that

d(x̄, a) ≤ d

for any a ∈ A. In particular we have that x̄ ∈
⋂

a∈A B̄(a, d). Moreover, for any x ∈ X, d(x̄, x) ≤
p(x) ≤ rx(A) and so x̄ ∈ A. Therefore x̄ is also in A′ and, as we wanted to prove, A′ 6= ∅. Now,
since rx(A) = rx(T (A)) we have that A′ is T -invariant. We will have reached a contradiction with
the fact that A is not a singleton if we can show that A′ 6= A, but this follows from the fact that
there are two points x, z ∈ A as above such that d(x, z) > d while diam(A′) ≤ d.

Remark 4.3. As it was pointed out earlier, the above proof follows similar patterns to that one
of Theorem 5 in [2] which also follows a parallel argument to the proof of W.A. Kirk for existence
of fixed point of nonexpansive mappings in Banach spaces with normal structure in his seminal
work [12]. Therefore we are talking here about a very successful line of argument in metric fixed
point theory which basically consists in two steps. The first one consists in showing that decreasing
families of a certain collection of sets are compact, meaning that their intersections are nonempty
and still a set in the same family. Then we apply Zorn’s lemma to obtain a minimal set and, as
a second step, a normal structure argument is applied to show that that minimal set must be a
singleton. Notice that in our proof step one only requires that the induced metric space is bounded
and not the diversity itself. Step two, however, requires that the diversity itself were bounded. From
the example exhibited in Theorem 3.11 we can conclude that this condition is necessary.
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The following corollary is an immediate consequence of Propositions 3.6 and 3.8, and Theorem
4.2.

Corollary 4.4. Let (X, d) be a metric space induced by a bounded hyperconvex diversity, then any
admissible subset of X or any set as those given in Proposition 3.8 has the fixed point property for
nonexpansive self-mappings.

Remark 4.5. Theorem 4.2 can be seen as a generalization of the fixed point theorem for hyperconvex
spaces. This follows as a direct consequence of Theorem 4.3 in [3] since it is clear after it that the
diameter diversity of a hyperconvex metric space is a hyperconvex diversity. Therefore any bounded
hyperconvex metric space is the induced metric space of a bounded hyperconvex diversity.

A very relevant consequence of the approach of J.P. Baillon to the fixed point property for
nonexpansive mappings was that decreasing families of bounded hyperconvex metric spaces need
to have nonempty hyperconvex intersection. In the proof of Theorem 3.11 we saw that this is not
the case for hyperconvex diversities regardless the induces metric space is bounded or not. Next,
following the argument of Baillon in [2], we will show that such intersections are also nonempty
when decreasing diversities are supposed to be bounded.

Theorem 4.6. Let (X, δ) be a bounded hyperconvex diversity and (Hi)i∈I a directed family of
subsets of X such that (Hi, δ) is hyperconvex for each i ∈ I. Then the intersection of this family of
sets is nonempty.

Proof. We include Baillon’s original scheme of the proof for completeness. Notice that some tech-
nical facts need to be solved in a different way.

Step 1. We consider the product space

H =
∏

i∈I

Hi

where Hi ⊂ Hj, j ≤ i. For any subset E of X define:

Bi(E) =
⋂

x∈Hi

B̄(x, rx(E)).

Then we consider the class sets

U = {A =
∏

i∈I

Ai : A 6= ∅, Ai ⊆ Hi, Bi(Ai) ∩Hi = Ai, Aj ⊆ Ai if j ≥ i}.

Step 2. To show that there is a minimal element of U we apply the same methods as in proof
of Theorem 4.2 for each i ∈ I, therefore we can fix ΠIAi as a minimal element in H.

Step 3. We notice now that, from minimality of A, there is no pair (j, i), (j ≥ i) such that

Ai 6= Ai ∩
⋂

x∈Hj

B(x, rx(Aj))

since it must be the case that

Ai ⊃ Ai ∩
⋂

x∈Hj

B(x, rx(Aj)) = A′
i,

contradicting the minimality of A.
Step 4. From Step 3 we directly obtain that:

rx(Ai) = rx(Aj), for x ∈ Hj and any (j, i) with j ≥ i. (8)
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Step 5. We claim that Ai is a singleton. From (8) we know that if Ai is not a singleton then Aj

is not a singleton for any j ≥ i. Consider now two subsets A and B of X. Since (X, δ) is bounded
then the induced diversity on these sets is also bounded and moreover, if A ⊂ B, then we have that

dA := sup
n>1

supx1,...,xn∈A δ({x1, . . . , xn})

n

is not greater than

dB := sup
n>1

supx1,...,xn∈B δ({x1, . . . , xn})

n
.

Now, for i ∈ I, consider A′
i given by

A′
i = Ai ∩

⋂

x∈Ai

B̄(x, dAi
).

Therefore for each set Ai we have a new one A′
i in Hi. We in fact can show, in a similar way as in

the proof of Theorem 4.2, that A′
i is contained but not equal to that Ai. Therefore we only need

to show that A′
j ⊂ A′

i if i ≤ j to contradict the minimality of ΠIAi.
Indeed, consider x ∈ A′

j . Obviously x ∈ Ai. On the other hand, x ∈ Hj, so rx(Aj) = rx(Ai).

At the same time x ∈
⋂

y∈Aj
B̄(y, dAj

), so

rx(Ai) = rx(Aj) ≤ dAj
≤ dAi

and finally

x ∈
⋂

z∈Ai

B̄(z, dAi
),

which completes the proof.

In [2] a bit more was proved, it was proved that the intersection of bounded and decreas-
ing collections of hyperconvex metric spaces was hyperconvex too. Next we give this result for
diversities.

Corollary 4.7. Under the conditions of the previous theorem, the intersection set with the induced
diversity is a hyperconvex diversity.

Proof. Let Y be the intersection of the sets Hi. Consider r : 〈Y 〉 → R satisfying the hyperconvexity
condition (1). From Lemma 3.7, and boundedness conditions, we can consider r defined on the
whole 〈H1〉 and so on any of the sets 〈Hi〉. For each i consider the set Yi given by r, Hi and Y
after Propositon 3.8 (notice that r is the same for all Hi). Then (Yi, δ) is a decreasing collection of
hyperconvex diversities as in Theorem 4.6. Therefore there is y in all of these sets and so y ∈ Y is
such that δ(A ∪ {y}) ≤ r(A) for each A ∈ 〈Y 〉.
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[7] R. Esṕınola and P. Lorenzo, Metric fixed point theory on hyperconvex spaces: recent progress.
(English) Arab. J. Math. 1, No. 4 (2012), 439-463.

[8] D. Faith, Conservation evaluation and phylogenetic diversity, Biol. Conserv. 61 (1992) 1-10.

[9] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, 1990.

[10] J.R. Isbell, Injective envelopes of of Banach spaces are rigidly attached, Bull. Amer. Math.
Soc. 70 (1964), 727-729.

[11] M.A. Khamsi, W.A. Kirk, and C. Mart́ınez Yáñez, Fixed point and selection theorems in
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