
Supervised learning by means

of accuracy-aware evolutionary algorithms
Jos�ee C. Riquelme, Jesu�us S. Aguilar-Ruiz ,

Carmelo Del Valle
Departamento de Lenguajes y Sistemas Informaa�ticos, Universidad de Sevilla, Avda,

Reina Mercedes s/n, 41012 Sevilla, Spain
Abstract

This paper describes a new approach, HIerarchical DEcision Rules (HIDER), for
learning generalizable rules in continuous and discrete domains based on evolutionary
algorithms. The main contributions of our approach are the integration of both binary
and real evolutionary coding; the use of specific operators; the relaxing coefficient to
construct more flexible classifiers by indicating how general, with respect to the errors,
decision rules must be; the coverage factor in the fitness function, which makes possible
a quick expansion of the rule size; and the implicit hierarchy when rules are being
obtained. HIDER is accuracy-aware since it can control the maximum allowed error for
each decision rule. We have tested our system on real data from the UCI Repository.
The results of a 10-fold cross-validation are compared to C4.5’s and they show a sig-
nificant improvement with respect to the number of rules and the error rate.

Keywords: Evolutionary algorithms; Supervised learning; Decision trees
The research was supported by the Spanish Research Agency CICYT under grant TIC2001–

1143–C03–02.

* Corresponding author. Tel.: +34954553871; fax: +34954557139.
E-mail addresses: riquelme@lsi.us.es (J.C. Riquelme), aguilar@lsi.us.es (J.S. Aguilar-Ruiz),

mail to: riquelme@lsi.us.es

1. Introduction

Supervised learning is used when the user knows the outcomes of the data

samples and wants to predict the outcome of a new unseen instance. An al-
gorithm carries out the prediction (classification) and it can produce knowledge

by using a suitable and understandable representation. Some techniques, like

nearest neighbour searching or neural networks, can classify an instance, but

cannot obtain the knowledge from the information stored in the database.

However, other techniques produce sets of rules with a specific structure: de-

cision trees, decision lists, or simply set of rules. In general, when a rule-based

framework is used to express the acquired knowledge, this is often called de-

cision rules. Such rules can subsequently be used both to infer properties of the
corresponding categories and to classify other, previously unseen, examples

from the original space.

Decision trees are a particularly useful tool in the context of supervised

learning because they perform classification by a sequence of tests whose se-

mantics is intuitively clear and easy to understand. Some techniques, like C4.5

[14], construct decision trees selecting the best attribute by using a statistical

test to determine how well it alone classifies the training examples. This sort of

decision tree may be called axis-parallel, because the tests at each node are
equivalent to axis-parallel hyperplanes in space. On the other hand, other

techniques build oblique decision trees, such as OC1 [13], that tests a linear

combination of the internal attributes at each node, so that, these tests are

equivalent to hyperplanes at an oblique orientation to the coordinate axes. To

find out the smallest decision tree (axis-parallel or oblique) is a NP-hard

problem [5].

Genetic Algorithms (GA) are a family of computational models inspired by

the concept of evolution. These algorithms employ a randomized search
method to find solutions to a particular problem [9]. This search is quite dif-

ferent from the other learning methods mentioned above. A GA is any pop-

ulation-based model that uses selection and recombination operators to

generate new sample examples in a search space [20]. The GA search can move

much more abruptly, replacing a parent individual with an offspring less likely

to fall into the same kind of local minima that can happen with the other

methods. GAs have been used in a wide variety of optimization tasks [8,11]

including numerical optimization and combinatorial optimization problems,
although the range of problems to which GAs have been applied is m broad.

The main tasks in applying GAs to any problem consists in selecting an ap-

propriate representation (coding) and an adequate evaluation function (fit-

ness).

In classical GAs the members of the population (typically maintaining a

constant-sized) are represented as fixed-length strings of binary digits. The

length of the strings and the population size P are completely dependent on the

problem. The population simulates the nature’s behavior, since the relatively

‘‘good’’ solutions produce offspring which replace the relatively ‘‘worse’’ ones,

retaining many of the features of their parents. The estimate of the quality of a

solution is based on a fitness function, which determines how good an indi-
vidual within the population in each generation is. New individuals (offspring)

for the next generation are formed by using (normally) two genetic operators:

crossover and mutation. Crossover combines the features of two individuals to

create several (commonly two) individuals. Mutation operates by randomly

changing several components of a selected individual.

The aim of our research was to obtain a set of rules to classify a database in

the context of supervised learning. First approaches searched for rules without

errors, so the number of rules was very high. Later we controlled the error a
rule could make, introducing the relaxing coefficient, i.e. an allowed error for

the ruleset. This parameter provides accuracy-awareness to the system, al-

lowing some experimentation to select an appropriate number of rules for the

task in consideration. As we will see below, this parameter has no great in-

fluence on the average error rate.

In previous works, we presented a system to classify databases using binary

coding [2]; afterwards, we adopted real coding to handle continuous domains

and axis-parallel representation efficiently. (In addition, we explored other
representations such as rotated hyperrectangles and hyperellipses [3]). Then,

new genetic operators were introduced for real coding. In order to indicate that

a GA is being implemented with real coding and genetic operators based on

this coding, several authors use the term Evolutionary Algorithms (EA) instead

of GA. HIerarchical DEcision Rules (HIDER) uses an EA to search for the

best solutions and produces a hierarchical set of rules. According to the hier-

archy, an example will try to be classified by the ith rule if it does not match the

conditions of the ði� 1Þth preceding rules. The rules are obtained sequentially
until all the examples from the dataset are covered. The behavior is similar to a

decision list [17].

We extend the concept of decision list to continuous domains. Decision lists

work well with objects that are described as concepts, so it can represent

boolean attributes (positives or negatives examples). However, when we want

to learn rules in the context of continuous attributes, we need to extend the

concept of decision list in two ways: first, for adapting the boolean functions to

interval functions; and second, for representing classes instead of true and false
values (positives and negatives examples). For each continuous (real) attribute

ai we obtain the boundaries values, called Li and Ui (lower and upper bounds,

respectively) which define the space Ri (range of the attribute i). These intervals
allow us to include continuous attributes in a decision list. Our decision list

does not have the last constant function true. However, we could interpret last

function as an unknown function, that is, we do not know which class the

example belongs to. Therefore, it may be advisable to say ‘‘unknown class’’

Fig. 1. Hierarchical set of rules.
instead of making an erroneous decision. From the point of view of the ex-

periments, ‘‘unknown class’’ will be considered as an error. The structure of the
set of rules will be as shown in Fig. 1. A more descriptive example of rule will

appear in Fig. 6, where the different sorts of conditions are shown.

The way in which C4.5 splits the space is depicted in Fig. 2. The numbers

within the circles describe the level on the tree where these attributes are placed.

HIDER is quite different because it does not divide the space by an attribute,
A

B

C

A

B
1

2

2

4 3

B

Fig. 2. Splitting the search space using C4.5. Numbers within circles indicate the level of the

condition on the decision tree.

A

B

C

A

B

Fig. 3. Splitting the search space using HIDER.

but it extracts sequentially a region from the space. This permits obtaining

entire regions with the same class, as illustrated in Fig. 3. See the region la-

belled as B on the bottom-left corner of the Figs. 2 and 3. In Fig. 2, C4.5 di-

vides the region into two parts. However, HIDER will obtain the complete
region. For another artificial two-dimensional database, Fig. 4 shows the

classification that C4.5 gives. Nevertheless, as illustrated in Fig. 5, rules inside

of another one could improve the quality of the rule set. The most evident

feature, graphically observed in Fig. 5, is the reduction of the number of rules

because of the rules overlapping. This characteristic motivates us to use hier-

archical decision rules instead of independent decision rules.

As mentioned in [7] one of the primary motivation for using real-coded EAs

is the precision to represent attributes values and the other is the ability to
exploit the gradualness of functions of continuous attributes. We implemented

our first versions with binary-coded GAs, but we could show that real-coded

EAs are more efficient in time and quality of results.
A

B

B

A

B

A

A

A

A

A
A

A

A

B

B B

 A

Fig. 4. Division of the search space done by C4.5.

A

B

B

A

B

Fig. 5. Hierarchical division of the search space done by HIDER.

2. Principles

Before an EA can be run, a suitable coding for the problem must be devised.

We also require a fitness function, which assigns a figure of merit to each coded
solution. During the run, parents are selected for reproduction, and recombined

to generate offspring. These aspects are described below.
2.1. Coding

In order to apply EAs to a learning problem, we need to select an internal

representation of the space to be searched and define an external function that
assigns fitness to candidate solutions. Both components are critical to the

successful application of the EAs to the problem of interest.

Information on the environment comes from a data file, where each example

has a class and a number of attributes. We have to codify that information to

define the search space, which normally will be dimensionally greater. Each

attribute will be formed by several components in the search space, depending

on the specific representation. Two basic principles exist for choosing the

coding: the principle of meaningful building blocks and the principle of min-
imal alphabets [9].

In first approaches, we studied GA-based classifier [6,10] with binary coding.

These are generally used as concept learners, where coding assigns a bit to each

value of the attribute, i.e., every attribute is symbolic (GABIL and GIL are two

well-known systems). For example, an attribute with three possible values

would be represented by three bits. A value of one in a bit indicates that the

value of the attribute is present. Several bits could be active. This coding is

appropriate for symbolic domains. However, it is very difficult to use in con-
tinuous domains, because the number of possible values of an attribute is in-

finite.

The length of an individual is determined by the sum of the number of

values of each attribute. Using binary encoding in continuous domains requires

transformations from binary to real for every attribute in order to apply the

evaluation function. Moreover, when we convert binary to real, we are loosing

precision. For that reason, we have to find the exact number of bits in order to

eliminate the difference between any two values of an attribute. This ensures
that a mutation of the less significant bit of an attribute should include or

exclude at least one example from the training set [16].

The representation for continuous and discrete attributes is best explained

by referring to Fig. 6, where li and ui are values representing an interval for the

continuous attribute; bi are binary values indicating that the value of the dis-

crete attribute is active or not (internal disjunction). A last omitted value is for

the class.

1.4 0102.6 11

attribute
continuous

attribute
discrete

at1: [1.4,6.2]
at2: {white, red, green, blue, black}

 if at 1 [-,2.6] and at 2 {red,blue,black} then Class 0

0

Fig. 6. Continuous (left) and discrete (right) attributes.
The number of classes determines the set of values to which it belongs, i.e., if

there are five classes, the value will belong to the set 0, 1, 2, 3 and 4. Every rule

will be obtained from this representation, but when li ¼ minðaiÞ or

ui ¼ maxðaiÞ the rule will not have that value. For example, in the first case the

rule would be ½�; v� and in the second one ½v;��. If both values are equal to the

boundaries then the rule appears ½�;�� for that attribute, which means it is not

relevant because whichever of the attribute’s values will be covered by the
whole range of that attribute ð½�;��Þ. Under these assumptions, some attri-

butes could not appear in the rule set. In the same way, when every discrete

value is active, that attribute does not appear in the rule.
2.2. Algorithm

The algorithm is a typical sequential covering EA [12]. An overview of the

EA-based classifier is shown in the Fig. 7. It chooses the best individual in the

evolutionary process, transforming it into a rule which is used to eliminate data

from the training file [19]. In this way, the training file is reduced for the fol-

lowing iteration. A termination criterion might be reached when more exam-

ples to cover do not exist. The method of generating the initial population
consists in randomly selecting an example from the training file for each in-

dividual of the population, and afterwards, an interval to which the example

belongs is obtained. For example, let Li and Ui be the lower and upper bounds
Fig. 7. Pseudocode.

of the attribute i; then, the range of the attribute is Ui � Li; next, we randomly

choose an example ðva1 ; . . . ; vai ; . . . ; vam ; classÞ from the training file, where m is

the number of attributes; for the last, a possible individual of the population

could thus be ð. . . ; vai � ðUi�Li
N Þk1; vai þ ðUi�Li

N Þk2; . . . ; classÞ, where vai is a value
for the attribute i; k1 and k2 are random values belonging to ½0; NC� (N is the size

of the training data; C is the number of different classes; and class is the same

of that of the example). For discrete attributes, the individual has as many

positions as different values for the attribute, although we assure that at least

the same active value of the example will remain active in the individual.

For instance, let the dataset be the one used in Fig. 6. A possible individual

for the initial population is obtained from a randomly selected example

e ¼ ð1:8; blue; 0Þ. The individual could be ind ¼ ð1:4; 2:6; 0; 1; 0; 1; 1; 0Þ. The
interval [1.4, 2.6] is for the continuous attribute and the values (0,1,0,1,1) is for

the discrete one. Notice that the value blue is active and other values (red and

black) have also been randomly set to 1. The individual keeps the same class

that of the example.

Sometimes, the examples very near the boundaries are hard to cover during

the evolutionary process. To solve this problem, the search space is increased

(currently, the lower bound is decreased by 5%, and the upper bound is in-

creased by 5%). This value is calculated from experimentation and when in-
valid offspring is generated, those values are adjusted to the boundaries of the

attribute.

The evolution module includes elitism: the best individual of every genera-

tion is replicated to the next one. A set of children (50%) is obtained from

copies of randomly selected parents, generated by their fitness values and using

the roulette wheel selection. The remainder is formed through crossovers. Since

half of the new population is created by applying the crossover operator, the

probability of crossover is 0.5 and the probability of selecting an individual for
crossing depends on its fitness value. These individuals could be mutated later

(only the individual from the elite will not be mutated).

Wright’s linear crossover operator [22] creates three offspring: treating two

parents as two points p1 and p2, one child is the midpoint of both, and the other

two lie on a line determined by 3
2
p1 � 1

2
p2 and � 1

2
p1 þ 3

2
p2. Radcliffe’s flat

crossover [15] chooses values for an offspring by uniformly picking values

between the two parents values inclusively. Eshelman and Schaffer [7] use a

crossover operator that is a generalization of Radcliffe’s which is called blend
crossover ðBLX–aÞ. It uniformly picks values that lie between two points that

contain the two parents, but may extend equally on either side determined by a

user specified EA-parameter a. For example, BLX–0:1 picks values from points

that lie on an interval that extends 0.1I on either side of the interval I between
the parents. Logically, BLX–0:0 is the Radcliffe’s flat crossover.

Our crossover operator is like Radcliffes’s most of the time, but sometimes

the value is slightly varied to approximate it to the boundary. Let ½lji ; uji � and

Fig. 8. Crossover operator: four alternatives.
½lki ; uki � be the intervals of two parents j and k for the same attribute i. From
these parents we can generate four possible children selecting values as follows:

let ½l; u� be the interval we want to obtain after applying the crossover operator
to the two parents j and k, and let L and U be the boundaries of the attribute i
being treated, where L and U define the range of the attribute. Once the

crossover operator is selected, one of the four alternatives is applied depending

on the probability denoted in brackets in Fig. 8. When the attribute is discrete,

the crossover operator is like a uniform crossover [18].

Mutation is applied for continuous attributes as follows: if the location (gen)

corresponds to a value of the interval (li or ui), then a small value is subtracted

or added, depending on whether it is the lower or the upper boundary, re-
spectively. The small value is currently the smaller heterogeneous overlap-

Euclidean metric (HOEM, [21]) between any two examples. In the case of

discrete attributes, mutation changes the value from 0 to 1 or viceversa and it is

applied with low probability. We introduce a specific mutation operator to

generalize the attribute when almost all values are 1. In this case, the attribute

does not appear in the rule. For example in Fig. 12b, the attribute sex is not in

the rule R1. For both kinds of attributes, if the location (gen) corresponds to

the class, the mutation generates a new value from C, the set of classes, ran-
domly.
2.3. Generalization

Databases used as training files do not have clearly differentiated areas, so

that obtaining a rule system without errors from the training file involves a

high number of rules. We showed in previous papers [1] a system capable of

producing a rule set exempt from error with respect to the training file.

However, sometimes it is interesting to reduce the number of rules for having a

rule set which may be used like a comprehensible linguistic model. In this way,

it may be advisable to have a system with fewer rules despite some errors, than
too many rules and no errors. In fact, the generalization can produce a de-

crease in the number of rules, although this has a slight effect on the accuracy

of the rule set. Due to the allowance some errors during the obtaining of the

first rules, the number of rules becomes lower because a further generation of

rules which cover a small number of examples (the last ones) is not necessary.

However, these ‘‘allowed errors’’ in the first rules have no influence in the

cross-validation phase. When databases present a distribution of examples very

hard to classify, it can be interesting to introduce the relaxing coefficient (RC)
for understanding the behavior of databases by decreasing the number of rules

[16]. RC indicates what percentage of examples inside of a rule can have a

different class than the rule has. RC behaves like the upper bound of the error

with respect to the training file, that is, as an allowed error rate. To deal effi-

ciently with noise and find a good value for RC, the expert should have an

estimate of the noise percentage in his data. For example, if database X pro-

duces too many rules when RC is 0, we could set RC to 5 to decrease the

number of rules and, possibly, the error rate is the same as before. All the
experiments in this paper were run using RC ¼ 0 and 10. We have verified that

some complex databases improve on average in both the error rate and the

number of rules when RC is greater than 0 (Pima is an example).

When an individual tries to expand and always reaches examples of a dif-

ferent class, its fitness value cannot become higher, unless a few errors were

allowed. In this case, depending on the characteristics of the fitness function,

such value might increase. In Fig. 9 (right) the individual cannot get bigger,

unless one error is allowed, in which case the individual will have four new
examples (left), which could increase its fitness value.
2.4. Fitness function

The fitness function must be able to discriminate between correct and in-

correct classifications of examples. Finding an appropriate function is not a

trivial task, due to the noisy nature of most datasets. In our case, we try to both
minimize the number of errors and maximize the number of correctly classified

examples. A simple solution to this two-objective optimization problem is

considering both variables within fitness function f as is shown in Eq. (1),

where f is maximized for each individual u from the population.
x

x

x

x

x

x

o
o

o

o

o

o

o

oo
x

x

x

x

x

x

o
o

o

o

o

o

o

oo

xi xj

Evaluation(xi) < Evaluation(xj)

o

o

o

ox x

o o

o o

Fig. 9. Effect of RC on fitness function values.

f ðuÞ ¼ 2ðN � CEðuÞÞ þ GðuÞ þ coverageðuÞ ð1Þ
where N is the number of examples being processed; CEðuÞ is the class error,

which is produced when an example belongs to the region defined by the rule
but it does not have the same class; GðuÞ is the number of examples correctly

classified by the rule; and the coverage of a rule is the proportion of the search

space covered by such rule. Each rule can be quickly expanded to find more

examples thanks to the coverage in the fitness function.
3. Application

The experiments described in this section are from the UCI Repository [4].

The results obtained by HIDER have been compared to that of C4.5 Release 8
(C4.5R8). C4.5 was run using the default parameters (c4.5 --f file --u).

To measure the performance of the method, a 10-fold cross-validation was

achieved with each dataset. It is very important to note that every execution

has been carried out with a population size of as little as 100 individuals and

300 generations for the EA (in cases of small datasets, like Iris, the results

would have been the same using a smaller number of generations: about 50 is

enough). There are very small numbers considering the number the examples

and the dimensionality of some databases. Mutation is always applied with a
probability of 0.1 (individual) and 0.2 (gen: inside the individual). HIDER

needed about 8 h to complete the 10-fold cross-validation for the 18 databases

in a Pentium 400 MHz with 64 Mb of RAM. C4.5 only needed about 8 min in

the same machine. C4.5 is an extremely robust algorithm that performs well on

many domains. However, C4.5 is not flexible in generating decision rules (or

trees), because it is not possible to control the error rate (it only provides two

decision trees: unpruned and pruned). Table 1 gives a 10-fold cross-validation

of the error rates and number of rules for the C4.5 and HIDER algorithms on
the selected domains. HIDER outperforms C4.5 in 12 out of 18 datasets.

Table 1 also compares the number of rules generated by the two approaches.

In order to count the number of rules generated by C4.5, we could sum the

leaves on the tree or apply the expression sþ1
2
, where s is the size of the tree.

From the point of view of the comprehension of the knowledge inside the

database, HIDER is much better than C4.5 since the number of rules is much

smaller. Some databases present a dramatic reduction (for example, Breast

Cancer or German). Results have been generated using RC ¼ 0 and 10. As we
can see, the error rate is approximately the same for RC ¼ 0 and 10, although

the number of rules has decreased by 15% in the last case. Breast Cancer da-

taset is a good example in which RC has considerable influence on the number

of rules, conserving the initial error rate. The most important feature of this

coefficient is that the user can control the number of rules by varying this factor

Table 1

Comparing error rates

Dataset Error rate Number of rules

C4.5R8 HIDER C4.5R8 HIDER

RC ¼ 0 RC ¼ 10 RC ¼ 0 RC ¼ 10

Breast cancer 6.28 4.29 4.5 21.9 11.3 2.4

Bupa liver disorder 34.73 35.71 36.4 28.6 11.3 5.7

Cleveland 26.77 20.49 21.7 35.2 7.9 7.3

German credit 32.1 29.1 30.1 181.5 13.3 12.4

Glass 32.73 29.41 29.6 29.0 19.0 17.0

Heart disease 21.83 22.32 22.1 29.2 9.2 9.2

Hepatitis 21.42 19.41 19.3 13.8 4.5 4.5

Horse colic 19.0 17.64 18.1 39.3 6.0 6.0

Iris 4.67 3.33 4.3 5.5 4.8 3.3

Lenses 29.99 25.0 25.0 4.1 6.5 5.1

Mushrooms 0.01 0.76 0.2 15.5 3.1 3.1

Pima Indian 32.06 25.9 24.9 93.6 16.6 12.1

Sonar 30.31 43.07 43.07 16.8 2.8 2.7

Tic-Tac-Toe 14.2 3.85 3.9 93.9 11.9 10.6

Vehicle 30.6 30.6 30.6 102.3 36.2 30.4

Vote 6.19 6.42 6.2 14.7 4.0 3.8

Wine 6.71 3.95 3.9 5.4 3.3 3.1

Zoo 7.0 8.0 8.0 9.9 7.2 6.5

Average 19.81 18.29 18.43 41.1 9.5 8.06
without having much influence on the error rate. Logically, after a determined

value for RC, the number of rules is very low and the accuracy begins to de-

crease. That value can be obtained by experimentation, so different sets of rules

can be provided in order to select the one which best represents the knowledge

within the dataset, i.e. normally that with a lesser number of rules or attributes

involved in the rule set.

Fig. 10 shows a measure of improvement for the error rate and the number

of rules. To calculate those coefficients the error rate (number of rules) of C4.5
has been divided by the error rate (number of rules) of HIDER (with RC ¼ 0).

On average, HIDER found solutions that had less than one fourth of the rules

output by C4.5. Surprisingly, C4.5 generated a number of rules five times

greater than HIDER for one third of the databases. When the bar is to the left

of 1, C4.5 does better than HIDER, and worse to the right. The ratio values

indicate the percentage of improvement with respect to C4.5. For example, 1.5

(2, 2.5, etc.) means an improvement on 50% (100%, 150%, etc). It is worth

noting that in applying HIDER, more than two thirds of the databases pro-
duce less than half of the rules. C4.5 only was better with Lenses database (see

in Fig. 10 the sole bar to the left). C4.5 made the error rate better for six da-

tabases, although only three of them improved significatively (mushrooms,

C4.5/HIDER

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

bupa

breast cancer

cleveland

german

glass

heart

hepatitis

horse-colic

iris

lenses

mushroom

pima

sonar

tic-tac-toe

vehicle

vote

wine

zoo

ratio

error ratio

rule ratio

8.4

4.4

13.6

6.5

5.0

5.6

6.0

7.9

average error rate
(+22%)

average number
of rules (+340%)

Fig. 10. Comparing the error rate and the number of rules.
sonar and zoo) as we can see in Fig. 10. Figures on the right side of the bars are

shown when the ratio value is greater than 4.

The exact same folds were used for both algorithms so that the 10 resulting

performance numbers for HIDER and C4.5 are pairwise comparable. The

ruleset generated for the Wine database is presented in Fig. 11. HIDER pro-

duced an error rate of 0%, however, that of C4.5 was 22.2%, for that fold.

Numbers in brackets are not from the test file, but the training file (correctly

classified/errors).
Fig. 12 illustrates a more complex example which shows that when the

number of rules is large, the number of conditions involved in the rule set is

also reduced. Thus in the example, C4.5 uses 63 conditions and HIDER uses 30

conditions. The number of conditions for C4.5 is calculated by counting all the
Fig. 11. Ruleset generated by C4.5 (a) and HIDER (b) for the Wine database.

Fig. 12. Ruleset generated by C4.5 (a) and HIDER (b) for the Hepatitis database.
necessary conditions to match one class. In Fig. 12, there are 13 leaves on the

decision tree so that the total number of conditions is the sum of the conditions

that reach each leaf (1þ 4þ 5þ 5þ 5þ 6þ 7þ 7þ 5þ 6þ 6þ 3þ 3 ¼ 63).

The number of conditions is, in the case of HIDER, 5þ 12þ 13 ¼ 30.

Moreover, the error rate was 31.2% for C4.5, in contrast with 12.5% for

HIDER (using the same fold). We thought that there would not be equity if we

simply counted either the number of conditions, 24 for C4.5 and 13 for
HIDER, or the number of different attributes, 8 for C4.5 and 10 for HIDER,

involved in the rule set.
4. Conclusions

An EA-based supervised learning tool to classify databases is presented in
this paper. Real-coded GA are very efficient finding rule sets in both contin-

uous and discrete domains (more than those based on binary-coding). HIDER

produces a hierarchical set of decision rules where the conditions of each rule

must be applied in a specific order. The use of hierarchical decision rules lead to

an overall improvement in the performance on the 18 databases investigated

here, especially with respect to the number of rules. In addition, HIDER im-

proves the flexibility to construct a classifier varying the relaxing coefficient,

which allows to the user to search for an appropriate number of rules main-
taining approximately the error rate. This accuracy-awareness can be beneficial

when we are interested in reduced set of rules. On average, the error rate

provided by C4.5 is about 20% greater. Likewise, the number of rules provided

by C4.5 is about a factor of four greater than HIDER’s. Therefore, HIDER

can be considered an approach of great quality.
References

[1] J.S. Aguilar, J.C. Riquelme, M. Toro, Decision queue classifier for supervised learning using

rotated hyperboxes, in: Progress in Artificial Intelligence IBERAMIA’98. Lecture Notes in

Artificial Intelligence 1484, Springer-Verlag, 1998, pp. 326–336.

[2] J.S. Aguilar, J.C. Riquelme, M. Toro, A tool to obtain a hierarchical qualitative set of rules

from quantitative data, in: Lecture Notes in Artificial Intelligence, Springer-Verlag, 1998, pp.

336–346.

[3] J.S. Aguilar, J.C. Riquelme, M. Toro, Three geometric approaches for representing decision

rules in a supervised learning system, in: Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO ’99), Orlando, Florida, USA, 1999.

[4] C. Blake, E.K. Merz, Uci repository of machine learning databases, 1998.

[5] A. Blum, R.L. Rivest, Training a 3-node neural network is np-complete, in: Proceedings of the

First ADM Workshop on the Computational Learning Theory, Cambridge, MA, 1988, pp. 9–

18.

[6] K.A. DeJong, W.M. Spears, D.F. Gordon, Using genetic algorithms for concept learning,

Machine Learning 1 (13) (1993) 161–188.

[7] L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithms and interval-schemata, Founda-

tions of Genetic Algorithms 2 (1993) 187–202.

[8] S. Forrest, Genetic algorithms, ACM Computer Surveys 28 (1) (1996) 77–80.

[9] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-

Wesley, 1989.

[10] C.Z. Janikow, A knowledge-intensive genetic algorithm for supervised learning, Machine

Learning 1 (13) (1993) 169–228.

[11] Z. Michalewicz, Genetic Algorithms+Data Structures¼Evolution Programs, third ed.,

Springer-Verlag, Berlin, 1996.

[12] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[13] S.K. Murthy, S. Kasif, S. Salzberg, A system for induction of oblique decision trees, Journal of

Artificial Intelligence Research (1994) 1–33.

[14] J.R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann, San Mateo, CA,

1993.

[15] N.J. Radcliffe, Genetic Neural Networks on MIMD Computers, Ph.D., University of

Edinburgh, 1990.

[16] J.C. Riquelme, J.S. Aguilar, M. Toro, A GA-based tool to obtain a hierarchical classifier for

supervised learning (in spanish), Revista Iberoamericana de Inteligencia Artificial 1 (5) (1998)

38–43.

[17] R.L. Rivest, Learning decision lists, Machine Learning 1 (2) (1987) 229–246.

[18] G. Syswerda, Uniform crossover in genetic algorithms, in: Proceedings of the Third

International Conference on Genetic Algorithms, 1989, pp. 2–9.

[19] G. Venturini, Sia: a supervised inductive algorithm with genetic search for learning attributes

based concepts, in: Proceedings of European Conference on Machine Learning, 1993, pp. 281–

296.

[20] D. Whitley, A genetic algorithm tutorial, Tech. Rep. CS-93-103, Colorado State University,

Fort Collins, CO 80523, 1993.

[21] D.R. Wilson, T.R. Martinez, Improved heterogeneous distance functions, Journal of Artificial

Intelligence Research 6 (1) (1997) 1–34.

[22] A.H. Wright, Genetic algorithms for real parameter optimization, Foundations of Genetic

Algorithms 1 (1991) 205–218.

	Supervised learning by means of accuracy-aware evolutionary algorithms
	Introduction
	Principles
	Coding
	Algorithm
	Generalization
	Fitness function

	Application
	Conclusions
	References

