
Evolutionary Learning of Hierarchical Decision Rules
Jesús S. Aguilar-Ruiz, José C. Riquelme, and Miguel Toro, Member, IEEE

Abstract—This paper describes an approach based on evo-
lutionary algorithms, hierarchical decision rules (HIDER), for
learning rules in continuous and discrete domains. The algorithm
produces a hierarchical set of rules, that is, the rules are sequen-
tially obtained and must be, therefore, tried in order until one is
found whose conditions are satisfied. Thus, the number of rules
may be reduced because the rules could be inside one another.
The evolutionary algorithm uses both real and binary coding for
the individuals of the population. We have tested our system on
real data from the UCI Repository, and the results of a ten-fold
cross-validation are compared to C4.5s, C4.5Rules, See5s, and
See5Rules. The experiments show that HIDER works well in
practice.

Index Terms—Decision rules, decision trees, evolutionary algo-
rithms (EAs), supervised learning.

I. INTRODUCTION

SUPERVISED learning is used when the user knows the
outcomes of the data samples and wants to predict the

outcome of a new unseen instance. An algorithm carries out
the prediction (classification) and can produce knowledge by
using a suitable data structure. Some techniques, like nearest
neighbor searching or neural networks, can classify an instance,
but cannot obtain the knowledge structure from the information
stored in the database. However, other techniques produce
sets of rules with a specific structure: decision trees, decision
lists, or simply, a set of rules. In general, when a rule-based
framework is used to express the acquired knowledge, this is
often called decision rules. Such rules can subsequently be
used both to infer properties of the corresponding categories
and to classify other, previously unseen, examples from the
original space.

Decision trees are a particularly useful technique in the con-
text of supervised learning because they perform classification
by a sequence of tests whose semantics are intuitively clear and
easy to understand. Some tools, like C4.5 [1], construct deci-
sion trees selecting the best attribute by using a statistical test
to determine how well it alone classifies the training examples.
This sort of decision tree may be called axis-parallel, because
the tests at each node are equivalent to axis-parallel hyperplanes
in such space. On the other hand, other techniques build oblique
decision trees, such as [2], that tests a linear combination
of the internal attributes at each node, so that these tests are

equivalent to hyperplanes at an oblique orientation to the co-
ordinate axes.

Some algorithms construct adecision list[3], a set of rules
which is ordered according to some heuristic measure and stored
as a list. The future examples are classified by the first rule
that matches it in the list. For example, CN2 [4] induces an or-
dered list of decision rules from examples using entropy as its
search heuristic. Some methods, including the “unordered deci-
sion list” version of CN2 [5] or the aq-based systems [6] gener-
ates a decision rule for each class in turn.

Evolutionary algorithms (EAs) are a family of computational
models inspired by the concept of evolution. These algorithms
employ a randomized search method to find solutions to a par-
ticular problem [7]. This search is quite different from the other
learning methods mentioned above. An EA is any population-
based model that uses selection and recombination operators to
generate new sample examples in a search space [8]. The EA
search can move much more abruptly, replacing a parent indi-
vidual with an offspring less likely to fall into the same kind of
local minima which can happen with the other methods. EAs
have been used in a wide variety of optimization tasks [9], [10]
including numerical optimization and combinatorial optimiza-
tion problems, although the range of problems to which EAs
have been applied is much broader. The main task in applying
EAs to any problem consists in selecting an appropriate repre-
sentation (coding) and an adequate evaluation function (fitness).

In classical EAs the members of the population (typically
maintaining a constant-size) are represented as fixed-length
strings of binary digits. The length of the strings and the
population size are completely dependent on the problem. The
population simulates nature’s behavior, since the relatively
“good” solutions produce offspring which replace ones that
are relatively “worse,” retaining many of the features of their
parents. The estimate of the quality of a solution is based on
a fitness function, which determines how good an individual
within the population in each generation is. New individ-
uals (offspring) for the next generation are formed by using
(normally) two genetic operators: crossover and mutation.
Crossover combines the features of two individuals to create
several (commonly two) individuals. Mutation operates by ran-
domly changing several components of a selected individual.

Genetic based searching algorithms for supervised learning,
as genetic algorithm batch incremental leaner (GABIL) [11],
or genetic-based inductive learning (GIL) [12], do not easily
handle numeric attributes because the method of encoding
all possible values would lead to very long rules in the case
or real-valued attributes. Concretely, GABIL and GIL are
so-called “concept learners” because they are designed for
discrete domains. Other approaches, as supervised inductive
algorithm (SIA) [13], have been motivated by a real world

(a)

(b)

Fig. 1. Comparison between (a) C4.5 and (b) HIDER in the case of nonnested
regions. C4.5 needs to split the space more times.

data analysis task in a complex domain, with continuous and
discrete attributes. Recent works use hybrid techniques in
which EAs play an important role, such as inducing decision
trees [14] or coping with the problem of small disjuncts [15].

The aim of our research was to obtain a set of rules by means
of an evolutionary algorithm to classify new examples in the
context of supervised learning. With our approach, hierarchical
decision rules (HIDER), we try to efficiently handle continuous
and discrete attributes. HIDER obtains one rule from each run
of the evolutionary algorithm, including this rule in the set of
rules. Once the algorithm has finished, these rules are applied
to classify new examples in the same order that they were ob-
tained, maintaining its order-dependency. The justification of
this method will be discussed in Section II. The characteristics
of our approach are presented in Section III, where the coding,
the algorithm, the selected fitness function, and a particular as-
pect namedgeneralization, are detailed. Section IV shows the
experiments, the results, and their analysis. In Section V, con-
clusions are summarized, which motivates some of the future
works presented in Section VI.

II. M OTIVATION

Two artificial two-dimensional (2-D) datasets will be used
to clarify the motivation of our approach. The way in which
C4.5 splits the space is depicted in Fig. 1. The figures within
the circles describe the level on the tree where the tests (nodes)
over these attributes are placed. See the region labeled as B on
the bottom-left corner of Fig. 1. C4.5 divides region B into two
parts, however, we thought that the complete region should be
covered by only one rule. This fact motivates us to design an
algorithm, HIDER, which is able to discover such rule.

HIDER is quite different because it does not divide the space
by an attribute, but sequentially extracts regions from the space
itself. This permits obtainingpure regions, i.e., all examples
having the same class label. As illustrated in Fig. 1, the region
labeled as B on the bottom-left corner is discovered by HIDER.

For another artificial 2-D dataset, Fig. 2 shows the classifi-
cation that C4.5 gives. Nevertheless, as illustrated in Fig. 2, the

(a)

(b)

Fig. 2. Comparison between (a) C4.5 and (b) HIDER in the case of nested
regions. C4.5 needs much more regions than HIDER.

quality of the rule set would be improved if the algorithm finds
rules within others. The most evident feature, graphically ob-
served in Fig. 2, is the reduction of the number of rules because
of the overlapping rules. This characteristic motivates us to use
hierarchical decision rules instead of independent (unordered)
decision rules.

In short, the obtaining of larger regions without damaging the
prediction accuracy, and the discovery of regions within others,
are the two main goals which have motivated the development
of HIDER. In particular, our algorithm has been successfully
applied to a real problem: the generation of decision rules to
estimate software development projects [16]. These rules will
help the project manager keep the project within cost, quality,
and duration goals. It is important to note, that for this real do-
main, the interest resides in obtaining rules for just one labeled
class (good projects from the dataset). This makes our approach
more flexible in comparison to other techniques that generate
decision rules for all the classes, like C4.5.

III. HIDER

HIDER uses an EA to search for the best solutions and pro-
duces a hierarchical set of rules. According to the hierarchy, an
example will be classified by theth rule if it does not match
the conditions of the th preceding rules. The rules are
obtained sequentially until the space is totally covered. The be-
havior is similar to adecision list[3]. As mentioned in [5], the
meaning of any single rule is dependent on all the other rules
which precede it in the rule list, so it might be a problem for
the expert to understand if many rules are present. However, in
many areas, the rule set is not used to understand the informa-
tion stored in the database, but used to classify new unseen in-
stances. In this sense, since HIDER generally obtains first rules
containing more examples, the number of attributes needed to
test the final set of rules decreases. HIDER is designed on the

Fig. 3. Hierarchical set of rules.

basis of accuracy, but the incremental construction favors the
understandability of the provided rule set.

We extend the concept of decision lists to continuous do-
mains. When we want to learn rules in the context of continuous
attributes, we need to extend the concept of decision lists in two
ways. First, to adapt the Boolean functions to interval functions;
and secondly, to represent many classes instead of the true and
false values (positives and negatives examples). For each con-
tinuous (real) attribute , we obtain the boundary values called

and (lower and upper bounds, respectively) which define
the space (range of the attribute). These intervals allow us
to include continuous attributes in a decision list. A decision
list has a last constant functiontrue, i.e., examples not covered
by any rules will have a defined class label, commonly that of
the majority class. We could interpret this last function as an
unknown function, that is, we do not know which class the ex-
ample belongs to. Therefore, it may be advisable to say “un-
known class” instead of making an erroneous decision. From
the point of view of the experiments, when no induced rules are
satisfied, “unknown class” will be considered as an error.

The structure of the set of rules will be as shown in Fig. 3.
As mentioned in [17], one of the primary motivations for

using real-coded EAs is the precision to represent attribute
values, and the other is the ability to exploit the continuous
nature of functions of continuous attributes. We implemented
our first versions with binary-coded genetic algorithms, but
realized that real-coded EAs are more efficient in time and
quality of results [18].

Before an EA can be run, a suitablecodingfor the problem
must be devised. We also require afitness function, which as-
signs a figure of merit to each coded solution. During the run,
parents areselectedfor reproduction, andrecombinedto gen-
erateoffspring. These aspects are described below.

A. Coding

In order to apply EAs to a learning problem, we need to se-
lect an internal representation of the space to be searched and
to define an external function that assigns fitness to candidate
solutions. Both components are critical for the successful appli-
cation of the EAs to the problem of interest.

Information on the environment comes from a data file, where
each example has a class and number of attributes. We have
to codify that information to define the search space, which
normally will be dimensionally greater, since the length of the
individual will be greater than the number of attributes. Each
attribute will be formed by several components in the search
space, depending on the specific representation.

In our first approaches, we studied other EA-based classi-
fiers with binary coding. These are generally used as concept

Fig. 4. Continuous (left) and discrete (right) attributes.

learners, where coding assigns a bit to each value of the attribute,
i.e., every attribute is symbolic (GABIL [11] and GIL [12] are
two very well-known systems). For example, an attribute with
three possible values would be represented by three bits. A value
of one in a bit indicates that the value of the attribute is present
so that several bits could be active for the same attribute. This
coding is appropriate for symbolic domains. However, it is very
difficult to use it in continuous domains, because the number of
elements in the alphabet is very large, prohibiting a complete
search.

Using binary coding in continuous domains requires trans-
formations from binary to real for every attribute in order to
apply the evaluation function. Moreover, when we convert bi-
nary into real, the precision is lost, so that we have to find the
exact number of bits to eliminate the difference between any
two values of an attribute. This ensures that a mutation of the
less significant bit of an attribute will include, or exclude, at
least one example from the training set.

Nevertheless, the real coding is more appropriate with real
domains, simply because it is more natural to the domain. A
number of authors have investigated nonbinary evolutionary al-
gorithms theoretically [19]–[23]. In this work, real coding is
adopted to efficiently handle continuous domains and axis-par-
allel representations. For example, in [24], other representations
are explored, such as, rotated hyperrectangles and hyperellipses.

The representation for continuous and discrete attributes is
shown in Fig. 4, where and are values representing an
interval for the continuous attribute; are binary values indi-
cating whether the value of the discrete attribute is active or not.
A last value (omitted in the figure) is for the class. All the indi-
viduals within the population will have this encoding, two genes
for continuous attributes and the number of discrete values de-
fine the length for discrete attributes.

The number of classes determines the set of values to which
it belongs, i.e., if there are five classes, the value will belong to
the set . Each rule will be obtained from this rep-
resentation, but when , or , where

is an attribute, the rule will not have that value. For example,
in the first case the rule would be and in the second case

, being any value within the range of the attribute. If both
values are equal to the boundaries, then the rule arises
for that attribute, which means that it is not relevant because ei-
ther of the attribute’s values will be covered by the whole range
of that attribute . Under these assumptions, some at-
tributes might not appear in the set of rules. In the same way,
when every discrete value is active, that attribute does not ap-
pear in the rule.

B. Algorithm

The algorithm is a typical sequential covering EA [25]. It
chooses the best individual of the evolutionary process, trans-

Fig. 5. Pseudocode of HIDER.

forming it into a rule which is used to eliminate data from the
training file [13]. In this way, the training file is reduced for the
following iteration. HIDER searches for only one rule among
the possible solutions, which compared to the algorithms based
on the Michigan and Pittsburgh approaches, reduces the search
space, even when several searches must be performed if several
rules are to be learned.

The pseudocode of HIDER is shown in Fig. 5. The algorithm
is divided in two parts: the procedure HIDER, which constructs
the hierarchical set of rules and the function EvoAlg, which ob-
tains one rule every time it is run. Initially, the set of rules
is empty, but in each iteration a rule is included (operator)
in ; is the training file and is the number of remainder
examples that have not been covered yet (exactlyat the be-
ginning). In each iteration, the training file is reduced (oper-
ator), eliminating those examples that have been covered by
the description of the rule (), i.e., the left-hand side of the
rule, independently of its class. A parameter , calledexam-
ples pruning factor, controls the number of examples that will
not be covered during the process (ranging from 1%-5%). This
factor ensures that rules covering few examples have not been
generated. Some authors have pointed out that these rules are
undesirable, especially with noise in the domain [5], [26]. The
termination criterion is reached when more examples to cover

do not exist, depending on the . For the trials, we have set
the to 0.

The evolutionary algorithm is run each time to discover one
rule. The method of generating the initial population (initialize)
consists in randomly selecting an example from the training file
for each individual of the population. Afterwards, an interval
to which the example belongs is obtained. For example, let
and be the lower and upper bounds of the attribute; then,
the range of the attribute is ; next, we randomly choose
an example class from the training
file, where is the number of attributes; at last, a possible
individual of the population could thus be

class, where is
a value for the attribute; and are random values be-
longing to (is the size of the training data; is the
number of different classes; and class is the same of that of the
example). This initialization assures that at least one example
from the dataset is included in the potential rule. The value of
the attribute is used to create a valid interval, although every
time with different width, due to the random valuesand .
For discrete attributes, the individual has as many positions as
different values for the attribute, although we assure that at least
the same active value of the example will remain active in the
individual.

The evolution module includes elitism: the best individual of
every generation is replicated to the next one (, see in
Fig. 5 the loop controlled by the variable). A set of children
(from to) is obtained from copies of ran-
domly selected parents, generated by their fitness values and
using the roulette wheel selection method. The remainder indi-
viduals [from to] are formed by
means of crossovers (recombination). Since half of the new pop-
ulation is created by applying the crossover operator, the prob-
ability of crossover is 0.5 and the probability of selecting an
individual for crossing depends on its fitness value. These indi-
viduals can be mutated (recombination) later and only the indi-
vidual from the elite will not be mutated. The evaluation func-
tion (evaluation) assigns a value of merit to each individual.

1) Crossover: Wright’s linear crossover operator [27] cre-
ates three offspring: treating two parents as two points,and

; one child is the midpoint of both, and the other two lie, on a
line determined by and .
Radcliffe’s flat crossover [28] chooses values for an offspring
by uniformly picking values between the two parents values,
inclusively. Eshelman and Schaffer [17] use a crossover oper-
ator that is a generalization of Radcliffe’s which is called blend
crossover (-). It uniformly picks values that lie between
two points that contain the two parents, but may extend equally
on either side determined by a user specified EA-parameter.
For example, - picks values from points that lie on an
interval that extends on either side of the interval be-
tween the parents. Logically, - is the Radcliffe’s flat
crossover.

Our crossover operator is an extension of Radcliffes’s
adapted to individuals coded as intervals. Let and

be the intervals of two parents,and , for the same
attribute . From these parents one child is generated by
selecting values that satisfy the expression: ,

(a)

(b)

Fig. 6. Crossover situations. (a) valid. (b) invalid.

and , . This type
of crossover could produce two situations which are illustrated
in Fig. 6(a) and (b). When the intersection of two intervals is not
empty, as shown in Fig. 6(a), the new interval is clearly
obtained. However, a different situation is produced when the
intersection is empty [Fig. 6(b)], becausecould be greater than

. In this case, the offspring is rejected (experiments showed
better results in this way). When the attribute is discrete, the
crossover operator is like a uniform crossover [29].

2) Mutation: Mutation is applied to continuous attributes as
follows: if the randomly selected location (gen) isor , then
a small value is subtracted or added, depending on whether it is
the lower or the upper boundary, respectively. The small value
in this work is the smallest heterogeneous overlap-Euclidean
metric [30] among any two examples belonging to the dataset.

In the case of discrete attributes, mutation changes the value
from 0 to 1, or vice versa, and it is applied with low proba-
bility. We introduce a specific mutation operator to generalize
the attribute when almost every value is 1. In this case, the at-
tribute does not appear in the rule. Mutation is always applied
with probabilities 0.1 (individual) and 0.2 (gen).

C. Fitness Function

The fitness function must be able to discriminate between
correct and incorrect example classifications. Finding an appro-
priate function, due to the noisy nature of most datasets, is not
a trivial task. In our case, we try to both minimize the number
of errors, and maximize the number of correctly classified ex-
amples. A simple solution to this two-objective optimization
problem is considering both variables within the fitness function

, as shown in (1), where is maximized for each individual
from the population as follows:

coverage (1)

where is the number of examples being processed; is
the class error, which is produced when an example belongs to
the region defined by the rule, but does not have the same class;

is the number of examples correctly classified by the rule;
and thecoverageof a rule is the proportion of the search space
covered by such rule. Each rule can be quickly expanded to find
more examples, thanks to the coverage in the fitness function.
The reason why is not coverage
is as follows: for example, when and

we will have the same fitness value as when and
(the difference is 2; assuming the same coverage for

both). Therefore, we decided to penalize the second case (9/7 is
greater than 17/15) since less errors are preferred.

The coverage of a rule is calculated dividing the volume of
the region defined by the rule by the whole volume of the search
space. Let be the interval associated with an attributeof
the rule; the number of active discrete values of an attribute;

the range of a continuous attributeand the number
of different values of a discrete attribute. Then, the coverage
of a rule is given by

coverage
coverage

range

where

coverage
if the attribute is continuous

if it is discrete

range
if the attribute is continuous

if it is discrete.

IV. RESULTS

The datasets used in this section are from the UCI Reposi-
tory [31]. The results obtained by HIDER have been compared
to that of C4.5 Release 8, C4.5Rules, See5, and See5Rules.
To measure the performance of each method, a ten-fold cross-
validation was achieved with each dataset (eighteen databases
that involve continuous and/or discrete attributes). The algo-
rithms were all run on the same training data and their induced
knowledge structures tested using the same test data, so that the
ten resulting performance numbers for C4.5Rules, C4.5, See5,
See5Rules, and HIDER are comparable. It is very important to
note that the experiments were run with the same default set-
tings for all parameters of the EA: a population size of as little as
100 individuals and 300 generations. In cases of small datasets,
like Iris, the results would have been the same using a smaller
number of generations (about 50 had been enough). These are
very small numbers, considering the number the examples and
the dimensionality of some databases. HIDER needed about
three hours to complete the ten-fold cross validation for the 18
databases in a Pentium 800 MHz with 256 Mb of RAM. C4.5
only needed about four minutes in the same machine and See5
about three minutes. Quinlan’s tools are extremely robust algo-
rithms that perform well in many domains. It is very difficult to
consistently outperform them on a variety of datasets.

Table I gives the values of the parameters involved in the evo-
lutionary process.

Table II gives the error rates (numbers of misclassified ex-
amples expressed as a percentage) for C4.5Rules, C4.5, See5,
See5Rules, and HIDER algorithms on the selected domains.
HIDER outperforms C4.5 and C4.5Rules in 12 out of 18 and 8
out of 18 datasets, respectively. If C4.5 produces bad trees, the
results from C4.5Rules will not be very good. We can observe
that there are four databases whose results generated by C4.5 are
about 40% worse than those obtained by HIDER (breast cancer,
iris, tic-tac-toe, and wine). It is especially worthy to note the

TABLE I
PARAMETERS OFHIDER

TABLE II
COMPARING ERRORRATES

error rate of the tic-tac-toe database. C4.5Rules improved the re-
sults of C4.5 for almost every database, except for three of them
(tic-tac-toe, vehicle, and zoo). C4.5Rules did not achieve im-
provement of the results generated by C4.5, rather quite the op-
posite, it made the results worse, particularly for tic-tac-toe and
zoo databases. See5Rules produced better results than HIDER
for 12 databases, See5 for 10, C4.5Rules for 10 and C4.5 for 6.
See5Rules obtained the best result for 7 databases, See5 for 5,
C4.5Rules for 3, C4.5 for 1 and HIDER for 4. In general, See5
is more accurate than C4.5 and, above all, See5Rules reduced
the error rate from 20.1 (C4.5Rules) to 16.5.

Table III compares the number of rules generated by the five
approaches. In order to count the number of rules generated by
C4.5, we can sum the leaves on the tree, or apply the expression

, where is the size of the tree. C4.5Rules improves
C4.5 in all databases, except mushrooms. These results are very
similar to those generated by HIDER. For half of databases,
less rules were generated with HIDER. Nevertheless, the result
for german database is very interesting (5.2 rules), for others
databases C4.5Rules reduces too much (3.3 rules for vehicle
and 5.3 rules for zoo) which leads to a high error rate (57.6% for
Vehicle and 29.8% for zoo). For this reason, although C4.5Rules
on average generated less rules (7.9) than HIDER (9.5), the error

TABLE III
COMPARING NUMBER OF RULES

rate increased considerably, C4.5Rules (20.1%) versus HIDER
(18.3%). See5Rules produced better results than HIDER for five
databases, See5 for three, C4.5Rules for nine and C4.5 for one.
The best results were generated by C4.5Rules (9 databases) and
HIDER (9 databases).

Table IV shows a measure of improvement () for the error
rate [first column: ()] and the number of rules [second
column: ()] used in the Quinlan’s works [32]. To calculate
these coefficients, and , respectively, the error rate
(number of rules) for each method has been divided by the
corresponding error rate (number of rules) for HIDER. On
average, HIDER found solutions that had less than one forth
of the rules output by C4.5. Surprisingly, C4.5 generated a
number of rules 5 times greater than HIDER for one third
of the databases. It is worth noting that in applying HIDER,
more than two-thirds of the databases produce less than half
the rules. C4.5 only was better with Lenses database. C4.5
made the error rate better for six databases, although only
three of them improved significantly (mushrooms, sonar, and
zoo). In summary, the average error rate generated by C4.5
is 22% greater and the average number of rules 340%. This
reason leads us to compare our approach with C4.5Rules
and See5Rules, mainly in regard to the number of rules. The
average ratio of the error rate of C4.5 to that of HIDER is 1.22,
while the ratio of the number of rules is 4.40.

Although the results in Table III indicated that C4.5Rules im-
proved on average (7.9 rules) to HIDER (9.5 rules), analyzing
the relative increase of the number of rules we can observe
that those numbers can be deceptive. C4.5Rules generates an
average number of rules 33% greater than HIDER, as well as
an average error rate 36% higher, as shown in the last row of
Table IV.

In general, taking into account both the error rate and the
number of rules, See5Rules improves HIDER for one database;

TABLE IV
COMPARING GLOBAL RESULTS

TABLE V
NUMBER OF DATABASES FORWHICH THE METHOD IMPROVESHIDER

See5 for two; and C4.5Rules for four (C4.5 for none). Although
See5 behaved well with respect to the error rate, it was not as
good as expected, since when the error rate was improved, the
number of rules increased, and vice versa. C4.5Rules behaved
better on average from this point of view. The most accurate
out of Quinlan’s tools is See5Rules, although it generates more
rules than C4.5Rules.

Table V gives an idea of the performance of each method
in comparison to HIDER, with respect to the number of rules
and/or the error rate. No one tool is significantly better than
HIDER, so it is a robust approach.

V. CONCLUSIONS

An EA-based supervised learning tool to classify databases
is presented in this paper. HIDER produces a hierarchical set of
rules, where each rule is tried in order until one is found whose
conditions are satisfied by the example being classified. The use
of hierarchical decision rules lead to overall improvement of the
performance on the eighteen databases investigated here. In ad-
dition, HIDER improves the flexibility to construct a classifier

varying the relaxing coefficient. In other words, one can trade
off accuracy against understanding. HIDER was compared to
C4.5, C4.5Rules, See5, and See5Rules and both the number of
rules and error rate were decreased. Out of Quinlan’s tools, we
can state on basis of experiments that See5Rules has the best av-
erage performance as for error rate as number of rules. To sum-
marize shortly, the experiments show that HIDER works well in
practice.

VI. FUTURE WORKS

Evolutionary algorithms are very time consuming. This as-
pect is being analyzed from the point of view of the coding.
Another aspect being studied is the way in which the evaluation
function analyzes each example from the database. Research on
improvements to data structure as input of EAs, in order to re-
duce the time complexity, is currently being conducted.

ACKNOWLEDGMENT

Author J. S. Aguilar-Ruiz is grateful to R. López de Mántaras
for the constructive criticisms and for evaluating his doctoral
dissertation. The authors would like to thank the reviewers for
their comments and interesting suggestions.

REFERENCES

[1] J. R. Quinlan,C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[2] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,”J. Artif. Intell. Res., 1994.

[3] R. L. Rivest, “Learning decision lists,”Machine Learning, vol. 1, no. 2,
pp. 229–246, 1987.

[4] P. Clark and T. Niblett, “The cn2 induction algorithm,”Mach. Learn.,
vol. 3, no. 4, pp. 261–283, 1989.

[5] P. Clark and R. Boswell, “Rule induction with cn2: Some recents
improvements,” inMachine Learning: Proc. 5th Eur. Conf., 1991, pp.
151–163.

[6] “Proc. American Association Artificial Intelligence Conf.,” Univ. Illi-
nois, IL, Tech. Rep. UIUCDCS-R-86–1260, 1986.

[7] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[8] D. Whitley, “A genetic algorithm tutorial,” Colorado State Univ., Ft.
Collins, CO, Tech. Rep. CS-93-103, 1993.

[9] S. Forrest, “Genetic algorithms,”ACM Comput. Surv., vol. 28, no. 1, pp.
77–80, 1996.

[10] Z. Michalewicz,Genetic Algorithms+ Data Structures= Evolution
Programs, 3rd ed. New York: Springer-Verlag, 1996.

[11] K. A. DeJong, W. M. Spears, and D. F. Gordon, “Using genetic algo-
rithms for concept learning,”Mach. Learn., vol. 1, no. 13, pp. 161–188,
1993.

[12] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised
learning,”Mach. Learn., vol. 1, no. 13, pp. 169–228, 1993.

[13] G. Venturini, “SIA: A supervised inductive algorithm with genetic
search for learning attributes based concepts,” inProc. Eur. Conf.
Machine Learning, 1993, pp. 281–296.

[14] E. Cantu-Paz and C. Kamath, “Using evolutionary algorithms to in-
duce oblique decision trees,” inProc. Genetic Evolutionary Computa-
tion Conf., Las Vegas, NV, 2000, pp. 1053–1060.

[15] D. R. Carvalho and A. A. Freitas, “A hybrid decision tree/genetic algo-
rithm for coping with the problem of small disjuncts in data mining,” in
Proc. Genetic Evolutionary Computation Conf., Las Vegas, NV, 2000,
pp. 1061–1068.

[16] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “An evolutionary
approach to estimating software development projects,”Inf. Softw.
Technol., vol. 14, no. 43, pp. 875–882, 2001.

[17] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” inFoundations of Genetic Algorithms-2. San
Mateo, CA: Morgan Kaufman, 1993, pp. 187–202.

[18] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro,A Tool to Obtain a
Hierarchical Qualitative Set of Rules From Quantitative Data. New
York: Springer-Verlag, 1998, pp. 336–346.

[19] J. Antonisse, “A new interpretation of schema notation that overturns the
binary encoding constraint,” inProc. 3rd Int. Conf. Genetic Algorithms,
1989, pp. 86–97.

[20] S. Bhattacharyya and G. J. Koehler, “An analysis of nonbinary genetic
algorithms with cardinality2 ,” Complex Syst., vol. 8, pp. 227–256,
1994.

[21] G. J. Koehler, S. Bhattacharyya, and M. D. Vose, “General cardinality
genetic algorithms,”Evol. Computation, vol. 5, no. 4, pp. 439–459,
1998.

[22] M. D. Vose and A. H. Wright, “The simple genetic algorithm and the
walsh transform: Part I, Theory,”Evol. Computation, vol. 6, no. 3, pp.
253–273, 1998.

[23] , “The simple genetic algorithm and the walsh transform: Part II,
The inverse,”Evol. Computation, vol. 6, no. 3, pp. 275–289, 1998.

[24] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Three geometric
approaches for representing decision rules in a supervised learning
system,” in Proc. Genetic Evolutionary Computation Conf., vol.
EE.UU., Orlando, FL, 1999, p. 771.

[25] T. Mitchell, Machine Learning. New York: McGraw Hill, 1997, ch.
10.

[26] R. C. Holte, “Very simple classification rules perform well on most com-
monly used datasets,”Mach. Learn., vol. 11, pp. 63–91, 1993.

[27] A. H. Wright, “Genetic algorithms for real parameter optimization,”
in Foundations of Genetic Algorithms-1. San Mateo, CA: Morgan
Kaufman, 1991, pp. 205–218.

[28] N. J. Radcliffe, “Genetic neural networks on MIMD computers,” Ph.D.
dissertation, Univ. Edinburgh, Edinburgh, U.K., 1990.

[29] G. Syswerda, “Uniform crossover in genetic algorithms,” inProc. 3rd
Int. Conf. Genetic Algorithms, 1989, pp. 2–9.

[30] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,”J. Artif. Intell. Res., vol. 6, no. 1, pp. 1–34, 1997.

[31] C. Blake and E. K. Merz,UCI Repository of Machine Learning
Databases, 1998.

[32] J. R. Quinlan, “Improved use of continuous attributes in c4.5,”J. Artif.
Intell. Res., vol. 4, pp. 77–90, 1996.

Jesús S. Aguilar-Ruizreceived the B.Sc. degree in
1983, the M.Sc. degree in 1992, and the Ph.D. degree
in 1996, all in computer science, from the University
of Seville, Seville, Spain.

He is an Associate Professor at the School of
Computer Science at the University of Seville,
Spain. He has been member of the Programm
Committee of several international conferences,
as ACM Knowledge Discovery and Data Mining
Conference (KDD) or Genetic and Evolutionary
Computation Conference (GECCO). His areas of

research interest include evolutionary algorithms, knowledge discovery, data
mining and bioinformatics.

He received his doctoral dissertation award from the University of Seville.
http://www.lsi.us.es/~aguilar.

José C. Riquelmereceived the B.Sc. degree in 1983,
the M.Sc. degree in math, in 1985, and the Ph.D. de-
gree in 2001 in computer science, all from the Uni-
versity of Seville, Seville, Spain.

He is Associate Professor at the University
of Seville, Spain. He is an expert in genetic
programming. He conducts research in genetic
programming, feature selection, and data mining. He
has served as a member of the Program Committee
of several conferences related to Evolutionary
Computation. He has also edited some proceedings.

http://www.lsi.us.es/~riquelme.
He received his doctoral dissertation award from the University of Seville.

Miguel Toro (M’95) received the B.Eng. degree in
1980, the M.S.Eng. in 1982, and the Ph.D. degree in
1987 in dynamical systems, from the Univeristy of
Seville, Seville, Spain.

He is a Professor at the University of Seville,
Spain. He is author of several books on dynamical
systems. He is a recognized researcher in Software
Engineering and leads one of the most important
groups in Spain. http://www.lsi.us.es/~mtoro.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

