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THE SET OF SPACE-FILLING CURVES: TOPOLOGICAL

AND ALGEBRAIC STRUCTURE

L. BERNAL-GONZÁLEZ, M.C. CALDERÓN-MORENO AND J.A. PRADO-BASSAS

Abstract. In this paper, a study of topological and algebraic proper-
ties of two families of functions from the unit interval I into the plane
R2 is performed. The first family is the collection of all Peano curves,
that is, of those continuous mappings onto the unit square. The second
one is the bigger set of all space-filling curves, i.e. of those continuous
functions I → R2 whose images have positive Jordan content. Empha-
sis is put on the size of these families, in both topological and algebraic
senses, when endowed with natural structures.

1. Introduction

In 1890 G. Peano [25] showed the existence of an astonishing mathe-
matical object, namely, a curve filling the unit square. To be more precise,
he constructed a continuous surjective mapping I → I2, where I = [0, 1] is
the closed unit interval in the real line R and I2 = [0, 1] × [0, 1].

Lebesgue [15,16,22] was probably the first to show an example of a func-
tion f : R → R that is surjective in a strong sense. Specifically, it satisfies
f(J) = R for every nondegenerate interval J . Since then, many families of
surjections R → R, even in much stronger senses, have been presented (see
[14, 19, 20]). Nevertheless, each of these functions is nowhere continuous.
Of course, by using a bijection R → I2 or R → R2, surjections R → I2 or
R → R2 (or even I → I2) can be constructed, but their continuity is far
from being guaranteed.

Peano’s result admits a topological extension, and in fact a topologi-
cal characterization, which is given by the Hahn–Mazurkiewicz theorem (see
e.g. [30, Theorem 31.5] or [18]): a Hausdorff topological space Y is a continu-
ous image of the unit interval if and only if it is a compact, connected, locally
connected, and second-countable space. Such a space Y is called a Peano

space. Equivalently, by well-known metrization theorems, a Peano space is a
compact, connected, locally connected metrizable topological space. Given
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two topological spaces X and Y , the set of continuous (continuous surjec-
tive, resp.) mappings X → Y will be denoted by C(X,Y ) (CS(X,Y ),
resp.). Then the family of Peano curves is P := CS(I, I2). If Y is a Peano
space, we also denote PY := CS(I, Y ), so that P = PI2 .

There are several extensions of the notion of Peano curve on RN , with
N ≥ 2. Since the case N = 2 is illuminating enough, we will restrict
ourselves to it. For instance, in [26], the next notion is given. By c(A) it is
denoted the Jordan content of a Jordan measurable set A ⊂ R2 (see Section
2 for definitions).

Definition 1.1. We say that a continuous function ϕ : I → R2 is a space-

filling curve provided that ϕ(I) is Jordan measurable and c(ϕ(I)) > 0.

We can relax this condition by defining a λ-space-filling curve –where λ
denotes Lebesgue measure on R2– as a continuous function f : I → R2

with λ(f(I)) > 0. This is not equivalent to the former definition; as a
matter of fact, Osgood [24,26] constructed in 1903 a Jordan curve, that is, a
continuous injective function ψ : I → R2, such that λ(ψ(I)) > 0; here ψ(I)
cannot be Jordan measurable. Other related notions can be found in [23]
and [29]. The symbol SF will stand for the set of all space-filling curves in
the sense of Definition 1.1.

The main concern of this paper is to study both families P and SF from
the topological-algebraic point of view, with special emphasis on the size
of such sets, rather than on properties of individual members of them. For
this, P and SF are supposed endowed with their natural topologies. The
diverse notions of largeness that will be considered, together with other
preliminaries, are compiled in Section 2. Finally, Sections 3 and 4 contain
our main results, which demonstrate the existence of large –topological or
algebraic– structures within the mentioned families.

2. Topological and linear size concepts

When dealing with subsets of a metric space (X, d), one way to describe
their smallness is by means of the notion of porosity, introduced by Dolzenko
[13] in 1967 for the real line and generalized by Zaj́ıček [31]. Here we use a
slightly stronger notion of porosity [32]. By B(x, r) we denote the open ball
in X with center x ∈ X and radius r > 0, while A stands for the closure of
a set A in a given topological space.

Definition 2.1. A subset A in a metric space (X, d) is called porous if there
is α > 0 such that for each x ∈ X and each ε > 0 there exists y ∈ B(x, ε)
such that

B(y, α d(x, y)) ∩A = ∅.

If the above number α > 0 can be chosen as close to 1 as we wish then A is
called strongly porous.



SPACE-FILLING CURVES: TOPOLOGICAL AND ALGEBRAIC STRUCTURE 3

It is well known that any porous set A is nowhere dense, that is, its

interior A
0
= ∅. In fact, porosity is a notion strictly stronger than nowhere

density. Porosity will be considered in the context of Peano curves.

In a completely metrizable topological space X (so that Baire’s theorem
applies), one way to describe smallness or largeness is by meagerness: a
subset A ⊂ X is said to be meager or of first category if it is a countable
union of nowhere dense subsets; and A is called residual if the complement
X \ A is meager or, equivalently, if A is a countable intersection of dense
open sets. Hence, in a topological sense, a residual set is very large, and in
fact the existence of many “strange” mathematical objects has been stated
by proving that their set is residual (in some appropriate topological space).
Incidentally, each set of such mathematical objects turns to be huge.

A different, recently introduced approach to study the size of a family of
objects arises from the theory of lineability. The following notions can be
found in [4–7,9, 11,17,27].

Definition 2.2. If X is a vector space, α is a cardinal number and A ⊂ X,
then A is said to be:

• lineable if there is an infinite dimensional vector space M such that
M \ {0} ⊂ A,

• α-lineable if there exists a vector space M with dim(M) = α and
M \ {0} ⊂ A (hence lineability means ℵ0-lineability, where ℵ0 =
card (N), the cardinality of the set of positive integers), and

• maximal lineable in X if A is dim (X)-lineable.

If, in addition, X is a topological vector space, then A is said to be:

• dense-lineable in X whenever there is a dense vector subspace M of
X satisfying M \ {0} ⊂ A,

• maximal dense-lineable in X whenever there is a dense vector sub-
space M of X satisfying M \ {0} ⊂ A and dim (M) = dim (X),
and

• spaceable inX if there is a closed infinite dimensional vector subspace
M such that M \ {0} ⊂ A.

When X is a topological vector space contained in some (linear) algebra
then A is called:

• algebrable if there is an algebra M so thatM \{0} ⊂ A andM is in-
finitely generated, that is, the cardinality of any system of generators
of M is infinite, and

• strongly algebrable if, in addition, the algebra M can be taken free.

Note that if X is contained in a commutative algebra then a set B ⊂ X
is a generating set of some free algebra contained in A if and only if for any
N ∈ N, any nonzero polynomial P in N variables without constant term and
any distinct f1, ..., fN ∈ B, we have P (f1, ..., fN ) 6= 0 and P (f1, ..., fN ) ∈ A.
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Observe that strong-algebrability ⇒ algebrability ⇒ lineability, and none of
these implications can be reversed, see [6] and [11, p. 74].

From Peano’s result, it is not difficult to extend his filling curve I → I2

to a continuous surjective function R → R2. This can be generalized as
to obtain that CS(Rm,Rn) 6= ∅ for all m,n ∈ N. In fact, Albuquerque,
Bernal, Ordóñez, Pellegrino and Seoane [1, 2, 10] have recently shown that
CS(Rm,Rn) is maximal dense-lineable and spaceable in C(Rm,Rn), and
that CS(Rm,Cn) is strongly c-algebrable (here c stands for the cardinality
of the continuum, C denotes the complex field, and the algebra structure
of C(Rm,Cn) is defined coordenatewise). In [2], the lineability of the fami-
lies CS(Rm, Y ), where Y represents some relevant subspaces of infinite di-
mensional Euclidean spaces, is also analyzed. To summarize, these diverse
CS-families are large in several algebraic (or topological-algebraic) senses.

It must be said that the mentioned results in [1,2,10] were the inspiration
for the present paper, but there is an important point which is why the
methods given in them cannot be directly reproduced in our setting. Namely,
our starting space is the compact interval I. Hence f(I) is compact for any
continuous mapping on I, so f(I) is never “too much large”. Furthermore,
our family P is not even stable under scaling, which causes that the study
of lineability of P makes no sense.

In order to investigate the algebraic structure of P, let us introduce the
following concept.

Definition 2.3. Assume that (X, ∗) is a semigroup and that A ⊂ X. We
say that A is semigroupable whenever there exists an infinitely generated
semigroup G ⊂ A.

Remark 2.4. We recall that a semigroup G is called infinitely generated
whenever it is not finitely generated, that is, there does not exist a finite
set F ⊂ X such that every x ∈ G can be written as a finite product x =
am1

1 ∗ · · · ∗ a
mp
p , with a1, . . . , ap ∈ F and m1, . . . ,mp ∈ N (of course, p, ai

and mi depend upon x). The ai’s are not necessarily different: take into
account that (X, ∗) might be noncommutative. Nevertheless, the semigroup
X that will be considered in this paper is C(I, I2), where the operation ∗
is the coordenatewise multiplication, which is commutative. Hence the ai’s
can be taken different in this case.

Recall that if E is a Banach space then a sequence {xn}n≥1 is called a
basic sequence whenever it is a Schauder basis of its generated closed vector
subspace, that is, whenever every vector x ∈ span{xn}n≥1 can be uniquely
represented by a series x =

∑
n≥1 λnxn converging in the norm ‖ · ‖ of E.

By Nikolskii’s theorem (see for instance [12]), a sequence {xn}n≥1 ⊂ E \{0}
is basic if and only if there is a constant α ∈ (0,+∞) such that, for every
pair r, s ∈ N with s ≥ r and every finite sequence of scalars a1, . . . , as, one
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has
∥∥

r∑

n=1

anxn
∥∥ ≤ α

∥∥
s∑

n=1

anxn
∥∥.

For any N ∈ N, we will consider the norm ‖f‖ = supt∈I ‖f(t)‖1 in the space
C(I,RN ), which makes it a Banach space; here ‖ · ‖1 represents the 1-norm
in RN , given by ‖(x1, . . . , xN )‖1 = max1≤i≤N |xi|. In Section 4 the next
lemma –which is a direct application of Nikolskii’s theorem– will be needed.

Lemma 2.5. Assume that {fn}n≥1 is a sequence in C(I,RN ) \ {0} such

that the supports {t ∈ I : fn(t) 6= 0} (n = 1, 2, . . . ) are mutually disjoint.

Then {fn}n≥1 is a basic sequence in C(I,RN ).

The next assertion –which is proved in [10, Theorem 2.3] (see also [3,8,9])–
will be useful in Section 4 to get dense-lineability from mere lineability.

Theorem 2.6. Assume that E is a metrizable separable topological vector

space and that α is an infinite cardinal number. Let A,B ⊂ E be two subsets

such that A is α-lineable, B is dense-lineable, A ∩ B = ∅ and A + B ⊂ A.
Then A contains a dense vector space M with dim(M) = α.

The following elementary lemma will be used repeatedly along Sections
3–4.

Lemma 2.7. Let Y be a Peano space and [a, b] be a closed interval in R.

Given u, v ∈ Y , there is a mapping Φ ∈ CS([a, b], Y ) such that Φ(a) = u
and Φ(b) = v.

Proof. By the Hahn–Mazurkiewicz theorem, we can select a mapping f ∈
PY . Since Peano spaces are arcwise connected [30, Theorem 31.2], there
are continuous mappings g : [0, 1/3] → Y and h : [2/3, 1] → Y satisfying
g(0) = u, g(1/3) = f(0), h(2/3) = f(1) and h(1) = v. Define ϕ : I → Y as

ϕ(t) =





g(t) if 0 ≤ t < 1/3
f(3t− 1) if 1/3 ≤ t ≤ 2/3
h(t) if 2/3 ≤ t ≤ 1.

Then it is evident that the mapping Φ : [a, b] → Y given by Φ(t) = ϕ
(
t−a
b−a

)

does the job. �

Finally, let us recall a number of concepts concerning the Jordan measu-
rability. Assume that S is a bounded subset of R2. Then the inner Jordan
content and the outer Jordan content of S are respectively given by the
following lower and upper Riemann integrals:

c(S) =

∫
χS dxdy, c(S) =

∫
χS dxdy,

where χS denotes the characteristic function of S. The set S is said to be
Jordan measurable provided that c(S) = c(S), in which case their common
value c(S) is called the Jordan content of S. This happens if and only
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if χS is Riemann integrable, and if and only if λ(∂S) = 0 (∂S denotes
the boundary of S). Moreover, in this case, S is Lebesgue measurable and
c(S) = λ(S).

3. The family of Peano curves

A natural, complete distance on the space C(I,R2) is given by

ρ(f, g) = sup
t∈I

d∞(f(t), g(t)), (1)

that generates the topology of uniform convergence on I. Here d∞ is the
metric on R2 resulting from the 1-norm ‖ · ‖1, that is, d∞((a, b), (c, d)) =
max{|a− c|, |b− d|} (other equivalent, even similar, metrics are available on
R2, but d∞ is more convenient for the sake of calculations). Of course, P is
a very small subset of C(I,R2). The main reason for it is that f(I) = I2 for
each f ∈ P. This is why it is more natural to consider P as a topological
subspace of C(I, I2) rather than of C(I,R2). Observe that, due to the fact
that uniform convergence entails pointwise convergence, C(I, I2) (endowed
with the distance ρ induced from C(I,R2)) is closed in C(I,R2) (in fact,
C(I,A) is closed in C(I,R2), for every closed set A ⊂ R2), so it is a complete
metric space.

For a general Peano space Y , it will be endowed with a fixed distance d
generating its topology (note that, as Y is compact, any distance generating
its topology is complete). Then, just by changing d∞ to d, the expression
(1) above defines a complete distance on C(I, Y ). Observe that, since Y
is metrizable and arcwise connected, it is uncountable as soon as it pos-
sesses more than one point; in fact, every nonempty open subset of Y is
uncountable. In the following theorem, we gather some topological or me-
trical properties of P. We use standard notation for a metric space (X,D):
BD(x0, r) and BD(x0, r) will stand, respectively, for the open ball and the
closed ball with center x0 ∈ X and radius r > 0.

Theorem 3.1. Assume that Y is a Peano space. We have:

(a) PY is closed in C(I, Y ). In particular, PY is a completely metrizable

space.

(b) If Y has at least two points then PY is not compact.

(c) Assume that Y has at least two points and that there is y0 ∈ Y
satisfying the following property: given a neighborhood U of y0, there
exists a neighborhood V of y0 such that V ⊂ U and V \ {y0} is

arcwise connected. Then P0
Y = ∅. Hence PY is nowhere dense in

C(I, Y ).
(d) In the case Y = I2, the Peano family PY = P is strongly porous in

C(I, I2).

Proof. (a) Let F ∈ C(I, Y ) and {fn}n≥1 be a sequence in PY with fn → F .
Fix y ∈ Y . Then there is a sequence {tn}n≥1 ⊂ I such that fn(tn) =
y for all n ∈ N. Since I is compact, we can take out a subsequence
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{tnk
}k≥1 converging to some point t0 ∈ I. The continuity of F yields

αk := d(F (tnk
), F (t0)) → 0 as k → ∞. From the triangle inequality,

d(y, F (t0)) ≤ d(fnk
(tnk

), F (tnk
)) + d(F (tnk

), F (t0)) ≤ ρ(fnk
, F ) + αk −→ 0.

Hence d(y, F (t0)) = 0 or, that is the same, F (t0) = y. Since y was arbi-
trary, F is surjective, that is, F ∈ PY . Therefore PY is closed.

(b) Choose y, z ∈ Y with y 6= z. Set ε := d(y, z) > 0 and fix δ ∈ (0, 1). By
Lemma 2.7, there exists a continuous surjective function Φ : [0, δ/2] → Y
with Φ(0) = y = Φ(δ/2). In particular, there is v ∈ [0, δ/2] such that Φ(v) =
z. By extending Φ as y on (δ/2, 1] and setting u := 0, we obtain points
u, v ∈ I and a mapping Φ ∈ PY such that |u − v| < δ but d(Φ(u),Φ(v)) ≥
ε. In other words, the family PY is not equicontinuous. According to
the generalized Arzelá theorem (see e.g. [21, pp. 119–120]), PY cannot be
relatively compact, so it is not compact.

(c) Consider the point y0 given in the hypothesis and suppose, by way of
contradiction, that P0

Y 6= ∅. Then there are f ∈ PY and r > 0 such
that Bρ(f, r) ⊂ PY . In other words, if g ∈ C(I, Y ) and ρ(g, f) < r then
g(I) = Y . On one hand, a neighborhood V of y0 can be found such that
Bd(y0, r/2) ⊃ V and V \{y0} is arcwise connected. On the other hand, there
is a closed ball Bd(y0, s) ⊂ V . Since f is continuous, the set f−1(Bd(y0, s))
is open in I, so it is a countable union of pairwise disjoint intervals of the
form (α, β), [0, β) or (α, 1]. In all three cases, we have f(α) 6= y0 6= f(β),
and the continuity of f implies f(α), f(β) ∈ Bd(y0, s). Then f(α), f(β) ∈
V \{y0}, which is arcwise connected. Therefore, in the first case, we can find
a continuous mapping h = hα,β : [α, β] → V \ {y0} satisfying h(α) = f(α)
and h(β) = f(β).

Define the mapping g : I → Y as follows: g(t) = f(t) if t ∈ I
\ f−1(Bd(y0, s)), g(t) = hα,β(t) if t belongs to one of the intervals (α, β)
making up f−1(Bd(y0, s)), g(t) = f(β) if t ∈ [0, β) ⊂ f−1(Bd(y0, s)), and
g(t) = f(α) if t ∈ (α, 1] ⊂ f−1(Bd(y0, s)). It is evident that g is continu-
ous and g(t) 6= y0 for all t ∈ I. Then g 6∈ PY . Now, the triangle inequality
and the fact s < r/2 yield d(g(t), f(t)) < r for all t ∈ I, so g ∈ Bρ(f, r).
This contradiction proves (c).

(d) Fix α ∈ (0, 1) and a ball Bρ(f, ε) ⊂ C(I, I2). Define f0 := (1 − ε
2)f .

Trivially, f0 ∈ C(I, I2). Moreover,

ρ(f, f0) = sup
t∈I

‖f(t)− (1−
ε

2
)f(t)‖1 =

ε

2
sup
t∈I

‖f(t)‖1 ≤
ε

2
< ε,

so f0 ∈ Bρ(f, ε). Take g ∈ Bρ(f0, αρ(f, f0)). Then d(g(t), f0(t)) ≤ αρ(f, f0) ≤
αε/2 for all t ∈ I and, by the triangle inequality,

‖g(t)‖1 ≤ αρ(f, f0) + ‖f0(t)‖1 ≤ α
ε

2
+ 1−

ε

2
< 1.

Therefore g(I) 6= I2, so P ∩ Bρ(f0, αρ(f, f0)) = ∅. This had to be shown.
�
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Remark 3.2. Of course, the condition in (c) above is fulfilled if Y = I2,
but in this case the conclusion of (d) is stronger than that of (c). Notice that
some assumption on Y is really needed in order that P0

Y = ∅. For instance,
for the unit circle Y = S1 = {(x, y) ∈ R2 : x2 + y2}, which clearly does not
satisfy the mentioned condition, we have that P0

S1 6= ∅. Indeed, it is not

difficult to show that for the mapping f : t ∈ I 7→ (cos(4πt), sin(4πt)) ∈ S1

(which travels S1 twice in the same direction) one has Bρ(f, 1/2) ⊂ PS1 .

Remark 3.3. The last theorem yields that, topologically speaking, the
Peano class is very small. Another property of PY –easy to see and not
related to the size– is that it is arcwise connected.

The next statement tells us that, if we endow C(I, I2) with the semigroup
structure given by coordinatewise multiplication, then P has a chance to be
considered large.

Theorem 3.4. The set P is semigroupable.

Proof. Fix any sequence (an) with a1 < a2 < · · · < an < · · · → 1. Let
a0 := 0. According to Lemma 2.7, we can find for every n ∈ N a mapping
fn ∈ CS([an−1, an], I

2) with fn(an−1) = (1, 1) = fn(an). Let us extend
continuously fn to I by defining fn(t) = (1, 1) if t ∈ I \ [an−1, an]. Then
fn ∈ P and, trivially, every power fmn still belongs to P. Consider the
subsemigroup G generated by {fn}n≥1. Given Φ ∈ G, there exist p ∈ N,
{i1 < · · · < ip} ⊂ N and {m1, . . . ,mp} ⊂ N satisfying Φ = fm1

i1
· · · f

mp

ip
.

Since

I2 ⊃ Φ(I) ⊃ Φ([aip−1, aip ]) = fmip ([aip−1, aip ]) = I2,

we obtain Φ(I) = I2 or, that is the same, G ⊂ P. All that must be proved
is that G is infinitely generated. Assume, by way of contradiction, that
there are finitely many elements of G generating it. Taking into account
the structure of G and the fact that G is commutative, there would be
p ∈ N such that each Φ ∈ G can be written as Φ = fm1

1 · · · f
mp
p , for some

m1, . . . ,mp ∈ {0, 1, 2, . . . } depending on Φ. But taking Φ = fp+1, the
previous equality is not possible, because fj(t) = (1, 1) for all t ∈ [ap, ap+1]
and all j = 1, . . . , p. This is the desired contradiction. �

Remark 3.5. If P is considered as a subset of the additive group
(C(I,R2),+), then it is not very likely for the sum of two given mappings in
P to stay still in P. Nevertheless, we can say at least the following: given
N ∈ N, there are functions f1, . . . , fN ∈ P such that f1 + · · · + fN ∈ P.
Indeed, for each i ∈ {1, ..., N} take as fi the mapping Φ provided in Lemma
2.7 with Y = I2, [a, b] = [ i−1

N
, i
N
], u = (0, 0) = v, extended as (0, 0) to

the remaining of I. But one cannot find a sequence {fn}
∞
n=1 ⊂ P such

that
∑

n≥1 fn converges uniformly to any function because, if this is were

the case, one would have limn→∞ supt∈I ‖fn(t)‖1 = 0, which is plainly not
possible since supt∈I ‖fn(t)‖1 = 1 for every n. We do not know whether
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there is a sequence {fn}
∞
n=1 ⊂ P such that

∑
n≥1 fn converges pointwise to

a function f ∈ P.

4. The family of space-filling curves

Throughout this section we shall deal with the algebraic size of the set
SF , viewed as a subset of C(I,R2). Recall that, under the distance given
by (1), C(I,R2) is an F-space, that is, a completely metrizable topological
vector space. In fact, it is a Banach space under the norm ‖ · ‖ := ρ(·, 0).

Concerning elementary topological properties, the set SF is clearly non-

closed in C(I,R2): if we take f ∈ P then each fn := (1/n)f ∈ SF (n ≥ 1)
and fn → (0, 0) 6∈ SF . Moreover, SF0 = ∅. Indeed, if ϕ ∈ C(I,R2) and
ε > 0 are given, with ϕ(t) = (g(t), h(t)), then from the uniform continuity of
g and h one obtains anN ∈ N such that |g(t)−g(u)| < ε/2 and |h(t)−h(u)| <

ε/2 whenever t, u ∈ [ i−1
N
, i
N
] (i = 1, . . . , N). If we define g̃, h̃ : I → R as the

polygonal functions joining successively the points ( i
N
, g( i

N
)) (i = 1, ..., N)

and, respectively, the points ( i
N
, h( i

N
)) (i = 1, ..., N), then the mapping

ϕ̃(t) := (g̃(t), h̃(t)) satisfies ρ(ϕ̃, ϕ) < ε and ϕ̃ 6∈ SF , so SF does not
contain any ρ-ball.

If ϕ ∈ C(I,R2) then ϕ(I) is compact, hence bounded and closed. Then
ϕ(I) = ϕ(I)0 ∪ ∂ϕ(I). Therefore, according to Definition 1.1 and the final
paragraph of Section 2, we have that

ϕ ∈ SF if and only if λ(∂ϕ(I)) = 0 and (ϕ(I))0 6= ∅.

We saw in Section 1 how Osgood’s example provided a λ-space-filling
curve ψ that is not space-filling. In this case, we have even that (ϕ(I))0 = ∅;
indeed, a continuous injective mapping I → R2 cannot fill in a square, see
[26]. In view of this, the following concept is in order.

Definition 4.1. A continuous mapping ϕ : I → R2 is said to be a topologi-

cally space-filling curve provided that (ϕ(I))0 6= ∅. The family of all these
mappings will be denoted by T SF .

It is evident that SF ⊂ T SF ⊂ λ-SF := {λ-space-filling curves}. More-
over, both inclusions are strict. Indeed, for the second one we can appeal
Osgood’s example, while for the first one we can construct on [0, 1/3] a
curve filling I2, and on [2/3, 1] an Osgood-type curve that is disjoint with
I2, and then to joint them along [1/3, 2/3] by a segment so as to built a
T SF mapping.

In the following theorems it is shown that, in some algebraic senses, our
family SF can be thought as “large”.

Theorem 4.2. The family SF is spaceable in C(I,R2). In particular, it is

maximal lineable.

Proof. Fix again any sequence (an) with a1 < a2 < · · · < an < · · · → 1. By
Lemma 2.7, for every n ∈ N there is a mapping fn ∈ CS([an−1, an], [−1, 1]2)
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with fn(an−1) = (0, 0) = fn(an), where a0 := 0. Extend continuously each
fn to I by setting fn(t) = (0, 0) if t ∈ I \ [an−1, an]. Since the supports of
these functions are mutually disjoint, Lemma 2.5 tells us that {fn}n≥1 is a
basic sequence of C(I,R2). Define

M := span{fn : n ∈ N}.

It is plain that M is a closed vector subspace of C(I,R2). Moreover, it is
infinite dimensional because the fn’s, being members of a basic sequence,
are linearly independent.

Finally, let f ∈ M \ {0}. Then there is a sequence (cn) ⊂ R with
some cm 6= 0 such that f =

∑∞
n=1 cnfn in C(I,R2). Note that this se-

ries converges uniformly on I. Therefore cnfn → 0 uniformly on I, that
is, limn→∞ |cn| supt∈I ‖fn(t)‖1 = 0. But since fn(I) = [−1, 1]2, we get
supt∈I ‖fn(t)‖1 = 1 for all n, hence cn → 0. Therefore, there exists p ∈ N

such that |cp| = max{|cn| : n ∈ N} > 0. Consequently, f(I) = {(0, 0)} ∪⋃
n≥1(cnfn)([an−1, an]) = {(0, 0)} ∪

⋃
n≥1 |cn|[−1, 1]2 = |cp|[−1, 1]2 =

[−|cp|, |cp|]
2. Then f(I) is, trivially, Jordan measurable and satisfies f(I)0 6=

∅. Thus, f ∈ SF , as required. The maximal lineability of SF comes from
the fact that dim(M) = c (= dim (C(I,R2)), because, by Baire’s catego-
ry theorem, the dimension of any separable infinite dimensional F-space is
c. �

Proposition 4.3. The family SF is dense in C(I,R2).

Proof. Fix a ball Bρ(f, ε). Since f is uniformly continuous on I, there is
δ > 0 such that ‖f(u) − f(v)‖1 < ε/2 if |u − v| < δ. Select a partition
{0 = t0 < t1 < · · · < tN = 1} with |tj − tj−1| < δ (j = 1, . . . , N). Then
we have ‖f(tj) − f(tj−1)‖1 < ε/2 (j = 1, . . . , N). Choose any closed non-
degenerate rectangle R = [a, b] × [c, d] with max{b − a, d − c} < ε/2 and
{f(t0), f(t1)} ⊂ R. Select also any mapping ϕ ∈ CS([t0, t1], R) such that
ϕ(t1) = f(t1) (Lemma 2.7). Define g = (g1, g2) as g|[t0,t1] = ϕ and g1, g2
affine-linear in each segment [tj−1, tj ] (j = 2, . . . , N), and such that g(tj) =
f(tj) for all j. It is easy to check that ϕ ∈ SF ∩Bρ(f, ε), which shows the
density of SF . �

According to the last proposition and Theorem 4.2, SF is dense and
lineable. However, this does not imply that SF is dense-lineable. In fact, we
have been not able to prove this point, yet our conjecture is the truthfulness
of the claim. In view of this, we will content ourselves with showing the
(maximal) dense-lineability of the broader class T SF . With this aim, the
forthcoming two auxiliary assertions will reveal useful.

Lemma 4.4. Let (Y, d) be a locally arc-connected metric space, and let

t0 ∈ I. Then the set

Dt0 := {ϕ ∈ C(I, Y ) : ϕ is constant on some neighborhood U = Uϕ of t0}
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is dense in C(I, Y ), when this space is endowed with the uniform metric

ρ(f, g) = supt∈I d(f(t), g(t)).

Proof. Fix a ball Bρ(f, ε) ⊂ C(I, Y ). Our goal is to show that Dt0 ∩
Bρ(f, ε) 6= ∅. Consider the ball Bd(f(t0), ε/3) ⊂ Y . By hypothesis, there
is a connected neighborhood V of f(t0) in Y such that V ⊂ Bd(f(t0), ε/3).
Since f is continuous at t0, there exists a neighborhood [c, d] of t0 in I with
f([c, d]) ⊂ V . We can suppose 0 < t0 < 1 (the case t0 ∈ {0, 1} being easier
to deal with), so that c < t0 < d. Choose any c′, d′ with c < c′ < t0 < d′ < d.
By local arc-connection, we can find continuous mappings g : [c, c′] → V ,
h : [d′, d] → V satisfying g(c) = f(c), g(c′) = f(t0) = h(d′) and h(d) = f(d).
Let U := [c′, d′] and define ϕ : I → Y as

ϕ(t) =





f(t) if t 6∈ [c, d]
g(t) if t ∈ [c, c′)
f(t0) if t ∈ U
h(t) if t ∈ (d′, d].

Clearly ϕ ∈ Dt0 . Moreover,

ρ(f, ϕ) = sup
t∈[c,d]

d(f(t), ϕ(t))

≤ sup
t∈[c,d]

(d(f(t), f(t0)) + d(f(t0), ϕ(t))) ≤ ε/3 + ε/3 < ε,

due to the triangle inequality and the fact ϕ([c, d]) = g([c, c′]) ∪ h([d′, d]) ⊂
V ⊂ Bd(f(t0), ε/3). Consequently, f ∈ Dt0 ∩Bρ(f, ε), and we are done. �

Lemma 4.5. The subfamily of T SF given by

T SF1 := {ϕ ∈ C(I,R2) : (ϕ(U))0 6= ∅ for all neighborhood U of 1}

is spaceable in C(I,R2).

Proof. We need a modification of the construction given in the proof of
Theorem 4.2. Fix once more any sequence (an) with a1 < a2 < · · · <
an < · · · → 1 and consider a partition of N into infinitely many pairwise
disjoint sequences {p(n, 1) < p(n, 2) < p(n, 3) < · · · } (n = 1, 2, . . . ). By
Lemma 2.7, for every pair (n, k) ∈ N × N there exists a mapping gn,k ∈
CS([ap(n,k), ap(n,k)+1], (1/k)I

2) with gn,k(ap(n,k)) = (0, 0) = gn,k(ap(n,k)+1).
Let us call In,k := [ap(n,k), ap(n,k)+1] and extend continuously each gn,k on I

by defining it as (0, 0) on I \In,k. Now, fix n ∈ N and define fn :=
∑∞

k=1 gn,k.
Note that this series is in fact a finite sum at each point t ∈ I, so it is well
defined. If t < 1 there is a neighborhood of t lying at most on two intervals
In,k (k = 1, 2, . . . ), which entails the continuity of fn at t. Observe that the
continuity at t = 1 is guaranteed by the fact gn,k(In,k) = k−1I2 for all k,
from which we conclude that each fn is continuous on I. Since the supports
of the functions fn (n ≥ 1) are mutually disjoint, Lemma 2.5 tells us that
they form a basic sequence.
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As in the proof of Theorem 4.2, define

M := span {fn}n≥1.

Then M is a closed infinite dimensional vector subspace of C(I,R2). Let
f ∈M \ {0}. Then there are uniquely determined real coefficients c1, c2, . . .
with some cm 6= 0 such that f =

∑∞
n=1 cnfn, where the convergence of the

series is uniform on I. Fix a neighborhood U of t = 1 in I. Since ap(m,k) → 1
as k → ∞, we can find k0 ∈ N such that [ap(m,k0), ap(m,k0)+1] ⊂ U . Therefore

f(U) ⊃ f([ap(m,k0), ap(m,k0)+1]) = cmfm([ap(m,k0), ap(m,k0)+1])

= cmgp(m,k0)([ap(m,k0), ap(m,k0)+1]) = cmk
−1
0 I2,

hence (f(U))0 6= ∅. In other words, f ∈ T SF1, which shows the desired
spaceability. �

Of course, the last construction can be reproduced for any fixed t0 ∈ I,
but t0 = 1 is enough for us.

Theorem 4.6. The family T SF is maximal dense-lineable in C(I,R2).
Hence the family λ-SF is maximal dense-lineable as well.

Proof. It is enough to prove that the subfamily T SF1 defined in Lemma
4.5 is maximal dense-lineable in C(I,R2). With this aim, observe first that
A := T SF1 is c-lineable in C(I,R2) by the mentioned lemma and Baire’s
theorem. Secondly, the set

B := {ϕ ∈ C(I,R2) : ϕ is constant on some neighborhood U = Uϕ of 1}

is dense in C(I,R2), due to Lemma 4.4. Trivially, B is also a vector space,
whence B is dense-lineable. It is also straightforward that A ∩ B = ∅.
Finally, if ϕ ∈ A, ψ ∈ B and U is a neighborhood of 1, there are a neighbor-
hood V ⊂ U of 1 and a constant C ∈ R2 such that ψ(t) = C for all t ∈ V
and (ϕ(V ))0 6= ∅. Then

((ϕ+ ψ)(U))0 ⊃ ((ϕ+ ψ)(V ))0 = C + (ϕ(V ))0 6= ∅.

Thus ((ϕ + ψ)(U))0 6= ∅, that is, ϕ+ ψ ∈ A and A+ B ⊂ A. The proof is
finished after a direct application of Theorem 2.6 with E := C(I,R2) and
α := c. �

We conclude this paper with the following theorem. Recall that the vector
space C(I,R2) becomes an algebra if the multiplication is defined coordi-
natewise.

Theorem 4.7. The family SF is strongly algebrable.

Proof. As a first step, we construct an appropriate sequence {fn}n≥1 genera-
ting a free algebra in C(I,R2). By Lemma 2.7, there exists a Peano curve

ϕ ∈ CS(I, [−1, 1]2) such that ϕ(0) = (0, 0) = ϕ(1). If T = [a, b] ⊂ R is
an interval, we define ϕT : [a, b] → R2 as ϕT (t) = ϕ

(
t−a
b−a

)
, so that ϕ(T ) =
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[−1, 1]2 and ϕT (a) = (0, 0) = ϕT (b). Denote byQ the set of rational numbers
and consider the countable set J = {σk}k≥1 defined as

J := {σ = (q1, q2, .., qj , 0, 0, ...) ∈ (0,+∞)N : q1, ..., qj ∈ Q ∩ (−1, 1), j ∈ N}.

Take a sequence (an) with 0 < a1 < · · · < an < · · · → 1 and consider
the sequence of intervals [an, an+1] (n ≥ 1). Then we can extract from it
infinitely many countable families of sequences of intervals {In,k : k ∈ N}
(n ∈ N) such that In,k ∩ Im,l = ∅ as soon as (n, k) 6= (m, l) and, for every
n ∈ N, the intervals In,k approach 1 as k → ∞. Split each interval In,k into
three segments of equal length, say In,k = In,k,1 ∪ In,k,2 ∪ In,k,3, where In,k,2
is the middle segment.

Fix n ∈ N and define the mapping fn : I → R2 as follows. For all k ∈ N,
we set fn := k−1ϕIn,k,2

on In,k,2 and fn := (0, 0) on In,k,1 ∪ In,k,3. If m 6= n

then we set fn := (k−1qn, k
−1qn) on Im,k,2, where qn is the nth component

of the sequence σk ∈ J . Both components of fn are defined as affine linear
on Im,k,1 and Im,k,3, with value (0, 0) at the left endpoint of Im,k,1 and at the
right endpoint of Im,k,3. Finally, set fn := (0, 0) on I \

⋃∞
k=1 In,k. Each fn

is clearly continuous on [0, 1), while its continuity at t = 1 (where fn takes
the value (0, 0)) is guaranteed by the fact that supt∈In,k

‖fn(t)‖1 ≤ k−1 for

all k ∈ N.

Now, let N ∈ N and consider a nonzero polynomial P of N variables
without constant term, say P (x1, . . . , xN ). Without loss of generality, we
may assume that xN appears explicitly in P , so that there is m ∈ N and
polynomials Qj (j = 0, 1, . . . , N − 1) of N − 1 real variables, with Qm 6≡ 0,
such that

P (x1, . . . , xN ) =
m∑

j=0

Qj(x1, . . . , xN−1)x
j
N .

Let F := P (f1, . . . , fN ). Our aim is to show that F ∈ SF (it must also be
proved that F 6≡ 0, but this is unnecessary because 0 /∈ SF).

Assume first that Qm(0, . . . , 0) 6= 0. Since Qm is continuous, there is r ∈
(0, 1) such that Qm(x1, . . . , xN−1) 6= 0 for all (x1, . . . , xN−1) ∈ (−r, r)N−1 \
{(0, . . . , 0)}. Taking p ∈ N with 1/p < r and qj := 1/p (j = 1, . . . , N − 1),

we get the existence of a point (q1, . . . , qN−1) ∈ (Q ∩ (−1, 1))N−1 such that

Qm(k−1q1, . . . , k
−1qN−1) 6= 0 for all k ∈ N. (2)

If, on the contrary, we had Qm(0, . . . , 0) = 0, then we would get a point
q = (q1, . . . , qN−1) ∈ (Q∩(−1, 1))N−1 satisfying (2) too. In order to see this,
assume, by way of contradiction, that for each point p = (p1, . . . , pN−1) ∈
(Q∩ (−1, 1))N−1 there are infinitely many t ∈ R with Qm(tp1, . . . , tpN−1) =
0. Since the left hand side of the latter equation is a polynomial in the
variable t, we would have Qm(tp1, . . . , tpN−1) = 0 for all t. Fixing t and
taking into account the density of Q∩ (−1, 1) in (−1, 1) and the continuity
of Qm, we get Qm(tx1, . . . , txN−1) = 0 for all (x1, . . . , xN ) ∈ (−1, 1)N−1 and
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all t ∈ R, so Qm ≡ 0, a contradiction. Hence there is p ∈ (Q ∩ (−1, 1))N−1

such that the set of t ∈ R for which Qm(tp1, . . . , tpN−1) = 0 is finite.
Since 0 is one of such t’s, there is s ∈ N with Qm(tp1, . . . , tpN−1)6=0 for all
t ∈ (0, 1/s]. Therefore we get (2) if we set q = (s−1p1, . . . , s

−1pN−1).

Let σ := (q1, . . . , qN−1, 0, 0, . . . ) ∈ J , where (q1, . . . , qN−1) ∈
(Q ∩ (−1, 1))N−1 satisfies (2). Then there is k ∈ N such that σ = σk.
Consider the interval IN,k and its subinterval IN,k,2. It happens that, for
every t ∈ IN,k,2,

F (t) = P (f1(t), · · · , fN (t))

= P ((k−1q1, k
−1q1), . . . , (k

−1qN−1, k
−1qN−1), k

−1ϕIN,k,2
(t))

=

m∑

j=0

Qj((k
−1q1, k

−1q1), . . . , (k
−1qN−1, k

−1qN−1))(k
−1ϕIN,k,2

(t))j . (3)

Recall that, given any polynomial H(x1, . . . , xN ), we have that
H((a1, b1), · · · , (aN , bN )) = (H(a1, . . . , aN ),H(b1, . . . , bN )). By the defini-
tion of the fn’s, the image L2 := F (I \ IN,k) is the union of two piecewise
continuously differentiable curves in R2, so having empty interior L0

2 (hence
L2 = ∂L2) and Lebesgue measure λ(∂L2) = 0. Thanks to (3), the set L1 :=
F (IN,k) is the image of the square R := [−1/k, 1/k]2 under the C1-mapping
S : R2 → R2 given by S(x, y) = (H(x),H(y)), where H is the nonconstant
polynomial H(x) =

∑m
j=0 αj x

j , with αj := Qj(k
−1q1, . . . , k

−1qN−1) (it is

nonconstant because, from (2), αm 6= 0; this also yields F 6≡ 0). Therefore
there is a point x0 ∈ (−1/k, 1/k) such that H ′(x0) 6= 0, so the determinant
of the Jacobian matrix JS(x, y) of the transformation S at (x0, x0) ∈ R is
H ′(x0)

2 6= 0. By the inverse mapping theorem, S has a local differentiable
(hence continuous) inverse at (x0, x0), and so S is locally open at this point,
which yields L0

1 = (S(R))0 6= ∅.

Finally, since L1 is compact (hence closed) in R2, one has that ∂L1 ⊂
L1 = S(R) = S(R0) ∪ S(∂R). Since S is locally open at those points
(x, y) ∈ R0 with detJS(x, y) 6= 0, we deduce that ∂L1 ⊂ S(C) ∪ S(∂R),
where C := {(x, y) ∈ R0 : det JS(x, y) = 0}. On one hand, since S is
continuously differentiable on R2, Sard’s theorem (see e.g. [28, p. 47]) tells
us that λ(S(C)) = 0. On the other hand, the continuous differentiability of
S on R2 implies the well-known estimation

λ(S(∂R)) ≤

∫

∂R

|det JS | dλ ≤ sup
∂R

|det JS | · λ(∂R) = 0.

Thus, λ(S(∂R)) = 0, hence λ(∂L1) = 0. To sum up, we get (F (I))0 ⊃ L0
1 6=

∅ and

λ(∂F (I)) ≤ λ((∂L1) ∪ (∂L2)) ≤ λ(∂L1) + λ(∂L2) = 0.



SPACE-FILLING CURVES: TOPOLOGICAL AND ALGEBRAIC STRUCTURE 15

This entails (F (I))0 6= ∅ and λ(∂F (I)) = 0. In other words, F ∈ SF ,
which finishes the proof. �

Remark 4.8. The mere algebrability of SF can be obtained in an easier
way as follows. Consider a sequence {a1 < a2 < · · · } ⊂ [0, 1) and the in-
tervals In = [an, an+1] (n ≥ 1). By Lemma 2.7, for every n ∈ N there is
gn ∈ CS(In, I

2) such that gn(an) = (0, 0) = gn(an+1). Define the continuous
function fn : I → R2 as gj on Ij (j = 1, . . . , n) and (0, 0) on I \

⋃n
j=1 Ij.

Let A denote the algebra generated by the fn’s. Then A is infinitely ge-
nerated, because each fn cannot be written as P (f1, . . . , fn−1), P being a
nonconstant polynomial in n − 1 real variables: indeed, such a function
P (f1, . . . , fn−1) would be zero on In, which is absurd since fn = gn on In.
Now, fix N and a nonzero polynomial P (x1, . . . , xN ) of N real variables.
It must be proved that the mapping F := P (f1, · · · , fN ) either is identi-
cally (0, 0) or belongs to SF (observe that F 6≡ (0, 0) is not demanded; in
fact, A is not a free algebra because, for instance, the nonzero polynomial
without constant term P (x, y) := x2y − xy2 satisfies P (f1, f2) ≡ (0, 0)).
Without loss of generality, it can be assumed that fN appears explicitly in
the expression of P (x1, . . . , xN ) as sum of monomials xm1

1 · · · xmN

N . Consider
the one-variable polynomials without constant term P1(x) := P (x, x, . . . , x),
P2(x) := P (0, x, . . . , x), P3(x) := P (0, 0, x, . . . , x), . . . , PN (x) :=
P (0, 0, . . . , 0, x). According to the definition of the fn’s, we have that F

equals Pj(gj) on Ij . Therefore F (I) =
⋃N

j=1 Sj(I
2), where Sj(x, y) :=

(Pj(x), Pj(y)) (j = 1, . . . , N). If Pj is constant then Pj ≡ 0, so Sj(I
2) =

{(0, 0)}. If Pj is not constant then the same Sard-change-of-variable argu-
ment of the final part of the proof of Theorem 4.7 leads us to λ(∂Sj(I

2)) = 0
and (Sj(I

2))0 6= ∅. Hence either F ≡ (0, 0) or λ(∂F (I)) = 0 and (F (I))0 6=
∅, as required.
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