ON THE DISTRIBUTION (MOD 1) OF THE NORMALIZED ZEROS OF THE RIEMANN ZETA-FUNCTION

J. ARIAS DE REYNA

Abstract

We consider the problem whether the ordinates of the non-trivial zeros of $\zeta(s)$ are uniformly distributed modulo the Gram points, or equivalently, if the normalized zeros $\left(x_{n}\right)$ are uniformly distributed modulo 1. Odlyzko conjectured this to be true. This is far from being proved, even assuming the Riemann hypothesis (RH, for short).

Applying the Piatetski-Shapiro 11/12 Theorem we are able to show that, for $0<\kappa<6 / 5$, the mean value $\frac{1}{N} \sum_{n<N} \exp \left(2 \pi i \kappa x_{n}\right)$ tends to zero. The case $\kappa=1$ is especially interesting. In this case the Prime Number Theorem is sufficient to prove that the mean value is 0 , but the rate of convergence is slower than for other values of κ. Also the case $\kappa=1$ seems to contradict the behavior of the first two million zeros of $\zeta(s)$.

We make an effort not to use the RH. So our Theorems are absolute. We also put forward the interesting question: will the uniform distribution of the normalized zeros be compatible with the GUE hypothesis?

Let $\rho=\frac{1}{2}+i \alpha$ run through the complex zeros of zeta. We do not assume the RH so that α may be complex. For $0<\kappa<\frac{6}{5}$ we prove that $$
\lim _{T \rightarrow \infty} \frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=0
$$ where $\vartheta(t)$ is the phase of $\zeta\left(\frac{1}{2}+i t\right)=e^{-i \vartheta(t)} Z(t)$.

1. Introduction.

This paper deals with the distribution of the ordinates of the non-trivial zeros of $\zeta(s)$. This distribution has received much attention. On the assumption of the RH Rademacher [18] (also [17, p. 434-459]) showed that the sequence $\left(\gamma_{n}\right)$ is uniformly distributed modulo 1 . Here $\rho_{n}=\beta_{n}+i \gamma_{n}$ are the zeros of $\zeta(s)$ in the upper half plane, counted with multiplicity, ordered by increasing γ_{n}, and ties being broken by ordering β_{n} from smallest to largest.

Given a sequence of non-negative real numbers $\left(\gamma_{n}\right)$ and another strictly increasing sequence of non-negative real numbers $\left(g_{n}\right)$ with $\lim _{n} g_{n}=\infty$, it is said that the $\left(\gamma_{n}\right)$ are uniformly distributed modulo $\left(g_{n}\right)$ if the numbers y_{n} defined by

$$
y_{n}=\frac{\gamma_{n}-g_{m}}{g_{m+1}-g_{m}}, \quad \text { where } \quad \gamma_{n} \in\left[g_{m}, g_{m+1}\right)
$$

are uniformly distributed in $[0,1]$, (compare [6, p. 4]).
Our problem is whether the ordinates $\left(\gamma_{n}\right)$ of the zeros of $\zeta(s)$ are uniformly distributed modulo the Gram points $\left(g_{n}\right)$. In a non published report, Odlyzko [14, p. 60] conjectured
that the ordinates of the zeros γ_{n} are not related to the Gram points for γ_{n} large. Hence he conjectured that the normalized zeros will be uniformly distributed modulo 1 . This is far from being proved, even assuming the RH.

Since the Gram points are defined by the equation $\pi n=\vartheta\left(g_{n}\right)$, our problem is equivalent to the question as to whether the normalized zeros $x_{n}:=\frac{1}{\pi} \vartheta\left(\gamma_{n}\right) \approx \frac{\gamma_{n}}{2 \pi} \log \frac{\gamma_{n}}{2 \pi e}$ are uniformly distributed mod 1. By the asymptotic properties of $\vartheta(t)$ this is equivalent to the uniform distribution mod 1 of the numbers $\frac{\gamma_{n}}{2 \pi} \log \frac{\gamma_{n}}{2 \pi e}$ (see Theorem 1.2 in [6, p.3]). The question is especially interesting because the normalized zeros have average spacing 1.

Hardy and Littlewood [7, p. 162-177] proved that for any $a>0$, uniformly for $x \in J$, where J is any compact interval of positive numbers, we have

$$
\sum_{0<\gamma<T} e^{a \rho \log (-i \rho)} x^{\rho} \rho^{-\frac{a}{2}}=\boldsymbol{\mathcal { O }}\left(T^{\frac{1}{2}+\frac{a}{2}}\right)
$$

from which, assuming the RH , they derive that for any $a, \theta>0$, we have

$$
\sum_{0<\gamma<T} e^{a i \gamma \log (\gamma \theta)}=\boldsymbol{\mathcal { O }}\left(T^{\frac{1}{2}+\frac{a}{2}}\right) .
$$

Recall that $g_{n} \sim 2 \pi n / \log n$. Fujii [3] proved that for any $a>0$ and $b>0$, the sequence $\left(\gamma_{n}\right)$ is uniformly distributed modulo $\left((\log n)^{a} \cdot b n / \log n\right)$.

In [4] Fujii proves, under the RH, that for any positive κ and a we have

$$
\sum_{0<\gamma \leq T} e^{i \kappa \gamma \log \frac{\kappa \gamma}{2 \pi e a}}=-e^{\frac{\pi i}{4}} \frac{\sqrt{a}}{\kappa} \sum_{n \leq\left(\frac{\kappa T}{2 \pi a}\right)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i a n \frac{1}{\kappa}}+\boldsymbol{\mathcal { O }}\left(T^{\frac{\kappa}{2}} \log T \log \log T\right)+\boldsymbol{\mathcal { O }}\left(T^{\frac{1}{2}-\frac{\kappa}{2}} \log T\right)
$$

Our main result is an absolute version of this equation. Since we do not assume the RH, we define the numbers α in such a way that the zeros of zeta are given by $\rho=\frac{1}{2}+i \alpha$. Here the numbers α may be (non-real) complex numbers, if the Riemann hypothesis fails. Then we show without any assumption the following.

Theorem 3.1. For $\kappa>0$ we have

$$
\begin{equation*}
\sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=-\frac{e^{\frac{\pi i}{4}(1-\kappa)}}{\sqrt{\kappa}} \sum_{n \leq(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right) \tag{1}
\end{equation*}
$$

Applying, for $\kappa>1$, the Piatetski-Shapiro 11/12 Theorem, we get

$$
\lim _{T \rightarrow \infty} \frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=0, \quad 0<\kappa<\frac{6}{5}
$$

The case $\kappa=1$ is especially interesting, since it seems to contradict the behavior of the first two million zeros of $\zeta(s)$.

Our results are also very similar to some of Schoißengeier [20], who extended the cited analysis of Hardy and Littlewood. In the case $\kappa=1$ our formula gives the following

Corollary. The Von Mangoldt function can be approximated in the following way

$$
\psi(T / 2 \pi)=\sum_{n \leq T / 2 \pi} \Lambda(n)=-\sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \vartheta(\alpha)}+\boldsymbol{\mathcal { O }}\left(T^{\frac{1}{2}} \log ^{2} T\right) .
$$

This is equivalent to one of the results of Schoißengeier, but obtained here by a simpler analysis.
1.1. Computational data. Our interest in the distribution of the γ_{n} with respect to the Gram points originates from the observation that the angle of the curve $\operatorname{Re} \zeta(s)=0$ at a zero $\frac{1}{2}+i \gamma$ (on the critical line) with the positive real axis is equal to $\vartheta(\gamma) \bmod \pi$. Odlyzko's list of first $2,001,052$ zeros of zeta has been used to generate the following pictures of the distribution of $\frac{1}{\pi} \vartheta(\gamma) \bmod 1$.

Figure 1. Distribution mod 1 of the normalized first 2001052 zeros.

The curve we have drawn, approximately fitting the data, is the density function $\rho(x)=$ $1-\frac{3}{17} \cos (2 \pi x)$. If the RH is true so that $\alpha_{n}=\gamma_{n}$ for all n and this initial distribution is maintained then we have

$$
\lim _{T} \frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \vartheta(\alpha)}=\lim _{N} \frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i x_{n}} \approx \int_{0}^{1} e^{2 \pi i x}\left(1-\frac{3}{17} \cos 2 \pi x\right) d x=-\frac{3}{34}
$$

Hence, our Corollary 3.2 shows that the trend in the behavior of γ_{n} seen in the above figures will not be maintained for larger values of T.

Odlyzko observed that the distribution of the normalized zeros is nearer to a uniform distribution for higher zeros. But this seems to be at odds with Titchmarsh [21, Theorem 10.6] who shows that the mean values of $Z\left(g_{2 n}\right)$ and $Z\left(g_{2 n+1}\right)$ are equal to 2 and -2 , respectively.

Hence we ask the question: It is true that the normalized zeros are uniformly distributed modulo 1?

We also comment here about another conjecture regarding the distribution of the zeros of zeta. Assuming the RH, Montgomery [13] proved his result about the correlation of pairs of zeros and stated his pair correlation conjecture.

The differences $x_{n+1}-x_{n}$ of the normalized zeros satisfy

$$
x_{n+1}-x_{n}=\frac{1}{\pi} \int_{\gamma_{n}}^{\gamma_{n+1}} \vartheta^{\prime}(t) d t
$$

Since $\vartheta^{\prime}(t)=\frac{1}{2} \log \frac{t}{2 \pi}+\boldsymbol{\mathcal { O }}\left(t^{-2}\right)$ we have

$$
x_{n+1}-x_{n} \approx \frac{\gamma_{n+1}-\gamma_{n}}{\pi} \frac{1}{2} \log \frac{\gamma_{n}}{2 \pi}=\delta_{n} .
$$

So, Montgomery's conjecture is also a conjecture about our normalized zeros.
A natural question here is: Is the pair correlation conjecture compatible with a uniform distribution (mod 1) of the normalized zeros?

2. Notations and tools.

When possible we follow the standard notations. As in Titchmarsh [21, section 9.4] the zeros $\beta+i \gamma$ of $\zeta(s)$ with $\gamma>0$ are arranged in a sequence $\rho_{n}=\beta_{n}+i \gamma_{n}$ so that $\gamma_{n+1} \geq \gamma_{n}$. We will not assume the Riemann hypothesis (RH for short), and following Riemann 19 define α_{n} by $\rho_{n}=\frac{1}{2}+i \alpha_{n}$. The numbers α_{n} are the zeros of $\Xi(t)$ with positive real part. The RH is equivalent to the equality $\alpha_{n}=\gamma_{n}$ for all natural numbers n. We denote by $N(T)$, where $T>0$, the number of zeros of $\zeta(s)$ in the rectangle $0<\sigma<1,0 \leq t \leq T$.

The functional equation of $\zeta(s)$ can be written as

$$
\begin{equation*}
\zeta(s)=\chi(s) \zeta(1-s), \quad \chi(s)=\pi^{s-\frac{1}{2}} \frac{\Gamma\left(\frac{1}{2}-\frac{1}{2} s\right)}{\Gamma\left(\frac{1}{2} s\right)}=2^{s-1} \pi^{s} \sec \frac{1}{2} \pi s / \Gamma(s) \tag{2}
\end{equation*}
$$

For t real we have $\left|\chi\left(\frac{1}{2}+i t\right)\right|=1$, and there exist two real and real analytic functions $\vartheta(t)$ and $Z(t)$ (see Titchmarsh [21, section 4.17]) such that

$$
\begin{equation*}
\zeta\left(\frac{1}{2}+i t\right)=e^{-i \vartheta(t)} Z(t), \quad \chi\left(\frac{1}{2}+i t\right)=e^{-2 i \vartheta(t)} . \tag{3}
\end{equation*}
$$

The function $\chi(s)$ has poles for $s=2 n+1$ with $n=0,1, \ldots$ and zeros for $s=-2 n$. Let Ω be the complex plane \mathbf{C} with two cuts along the half-lines $(-\infty, 0]$ and $[1, \infty)$. The function $\chi(s)$ is analytic on the simply connected Ω and does not vanish there. So we may define $\log \chi(s)$ in Ω in such a way that

$$
\begin{equation*}
-\log \chi\left(\frac{1}{2}+i t\right)=2 i \vartheta(t), \quad \vartheta(0)=0 \tag{4}
\end{equation*}
$$

The function $\vartheta(t)$ is extended in this way to all $-i\left(\Omega-\frac{1}{2}\right)$ as an analytic function. Also we fix the meaning of

$$
\begin{equation*}
\chi(s)^{-\kappa}:=e^{-\kappa \log \chi(s)}=e^{2 i \kappa \vartheta(\tau)} \quad \text { where } \quad s=\frac{1}{2}+i \tau \in \Omega . \tag{5}
\end{equation*}
$$

Definition 2.1. For any non-trivial zero $\rho=\beta+i \gamma=\frac{1}{2}+i \alpha$ we define the normalized zero as

$$
\begin{equation*}
x=\frac{1}{\pi} \vartheta(\alpha) . \tag{6}
\end{equation*}
$$

Also let x_{n} be the normalized zero corresponding to $\rho_{n}=\beta_{n}+i \gamma_{n}$.

The function $\vartheta(t)$ is strictly increasing for $t>6.28984 \ldots$ For integral $k \geq-1$ the Gram point $t=g_{k}(>7)$ is defined as the unique solution of $\vartheta(t)=k \pi$ (see [2, p. 126]).

In the interval $[0, T]$ there are approximately as many Gram points as zeros $\beta+i \gamma$ of $\zeta(s)$ with $0<\gamma \leq T$. Gram's "law" (to which there are many exceptions) states that in each Gram interval $\left(g_{n}, g_{n+1}\right)$ there is a zero of $\zeta(s)$. If Gram's law were generally true, then the RH would be true, the zeros would be simple and γ_{n} would be an element of $\left(g_{n-2}, g_{n-1}\right)$. Of course Gram's law is not true, but it is still a good heuristic to locate the zeros of $\zeta(s)$ for relatively small t which can be reached by our computers.

Also, it is well known that in each interval $(T, T+1)$, with $T \geq 2$ we can select a number T^{\prime} such that if γ is the ordinate of any zero of $\zeta(s)$ then $\left|T^{\prime}-\gamma\right| \gg \frac{1}{\log T}$.

From the book by Huxley we quote two lemmas which will be essential in our proof [9, p. 88].
Lemma 2.2 (First Derivative Test). Let $f(x)$ be real and differentiable on the open interval (α, β) with $f^{\prime}(x)$ monotone and $f^{\prime}(x) \geq \mu>0$ on (α, β). Let $g(x)$ be real, and let V be the total variation of $g(x)$ on the closed interval $[\alpha, \beta]$ plus the maximum modulus of $g(x)$ on $[\alpha, \beta]$. Then

$$
\left|\int_{\alpha}^{\beta} g(x) \exp (2 \pi i f(x)) d x\right| \leq \frac{V}{\pi \mu}
$$

Lemma 2.3 (Second Derivative Test). Let $f(x)$ be real and twice differentiable on the open interval (α, β) with $f^{\prime \prime}(x) \geq \lambda>0$ on (α, β). Let $g(x)$ be real, and let V be the total variation of $g(x)$ on the closed interval $[\alpha, \beta]$ plus the maximum modulus of $g(x)$ on $[\alpha, \beta]$. Then

$$
\left|\int_{\alpha}^{\beta} g(x) \exp (2 \pi i f(x)) d x\right| \leq \frac{4 V}{\sqrt{\pi \lambda}} .
$$

The next two lemmas can be inferred from Levinson [12] and Gonek [5].
Lemma 2.4. Let $\kappa_{0}>0$ and $K \subset \mathbf{R}$ a compact set be given. Then there exist constants $c>0, C>0$ such that for any $r>1, a \in K$ and $\kappa \geq \kappa_{0}$, we have

$$
\int_{r(1-c)}^{r(1+c)} x^{a} \exp \left\{2 \pi i\left(\kappa x \log \frac{x}{e r}\right)\right\} d x=\kappa^{-\frac{1}{2}} r^{a+\frac{1}{2}} e^{\frac{\pi i}{4}} e^{-2 \pi i \kappa r}+R,
$$

with $|R| \leq C r^{a}$.
Lemma 2.5. Let $\kappa_{0}>0$ and $K \subset \mathbf{R}$ a compact set be given. Then there exist constants $c>0, C>0$ such that for any $r>1, \kappa \geq \kappa_{0}, a \in K$ and $\frac{r}{2} \leq A<B \leq 2 r$ we have

$$
\int_{A}^{B} x^{a} \exp \left\{2 \pi i\left(\kappa x \log \frac{x}{e r}\right)\right\} d x=I_{0}+R_{1}+R_{2}+R_{3},
$$

where

$$
\left|R_{1}\right| \leq C r^{a}, \quad\left|R_{2}\right| \leq C \frac{r^{a+1}}{|A-r|+r^{1 / 2}}, \quad\left|R_{3}\right| \leq C \frac{r^{a+1}}{|B-r|+r^{1 / 2}}
$$

and where $I_{0}=\kappa^{-\frac{1}{2}} r^{a+\frac{1}{2}} e^{\frac{\pi i}{4}} e^{-2 \pi i \kappa r}$ for $A \leq r \leq_{5} B$ and 0 in all other cases.

Now we state the best zero-free region known. A proof can be found in the book of Ivić [11, Thm. 6.1].

Theorem 2.6. There is an absolute constant $C>0$ such that $\zeta(s) \neq 0$ for

$$
\begin{equation*}
\sigma \geq 1-C(\log t)^{-\frac{2}{3}}(\log \log t)^{-\frac{1}{3}} \quad\left(t \geq t_{0}\right) \tag{7}
\end{equation*}
$$

Lemma 2.7. Let $\rho=\beta+i \gamma$ with $\beta \in(0,1)$ and $\gamma>0$ and define α by $\rho=\frac{1}{2}+i \alpha$. Then for any $\kappa>0$ we have

$$
\begin{equation*}
e^{2 i \kappa \vartheta(\alpha)}=\left(\frac{\gamma}{2 \pi}\right)^{\kappa\left(\beta-\frac{1}{2}\right)} \exp \left\{i\left(\kappa \gamma \log \frac{\gamma}{2 \pi}-\kappa \gamma-\frac{\kappa \pi}{4}\right)\right\}\left(1+\boldsymbol{\mathcal { O }}_{\kappa}\left(\gamma^{-1}\right)\right) \tag{8}
\end{equation*}
$$

Proof. This follows easily from Titchmarsh [21, eq. (4.12.3)].
We will use the following Theorem of Piatetski-Shapiro [15].
Theorem 2.8. For $\varepsilon>0, \frac{2}{3}<\gamma<1$ and all k with $1 \leq k \leq x^{1-\gamma} \log ^{2} x$, we have

$$
\begin{equation*}
\sum_{p \leq x} e^{2 \pi i k p^{\gamma}} \ll x^{\frac{11}{12}+\varepsilon} \tag{9}
\end{equation*}
$$

The exponent $11 / 12$ in this Theorem has been improved, but with a smaller range of γ. For our needs the range is important. Therefore, we will use this theorem as stated.

3. MAIN THEOREM

Theorem 3.1. For $\kappa>0$

$$
\begin{equation*}
\sum_{0<\operatorname{Re} \alpha<T} e^{2 i \kappa \vartheta(\alpha)}=-\frac{e^{\frac{\pi i}{4}(1-\kappa)}}{\sqrt{\kappa}} \sum_{n<(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right) \tag{10}
\end{equation*}
$$

Proof. There exists T^{\prime} such that $T<T^{\prime}<T+1$ with $\left|T^{\prime}-\gamma\right| \gg 1 / \log T$ for any ordinate γ of a zero of $\zeta(s)$ and such that

$$
\sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=\sum_{0<\operatorname{Re} \alpha \leq T^{\prime}} e^{2 i \kappa \vartheta(\alpha)}+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}}\right) .
$$

In fact, here the difference between the two sums is composed of at most of $C \log T$ terms. Lemma 2.7 yields

$$
\left|\sum_{T<\operatorname{Re} \alpha \leq T^{\prime}} e^{2 i \kappa \vartheta(\alpha)}\right| \leq \sum_{T<\gamma \leq T^{\prime}}\left(\frac{\gamma}{2 \pi}\right)^{\kappa\left(\beta-\frac{1}{2}\right)}
$$

Applying Theorem 2.6 we have

$$
\begin{aligned}
&\left|\sum_{T<\operatorname{Re} \alpha \leq T^{\prime}} e^{2 i \kappa \vartheta(\alpha)}\right| \leq C \log T\left(\frac{T^{\prime}}{2 \pi}\right)^{\kappa\left(\frac{1}{2}-c\left(\log T^{\prime}\right)^{\left.-\frac{2}{3}\left(\log \log T^{\prime}\right)^{-\frac{1}{3}}\right)}\right.} \\
&<_{\kappa} C(\log T) T^{\frac{\kappa}{2}} e^{-c \kappa\left(\log T^{\prime}\right)^{\frac{1}{3}}\left(\log \log T^{\prime}\right)^{-\frac{1}{3}}}=\mathcal{O}_{\kappa}\left(T^{\frac{\kappa}{2}}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
\mid & \left.\sum_{(T / 2 \pi)^{\kappa}<n \leq\left(T^{\prime} / 2 \pi\right)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{\frac{1}{\kappa}}} \right\rvert\,
\end{aligned} \ll \kappa_{\kappa}(\log T) T^{\frac{1}{2}-\frac{\kappa}{2}}\left(T^{\prime \kappa}-T^{\kappa}\right) .
$$

Therefore, replacing T by T^{\prime} if needed, we may assume for the rest of the proof that T satisfies $|T-\gamma| \gg 1 / \log T$ for any ordinate γ of a zero of $\zeta(s)$.

Since (cf. Davenport [1, p. 80])

$$
\begin{equation*}
\frac{\zeta^{\prime}(s)}{\zeta(s)}=B-\frac{1}{s-1}+\sum_{n=1}^{\infty}\left(\frac{1}{s+2 n}-\frac{1}{2 n}\right)+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \tag{11}
\end{equation*}
$$

we have by Cauchy's Theorem,

$$
\begin{equation*}
U(T):=\sum_{0<\operatorname{Re} \alpha<T} e^{2 i \kappa \vartheta(\alpha)}=\frac{1}{2 \pi i} \int_{C_{T}} \frac{\zeta^{\prime}(s)}{\zeta(s)} \chi(s)^{-\kappa} d s \tag{12}
\end{equation*}
$$

Here the path of integration C_{T} is the boundary of the rectangle $\left(\sigma_{0}, \sigma_{1}\right) \times(2 \pi, T)$ with $1<\sigma_{1}<3 / 2$ and T with $\left|T-\gamma_{n}\right| \gg 1 / \log T$ for all n. We will take $\sigma_{1}=1+\frac{1}{\log T}$, but we maintain the simpler notation σ_{1}. The restriction $\sigma_{1}<3 / 2$ allows one to obtain explicit bounds (independent of σ_{1}) on all pertinent inequalities.
The value of σ_{0} depends on κ. We will take $\sigma_{0}=\frac{1}{2}-\frac{2}{\kappa}$ for $0<\kappa<\frac{4}{3}$ and $\sigma_{0}=-1$ when $\kappa \geq \frac{4}{3}$. In this way $\sigma_{0} \leq-1$ in all cases.
Then we have

$$
\begin{aligned}
U(T)=\frac{1}{2 \pi i} \int_{\sigma_{0}+2 \pi i}^{\sigma_{1}+2 \pi i} \frac{1}{\chi(s)^{\kappa}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s+\frac{1}{2 \pi i} \int_{\sigma_{1}+2 \pi i}^{\sigma_{1}+T i} \cdots & -\frac{1}{2 \pi i} \int_{\sigma_{0}+T i}^{\sigma_{1}+T i} \cdots-\frac{1}{2 \pi i} \int_{\sigma_{0}+2 \pi i}^{\sigma_{0}+T i} \cdots \\
& :=U_{1}(T)+U_{2}(T)-U_{3}(T)-U_{4}(T)
\end{aligned}
$$

Lemmas 4.1, 4.2 and 4.3 yield

$$
U(T)=\mathcal{O}_{\kappa}(1)+U_{2}(T)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}(1)
$$

Now we apply Lemma 4.4 and we see that $U_{2}(T)$ is equal to the sum on the right in 10 plus the remainders $\mathcal{O}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right)$ and $\mathcal{O}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)$. Therefore, we have our result.
Corollary 3.2. For $0<\kappa<\frac{6}{5}$ we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=0 \tag{13}
\end{equation*}
$$

For $\kappa=0$ the above limit is easily seen to be 1 .
Proof. We have $N(T)=\operatorname{card}\{\alpha: 0<\operatorname{Re} \alpha \leq T\}=\mathcal{O}(T \log T)$. For $0<\kappa<1$, the trivial bound yields

$$
\sum_{n \leq(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}=\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}+\frac{1}{2}} \log T\right)
$$

and the limit is easily shown to be 0 .
In the case $\kappa=1$ we apply Theorem 3.1, and observe that in this case

$$
\left|\frac{e^{\pi i / 4}}{\sqrt{\kappa}} \sum_{n \leq(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}\right| \leq \sum_{n \leq T / 2 \pi} \Lambda(n)=\boldsymbol{O}(T) .
$$

Therefore,

$$
\frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=\boldsymbol{\mathcal { O }}(1 / \log T) .
$$

For $1<\kappa<\frac{3}{2}$, the Piatetski-Shapiro Theorem 2.8 with $k=\kappa$, and $\gamma=1 / \kappa$ yields, for any $\varepsilon>0$,

$$
\sum_{n \leq x} \Lambda(n) e^{2 \pi i \kappa n^{\gamma}}=\boldsymbol{\mathcal { O }}\left(x^{\frac{11}{12}+\varepsilon}\right)
$$

Partial summation then yields

$$
\sum_{n \leq(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}=\boldsymbol{\mathcal { O }}\left(T^{\frac{5 \kappa}{12}+\frac{1}{2}+\varepsilon \kappa}\right) .
$$

It follows that

$$
\frac{1}{N(T)} \sum_{0<\operatorname{Re} \alpha \leq T} e^{2 i \kappa \vartheta(\alpha)}=\boldsymbol{\mathcal { O }}\left(T^{\frac{5 \kappa}{12}-\frac{1}{2}+\varepsilon \kappa} / \log T\right)+\boldsymbol{\mathcal { O }}\left(T^{\frac{\kappa}{2}-1} \log T\right)
$$

So the limit is 0 for $1<\kappa<\frac{6}{5}<\frac{3}{2}$.

4. Bounds.

4.1. Bound of the bottom integral.

Lemma 4.1. Uniformly for all $\sigma_{1} \in(1,3 / 2)$

$$
\begin{equation*}
U_{1}(T)=\frac{1}{2 \pi i} \int_{\sigma_{0}+2 \pi i}^{\sigma_{1}+2 \pi i} \frac{1}{\chi(s)^{\kappa}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=\boldsymbol{\mathcal { O }}_{\kappa}(1) \tag{14}
\end{equation*}
$$

Proof. $U_{1}(T)$ is a well defined and continuous function of $\sigma_{1} \in[1,3 / 2]$ (it does not depend on T).

4.2. Bound of the top integral.

Lemma 4.2. Let T be such that $\left|T-\gamma_{n}\right| \gg 1 / \log T$, and let $\sigma_{1}=1+\frac{1}{\log T}$. Then

$$
\begin{gather*}
U_{3}(T)=\frac{1}{2 \pi i} \int_{\sigma_{0}+i T}^{\sigma_{1}+i T} \frac{1}{\chi(s)^{\kappa}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=\mathcal{O}_{\kappa}\left(T^{\kappa / 2} \log T\right) . \tag{15}
\end{gather*}
$$

Proof. We apply Titchmarsh [21, eq. (4.12.3)] so that

$$
\chi(s)=\left(\frac{2 \pi}{t}\right)^{\sigma+i t-\frac{1}{2}} e^{i\left(t+\frac{1}{4} \pi\right)}\left\{1+\boldsymbol{\mathcal { O }}\left(t^{-1}\right)\right\}
$$

on any strip $\alpha \leq \sigma \leq \beta$ and for $t \rightarrow+\infty$. Therefore, we will have

$$
\begin{equation*}
\chi(s)^{-\kappa}=\left(\frac{t}{2 \pi}\right)^{\kappa\left(\sigma+i t-\frac{1}{2}\right)} e^{-i \kappa\left(t+\frac{1}{4} \pi\right)}\left\{1+\mathcal{O}_{\kappa}\left(t^{-1}\right)\right\} . \tag{16}
\end{equation*}
$$

It follows that for $s=\sigma+i T$ with $\sigma_{0}<\sigma<\sigma_{1}$ we will have

$$
|\chi(\sigma+i T)|^{-\kappa} \leq C T^{\kappa\left(\sigma-\frac{1}{2}\right)}
$$

We choose T satisfying $|T-\gamma| \gg 1 / \log T$, so that by applying Theorem 9.6(A) of Titchmarsh we get on the segment $s=\sigma+i T$ with $-1<\sigma<\sigma_{1}$ that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\boldsymbol{\mathcal { O }}\left(\log ^{2} T\right)
$$

By Ingham [10, Theorem 27 p. 73] this extends to the entire segment $\sigma_{0}<\sigma<\sigma_{1}$. Then, with the constant C depending on κ.

$$
\left|U_{3}(T)\right| \leq C \int_{\sigma_{0}}^{\sigma_{1}} T^{\kappa(\sigma-1 / 2)} \log ^{2}(T) d \sigma \leq C \frac{T^{\kappa\left(\sigma_{1}-1 / 2\right)}}{\kappa \log T} \log ^{2} T
$$

Taking $\sigma_{1}=1+\frac{1}{\log T}$ we get

$$
\left|U_{3}(T)\right|=\mathcal{O}_{\kappa}\left(T^{\kappa / 2} \log T\right)
$$

4.3. Bound of the left integral.

Lemma 4.3. For $0 \leq \kappa$ we have

$$
\begin{equation*}
U_{4}(T)=\frac{1}{2 \pi i} \int_{\sigma_{0}+2 \pi i}^{\sigma_{0}+i T} \frac{1}{\chi(s)^{\kappa}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=\boldsymbol{\mathcal { O }}_{\kappa}(1) \tag{17}
\end{equation*}
$$

Proof. We integrate along the line $s=\sigma_{0}+i t$ with $2 \pi<t<T$. So we may apply Ingham [10, Theorem 27 p. 73] so that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=\boldsymbol{\mathcal { O }}(\log t)
$$

Also, applying (16) we get

$$
\begin{equation*}
U_{4}(T) \ll_{\kappa} \int_{2 \pi}^{T} t^{\kappa\left(\sigma_{0}-\frac{1}{2}\right)} \log t d t \tag{18}
\end{equation*}
$$

The choice of $\sigma_{0}\left(\sigma_{0}=\frac{1}{2}-\frac{2}{\kappa}\right.$ for $0<\kappa<\frac{4}{3}$, and $\sigma_{0}=-1$ when $\left.\kappa \geq \frac{4}{3}\right)$ guarantees that $\kappa\left(\sigma_{0}-\frac{1}{2}\right) \leq-2$. Therefore, the integral is bounded.

4.4. Bound of the right integral.

Lemma 4.4. Taking $\sigma_{1}=1+\frac{1}{\log T}$ we have

$$
\begin{align*}
U_{2}(T)= & \frac{1}{2 \pi i} \int_{\sigma_{1}+2 \pi i}^{\sigma_{1}+i T} \frac{1}{\chi(s)^{\kappa}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s \tag{19}\\
& =-\frac{e^{\frac{\pi i}{4}(1-\kappa)}}{\sqrt{\kappa}} \sum_{n<(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right)
\end{align*}
$$

Proof. We have taken $\sigma_{1}>1$ in order to apply the expression as a Dirichlet series. So

$$
U_{2}(T)=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \frac{1}{2 \pi i} \int_{\sigma_{1}+2 \pi i}^{\sigma_{1}+i T} \frac{1}{\chi(s)^{\kappa}} e^{-i t \log n} d s
$$

with $s=\sigma_{1}+i t$. Therefore, by (16)

$$
U_{2}(T)=-\frac{1}{2 \pi} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{2 \pi}^{T} e^{-i t \log n}\left(\frac{t}{2 \pi}\right)^{\kappa\left(\sigma_{1}+i t-\frac{1}{2}\right)} e^{-i \kappa\left(t+\frac{1}{4} \pi\right)} V(t) d t
$$

where $V(t)=1+\boldsymbol{\mathcal { O }}_{\kappa}\left(t^{-1}\right)$. Then

$$
U_{2}(T)=-\frac{1}{2 \pi} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{2 \pi}^{T} e^{-i t \log n}\left(\frac{t}{2 \pi}\right)^{\kappa\left(\sigma_{1}+i t-\frac{1}{2}\right)} e^{-i \kappa\left(t+\frac{1}{4} \pi\right)} d t+R
$$

where R is the error term. Then

$$
|R|<_{\kappa} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{2 \pi}^{T} t^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)-1} d t \ll \kappa_{\kappa} \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} T^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)}=-T^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)} \frac{\zeta^{\prime}\left(\sigma_{1}\right)}{\zeta\left(\sigma_{1}\right)} .
$$

Therefore, taking $\sigma_{1}=1+\frac{1}{\log T}$ we get $R=\mathcal{O}_{\kappa}\left(T^{\kappa / 2} \log T\right)$.
It remains to compute

$$
\begin{aligned}
V_{2}(T):=\frac{1}{2 \pi} \sum_{n=1}^{\infty} & \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{2 \pi}^{T} e^{-i t \log n}\left(\frac{t}{2 \pi}\right)^{\kappa\left(\sigma_{1}+i t-\frac{1}{2}\right)} e^{-i \kappa\left(t+\frac{1}{4} \pi\right)} d t= \\
& =e^{-i \kappa \pi / 4} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{1}^{T / 2 \pi} x^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)} \exp \{2 \pi i(\kappa x \log x-\kappa x-x \log n)\} d x
\end{aligned}
$$

These integrals are classical stationary phase integrals. We will apply the theorems in Huxley [8], or [9], and Lemma 2.5. The stationary phase occurs when $\kappa \log x-\log n=0$. That is for $x=n^{1 / \kappa}$. We subdivide each integral in three parts, by dividing the interval of integration $I=(1, T / 2 \pi)$ in three parts

$$
I_{0}:=I \cap\left(\frac{1}{2} n^{1 / \kappa}, 2 n^{1 / \kappa}\right), \quad I_{1}:=I \backslash\left(\frac{1}{2} n^{1 / \kappa},+\infty\right), \quad I_{2}=I \backslash\left(-\infty, 2 n^{1 / \kappa}\right)
$$

It is easy to see that $I_{0} \cup I_{1} \cup I_{2}=I$ is a partition. Some of these three intervals may be empty. The partition depends on n, and is different for each integral, but we prefer to maintain a simple notation.

In this way $V_{2}(T)=V_{2,0}(T)+V_{2,1}(T)+V_{2,2}(T)$ is subdivided in three parts

$$
V_{2, j}(T):=e^{-i \kappa \pi / 4} \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{I_{j}} x^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)} \exp \{2 \pi i(\kappa x \log x-\kappa x-x \log n)\} d x
$$

4.4.1. Bound of $V_{2,1}(T)$. In this case the interval of integration $I_{1}:=I \backslash\left(\frac{1}{2} n^{1 / \kappa},+\infty\right)$ does not contain the stationary point $n^{1 / \kappa}$, and for any point x in this interval we have $x<\frac{1}{2} n^{\frac{1}{\kappa}}$ so that

$$
f^{\prime}(x)=\kappa \log x-\log n<-\kappa \log 2<0 .
$$

We may apply Lemma 2.2. Since $I_{1} \subset(1, T / 2 \pi)$, the constant V in the lemma is less than

$$
V \leq 2 \cdot\left(\frac{T}{2 \pi}\right)^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)}
$$

So, we get

$$
\left|V_{2,1}(T)\right| \leq \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{\sigma_{1}}} \frac{2\left(\frac{T}{2 \pi}\right)^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)}}{\pi \kappa \log 2} \ll \kappa \kappa_{\kappa}\left(\frac{T}{2 \pi}\right)^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)} \frac{\left|\zeta^{\prime}\left(\sigma_{1}\right)\right|}{\zeta\left(\sigma_{1}\right)} .
$$

We now choose $\sigma_{1}=1+\frac{1}{\log T}$ and get

$$
\left|V_{2,1}(T)\right| \ll_{\kappa} T^{\frac{\kappa}{2}} \log T
$$

4.4.2. Bound of $V_{2,2}(T)$. In this case the interval of integration is $I_{2}=I \backslash\left(-\infty, 2 n^{1 / \kappa}\right)$. Hence, the stationary point $n^{\frac{1}{\kappa}} \notin I_{2}$ and we may apply Lemma 2.2 again. For $x \in I_{2}$ we have $x \geq 2 n^{\frac{1}{\kappa}}$ so that

$$
f^{\prime}(x)=\kappa \log x-\log n \geq \kappa \log 2>0 .
$$

If I_{2} is non empty we have $2 n^{\frac{1}{\kappa}} \leq \frac{T}{2 \pi}$. The V of Lemma 2.2 is the same as in the previous case so that

$$
\left|V_{2,2}(T)\right| \leq \sum_{n \leq(T / 4 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\sigma_{1}}} \frac{2\left(\frac{T}{2 \pi}\right)^{\kappa\left(\sigma_{1}-\frac{1}{2}\right)}}{\pi \kappa \log 2}
$$

and, as before, we get the same bound

$$
\left|V_{2,2}(T)\right| \ll \kappa_{\kappa} T^{\frac{\kappa}{2}} \log T
$$

4.4.3. Bound of $V_{2,0}(T)$. We will apply Lemma 2.5. In our case $a=\kappa\left(\sigma_{1}-\frac{1}{2}\right)$ and $f(x)=$ $\kappa x \log x-\kappa x-x \log n=\kappa x \log \frac{x}{e n^{1 / \kappa}}$ so that $r=n^{1 / \kappa}$. Since the interval of integration is given by $I_{0}=(1, T / 2 \pi) \cap\left(\frac{1}{2} n^{1 / \kappa}, 2 n^{1 / \kappa}\right)$, we will have $r \in I_{0}$, only in the case $1<n^{\frac{1}{\kappa}}<\frac{T}{2 \pi}$.
For $n>(T / \pi)^{\kappa}$ the interval $I_{0}=\emptyset$. Therefore,

$$
V_{2,0}(T)=e^{-i \kappa \pi / 4} \sum_{n \leq(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\sigma_{1}}} \int_{I_{0}} g_{n}(x) \exp \left(2 \pi i f_{n}(x)\right) d x
$$

so that Lemma 2.5 yields

$$
\begin{equation*}
V_{2,0}(T)=e^{-i \kappa \pi / 4} \sum_{n<(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\sigma_{1}}} \kappa^{-\frac{1}{2}} n^{\sigma_{1}-\frac{1}{2}+\frac{1}{2 \kappa}} e^{\frac{\pi i}{4}} e^{-2 \pi i \kappa n^{1 / \kappa}}+R \tag{20}
\end{equation*}
$$

where R is bounded by

$$
R \ll \sum_{n<(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\sigma_{1}}}\left(n^{\sigma_{1}-\frac{1}{2}}+\frac{n^{\sigma_{1}-\frac{1}{2}+\frac{1}{\kappa}}}{\left|A_{n}-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}}+\frac{n^{\sigma_{1}-\frac{1}{2}+\frac{1}{\kappa}}}{\left|B_{n}-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}}\right)
$$

where $\left(A_{n}, B_{n}\right)=(1, T / 2 \pi) \cap\left(\frac{1}{2} n^{1 / \kappa}, 2 n^{1 / \kappa}\right)$.
By partial summation we get

$$
\sum_{n<(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}}=\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}}\right) .
$$

It is easy to see that $A_{n}=1$ for $n \leq 2^{\kappa}$ and $A_{n}=\frac{1}{2} n^{\frac{1}{\kappa}}$ for $n \geq 2^{\kappa}$. Then

$$
\sum_{n<(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}} \frac{n^{\frac{1}{\kappa}}}{\left|A_{n}-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}}<_{\kappa} \sum_{n<(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}}=\boldsymbol{O}_{\kappa}\left(T^{\frac{\kappa}{2}}\right) .
$$

We have $B_{n}=2 n^{\frac{1}{\kappa}}$ if $n \leq(T / 4 \pi)^{\kappa}$ and $B_{n}=T / 2 \pi$ if $n \geq(T / 4 \pi)^{\kappa}$. Therefore,

$$
\begin{aligned}
& \sum_{n<(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}} \frac{n^{\frac{1}{\kappa}}}{\left|B_{n}-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}} \ll_{\kappa} \\
&<_{\kappa} \sum_{n \leq(T / 4 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}}+\sum_{(T / 4 \pi)^{\kappa \ll n<(T / \pi)^{\kappa}}} \frac{\Lambda(n)}{n^{\frac{1}{2}}} \frac{n^{\frac{1}{\kappa}}}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}} \ll_{\kappa} \\
&<_{\kappa} T^{\frac{\kappa}{2}}+T^{\frac{1-\kappa}{2}} \log T+T^{\frac{\kappa}{2}} \log ^{2} T .
\end{aligned}
$$

(See Lemma 4.5 for the last step.)
Hence, (20) implies

$$
V_{2,0}(T)=\frac{e^{\frac{\pi i}{4}(1-\kappa)}}{\sqrt{\kappa}} \sum_{n<(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right)
$$

4.4.4. End of the proof of Lemma 4.4. We saw that $U_{2}(T)=V_{2}(T)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log T\right)$, so that

$$
\begin{aligned}
V_{2}(T)=V_{2,0}(T)+V_{2,1}(T)+V_{2,2}(T)= & \frac{e^{\frac{\pi i}{4}(1-\kappa)}}{\sqrt{\kappa}} \sum_{n<(T / 2 \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}-\frac{1}{2 \kappa}}} e^{-2 \pi i \kappa n^{1 / \kappa}}+ \\
& +\mathcal{O}_{\kappa}\left(T^{\frac{\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right) .
\end{aligned}
$$

Lemma 4.5. We have
(21) $S_{\kappa}(T):=\sum_{(T / 4 \pi)^{\kappa}<n \leq(T / \pi)^{\kappa}} \frac{\Lambda(n)}{n^{\frac{1}{2}}} \frac{n^{\frac{1}{\kappa}}}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}}=\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{1-\kappa}{2}} \log T\right)+\boldsymbol{\mathcal { O }}_{\kappa}\left(T^{\frac{\kappa}{2}} \log ^{2} T\right)$.

Proof. We have

$$
\begin{aligned}
S_{\kappa}(T) \leq \frac{\log \left(\frac{T}{\pi}\right)^{\kappa}}{\left(\frac{T}{4 \pi}\right)^{\frac{\kappa}{2}}} & \sum_{(T / 4 \pi)^{\kappa}<n \leq(T / \pi)^{\kappa}} \\
& \frac{n^{\frac{1}{\kappa}}}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}} \\
\leq \frac{\log \left(\frac{T}{\pi}\right)^{\kappa}}{\left(\frac{T}{4 \pi}\right)^{\frac{\kappa}{2}}}\left(\frac{T}{\pi}\right) & \sum_{(T / 4 \pi)^{\kappa}<n \leq(T / \pi)^{\kappa}} \frac{1}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+n^{\frac{1}{2 \kappa}}} \\
& \ll_{\kappa} T^{1-\frac{\kappa}{2}} \log T \sum_{(T / 4 \pi)^{\kappa<}<n \leq(T / \pi)^{\kappa}} \frac{1}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+\sqrt{T / 4 \pi}} .
\end{aligned}
$$

Since the function $\left(\left|A-x^{\frac{1}{\kappa}}\right|+B\right)^{-1}$ is increasing and then decreasing, a geometrical argument yields that the sum is bounded by two times the maximum plus an integral. Thus

$$
\sum_{(T / 4 \pi)^{\kappa}<n \leq(T / \pi)^{\kappa}} \frac{1}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+\sqrt{T / 4 \pi}} \leq 2\left(\frac{4 \pi}{T}\right)^{\frac{1}{2}}+\int_{(T / 4 \pi)^{\kappa}}^{(T / \pi)^{\kappa}} \frac{d x}{\left|T / 2 \pi-x^{\frac{1}{\kappa}}\right|+\sqrt{T / 4 \pi}} .
$$

We change variables $x=y^{\kappa}$ and this yields

$$
\begin{aligned}
& \sum_{(T / 4 \pi)^{\kappa}<n \leq(T / \pi)^{\kappa}} \frac{1}{\left|T / 2 \pi-n^{\frac{1}{\kappa}}\right|+}+\sqrt{T / 4 \pi} \leq 2\left(\frac{4 \pi}{T}\right)^{\frac{1}{2}}+\int_{T / 4 \pi}^{T / \pi} \frac{\kappa y^{\kappa-1} d y}{|T / 2 \pi-y|+\sqrt{T / 4 \pi}} \\
& \leq 2\left(\frac{4 \pi}{T}\right)^{\frac{1}{2}}+\kappa(T / \pi)^{\kappa}(4 \pi / T) \int_{T / 4 \pi}^{T / \pi} \frac{d y}{|T / 2 \pi-y|+\sqrt{T / 4 \pi}}
\end{aligned}
$$

It can easily be shown that the last integral is of order $\log T$. In fact it is less than $\log T$ for $T \geq 3$. It follows that

$$
0 \leq S_{\kappa}(T) \ll_{\kappa} T^{1-\frac{\kappa}{2}} \log T\left(T^{-\frac{1}{2}}+T^{\kappa-1} \log T\right)
$$

completing the proof of Lemma 4.5.

5. Acknowledgement

I wish to express my thanks to Jan van de Lune (Hallum, The Netherlands) for his encouragements and linguistic assistance.

References

[1] H. Davenport Multiplicative number theory, 3rd edition, revised and with a preface by Hugh L. Montgomery, Springer-Verlag, New York, 2000.
[2] H. M. Edwards, Riemann's zeta function, Dover Publications Inc., Mineola, NY, 2001.
[3] A. Fujii, On the uniformity of the distribution of the zeros of the Riemann zeta function, J. Reine Angew. Math., 302, (1978), 167-205.
[4] A. Fujii, Some observations concerning the distribution of the zeros of the zeta functions. III, Proc. Japan Acad. Ser. A Math. Sci., 68, (1992), 105-110.
[5] S. M. Gonek, Mean values of the Riemann zeta function and its derivatives, Invent. Math., 75, (1984), 123-141.
[6] L. Kuipers, \& H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York, 1974.
[7] G. H. Hardy, \& J. E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Acta Math., 41, (1920), 119-196.
[8] M. N. Huxley, On stationary phase integrals, Glasgow Math. J., 36, (1994), 355-362.
[9] M. N. Huxley, Area, lattice points, and exponential sums, Oxford University Press, New York, 1996.
[10] A. E. Ingham, The distribution of prime numbers, reprint of the 1932 original, with a foreword by R. C. Vaughan, Cambridge University Press, Cambridge, 1990.
[11] A. Ivić, The Riemann zeta-function, John Wiley \& Sons Inc., New York, 1985.
[12] N. Levinson, More than one third of zeros of Riemann's zeta-function are on $\sigma=1 / 2$, Advances in Math., 13, (1974), 383-436.
[13] H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I. , 1973, 181-193.
[14] A. M. Odlyzko, The 10^{20}-th zero of the Riemann zeta function and 175 millions of its neighbors, 1992, 1-163.
[15] I. I. Pyateckiĭ-Šapiro, On the distribution of prime numbers in sequences of the form $[f(n)]$, Mat. Sbornik N.S., 33(75), (1953), 559-566, (translation contained in [16, p.39-47]).
[16] I. Piatetski-Shapiro, Selected works of Ilya Piatetski-Shapiro, Edited and with commentaries by James Cogdell, Simon Gindikin, Peter Sarnak, Pierre Deligne, Stephen Gelbart, Roger Howe and Stephen Rallis. American Mathematical Society, Providence, RI, 2000.
[17] H. Rademacher, Collected papers of Hans Rademacher. Vol. II, Edited and with a preface by Emil Grosswald, MIT Press, Cambridge, Mass., 1974.
[18] H. Rademacher, Fourier Analysis in Number Theory, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell University, Ithaca, N.Y., 1956, 1-25, (contained in [17, p.434-459]).
[19] B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Berlin Akad, (1859), 671-680.
[20] J. Schoißengeier, The connection between the zeros of the ζ-function and sequences $(g(p))$, p prime, $\bmod 1$, Monatsh. Math., 87, (1979), 21-52.
[21] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed. with a preface by D. R. HeathBrown, Oxford University Press, New York, 1986.

Facultad de Matemáticas, Univ. de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
E-mail address: arias@us.es

