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Abstract

Support Vector Machines (SVM) is the state-of-the-art in Supervised Classi�ca-
tion. In this paper the Cluster Support Vector Machines (CLSVM) methodology is
proposed with the aim to reduce the complexity of the SVM classi�er in the pres-
ence of categorical features. The CLSVM methodology lets categories cluster around
their peers and builds an SVM classi�er using the clustered dataset. Four strategies
for building the CLSVM classi�er are presented based on solving: the original SVM
formulation, a Quadratically Constrained Quadratic Programming formulation, and
a Mixed Integer Quadratic Programming formulation as well as its continuous re-
laxation.

The computational study illustrates the performance of the CLSVM classi�er
using two clusters. In the tested datasets our methodology achieves comparable
accuracy to that of the SVM with original data but with a dramatic decrease in
complexity.
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1 Introduction

In Supervised Classi�cation, [1, 14, 28], we are given a set of objects Ω partitioned,
in its simplest setting, into two classes, and the aim is to classify new objects. Given
an object i ∈ Ω, it is represented by a vector (xi, x

′
i, yi). The feature vector xi

is associated with J categorical features, that can be binarized by splitting each
feature into a series of 0-1 dummy features, one for each category, and takes values

on a set X ⊆ {0, 1}
∑J

j=1Kj , where Kj is the number of categories of feature j. The
feature vector x′i is associated with J ′ continuous features and takes values on a set
X ′ ⊆ RJ ′ . Finally, yi ∈ {−1,+1} is the class membership of object i. Information
about objects is only available in the so-called training sample, with n objects.

In many applications of Supervised Classi�cation datasets are composed by a
large number of features and/or objects, making it hard to both build the classi-
�er and interpret the results. In this case, it is desirable to obtain a less complex
classi�er, which may make classi�cation easier to handle and interpret, less prone
to over�tting and computationally cheaper when classifying new objects. The most
popular strategy proposed in the literature to achieve this goal is feature selection
[12, 13, 26], which aims at selecting the subset of most relevant features for classi�ca-
tion while maintaining or improving accuracy and preventing the risk of over�tting.
Feature selection reduces the number of features by means of all-or-nothing proce-
dure. For categorical features, binarized as explained above, it simply ignores some
categories of some features, and does not give valuable insight on the relationship
between feature categories. These issues may imply a signi�cant loss of information.

A state-of-the-art method in Supervised Classi�cation is Support Vector Ma-
chines (SVM). The SVM aims at separating both classes by means of a classi�er,
(ω)>x+ (ω′)>x′ + b = 0, (ω, ω′) being the so-called score vector, where ω is associ-
ated with the categorical features and ω′ is associated with the continuous features.
Given an object i, it is classi�ed in the positive or the negative class, according
to the sign of the score function, sign((ω)>xi + (ω′)>x′i + b), while for the case
(ω)>xi + (ω′)>x′i + b = 0, the object is classi�ed randomly. See [4, 9, 13, 17, 21] for
successful applications of the SVM and [8] for a recent review on Mathematical Op-
timization and the SVM. In this paper, a methodology to reduce the complexity of
the Support Vector Machines (SVM) classi�er for datasets composed by categorical
features, sometimes containing many categories, and eventually continuous features,
is proposed. This is done by clustering the di�erent categories of each categorical
feature into a given number of clusters, and then obtaining an SVM-type classi�er for
the clustered dataset. We call this the Cluster Support Vector Machines (CLSVM)
methodology and we will refer to the CLSVM classi�er.

As an illustration, let us consider the well-known German credit dataset, german,
which is one of the datasets from the UCI repository, [3], used in our computational
tests. This is a credit scoring dataset, with good customers de�ning the positive
class (y = +1) and bad customers de�ning the negative class (y = −1), and has
been used in the context of Supervised Classi�cation, such as in [2]. In this dataset
each object is composed by 20 features: 11 categorical features, binarized into 52
dummies, and 9 continuous features. For this dataset, the SVM formulation with
original data, hereafter denoted by SVMO, gives a classi�er leading to a classi�cation
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accuracy of 76.67% and whose categorical score subvector ω′ has 50 relevant features,
i.e., card({ω′j 6= 0}) = 50. However, using the CLSVM methodology described in
this paper, where the categories of each categorical feature are grouped just into two
clusters, the classi�cation accuracy is increased to 80.00% while the CLSVM classi�er
uses 2 × 11 = 22 relevant dummies. In other words, the methodology proposed
here allows one to obtain a much simpler classi�er with an accuracy even higher
than the original one. The clustering is shown in Figure 8, where we can see each
categorical feature separated by a discontinuous line and each category from each
categorical feature represented by a circle. The two clusters are distinguished by the
coloring with dark grey and light grey circles. For instance, the categorical feature
"Property" originally had four categories, namely, "real estate", "building society
savings agreement/life insurance", "car or other" and "unknown/no property". As
we will see later, the three �rst categories, colored in dark grey, are those indicating
good customers, and will be grouped into one single cluster, against the category
indicating bad customers, namely "unknown/no property".

In this paper, four strategies to build the CLSVM classi�er are proposed us-
ing di�erent mathematical optimization formulations. The �rst strategy proposed
solves the SVMO as initial step. Then, categories are clustered using the SVMO

scores and the CLSVM classi�er consists of building an SVM classi�er using the
clustered values. For the second strategy a Mixed Integer Nonlinear Programming
(MINLP) formulation of the same type as the SVM formulation is proposed, but in
this case de�ning a score for each cluster of each categorical feature. The second
strategy is based on solving the continuous relaxation of this MINLP formulation,
a Quadratically Constrained Quadratic Programming (QCQP) formulation to �nd
a clustering, and the CLSVM classi�er consists of building again an SVM classi�er
using the clustered dataset. The third and fourth strategies are based on a Mixed
Integer Quadratic Programming (MIQP) formulation derived from the MINLP for-
mulation using the big M modeling trick to reformulate the nonlinear terms in the
feasible region. The third strategy works similarly to the second one, but solves the
continuous relaxation of the MIQP. The fourth strategy solves the MIQP formulation
itself and obtains the clustering and the classi�er at once.

In the computational results, the four strategies are compared against the SVMO

in ten real-life datasets using two performance criteria, namely accuracy and com-
plexity of the classi�er for the categorical data. We conclude from our experiments
that the CLSVM achieves a comparable or even better accuracy than the SVMO

in nine of the ten datasets tested. In addition, the CLSVM methodology provides
a reduction on the complexity of the classi�er for the categorical data, while the
SVMO uses more dummy features for all the strategies and for all ten datasets.

The remainder of this paper is organized as follows. In Section 2 we set up
notation and terminology. Then, the CLSVM methodology is introduced together
with two mathematical optimization formulations. Two theoretical results relevant
to the formulations are presented. In Section 3 the four CLSVM strategies are
presented. Section 4 is devoted to the computational experience, where the CLSVM
classi�er and the SVMO classi�er are compared using ten datasets. Finally, Section
5 contains a brief summary, �nal conclusions and some lines for future research.
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2 The CLSVM methodology

In this section the CLSVM methodology is introduced. An MINLP formulation is
presented for building the CLSVM classi�er and some theoretical results for the
formulation are stated and proved. Then, an MIQP formulation is derived from the
MINLP one, using the big M modeling trick to reformulate the nonlinear terms in
the feasible region. The theoretical results also hold for this formulation.

The CLSVM methodology is based on the SVM formulation, but takes into
account the way categorical features are handled in the SVM (and other linear
classi�ers): splitting each feature into a series of 0-1 dummy features, the classi�er
assigns one score to each dummy feature, and thus to each value of the categorical
feature. Instead, the CLSVM methodology lets dummies cluster around their peers
and builds an SVM classi�er using the clustered dataset, which may reduce the
number of relevant features. We will say that category k from categorical feature j
is relevant to the classi�er if ωj,k 6= 0. Similarly, if ω′j′ 6= 0, then we will say that
continuous feature j′ is relevant to the classi�er. Let us focus now on categorical
features. If a category is relevant to the classi�er, we will say that category k from
feature j points towards the positive class if the score associated to the category is
positive, i.e., if ωj,k > 0. Analogously, if ωj,k < 0 we will say that category k from
feature j points towards the negative class. The fact that a category points towards
the positive (or negative) class means that it contributes to classify objects in the
positive (or negative) class respectively, i.e., contributes to make sign((ω)>xi +
(ω′)>x′i + b) equal to +1 (−1).

Let us introduce some notation. Given an object i in the training set, we let
xi = (xi,j,k), where xi,j,k is equal to 1 if the value of categorical feature j in object
i is equal to category k and 0 otherwise.

First, we present the standard SVM formulation, [8, 10, 23, 24]. The SVM aims
at separating both classes by means of a hyperplane, found by minimizing the so-
called hinge loss and the squared l2-norm of the score vector, [8]. The SVM classi�er
is obtained by solving the following Quadratic Programming (QP) formulation with
linear constraints:

min
ω,ω′,b,ξ

J∑
j=1

Kj∑
k=1

(ωj,k)
2

2
+

J ′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (1)

s.t. (SVM)

yi(
J∑
j=1

Kj∑
k=1

ωj,k xi,j,k + (ω′)> x′i + b) ≥ 1− ξi ∀i = 1, . . . , n (2)

ξi ≥ 0 ∀i = 1, . . . , n (3)

ω ∈ R
∑J

j=1Kj (4)

ω′ ∈ RJ
′

(5)

b ∈ R, (6)

where (ξi) denotes the vector of deviation variables and the parameter denoted by
C is a nonnegative regularization parameter that calls for tuning, [6, 8].
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The methodology proposed in this paper, the CLSVM, receives as input a dataset
containing categorical and eventually continuous features. We will denote by Lj the
number of clusters in which the Kj dummies of categorical feature j are clustered.
As a �rst step, the CLSVM performs a clustering for each categorical feature, de�ned
by an assignment vector z∗, where z∗j,k,` is equal to 1 if category k from feature j is
assigned to the `-th cluster and 0 otherwise, for j = 1, . . . , J, k = 1, . . . ,Kj , ` =
1, . . . , Lj . Then, the dataset is clustered according to z∗, see Figure 1, and an SVM-
type classi�er is constructed for the clustered dataset, given by (ω̄)> x̄+(ω′)> x′+b =
0. For categorical feature j, the component ω̄j,` denotes the score for the `-th cluster,
j = 1, . . . , J, ` = 1, . . . , Lj . The pseudocode of the CLSVM methodology can be
found in Figure 2. To avoid symmetry between clustering solutions, the �rst category
of each categorical feature is always assigned to its �rst cluster.

For each i ∈ Ω:

Step 1. Input:

• original object (yi, xi, x
′
i), xi ∈ {0, 1}

∑J
j=1Kj, x′i ∈ RJ′.

• assignment vector z∗ ∈ {0, 1}
∑J

j=1 LjKj

where

Lj∑
`=1

z∗j,k,` = 1, ∀j = 1, . . . , J ;∀k = 1, . . . ,Kj.

Step 2. Output:

• clustered object (yi, x̄i, x
′
i), x̄i ∈ {0, 1}

∑J
j=1 Lj, x′i ∈ RJ′

where x̄i = (x̄i,1,1, . . . , x̄i,J,LJ
) with x̄i,j,` =

Kj∑
k=1

z∗j,k,`xi,j,k.

Figure 1: Pseudocode for the clustered dataset de�ned by the assignment vector z∗.

Given a dataset Ω:

Step 1. Find the assignment vector z∗, defining a clustering for the categorical

features.

Step 2. Obtain the clustered dataset Ω̄ as in Figure 1.

Step 3. Find the CLSVM classifier for Ω̄, (ω̄)> x̄+ (ω′)> x′ + b = 0.

Figure 2: Pseudocode for the CLSVM methodology.

2.1 Formulations for the CLSVM

In this section two di�erent mathematical optimization formulations are proposed
for the CLSVM methodology, an MINLP and an MIQP formulations. The MIQP
formulation is derived from the MINLP formulation using the big M modeling trick
to reformulate the nonlinear terms in the feasible region.
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First, we introduce the Cluster (CL) formulation, an MINLP formulation with
nonlinear constraints and 0-1 decision variables. This formulation aims at �nding a
classi�er, but at the same time clustering categorical feature j into Lj clusters, for
each j = 1, . . . , J . The CL is formulated as follows:

min
ω̄,ω′,b,ξ,z

J∑
j=1

Lj∑
`=1

(ω̄j,`)
2

2
+

J′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (7)

s.t. (CL)

yi

 J∑
j=1

Lj∑
`=1

ω̄j,`

Kj∑
k=1

zj,k,` xi,j,k + (ω′)> x′i + b

 ≥ 1− ξi ∀i = 1, . . . , n (8)

Lj∑
`=1

zj,k,` = 1 ∀j = 1, . . . , J ;∀k = 1, . . . ,Kj (9)

ξi ≥ 0 ∀i = 1, . . . , n (10)

z ∈ {0, 1}
∑J

j=1 Lj Kj (11)

ω̄ ∈ R
∑J

j=1 Lj (12)

ω′ ∈ RJ
′

(13)

b ∈ R. (14)

This formulation resembles the SVM formulation (1)-(6), and we will discuss their
main di�erences. Here we have a score associated with each feature and each cluster,
ω̄j,`, as opposed to a score for each category, ωj,k. With respect to the decision

variables, we have
∑J

j=1 LjKj new 0-1 variables, the number of components of the
assignment vector z, but the number of continuous features associated with the score
vector decreases from

∑J
j=1Kj to

∑J
j=1 Lj . Constraint (8) corresponds to constraint

(2). Constraint (9) ensures that, given a categorical feature, each category is assigned
to a unique cluster, which means that there are

∑J
j=1Kj additional constraints to

those in the SVM formulation.
We will say that a categorical feature j is irrelevant to the classi�er if ω̄j,` =

0, ∀` = 1, . . . , Lj . On the contrary, if the feature is relevant to the classi�er, we
will say that cluster ` from feature j points towards the positive class if the score
associated to the cluster is positive, i.e., if ω̄j,` > 0. Analogously, if ω̄j,` < 0 we will
say that cluster ` from feature j points towards the negative class. The e�ective use
of the clusters by the CL formulation is stated in the following theoretical results.

Proposition 2.1 For any optimal solution of CL, given a categorical feature j∗, if
there exists `∗ such that zj∗,k,`∗ = 1 ∀k = 1, . . . ,Kj∗, then ω̄j∗,` = 0 ∀` = 1, . . . , Lj∗.

Proof: The proposition will be proved by contradiction. Let (ω̄, ω′, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold. For the case
` = `∗, if ω̄j∗,`∗ 6= 0, then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j∗,`∗ = 0 and
b∗ = b + ω̄j∗,`∗ is a feasible solution for (7)-(14) and has a smaller objective value,
which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is optimal.

6



Now we analyze the case ` 6= `∗. If ω̄j∗,` 6= 0, then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by
setting ω̄∗j∗,` = 0 is a feasible solution for (7)-(14) and has a smaller objective value,
which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is optimal. �

From this proposition, we obtain:

Corollary 2.1 Given a categorical feature, if all its categories belong to the same
cluster, then the feature is irrelevant to the CLSVM classi�er.

The clustering given in the CL formulation for a categorical feature j with Lj = 2,
groups the categories into two clusters. It is easy to see that either the feature is
irrelevant or one of the clusters of the feature points towards the positive class while
the other points towards the negative one.

Proposition 2.2 If Lj = 2, for a given j, for any optimal solution of CL, it holds
that:

ω̄j,1 · ω̄j,2 ≤ 0. (15)

Proof: The proposition will be proved by contradiction. Let (ω̄, ω′, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold, i.e., ω̄j,1 · ω̄j,2 >
0. Then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j,1 =

ω̄j,1−ω̄j,2

2 , ω̄∗j,2 =
ω̄j,2−ω̄j,1

2

and b∗ = b +
ω̄j,1+ω̄j,2

2 satis�es (15), is a feasible solution for (7)-(14) and has a
smaller objective value, which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is
optimal. �

Figure 8 of dataset german, mentioned in Section 1, illustrates the applicability
of Proposition 2.2, where the clustering gives the additional information of which
cluster points towards the positive class or the negative class. We have assigned
a dark gray coloring to clusters in which ω̄j,` > 0 in the CLSVM classi�er, and
therefore, those clusters point towards good customers; similarly, a light gray coloring
is assigned to clusters in which ω̄j,` < 0 in the CLSVM classi�er, and therefore, those
clusters point towards bad customers. For the four categories of feature "Property",
the two clusters are given by {"real estate", "building society savings agreement/life
insurance", "car or other"} and {"unknown/no property"}. The categories of the
�rst cluster point towards the positive class, i.e., they are likely to be associated
with good customers, while the category "unknown/no property" points towards the
negative class, i.e., bad customers.

Nonconvex nonlinear constraints such as (8) are known to be computationally
di�cult to deal with, e.g. [22]. Therefore, one may want to reformulate constraint
(8) from the MINLP formulation in order to obtain an MIQP formulation where

the nonlinear term of the product of variables ω̄j,`

Kj∑
k=1

zj,k,` xi,j,k in constraint (8) is

reformulated by introducing new big M constraints. This implies adding
∑J

j=1 LjKj

continuous variables, ω̃j,k,`, j = 1, . . . , J, k = 1, . . . ,Kj , ` = 1, . . . , Lj , yielding

min
ω̄,ω̃,ω′,b,ξ,z

J∑
j=1

Lj∑
`=1

(ω̄j,`)
2

2
+

J′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (16)
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s.t. (CL-bigM)

yi

 J∑
j=1

Lj∑
`=1

ω̃j,k(i),` + (ω′)> x′i + b

 ≥ 1− ξi ∀i = 1, . . . , n (17)

Lj∑
`=1

zj,k,` = 1 ∀k = 1, . . . ,Kj , ∀j = 1, . . . , J (18)

ω̃j,k,` ≤ ω̄j,` +M(1− zj,k,`) ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (19)

ω̃j,k,` ≥ ω̄j,` −M(1− zj,k,`) ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (20)

ω̃j,k,` ≤M zj,k,` ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (21)

ω̃j,k,` ≥ −M zj,k,` ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (22)

ξi ≥ 0 ∀i = 1, . . . , n (23)

z ∈ {0, 1}
∑J

j=1 Lj Kj (24)

ω̄ ∈ R
∑J

j=1 Lj (25)

ω′ ∈ RJ
′

(26)

ω̃ ∈ R
∑J

j=1 Lj Kj (27)

b ∈ R. (28)

We will compare this with the CL formulation. Both objective functions are
exactly the same. The di�erence between the two formulations comes from the
constraints, and the addition of new variables,

∑J
j=1 LjKj new continuous variables.

Constraint (17) is the corresponding to constraint (8). Here, the nonlinear term is
replaced with the variable ω̃j,k(i),`, where k(i) identi�es the category in which object
i falls for feature j. In order to reformulate constraint (8) as a collection of linear
constraints, it is a very well-known modeling trick to use a 0-1 variable to control if
constraint (8) is active or not, see [27]. Then, constraint (8) is reformulated as linear
constraint (17), and 4·

∑J
j=1 LjKj more constraints are needed for the reformulation,

(19)-(22), the so-called big M constraints.
Please note that Proposition 2.1, Proposition 2.2 and Corollary 2.1 also hold for

the CL-bigM formulation, as it is a valid reformulation of the CL formulation.

3 Strategies for the CLSVM

In this section four di�erent strategies are proposed to obtain the CLSVM classi-
�er. The �rst, and natural, way to de�ne a CLSVM classi�er is by clustering the
categories using the scores of the original SVM, the SVMO. This is a cheap strat-
egy but underperforming in some cases in terms of accuracy, as we will see in the
computational section. Three alternative strategies are proposed based on the two
mathematical optimization formulations introduced in Section 2, the CL and the
CL-bigM.

In the remainder of this section, when describing the strategies, we will explain
how to obtain the partial solution (ω̄, ω′, b), which determines the CLSVM classi�er,
and the assignment vector z∗. Then, the assignment vector z∗ performs a clustering
for the original dataset, obtaining a clustered dataset, as shown in Figure 1.
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The �rst strategy, the centroid SVM (SVMC) Strategy, is based on the SVMO

scores. As initial step, the SVMO classi�er is built for the original dataset, then
the categories of categorical feature j are clustered into Lj clusters by clustering
the SVMO scores, for each j. This is done by solving the minimum sum of squares
clustering problem (MSSC), [15]. Given a categorical feature j, MSSC clusters all
the categories into Lj clusters such that the sum of the squared distance of the score
of a category from the centroid of the cluster is minimized. The pseudocode of the
MSSC problem can be found in Figure 3, where the j index has been dropped for
the sake of clarity, and calligraphic font is used to denote sets, while regular font for
their cardinality. After clustering the dataset, the CLSVM classi�er builds an SVM
classi�er using the clustered dataset. The pseudocode of this strategy can be found
in Figure 4.

Given a vector ν ∈ RK associated with a categorical feature with K categories,

Step 1. Sort the values νk, k = 1, . . . ,K, increasingly, such that:

ν(1) ≤ ν(2) ≤ . . . ≤ ν(K)

Step 2. Set Ii0 = ∅
Set Ii` = {1, . . . , i`}
Set IiL = {1, . . . ,K}

Set F (Ii`) =
∑
i∈Ii`

ν(i) −
1

Ii`

∑
h∈Ii`

ν(h)

2

Solve

min
i1,...,iL−1

L∑
`=1

F (Ii` \ Ii`−1
)

Step 3. Return the assignment vector z∗ defined by the L clusters, determined by

Ii1 , . . . , IiL−1
.

Figure 3: Pseudocode for the MSSC problem.

For each C,

Step 1. Solve the SVMO and obtain the (partial) optimal solution ω.

Step 2. For each j, cluster the Kj categories of feature j into Lj clusters solving

the MSSC problem for ν = ωj·, obtaining the components from the assignment

vector z∗j...

Step 3. Solve the SVM formulation with clustered data defined by z∗, and return this

as the CLSVM classifier.

Choose the best C using the CLSVM classifier.

Figure 4: Pseudocode for the SVMC Strategy.

The second strategy, the CL randomized rounding (CLRR) Strategy, performs
a randomized rounding, [19], to the fractional assignment vector returned by the
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continuous relaxation of the CL formulation. This is a QCQP formulation, where

constraint (11) is relaxed to z ∈ [0, 1]
∑J

j=1 Lj Kj . The pseudocode of this reduction
strategy can be found in Figure 5, where rand(p) is a subroutine of random numbers
generation, returning the value 1 with probability p and 0 otherwise.

For each C,

Step 1. (i) Solve the continuous relaxation of CL and obtain the (partial) optimal

solution z.

(ii) Set z∗j,k,` = 0 ∀k = 1, . . . ,Kj ,∀` = 1, . . . , Lj ,∀j = 1, . . . , J
For j = 1, . . . , J

For k = 1, . . . ,Kj

Set ` = 1
while (` < Lj)

Set z∗j,k,` = rand(zj,k,`)
If z∗j,k,` = 0, set ` = `+ 1
Else ` = Lj

end

Set z∗j,k,Lj
= 1−

Lj−1∑
`=1

z∗j,k,`

end

end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation with clustered data defined by z∗, and return this

as the CLSVM classifier.

Choose the best C using the CLSVM classifier

Figure 5: Pseudocode for the CLRR Strategy.

The third strategy, the CL-bigM randomized rounding (CLMRR) Strategy is
based on the randomized rounding of the partial solution of the continuous relax-
ation of the CL-bigM formulation. It is similar to the CLRR Strategy, but with the
di�erence that it solves the continuous relaxation of the CL-bigM formulation, where

constraint (24) is relaxed to z ∈ [0, 1]
∑J

j=1 Lj Kj . The pseudocode of this strategy
can be found in Figure 6.

The last strategy, the CLM Strategy, is based on the CL-bigM formulation.
Instead of solving the continuous relaxation, this strategy solves the CL-bigM for-
mulation or returns the incumbent solution after a given time limit. In this case the
incumbent solution gives the clustering and the classi�er at once. The pseudocode of
this strategy can be found in Figure 7. This is the most computationally expensive
strategy, as it involves solving an MIQP formulation with big M constraints. How-
ever, the cost of the strategy is balanced with the computational results, as shown
in Section 4.

Other strategies are possible and natural, and some were tested. For instance, we
tried two strategies based on solving the CL formulation. These strategies solved to
optimality the CL formulation or returned the incumbent solution after a given time
limit. We tested the strategy for which the incumbent solution gave the clustering
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For each C,

Step 1. (i) Solve the continuous relaxation of CL-bigM and obtain the (partial)

optimal solution z.

(ii) Set z∗j,k,` = 0 ∀k = 1, . . . ,Kj ,∀` = 1, . . . , Lj ,∀j = 1, . . . , J
For j = 1, . . . , J

For k = 1, . . . ,Kj

Set ` = 1
while (` < Lj)

Set z∗j,k,` = rand(zj,k,`)
If z∗j,k,` = 0, set ` = `+ 1
Else ` = Lj

end

Set z∗j,k,Lj
= 1−

Lj−1∑
`=1

z∗j,k,`

end

end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation with clustered data defined by z∗, and return this

as the CLSVM classifier..

Choose the best C using the CLSVM classifier

Figure 6: Pseudocode for the CLMRR Strategy.

For each C,

Step 1. Solve the CL-bigM and obtain the (partial) solution (ω̄, ω′, b, z), the

assignment vector and the classifier at once, and return this as the CLSVM

classifier.

Choose the best C using the CLSVM classifier

Figure 7: Pseudocode for the CLM Strategy.

and the classi�er at once. We also tested another one for which the assignment
vector z∗ of the incumbent solution was used to cluster the dataset and an SVM was
solved to �nd the classi�er. These strategies are however computationally expensive
as they involve solving MINLP formulations. The performance of these strategies
is not reported in Section 4 since they were systematically outperformed by the
strategies above.

4 Computational results

In this section we illustrate the performance of the CLSVM methodology compared
to the benchmark procedure, the SVMO, in terms of accuracy and complexity of
the classi�er associated with the categorical features. The accuracy of a classi-
�er on a given dataset is de�ned as the percentage of objects correctly classi�ed
by the classi�er on such dataset. The second criterion, complexity, quanti�es (in
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percentage) the fraction of relevant dummies of the score vector associated with
the categorical features. In other words, the complexity of the SVMO classi�er is

given by
card({ωj 6=0})∑J

j=1Kj
· 100% and the complexity of the CLSVM classi�er is given by

card({ω̄j,` 6=0})∑J
j=1Kj

· 100%. We will show that the CLSVM classi�er is competitive against

the SVMO classi�er in terms of accuracy and outperforms the SVMO classi�er in
terms of complexity.

Our experiments have been conducted on a PC with an Intel R© CoreTM i7 pro-
cessor with 16 Gb of RAM for all strategies except for the CLRR Strategy, where
the Neos Server is used, [11]. We use the optimization engine CPLEX, [16], for solv-
ing the SVM formulation, the CL-bigM formulation and its continuous relaxation,
and Ipopt, [25, 11], for the continuous relaxation of CL. We have �xed M=1000
on the CL-bigM formulation. Although most optimization problems are solved to
optimality in a few seconds, for the CL-bigM formulation the time limit is set to 300
seconds.

As customary in Supervised Classi�cation, the optimization of the SVM and
the CLSVM calls for tuning some parameters, namely the tradeo� parameter C,
see Figures 4-7. As usually done in the literature, the tuning procedure works as
follows, e.g. [6, 8]. The dataset is split into three sets, the so-called training, testing
and validation sets. For each value of C, the optimization problem is solved on the
training set. The di�erent classi�ers built in this way are compared according to
their accuracy on the testing set. The parameter C with the highest accuracy on the
testing set is chosen, and its accuracy on the validation set is reported. Following
the usual approach, the parameter C is tuned by inspecting a grid of the form
C
n ∈ {10−6, . . . , 106}, see [8].

The remainder of this section is structured as follows. The datasets used to
compare the CLSVM classi�er are described in Section 4.1, and the computational
results are presented in Section 4.2.

4.1 Datasets

The performance in terms of accuracy and complexity of the CLSVM methodol-
ogy is illustrated using ten real-life datasets from the UCI repository, [3]. Re-
gression datasets are transformed into 2-class classi�cation datasets using the me-
dian (abalone), and multi-class datasets are transformed into 2-class ones, treating
the largest class as the positive class and the remaining ones as the negative class
(careval, solar-c, molecular). Recall that categorical features have been trans-
formed by splitting the categories into 0-1 dummy features.

A description of these datasets can be found in Table 1, whose �rst three columns
report the dataset name, full name given in the repository and total size of the
dataset (|Ω|). The size of the training set (n) is set as the closest 102 multiple to
|Ω|/3 setting 5000 as the maximum in order to have running times below reasonable
values, see fourth column of Table 1. The remaining records in the dataset are
equally split between the testing and validation sets. The �fth column reports the
class split in the training set and the sixth and seventh columns show the number
of categorical and continuous features, respectively. Finally, the total number of
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categories and the number of categories per feature are reported.
To obtain sharp estimates for the accuracy and the complexity, repeated random

subsampling is used, where ten instances are run for each dataset. The ten instances
di�er in the seed used to reshu�e the dataset in order to obtain di�erent training,
testing and validation sets.

4.2 Results

In this section we compare the performance of the four strategies proposed to build
the CLSVM classi�er against that of the SVMO classi�er in terms of accuracy and
complexity of the classi�er. When, for a given criterion, the di�erence in performance
of two classi�ers is below 1 percentage point (p.p.), we will say that both classi�ers
are comparable under such criterion.

Tables 2-5 report the mean validation accuracy as well as the standard deviation
and the median across the ten reshu�es for the accuracy and complexity, where for
each dataset and each criterion, we underline the best results accross all the strategies
and the benchmark procedure. Results for the benchmark procedure, SVMO, are
reported in Table 2, for the SVMC Strategy in Table 3, for the CLRR Strategy in
Table 4, and for the CLMRR and the CLM strategies in Table 5. The following
conclusions can be drawn from our computational results for the mean values, but
similar conclusions are derived if median values are analyzed.

We start with the accuracy. For seven datasets (census income, mushrooms,
coil 2000, abalone, molecular, solar-c, german), at least one of the strategies
is comparable to the SVMO. For two datasets the SVMO is outperformed, by two
strategies in adult and by one strategy in australian. In adult, the SVMC Strat-
egy and the CLMRR Strategy outperform the SVMO by 3.65 p.p. and 4.18 p.p.
respectively. In australian, the CLM Strategy outperforms the SVMO in 1.26 p.p.
For one dataset, careval, the SVMO achieves the best accuracy, where the di�er-
ence with the CLSVM classi�er is between 2.57 p.p., with the CLM Strategy, and
13.94 p.p., with the SVMC Strategy.

We now focus on the second criterion, namely, complexity. All strategies show
a dramatic reduction on complexity of the classi�er with respect to the categor-
ical features. The minimum improvement over the SVMO is for the coil 2000

dataset, of 8.12 p.p. For the remaining datasets, all strategies proposed for the
CLSVM methodology outperform the SVMO at least by 30 p.p. For the �rst six
datasets, (census income, adult, mushrooms, coil 2000, abalone, molecular), the
CLM Strategy achieves the lowest complexity. For the last four datasets (careval,
solar-c, german, australian), the CLMRR Strategy achieves the lowest complexity,
reaching an improvement of 85.25 p.p. over the SVMO.

In summary, the four strategies proposed for the CLSVM methodology are com-
petitive against the SVMO in terms of accuracy, and clearly dominate in terms of
complexity of the classi�er. The SVMC and CLMRR strategies, have a computational
cost comparable to that of the benchmark procedure, SVMO, as they only involve
solving QP formulations. Then, for a small increase in the computational cost, one
can obtain a more stable strategy, the CLRR, solving QCQP formulations. Although
the CLM Strategy is the most computationally expensive strategy, as it involves solv-
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ing di�cult MIQP formulations with big M constraints, its cost is balanced with the
computational results, as it is the strategy performing best accuracy results in three
datasets (careval, german, australian) and best complexity results in six datasets
(census income, adult, mushrooms, coil 2000, abalone, molecular).

As shown in Table 5, the performance of the CLM Strategy suggests it could be
improved for datasets with a large number of categories, such as molecular. Recall
that to obtain running times below reasonable values, the time limit for this strategy
is set to 300 seconds. Increasing the time limit to 3600 seconds for molecular,
changes the mean accuracy from 51.92% to 93.70% and the median from 51.92% to
93.74%, which makes the CLM comparable to the SVMO in terms of accuracy for
molecular. Therefore, increasing the running time may be an alternative for the
CLM Strategy when dealing with a large number of features.

5 Conclusions

In this paper the CLSVM methodology is proposed, based on the SVM and per-
forming a clustering for categorical features, letting categories cluster around their
peers and building an SVM classi�er using the clustered dataset. Four strategies
are presented to build the CLSVM classi�er by means of QCQP, MIQP and QP
formulations. When using two clusters, the CLSVM classi�er has a comparable
accuracy to the SVMO classi�er, in seven of the ten benchmark datasets. In the
remaining three datasets, the CLSVM classi�er outperforms the SVMO classi�er in
two datasets, and is outperformed in the other one. In terms of complexity of the
classi�er with respect to the categorical features, the CLSVM methodology shows a
dramatic improvement over the SVMO.

There are several interesting directions to extend the CLSVM methodology.
First, knowledge domain [7, 18] can be incorporated into the methodology to build a
set of comprehensible rules to facilitate interpretability. This can be done by adding
new constraints to the formulations. For each categorical feature, the CLSVM cre-
ates a given number of clusters, hence, constraints implying that two categories
must belong to the same cluster, or �xing the maximum (or minimum) number of
categories that compose a cluster, can be easily added. Other natural constraints
could contribute to interpretability. For instance, if categories are countries, one may
want to impose some countries to be in the same cluster based on their geographic
location.

Second, a sequential methodology could be designed to handle datasets contain-
ing a large number of categorical features. This can be done by running a CLSVM
model for each feature, �xing a clustering for the feature, and then iteratively repeat-
ing the process for the remaining features. Di�erent ways of choosing the order of
features for the iterative process require extra analysis; for instance, one can choose
the feature for which the CLSVM classi�er has the best accuracy.

Third, the CLSVM methodology can be extended to handle continuous features
as well. As the CLSVM aims at reducing the complexity of the classi�er in the
presence of categorical features, we have focused on benchmark datasets composed by
categorical features and eventually continuous features. However, for any dataset, a
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combined methodology could be performed in order to transform continuous features
into categorical ones, by applying the techniques from [5, 20], either binarizing or
discretizing continuous features and then applying the CLSVM methodology. This
extension deserves further study and testing.
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