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ABSTRACT
Imbalanced data is a common problem in data mining when 
dealing with classification problems, where samples of a class 
vastly outnumber other classes. In this situation, many data 
mining algorithms generate poor models as they try to opti-
mize the overall accuracy and perform badly in classes with 
very few samples. Software Engineering data in general and 
defect prediction datasets are not an exception and in this 
paper, we compare different approaches, namely sampling, 
cost-sensitive, ensemble and hybrid approaches to the prob-
lem of defect prediction with different datasets preprocessed 
differently. We have used the well-known NASA datasets 
curated by Shepperd et al. There are differences in the re-
sults depending on the characteristics of the dataset and the 
evaluation metrics, especially if duplicates and inconsisten-
cies are removed as a preprocessing step.
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1. INTRODUCTION
Most publicly available datasets in software defect pre-

diction are highly imbalanced, i.e., samples of non-defective
modules vastly outnumber the defective ones. In this situ-
ation, many data mining algorithms generate poor models
because they try to optimize the overall accuracy but per-
form badly in classes with very few samples. For example,
if the number of non-defective samples outnumbers the de-
fective samples by 95%, an algorithm that always predicts a
module as non-defective will obtain a very high accuracy. As
a result, many data mining algorithms obtain biased models
that do not take into account the minority class (defective
modules). When the problem of imbalanced data is not con-
sidered, many learning algorithms generate distorted models
for which (i) the impact of some factors can be hidden and
(ii) the prediction accuracy can be misleading. This is due
to the fact that most data mining algorithms assume bal-
anced datasets. The imbalance problem is known to affect
many machine learning algorithms such as decision tress,
neural networks or support vectors machines [22]. When
dealing with imbalanced datasets, there are different alter-
natives, either bootstrapping, sampling or balancing tech-
niques, cost-sensitive evaluation, ensembles to wrap multi-
ple classifiers making them more robust to the imbalance
problem or hybrid techniques.

In this paper, we compare different types of algorithms to
deal with imbalanced data in the domain of defect prediction
using well-known NASA datasets considering (i) different
evaluation metrics including the Matthew’s Correlation Co-
efficient which has not been used in the domain of software
defect prediction and (ii) with different cleaning processes
(in particular considering the removal of duplicates and in-
consistencies).

The rest of the paper is organised as follows. Section 2
describes the related work. Next, Section 3 briefly describes
the approaches to deal with imbalanced data, followed by the
experimental work in Section 4. Finally, Section 5 concludes
the paper and outlines future work.

2. RELATED WORK
Defect prediction has been an important research topic



for more than a decade with an increasing number of papers
including two recent systematic literature reviews [5, 19].
Many classification techniques for defect prediction have

been proposed, including techniques which originated from
the field of statistics (regression [2], and Support Vector Ma-
chines [12], etc.), machine learning techniques (such as clas-
sification trees [23]), neural networks [24], probabilistic tech-
niques (such as Näıve Bayes [34] and Bayesian networks), en-
sembles of different techniques and metaheuristic techniques
such as ant colonies [45], etc. However, there are discrepan-
cies among the outcomes as: (i) no classifier is consistently
better than the others; (ii) there is no optimum metric to
evaluate and compare classifiers as highlighted in the follow-
ing papers [31, 48, 34]; (iii) there are quality issues regarding
the data such as imbalanced class overlaps, outliers, trans-
formation issues, etc.
Seiffert et al. [41] analysed 15 software-quality data sets

of different sizes and levels of imbalance (including CM1,
KC1, KC2, KC3, MW1 and PC1 from NASA datasets).
For the NASA datasets, the authors used Halstead and Mc-
Cabe base metrics together with some lines of code met-
rics, i.e., attributes were manually selected. The authors
concluded that boosting almost always outperforms sam-
pling techniques using the area-under-the-curve (AUC) and
Kolmogorov-Smirnov (K-S) statistic as performance mea-
sure.
Khoshgoftaar et al. [25] also highlighted the problem of

imbalanced datasets when dealing with defect prediction and
used Case-Based Reasoning to deal with this problem.
In relation to the performance and evaluation of the clas-

sifiers, there is no technique that has consistently performed
better than others. Several papers have compared multiple
techniques with multiple evaluation measures. For exam-
ple, Peng [37] proposes a performance metric to evaluate
the merit of classification algorithms using a broad selection
of classification algorithms and performance measures. The
experimental results, using 13 classification algorithms with
11 measures over 11 software defect datasets, indicate that
the classifier which obtains the best result for a given dataset
according to a given measure may perform poorly with a dif-
ferent measure. The results of the experiment indicate that
Support Vector Machines, the k-nearest neighbor algorithm
and the C4.5 algorithm were ranked as the top three classi-
fiers. Also Peng et al. [38] used ten NASA datasets to rank
classification algorithms, showing that a CART boosting al-
gorithm and the C4.5 decision-tree algorithm with boosting
are ranked as the optimum algorithms for defect prediction.
Lessman et al. [26] also compared 22 classifiers grouped into
statistical, nearest neighbour, neural networks, support vec-
tor machine, decision trees and ensemble methods over ten
datasets from the NASA repository. The authors discuss
several performance metrics such as TPr and FPr but ad-
vocate the use of Area Under the ROC (AUC) as the best in-
dicator for comparing the different classifiers. This is known
not to be optimal in the case of highly imbalanced datasets.
Arisholm et al. [1] compared a classification tree algorithm

(C4.5), a coverage rule algorithm (PART), logistic regres-
sion, back–propagation neural networks and Support Vector
Machines over 13 releases of a Telecom middleware system
developed in Java using three types of metrics: (i) object-
oriented metrics, (ii) churn (delta) metrics between succes-
sive releases, and (iii) process management metrics from a
configuration management system. The authors concluded

that although there are no significe differences regarding the
techniques used, large differences can be observed depending
on the criteria used to compare them. The authors also pro-
pose a new cost-effectiveness metric based on AUC and num-
ber of statements so that larger modules are more expensive
to test. The same approach of considering module size in
conjunction with the AUC as evaluation metrics has been
explored by Mende and Koschke [32] using NASA datasets
and three versions of Eclipse with random forests [4] as the
classification technique.

3. APPROACHES TO DEAL WITH IMBAL-
ANCED DATA

We can classify the different approaches to deal with im-
balanced data as sampling, cost-sensitive, ensemble approaches
or hybrid approaches. We next briefly describe the tech-
niques used in this work.

3.1 Sampling Techniques
Sampling techniques are classified as oversampling or un-

dersampling and are based on adding or removing instances
of the training dataset as a preprocessing step. The simple
procedure of replicating instances from the minority class to-
wards a more balanced distribution is called Random Over-
Sampling (ROS), whereas Random Under-Sampling (RUS)
removes instances from the majority class.

There are more sophisticated or intelligent approaches to
the generation of new artificial instances rather than the
replication of instances. The most popular technique is
called SMOTE (Synthetic Minority Over-sampling Technique) [8]
which generates new instances based on a number of nearest
neighbours. Other techniques that remove instances intel-
ligently include the Edited Nearest Neighbour (ENN) and
Wilson’s Editing that remove instances in which close neigh-
bours belong to a different class [46].

3.2 Cost-Sensitive Classifiers
Cost-Sensitive Classifiers (CSC) adapt classifiers to han-

dle imbalanced datasets by either (i) adding weights to in-
stances (if the base classifier algorithm allows this) or re-
sampling the training data according to the costs assigned
to each class in a predefined cost matrix, or (ii) generating
a model that minimises the expected cost (multiplying the
predicted probability distribution with the misclassification
costs). The idea is to penalise differently the different types
of error (in binary classification, the false positives and false
negatives).

The problem with CSC is defining the cost matrix as there
is no systematic approach to do so. However, it is common
practice to set the cost to equalize the class distribution.

3.3 Ensembles
Ensembles or meta-learners combine multiple models to

obtain better predictions. They are typically classified as
Bagging, Boosting and Stacking (Stacked generalization).
We have used Bagging and Boosting algorithms in this work.

Bagging [3] (also known as Bootstrap aggregating) is an
ensemble technique in which a base learner is applied to mul-
tiple equal size datasets created from the original data using
bootstraping. Predictions are based on voting of the indi-
vidual predictions. An advantage of bagging is that it does
not require any modification to the learning algorithm and



takes advantage of the instability of the base classifier to cre-
ate diversity among individual ensembles so that individual
members of the ensemble perform well in different regions
of the data. Bagging does not perform well with classifiers
if their output is robust to perturbation of the data such as
nearest-neighbour (NN) classifiers.
Boosting techniques generate multiple models that com-

plement each other inducing models that improve regions of
the data where previous induced models preformed poorly.
This is achieved by increasing the weights of instances wrongly
classified, so new learners focus on those instances. Finally,
classification is based on a weighted voted among all mem-
bers of the ensemble. In particular, AdaBoost.M1 [15] is
a popular boosting algorithm for classification. The set of
training examples is assigned an equal weight at the be-
ginning and the weight of instances is either increased or
decreased depending on whether the learner classified that
instance incorrectly or not. The following iterations focus
on those instances with higher weights. AdaBoost.M1 can
be applied to any base learner.
Rotation Forests [40] combine randomly chosen subsets of

attributes (random subspaces) and bagging approaches with
principal components feature generation to construct an en-
semble of decision trees. Principal Component Analysis is
used as a feature selection technique combining subsets of
attributes which are used with a bootstrapped subset of the
training data by the base classifier.
A problem with ensembles is that their models are difficult

to interpret (they behave as blackboxes) in comparison to
decision trees or rules which provide an explanation of their
decision making process.

3.4 Hybrid Approaches
The SMOTEBoost goal is to reduce the bias inherent in

the learning procedure due to the class imbalance, and in-
crease the sampling weight for the minority class. Intro-
ducing SMOTE [6] in each round of boosting will enable
each learner to be able to sample more of the minority class
cases, and also learn better and broader decision regions
for the minority class. Using SMOTE in each round of
boosting enhances the probability of selection for the diffi-
cult minority class cases that are dominated by the majority
class points [7]. SMOTEBoost is a combination of SMOTE
and a boosting procedure, in this case, a variant of the Ad-
aBoost.M2 procedure [14].
RUSBoost [42] is based on the AdaBoost.M2 and so SMOTE-

Boost and RUSBoost are similar. In SMOTEBoost, SMOTE
is applied to the training data during each round of boost-
ing. The difference is that RUSBoost applies Random Under
Sampling instead of SMOTE. The application of SMOTE at
this point has two drawbacks that RUSBoost is designed to
overcome. First, it increases the complexity of the algo-
rithm, SMOTE must find the k nearest neighbours of the
minority class examples, and extrapolate between them to
make new synthetic examples. RUS, on the other hand,
simply deletes the majority class examples at random. Sec-
ond, since SMOTE is an oversampling technique, it results
in longer model training times. On the other hand, RUS
produces smaller training data sets and, therefore, shorter
model training times [42]. Like SMOTEBoost, RUSBoost
combines Boosting and filtering, but it uses RUS instead of
the SMOTE as filter.
MetaCost [11] combines bagging with cost-sensitive clas-

sification. Bagging is used to relabel training data so that
each training instance is assigned the prediction that min-
imizes the expected cost. Based on the modified training
data, MetaCost induces a single new classifier based on the
new relabeled data which provides information about how a
decision was reached.

4. EXPERIMENTAL WORK

4.1 Datasets
In this paper, we have used available software defect pre-

diction datasets generated from projects carried out at NASA.
These datasets are available in two different versions from
the PROMISE repository1[33] and by Shepperd et al.2 [43]
who analysed different problems and differences with these
datasets and curated the repository.

Table 1 shows some basic statistics for both versions of
the datasets, the original one (referred to as MDP) and the
PROMISE version. Both versions have been preprocessed
by Shepperd et al. generating two new datasets for each
version in which instances presenting problems such as im-
plausible values have been removed. The difference between
D’ and D” is that duplicates and inconsistencies have been
removed in D”. Table 1 shows number of instances for each
dataset, their imbalance ratio (IR), percentage of duplicates,
inconsistencies (equal values for all attributes of an instance
but the class) and other problems (for a complete descrip-
tion of problems we refer to [43]). It can be observed that
most datasets are highly imbalanced, varying from less than
1% to 30% and there are large numbers of duplicates and
inconsistencies in some of the datasets which seems to be
the biggest problem.

All datasets contain attributes mainly composed of differ-
ent McCabe [30], Halstead [20] and count metrics. The last
attribute represent the class (defective) which has 2 possi-
ble values (whether a module has reported defects or not).
The McCabe metrics are based on the count of the number
of paths contained in a program based on its graph. Hal-
stead’s Software Science metrics are based on simple counts
of tokens grouped into (i) operators such as keywords from
programming languages, arithmetic operators, relational op-
erators and logical operators and (ii) operands that include
variables and constants.

These sets of metrics (both McCabe and Halstead) have
been used for QA during development, testing and mainte-
nance. Generally, the developers or maintainers use thresh-
old values. For example, if the cyclomatic complexity (v(g))
of a module is between 1 and 10, it is considered to have a
very low risk of being defective; however, any value greater
than 50 is considered to have an unmanageable complexity
and risk. Although these metrics have been used for long
time, there are no generally agreed thresholds.

Table 1 shows that there are large differences in the level of
imbalance or Imbalance Ratio (IR). After the cleaning pro-
cess data is more balanced. In the original datasets there
are two datasets (PC2, MC1) with less than 1% of the pos-
itive cases (defective modules). But most of the problems
seem to come from the fact that some datasets have many
duplicates and inconsistencies. If problematic cases are re-
moved, the percentage of imbalance is affected as is the case

1https://code.google.com/p/promisedata/
2http://nasa-softwaredefectdatasets.wikispaces.com/



Table 1: Number of Instances, Imbalance and Problems of the Datasets
MDP # Inst % IR % Dupl %Incons # Inst D’ % Probl Inst %IR D’ # Inst D” % Probl Inst D” %IR D”
CM1 505 9.5 5.15 0 344 31.88 12.21 327 35.25 12.84
JM1 10878 19.32 24.16 8.17 9593 11.83 18.34 7720 29.03 20.88
KC1 2107 15.42 50.78 12.01 2095 0.57 15.51 1162 44.85 25.3
KC3 458 9.39 2.62 0 200 56.33 18 194 57.64 18.56
KC4 125 48.8 8 7.2 n.a 100 n.a n.a 100 n.a
MC1 9466 0.72 84.22 1.12 8737 51.14 0.78 1952 80.49 1.84
MC2 161 32.3 2.48 0 127 21.12 34.65 124 22.36 35.48
MW1 403 7.69 3.72 1.24 264 34.49 10.23 250 37.72 10
PC1 1107 6.87 7.68 1.17 759 32.07 8.04 679 37.13 8.1
PC2 5589 0.41 17.61 0 1493 72.55 1.07 722 86.87 2.22
PC3 1563 10.24 5.05 0.38 1125 28.41 12.44 1053 31.35 12.35
PC4 1458 12.21 11.39 0.21 1399 7.68 12.72 1270 12.48 13.86
PC5 17186 3 91.53 10.04 16962 10.37 2.96 1694 90.23 27.04
Avg 13.53 24.18 3.2 35.26 12.25 51.18 15.71

PROMISE # Inst % IR % Dupl %Incons # Inst D’ % Probl Inst %IR D’ # Inst D” % Probl Inst D” %IR D”
CM1 498 9.84 18.88 0.4 495 0.6 9.7 437 12.25 10.53
JM1 10885 19.35 24.14 8.17 9591 11.89 18.34 7720 29.08 0.28
KC1 1783 18.28 60.01 14.19 2095 0.79 15.51 1162 53.11 25.3
KC2 522 20.5 34.87 22.61 484 7.28 20.66 325 37.74 28.31
KC3 458 9.39 37.12 0.44 458 6.33 9.39 324 31 12.96
MC1 9398 0.72 84.83 1.13 8737 51.51 0.78 1952 81.07 1.84
MC2 161 32.3 3.73 1.24 159 0 32.7 155 3.11 32.9
MW1 403 7.69 8.93 1.74 402 0 7.71 375 6.7 7.47
PC1 1109 6.94 21.64 1.17 1083 6.67 6.65 919 17.67 6.53
PC2 5589 0.41 82.68 1.79 5356 20.81 0.43 1362 76.88 1.54
PC3 1563 10.24 12.09 0.58 1535 3.45 10.29 1409 8.83 10.5
PC4 1458 12.21 11.39 0.21 1379 7.68 12.91 1270 12.48 13.86
PC5 17186 3 91.53 10.04 16962 10.37 2.96 1694 90.23 27.04
Avg 11.61 37.83 4.9 9.8 11.39 35.4 13.77

Table 2: Attribute Statistics and Problems of the
Datasets

MDP # Att # Probl % Prob # Att D’ Removed

CM1 41 6 14.63 38 3
JM1 22 9 40.91 22 0
KC1 22 4 18.18 22 0
KC3 41 3 7.32 40 1
KC4 41 30 73.17 0 41
MC1 40 5 12.5 39 1
MC2 41 2 4.88 40 1
MW1 41 4 9.76 38 3
PC1 41 8 19.51 38 3
PC2 41 8 19.51 37 4
PC3 41 7 17.07 38 3
PC4 41 11 26.83 38 3
PC5 40 5 12.5 39 1
Avg 21.29

PROMISE Att Prob %Prob Att D’ Removed
CM1 22 15 68.18 21 1
JM1 22 16 72.73 22 0
KC1 22 16 72.73 22 0
KC2 22 15 68.18 22 0
KC3 40 1 2.5 40 0
MC1 39 4 10.26 39 0
MC2 40 0 0 40 0
MW1 38 0 0 38 0
PC1 22 15 68.18 22 0
PC2 37 3 8.11 23 14
PC3 38 3 7.89 38 0
PC4 38 8 21.05 38 0
PC5 39 4 10.26 39 0
Avg 31.54

of KC1 and PC5 in both MDP and Promise repositories (see
Table 1). However, we believe that there is no reason to
remove duplicate and inconsistent instances provided they
come from the real distribution, i.e., data points were prop-
erly collected from the data. PC5 seems to be a special case
as it has many duplicates. Features with a single value can
be safely removed as they do not provide any predictive ca-
pability for the classifiers. On the contrary, they confuse the
machine learning algorithms and the learning of the model
takes longer.

In both repositories after the cleaning process the percent-
age of positive cases tends to increase (data becomes more
balanced) but in both repositories, some datasets seem to be
problematic (also reported by Shepperd et al). In the case
of KC4, it had no instances left after the cleaning process.
There were 26 numerical attributes out of 41 in which all
instances had 0 as values (including the Halstead base mea-
sures and and as a result all their derived metrics). Perhaps
zero here meant ’missing’ and a different result could have
been obtained if the values had been removed before consid-
ering them as inconsistencies. This dataset was not included
in the Promise repository.

4.2 Evaluation Measures
With dichotomous or binary classifiers, many of the per-

formance measures can be obtained from the confusion ma-
trix (Table 3). A widely used metric, the predictive accuracy
(Acc) defined by Eq. 1 should not be used when data are
highly imbalanced as it does not take into account the num-
ber of correct labels of different classes.

Acc =
TP + TN

TP + TN + FP + FN
(1)

Other metrics should be considered. From the confusion
matrix, we can obtain the true positive rate (TPr = TP

TP+FN
)

is the proportion of positive instances correctly classified



Table 3: Confusion Matrix for Two Classes
Act

Pos Neg

Pred

Pos True Pos
(TP )

False Pos
(FP )
Type I error
(False alarm)

PPV=
Conf =
Prec =

TP
TP+FP

Neg False Neg
(FN)
Type II error

True Neg
(TN)

NPV =
TN

FN+TN

Recall =
Sens =
TPr =

TP
TP+FN

Spec =
TNr =

TN
FP+TN

(also called recall or sensitivity); the False negative rate
(FNr = FN

TP+FN
) is the proportion of positive instances mis-

classified as belonging to the negative class; the True nega-
tive rate (TNr = TN

FP+TN
) is the proportion of negative in-

stances correctly classified (specificity); and finally, the false
positive rate (FPr = FP

FP+TN
) is the proportion of negative

cases misclassified (also called false alarm rate). The Posi-
tive Prediction Value, also known as Confidence or Precision
( TP
TP+FP

) or the Negative Predicted Value ( TN
FN+TN

) do not
either consider the TN or the TP respectively.
There is a trade-off between the true positive rate and

true negative rate as the objective is to maximise both met-
rics. Another widely used metric when measuring the per-
formance of classifiers applied to highly imbalance data is
the f-measure (f1) [47] which is the harmonic median of
precision and recall (Eq. 2). However, there are also some
criticisims to the f-measure metric as it does not take into
the TN (negative cases).

f −measure =
2 · precision · recall
precision+ recall

=
2 · TP

2 · TP + FP + FN
(2)

where precision ( TP
TP+FP

) is the proportion of positive pre-
dictions that are correct and recall is the TPr previously
defined.
A more suitable and interesting performance metric for bi-

nary classification when data are imbalanced is Matthew’s
Correlation Coefficient (MCC) [29]. MCC can also be cal-
culated from the confusion matrix as shown in Eq. (3) and
is simple to understand. Its range goes from -1 to +1; the
closer to one the better as it indicates perfect prediction
whereas a value of 0 means that classification is not bet-
ter than random prediction and negative values mean that
predictions are worst than random.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

Another evaluation technique to consider when data is im-
balanced is the Receiver Operating Characteristic (ROC) [13]
curve which provides a graphical visualisation of the results
The Area Under the ROC Curve (AUC) also provides a

quality measure between positive and negative rates with a
single value. It can be calculated as Eq.(4).

AUC =
1 + TPr − FPr

2
(4)

Similarly to ROC, another widely used evaluation tech-
nique is the Precision-Recall Curve (PRC), which depicts a

trade off between precision and recall and can also be sum-
marised into a single value as the Area Under the Precision-
Recall Curve (AUPRC) [9].

4.3 Base Classifiers
In this work, we have used the following base learners

implemented in Weka:

• C4.5 [39] (known as J48 in Weka) is a decision tree.
Decision trees are constructed in a top-down approach.
The leaves of the tree correspond to classes, nodes cor-
respond to features, and branches to their associated
values. To classify a new instance, one simply exam-
ines the features tested at the nodes of the tree and
follows the branches corresponding to their observed
values in the instance.

• The Näıve Bayes (NB) [36] uses the Bayes theorem to
predict the class for each case, assuming that the pre-
dictive attributes are independent given a category. A
Bayesian classifier assigns a set of attributesA1, . . . , An

to a class C such that P (C|A1, . . . , An) is maximum,
that is the probability of the class description value
given the attribute instances, is maximal.

4.4 Empirical Results
We have generated multiple results for all the techniques

and metrics previously mentioned usingWeka’s Experimenter
using 5 times 5 Cross Validation (5x5CV) over all algorithms
and datasets. We next present the most relevant results to-
gether with a discussion leaving other material on the com-
panion Web site. With respect to the algorithms, RUS and
ROS were used to balance the data so that the majority and
minority class represented the 75% and 25% respectively (in
our case, exact balancing, 50:50 distribution, in both ROS
and RUS did not perform as well as a more moderated bal-
ance). It is not trivial to set the optimal balance level. The
SMOTE filter increases the minority class by 200%. It worth
noting that we used Weka’s filtered classifier, so that these
sampling filters are applied only to the training folds of the
stratified CV folds, not the whole dataset in advance (the
latter approach will provide over optimistic results). For the
cost-sensitive classifiers (including the MetaCost classifier),
we used cost matrix that penalises false positives (defective
modules classified as non-defective) by ten times the cost
of false negatives (non-defective modules classified as defec-
tive). We choose this value as the average Imbalance Ratio
(IR) is close to 10%. We also used the default parameters
for the metalearners algorithms as in general they seem to
work well.

Tables 4 and 5 show the results of using as base learner the
C4.5 algorithm (called J48 in Weka) with the default param-
eters (using pruning, with the minimum number of instances
per leaf as two and no Laplace smoothing). The first numer-
ical column shows the results for the base classifier and the
rest of the columns show the results of the different algo-
rithms and whether they are statistically significant using
the t-test at 0.10 significance level. These results were ob-
tained with Weka’s experimenter tool and we must perform
further statistical analyses in our future work. There are
big differences in some datasets. For example, when using
J48, MC1 and PC5. In some cases such as PC2, after re-
moving all problematic instances, the cost algorithms failed
(we believe that after the cross validation some folds had no



instances and empty matrices operations with zero values
could not be performed).
Table 5 shows the results for the PROMISE dataset. J48

results show slight differences because in this repository some
attributes were removed from the most common datasets
used in the literature. Consequently, the number of dupli-
cates and inconsistencies is also affected. Again, these dif-
ferences are not large as between D’ and D”(with or without
duplicates).
There are also differences on the results depending on the

base classifier. Table 6 shows the results using Näıve Bayes
as base Learner, and although there are slight improve-
ments (not statistically significant) using sampling based
techniques, the rest of the classifiers do not systematically
improve the results, on the contrary. A hypothesis is that
we did not carry out any kind of feature selection procedure
and there is a large number of attributes in these datasets
that are not independent and highly correlated. While de-
cision trees are the most popular technique in this type of
work and the feature selection is embedded as part of the
algorithm (the splitting nodes), näıve Bayes could benefit of
using feature selection as preprocessing technique. In any
case, näıve Bayes performs quite well by itself (also high-
lighted by Menzies et al. [35]).
Although in general metalearners are the ones achieving

the best performance, simple RUS and ROS as sampling
techniques behaved well in general, especially when there are
no duplicates or inconsistencies (D”). RUS has the problem
that if there is high level of imbalance and a large percent-
age of the majority cases are removed, information is lost.
However, as an advantage the algorithm’s training time im-
proves. On the other hand, ROS, replicating instances, can
lead to overfitting and training takes longer. Adjusting the
level of imbalance greatly affects the results (Van Hulse [44]
also analysed several sampling techniques). In general, it
is known that ensemble methods outperform other tech-
niques [16] and our experiments also showed that ensemble
methods (including SMOTEBoost and RUSBoost) provided
better results than sampling or cost sensitive methods. How-
ever ensembles do not provide inside information about how
the decision making process was reached. Knowing how the
decision was reached can help to identify important metrics
or which metrics (or combination of metrics) are capable
of identifying defective modules. As a drawback, ensem-
ble techniques are computationally very expensive compared
with sampling or cost approaches.
There are several issues that we need to consider to extend

this work:

• The level of imbalance is not the only factor that hin-
ders the performance of the classifiers, and other fac-
tors such as the degree of data overlapping (repre-
sented as duplicates) among the classes is another fac-
tor that lead to the decrease in performance of learning
algorithms. As stated by López et al. [28, 27] there
are other problems: dataset shift (training and test
data follow different distributions), distribution of the
cross validation data, small disjuncts, the lack of den-
sity or small sample size, the class overlapping, the
correct management of borderline examples or noisy
data. Many of these problems are related to how to
measure these data characteristics and the quality of
data. For instance, Van Hulse and Khoshgoftaar [21]
have looked into the how the level of noise in data

(quality) impact the performance of the classifiers. As
we have previously discussed, we believe that there is
no reason to remove duplicates and inconsistencies if
that is the real distribution of the data. However, in
this case the number of duplicates and inconsistencies
seems to be too large in some datasets. Furthermore,
we need to analyse the duplicates as it seems that there
are many duplicates within the duplicates.

• We have used the datasets without applying feature se-
lection techniques. It is embedded in some algorithms
such as C4.5 and Rotation Forest algorithms but it
adds complexity to the analysis.

• There are many more base learners that we need to
compare. For instance, Nearest Neighbour techniques
are quite robust to the imbalance problem (as no model
is in fact learnt and the classification is done based on
similar instances); however, these techniques should
not be used within ensembles or bagging because their
output usually will not change even if the training data
is modified by sampling.

• Explore different evaluation metrics and graphical rep-
resentations to evaluate and compare classifiers in the
case of imbalance datasets, in this work for example,
MCC improvements are not as large are as with AUC.
We also plan to study the evaluation measures tests to
deal with the evaluation and comparison of classifiers
dealing with imbalanced data.

• We have used the t-test to compare the performance
of the classifiers. It is a standard technique provided
by Weka’s Experimenter, however, using parametric
tests to compare classifiers is currently debated and
non-parametric tests could also be used (e.g. [10, 31,
1]).

• The problem with imbalanced data is an area of ac-
tive research and newer and more complex techniques
and algorithms are being proposed, for instance, using
genetic algorithms [17, 18].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we compared different machine learning ap-

proaches and evaluation metrics to deal with imbalanced
data in software defect prediction taking into account the
quality of data which contains many duplicate instances. We
used two different version of datasets originated by NASA
projects which have cleaned and preprocessed by Shepperd
et al. removing errors and considering the data with and
without duplicates. The results showed that the algorithms
to deal with imbalanced datasets (grouped into sampling,
cost-sensitive, ensembles and hybrid approaches) enhanced
the correct classification of the minority class (defective cases).
However, the improvement was affected by the preprocessing
of the data (especially if duplicates and inconsistencies were
removed) and the characteristics of the datasets in addition
to the level of imbalance. We believe that duplicates should
not be removed if data was properly collected. However, it
is not known in this case as the source code is not provided.

Future work to deal with imbalanced data will include
the analysis of further algorithms as well as ways to opti-
mise their parameters, explore different measures to both



Table 4: Results with the MDP D’ and D” Datasets
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D’ MCC

CM1 0.10 0.18 0.17 0.17 0.16 0.16 0.23 0.23 0.13 0.19 0.12 0.04
JM1 0.23 0.24 0.23 0.24 0.26 0.24 0.25 0.24 0.21 0.24 0.26 0.18 •
KC1 0.28 0.32 0.30 0.31 0.33 0.34 ◦ 0.33 0.32 0.21 0.31 0.36 ◦ 0.31
KC3 0.22 0.25 0.24 0.29 0.29 0.26 0.22 0.24 0.18 0.24 0.30 0.28
MC1 0.44 0.20 • 0.40 0.43 0.42 0.17 • 0.35 0.44 0.41 0.59 ◦ 0.45 0.45
MC2 0.21 0.21 0.21 0.20 0.34 0.36 0.16 0.16 0.18 0.32 0.33 0.38
MW1 0.32 0.22 0.10 • 0.15 0.19 0.27 0.22 0.20 0.31 0.25 0.20 0.30
PC1 0.24 0.29 0.24 0.26 0.29 0.33 0.29 0.30 0.25 0.23 0.25 0.22
PC2 0.00 0.16 ◦ 0.07 0.09 0.08 0.12 0.11 0.09 0.00 0.01 0.01 0.00
PC3 0.24 0.25 0.22 0.22 0.30 0.31 0.32 ◦ 0.29 0.29 0.29 0.23 0.19
PC4 0.51 0.52 0.47 0.52 0.56 0.55 0.53 0.51 0.54 0.53 0.51 0.54
PC5 0.50 0.52 0.51 0.54 ◦ 0.55 ◦ 0.48 0.56 ◦ 0.52 0.52 0.52 0.52 0.52
Avg 0.27 0.28 0.26 0.29 0.31 0.30 0.30 0.29 0.27 0.31 0.30 0.28

D’ ROC

CM1 0.56 0.62 0.56 0.59 0.73 ◦ 0.74 ◦ 0.68 ◦ 0.64 0.57 0.73 ◦ 0.77 ◦ 0.75 ◦
JM1 0.67 0.65 0.60 • 0.66 0.70 ◦ 0.70 ◦ 0.67 0.66 0.63 • 0.69 0.72 ◦ 0.73 ◦
KC1 0.67 0.70 0.62 0.69 0.77 ◦ 0.77 ◦ 0.73 0.66 0.64 0.75 ◦ 0.81 ◦ 0.82 ◦
KC3 0.59 0.61 0.60 0.65 0.72 ◦ 0.71 ◦ 0.65 0.67 0.59 0.71 0.69 0.72
MC1 0.77 0.88 ◦ 0.80 0.81 0.96 ◦ 0.93 ◦ 0.74 0.81 0.65 • 0.94 ◦ 0.91 ◦ 0.88 ◦
MC2 0.62 0.62 0.62 0.61 0.73 ◦ 0.73 ◦ 0.59 0.58 0.59 0.72 ◦ 0.72 ◦ 0.75 ◦
MW1 0.58 0.63 0.55 0.59 0.69 0.72 0.67 0.63 0.64 0.67 0.73 ◦ 0.74 ◦
PC1 0.70 0.73 0.59 0.68 0.83 ◦ 0.82 ◦ 0.70 0.68 0.66 0.82 ◦ 0.83 ◦ 0.84 ◦
PC2 0.52 0.77 ◦ 0.53 0.56 0.79 ◦ 0.89 ◦ 0.63 0.56 0.50 0.76 ◦ 0.78 ◦ 0.70
PC3 0.65 0.68 0.59 0.64 0.80 ◦ 0.81 ◦ 0.72 ◦ 0.68 0.68 0.80 ◦ 0.81 ◦ 0.83 ◦
PC4 0.77 0.79 0.70 0.75 0.93 ◦ 0.92 ◦ 0.84 0.81 0.81 0.92 ◦ 0.92 ◦ 0.94 ◦
PC5 0.77 0.91 ◦ 0.64 • 0.79 0.95 ◦ 0.96 ◦ 0.89 ◦ 0.67 • 0.80 0.95 ◦ 0.96 ◦ 0.96 ◦
Avg 0.65 0.72 0.61 0.67 0.80 0.81 0.71 0.67 0.65 0.79 0.81 0.80

D’ f1

CM1 0.17 0.29 0.27 0.28 0.26 0.24 0.33 0.33 0.25 0.24 0.15 0.06
JM1 0.32 0.37 ◦ 0.37 0.36 ◦ 0.38 ◦ 0.36 0.41 ◦ 0.40 ◦ 0.39 ◦ 0.35 0.33 0.14 •
KC1 0.35 0.42 ◦ 0.40 0.42 ◦ 0.42 0.44 ◦ 0.44 ◦ 0.44 ◦ 0.37 0.40 0.41 ◦ 0.31
KC3 0.32 0.37 0.36 0.41 0.40 0.37 0.39 0.40 0.36 0.34 0.34 0.34
MC1 0.39 0.11 • 0.38 0.43 0.42 0.12 • 0.35 0.43 0.37 0.56 ◦ 0.39 0.38
MC2 0.45 0.45 0.45 0.48 0.57 0.56 0.54 0.54 0.52 0.54 0.52 0.55
MW1 0.33 0.29 0.19 0.24 0.25 0.33 0.30 0.28 0.34 0.29 0.23 0.31
PC1 0.27 0.34 0.30 0.33 0.34 0.38 0.34 0.36 0.29 0.28 0.26 0.20
PC2 0.00 0.10 ◦ 0.08 0.09 0.08 0.10 0.12 0.09 0.00 0.02 0.01 0.00
PC3 0.31 0.35 0.32 0.32 0.38 0.40 0.40 ◦ 0.39 0.39 ◦ 0.35 0.27 0.18 •
PC4 0.56 0.58 0.54 0.59 0.62 0.61 0.57 0.57 0.60 0.58 0.56 0.57
PC5 0.51 0.49 0.52 0.55 ◦ 0.56 ◦ 0.46 0.55 ◦ 0.53 0.52 0.53 0.53 0.51
Avg 0.33 0.35 0.35 0.38 0.39 0.36 0.39 0.40 0.37 0.37 0.33 0.30

D” MCC

CM1 0.11 0.12 0.13 0.16 0.16 0.18 0.19 0.17 0.08 0.13 0.09 0.05
JM1 0.19 0.21 0.20 0.20 0.22 0.21 0.21 0.18 0.07 • 0.20 0.22 0.17
KC1 0.23 0.23 0.23 0.23 0.29 0.22 0.19 0.18 0.07 • 0.26 0.28 0.27
KC3 0.23 0.25 0.24 0.24 0.30 0.23 0.27 0.25 0.18 0.20 0.33 0.29
MC1 0.07 0.13 0.22 0.18 0.29 ◦ 0.14 0.15 0.23 0.08 0.28 0.07 0.08
MC2 0.21 0.21 0.21 0.18 0.35 0.31 0.21 0.13 0.15 0.30 0.36 0.35
MW1 0.16 0.27 0.18 0.17 0.31 0.32 0.26 0.17 0.24 0.25 0.37 0.26
PC1 0.23 0.26 0.27 0.31 0.33 0.31 0.27 0.30 0.22 0.31 0.26 0.28
PC3 0.22 0.26 0.21 0.25 0.30 0.26 0.29 0.26 0.28 0.23 0.22 0.16
PC4 0.46 0.50 0.45 0.50 0.54 0.53 0.50 0.51 0.51 0.51 0.52 0.53
PC5 0.33 0.33 0.33 0.34 0.39 ◦ 0.37 0.34 0.33 0.29 0.37 0.37 0.36
Avg 0.22 0.25 0.24 0.25 0.32 0.28 0.26 0.25 0.20 0.28 0.28 0.25

D” ROC

CM1 0.52 0.58 0.56 0.56 0.73 ◦ 0.71 ◦ 0.64 0.60 0.55 0.66 ◦ 0.72 ◦ 0.72 ◦
JM1 0.63 0.63 0.59 0.63 0.67 ◦ 0.67 ◦ 0.63 0.65 0.55 • 0.66 ◦ 0.69 ◦ 0.69 ◦
KC1 0.61 0.61 0.61 0.62 0.70 ◦ 0.67 0.63 0.64 0.54 • 0.69 ◦ 0.70 ◦ 0.71 ◦
KC3 0.58 0.58 0.60 0.61 0.71 ◦ 0.68 0.67 0.68 0.59 0.68 0.73 ◦ 0.70
MC1 0.53 0.67 ◦ 0.61 0.62 0.83 ◦ 0.79 ◦ 0.60 0.63 0.52 0.80 ◦ 0.74 ◦ 0.72 ◦
MC2 0.62 0.62 0.62 0.58 0.75 ◦ 0.74 ◦ 0.62 0.57 0.57 0.75 ◦ 0.75 ◦ 0.77 ◦
MW1 0.48 0.66 0.57 0.59 0.71 ◦ 0.73 ◦ 0.69 ◦ 0.60 0.61 ◦ 0.68 ◦ 0.76 ◦ 0.74 ◦
PC1 0.65 0.70 0.61 0.70 0.84 ◦ 0.82 ◦ 0.73 0.67 0.64 0.82 ◦ 0.83 ◦ 0.86 ◦
PC3 0.62 0.66 0.57 0.62 0.80 ◦ 0.79 ◦ 0.69 0.66 0.67 0.78 ◦ 0.81 ◦ 0.82 ◦
PC4 0.76 0.76 0.69 0.73 0.92 ◦ 0.91 ◦ 0.83 0.81 0.79 ◦ 0.91 ◦ 0.92 ◦ 0.93 ◦
PC5 0.66 0.66 0.66 0.68 0.79 ◦ 0.78 ◦ 0.69 0.73 ◦ 0.66 0.78 ◦ 0.79 ◦ 0.80 ◦
Avg 0.61 0.65 0.61 0.63 0.77 0.76 0.67 0.66 0.61 0.75 0.77 0.77

D” f1

CM1 0.18 0.22 0.25 0.27 0.27 0.27 0.32 0.29 0.22 0.20 0.12 0.07
JM1 0.28 0.34 0.34 ◦ 0.34 ◦ 0.37 ◦ 0.34 ◦ 0.41 ◦ 0.40 ◦ 0.36 ◦ 0.34 ◦ 0.30 0.14 •
KC1 0.37 0.37 0.37 0.43 0.45 ◦ 0.35 0.45 ◦ 0.44 ◦ 0.41 0.42 0.40 0.33
KC3 0.32 0.38 0.35 0.38 0.41 0.35 0.42 0.41 0.37 0.30 0.38 0.33
MC1 0.06 0.11 0.23 ◦ 0.18 0.28 ◦ 0.14 0.16 ◦ 0.24 ◦ 0.07 0.26 0.05 0.06
MC2 0.46 0.46 0.46 0.49 0.59 ◦ 0.52 0.56 0.53 0.50 0.51 0.54 0.51
MW1 0.21 0.34 0.26 0.25 0.37 0.38 0.34 0.27 0.29 0.30 0.39 0.28
PC1 0.26 0.32 0.33 0.36 0.37 0.36 0.31 0.35 0.27 0.34 0.25 0.25
PC3 0.30 0.36 0.31 0.34 0.38 0.35 0.38 0.36 0.37 0.30 0.25 0.13 •
PC4 0.53 0.57 0.53 0.57 0.61 0.60 0.56 0.58 0.58 0.57 0.58 0.56
PC5 0.49 0.49 0.49 0.53 0.56 ◦ 0.52 0.54 ◦ 0.54 ◦ 0.51 0.53 0.51 0.47
Avg 0.31 0.36 0.36 0.38 0.42 0.38 0.40 0.40 0.36 0.37 0.34 0.28

◦, • statistically significant improvement or degradation



Table 5: Results using Promise D’ using J48
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CM1 0.10 0.13 0.13 0.13 0.09 0.15 0.17 0.11 0.06 0.00
JM1 0.21 0.24 0.23 0.23 0.26 0.25 0.24 0.25 0.26 0.16 •
KC1 0.28 0.32 0.30 0.33 0.34 0.35 ◦ 0.35 ◦ 0.32 0.34 ◦ 0.33 ◦
KC2 0.41 0.40 0.42 0.44 0.32 0.30 0.44 0.45 0.45 0.44
KC3 0.26 0.28 0.24 0.26 0.30 0.20 0.30 0.24 0.22 0.21
MC1 0.43 0.20 • 0.39 0.45 0.39 0.13 • 0.04 • 0.58 ◦ 0.45 0.44
MC2 0.18 0.18 0.18 0.25 0.36 ◦ 0.30 0.17 0.29 0.23 0.27
MW1 0.27 0.25 0.19 0.18 0.26 0.26 0.23 0.24 0.20 0.25
PC1 0.34 0.31 0.33 0.32 0.35 0.29 0.32 0.36 0.38 0.33
PC2 0.00 0.11 ◦ 0.06 0.11 0.09 0.08 0.05 0.05 0.00 0.00
PC3 0.18 0.26 0.24 0.22 0.31 ◦ 0.32 ◦ 0.31 ◦ 0.23 0.20 0.18
PC4 0.46 0.51 0.45 0.51 0.55 0.53 0.52 0.52 0.52 0.53
PC5 0.50 0.53 0.52 0.54 0.56 ◦ 0.46 0.55 ◦ 0.52 0.52 0.53
Avg 0.28 0.29 0.28 0.31 0.32 0.28 0.29 0.32 0.29 0.28

ROC

CM1 0.55 0.60 0.57 0.57 0.69 ◦ 0.74 ◦ 0.66 0.68 ◦ 0.71 ◦ 0.75 ◦
JM1 0.66 0.66 0.60 • 0.66 0.70 ◦ 0.69 ◦ 0.66 0.69 ◦ 0.72 ◦ 0.73 ◦
KC1 0.68 0.70 0.63 0.68 0.77 ◦ 0.77 ◦ 0.73 0.75 ◦ 0.80 ◦ 0.81 ◦
KC2 0.73 0.71 0.70 0.72 0.75 0.77 0.77 0.76 0.83 ◦ 0.83 ◦
KC3 0.60 0.67 0.53 0.64 0.79 ◦ 0.77 ◦ 0.74 ◦ 0.71 0.78 ◦ 0.79 ◦
MC1 0.75 0.86 ◦ 0.78 0.81 0.93 ◦ 0.91 ◦ 0.51 • 0.93 ◦ 0.91 ◦ 0.90 ◦
MC2 0.60 0.60 0.60 0.64 0.76 ◦ 0.72 ◦ 0.62 0.71 ◦ 0.69 ◦ 0.71 ◦
MW1 0.54 0.66 0.62 0.61 0.75 ◦ 0.75 ◦ 0.65 0.76 ◦ 0.75 ◦ 0.72 ◦
PC1 0.65 0.75 ◦ 0.67 0.70 0.85 ◦ 0.82 ◦ 0.76 ◦ 0.85 ◦ 0.86 ◦ 0.84 ◦
PC2 0.50 0.74 ◦ 0.38 0.59 0.74 ◦ 0.83 ◦ 0.55 0.75 ◦ 0.75 ◦ 0.60
PC3 0.62 0.66 0.57 0.65 0.81 ◦ 0.80 ◦ 0.73 ◦ 0.79 ◦ 0.81 ◦ 0.82 ◦
PC4 0.78 0.79 0.70 0.74 0.92 ◦ 0.92 ◦ 0.85 0.92 ◦ 0.92 ◦ 0.94 ◦
PC5 0.77 0.91 ◦ 0.65 • 0.81 0.95 ◦ 0.96 ◦ 0.88 ◦ 0.94 ◦ 0.96 ◦ 0.96 ◦
Avg 0.65 0.72 0.62 0.68 0.80 0.80 0.70 0.79 0.81 0.80

◦, • statistically significant improvement or degradation

Table 6: Results with the Näıve Bayes as Base Learner
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CM1 0.21 0.21 0.21 0.21 0.17 0.18 0.20 0.21 0.21 0.21 0.22 0.20
JM1 0.22 0.23 0.22 0.23 ◦ 0.18 • 0.23 0.24 ◦ 0.23 0.23 0.22 0.22 0.21
KC1 0.29 0.30 0.30 0.31 ◦ 0.26 0.27 0.33 0.31 ◦ 0.31 ◦ 0.29 0.30 0.31
KC3 0.26 0.26 0.28 0.28 0.27 0.26 0.21 0.29 0.29 0.24 0.29 0.29
MC1 0.20 0.18 0.19 • 0.18 • 0.15 • 0.14 0.17 0.19 • 0.19 • 0.20 0.19 0.18
MC2 0.31 0.31 0.31 0.33 0.31 0.24 0.32 0.32 0.32 0.38 0.33 0.33
MW1 0.32 0.31 0.31 0.31 0.30 0.24 • 0.23 • 0.31 0.31 0.33 0.32 0.33
PC1 0.28 0.26 0.27 0.27 0.16 • 0.16 • 0.16 • 0.27 0.27 0.26 0.28 0.27
PC2 0.08 0.13 0.09 0.09 0.03 0.13 0.15 0.08 0.08 0.06 0.08 0.09
PC3 0.15 0.23 0.14 0.13 0.05 0.08 0.02 • 0.11 • 0.11 • 0.16 0.18 0.14
PC4 0.32 0.31 0.34 0.38 ◦ 0.28 0.05 • 0.25 • 0.35 0.35 0.37 0.34 0.28
PC5 0.42 0.44 0.42 0.42 0.27 • 0.21 • 0.41 0.42 0.42 0.42 0.42 0.41
Avg 0.25 0.26 0.26 0.26 0.20 0.18 0.22 0.26 0.26 0.26 0.26 0.25

ROC

CM1 0.70 0.71 0.71 0.71 0.57 • 0.61 • 0.70 0.70 0.61 • 0.66 0.73 0.71
JM1 0.69 0.69 0.69 0.69 0.58 • 0.60 • 0.69 0.69 0.58 • 0.59 • 0.69 ◦ 0.66 •
KC1 0.79 0.79 0.79 0.79 0.73 • 0.63 • 0.78 • 0.79 0.65 • 0.79 0.79 0.79
KC3 0.68 0.68 0.67 0.68 0.66 0.65 0.67 0.68 0.65 0.64 0.68 0.70
MC1 0.91 0.91 0.91 0.91 0.86 • 0.75 • 0.90 • 0.91 0.78 • 0.88 0.91 0.91
MC2 0.73 0.73 0.73 0.73 0.72 0.65 • 0.69 • 0.73 0.64 • 0.70 0.73 0.73
MW1 0.75 0.75 0.75 0.76 0.75 0.71 0.72 0.75 0.71 0.74 0.75 0.76
PC1 0.78 0.78 0.79 0.78 0.67 • 0.58 • 0.73 • 0.78 0.64 • 0.77 0.80 ◦ 0.78
PC2 0.83 0.86 0.83 0.81 0.59 0.79 0.87 0.83 0.60 • 0.71 0.86 0.83
PC3 0.77 0.77 0.76 0.76 0.51 • 0.63 • 0.61 • 0.77 0.57 • 0.77 0.77 0.74
PC4 0.83 0.82 0.83 0.84 ◦ 0.73 0.56 • 0.74 • 0.83 0.67 • 0.84 0.82 0.82
PC5 0.94 0.94 0.94 0.94 0.90 • 0.75 • 0.94 • 0.94 0.73 • 0.94 0.94 0.94
Avg 0.78 0.79 0.78 0.78 0.69 0.66 0.75 0.78 0.65 0.75 0.79 0.78

◦, • statistically significant improvement or degradation



deal with the quality and characteristics of the data and to
compare algorithms and statistical analyses. It is also neces-
sary to study other repositories (e.g., open source systems)
in order to study the quality of such repositories, validate
generic claims found in the literature and provide guidelines
for the problem of imbalance in defect prediction.
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