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Abstract. There exist several fitness function proposals based on a com-
bination of weighted objectives to optimize the discovery of association
rules. Nevertheless, some differences in the measures used to assess the
quality of association rules could be obtained according to the values of
such weights. Therefore, in such proposals it is very important the user’s
decision in order to specify the weights or coefficients of the optimized ob-
jectives. Thus, this work presents an analysis on the sensitivity of several
quality measures when the weights included in the fitness function of the
existing QARGA algorithm are modified. Finally, a comparative analysis
of the results obtained according to the weights setup is provided.

Keywords: Data mining, sensitivity analysis, quantitative association
rules, quality measures.

1 Introduction

The use of efficient computational techniques has become a task of the utmost 
importance due to the high volume of data that can be stored nowadays. In this 
context, the discovery of association rules (AR) –and particularly of quantitative 
association rules (QAR) in this work– is a popular and well-known methodology 
to discover significant and apparently hidden relations among variables that form 
databases [2]. This discovery of knowledge is based on statistical techniques such 
as correlation analysis and variance. One of the most used and cited algorithms 
is Apriori [1].

When the domain is continuous, the AR are known as QAR. In this context, 
let F = {F1, ..., Fn} be a set of features, with values in R. Let A and C be two 
disjunct subsets of F , that is, A ⊂ F , C ⊂ F , and A ∩ C = ∅. A  QAR is a  rule  
X ⇒ Y , in which features in A belong to the antecedent X , and features in C 
belong to the consequent Y , such that X and Y are formed by a conjunction 
of multiple boolean expressions of the form Fi ∈ [v1,  v2]. The consequent Y is 
usually a single expression.

The AR extraction process is a non-supervised learning technique to explore data 
properties. The main goal pursuit is, then, to find groups of attributes



appearing frequently together in a dataset, so to provide comprehensive rules
able to explain the existing relations among them. The mining process of AR
is usually modeled as a multi-objective problem in which several quality mea-
sures of AR are the objectives to be optimized since there not exist an unique
measure to determine the AR quality. There are several approaches to solve
multi-objective problems. The most common approaches are focused in Pareto-
based multi-objective algorithms which try to find the best trade-off between
two or more conflicting objectives. However, many others are based in weighted
sum fitness functions which formulate the problem as a single-objective opti-
mization problem using parameters of scalarization. Such weighted sum fitness
functions allow to find solutions according to the user preferences and emphasize
some objectives over others. Most of the existing techniques to discover AR are
typically focused in using the support and confidence measures as objectives to
be optimized by a weighted sum fitness function. Therefore, the main goal of
this work is to conduct an analysis on the sensitivity of such quality measures
when the weights in the fitness function vary. Nonetheless, there also exist other
measures widely used for both evaluation and optimization of AR [9]. Some of
such quality measures are described in Table 1. Note that n(X) is the number
of occurrences of the itemset X in the dataset and N is the total number of
instances in the dataset. ND stands for negatively dependent, PD for positively
dependent and I for indepedent.

Table 1. Quality measures for quantitative association rules

Measures Equation Description Range
Sup(X) n(X)/N Coverage of X [0, 1]
Sup(X =⇒ Y ) n(X ∩ Y )/N Generality of the rule [0, 1]
Conf(X =⇒ Y ) sup(X =⇒ Y )/sup(X) Reliability of the rule [0, 1]

Interest of the rule
Lift(X =⇒ Y ) sup(X =⇒ Y )/(sup(X) · sup(Y )) • Value < 1: X and Y (ND) [0, +∞)

• Value = 1: X and Y (I)
• Value > 1: X and Y (PD)

Gain(X =⇒ Y ) conf(X =⇒ Y )− sup(Y ) Implication of the rule [-0.5, 1]
• If conf(X =⇒ Y ) > sup(Y ): Gain normalized

Certainty Factor(X =⇒ Y ) (conf(X =⇒ Y )− sup(Y ))/(1− sup(Y )) • Value < 0: X and Y (ND) [-1, 1]
• If conf(X =⇒ Y ) <= sup(Y ): • Value = 0: X and Y (I)
(conf(X =⇒ Y )− sup(Y ))/sup(Y ) • Value > 0: X and Y (PD)

Strength of the rule
Leverage(X =⇒ Y ) sup(X =⇒ Y )− sup(X)sup(Y ) • Value < 0: X and Y (ND) [-0.25, 0.25]

• Value = 0: X and Y (I)
• Value > 0: X and Y (PD)

Accuracy(X =⇒ Y ) sup(X =⇒ Y ) + sup(¬X =⇒ ¬Y ) Veracity of the rule [0, 1]

Thus, we aim to provide guidelines to set the weights of the fitness function
according to the objectives to be satisfied by the rules. On the other hand,
we intend to establish multiple relationships between the quality measures and
variations in the weights of the fitness function by means of the results obtained
by the QARGA algorithm [8].

The remainder of the paper is as follows. Section 2 describes some techniques
which included a weighted sum fitness function. The QARGA algorithm used in



the study performed and the experimental setup is detailed in Section 3. Section
4 presents and discusses the results obtained by QARGA using different weights
in the fitness function. Finally, Section 5 summarizes the conclusions drawn from
the analysis conducted.

2 Related Work

There exist several fitness functions proposals based on a combination of weighted
objectives in a single equation. Hence, their performance is very sensitive to the
choice of the weights of the measures included within the fitness function. Ac-
tually, many algorithms to discover AR can be found in the literature. Most of
them are based on the methods proposed by Agrawal et al. [1] but such me-
thods require high computational cost and memory. Genetic algorithms, colony
algorithms, evolutionary algorithms (EA) and particle swarm algorithms are
usually used to overcome such drawbacks. Techniques based on EA have been
extensively used for the optimization and adjustment of models in data mining.
Evolutionary computation is usually used to discover AR in both EA and genetic
programming since they offer a set of advantages for knowledge extraction and
specifically for rule induction processes.

A wide range of methods have been proposed to address the discovery and op-
timization of AR by a weighted sum fitness function. This kind of fitness function
has been applied into several optimization problems. For instance, the authors
in [7] examined the effect of using weighted sum fitness functions for parent se-
lection and generation update. Such an effect was tested on the performance of
NSGA-II for a high-dimensional space of a multi-objective problem.

The authors in [11] proposed an EA-based approach capable of obtaining an
undetermined number of quantitative attributes in the antecedent of the rule.
Their approach, called GENAR, optimized a weighted fitness function based on
the support and confidence measures and the number of recovered instances.
The same quality measures plus the comprehensibility and the amplitude of the
intervals forming the rule were included in the weighted sum fitness function of
the GAR-plus algorithm [12].

In [2] a GA is proposed as a search strategy for both positive and nega-
tive QAR mining within databases. The discovery of QAR was optimized by
a weighted sum fitness function composed of support, confidence, number of
attributes and amplitude. Later, the same authors proposed a multi-objective
Pareto-based EA called MODENAR in [3]. Those measures and the recovered
records were included within the fitness function to be optimized in such works.

A genetic algorithm was proposed in [14] which optimized support, confidence,
comprehensibility and interest of AR included in a weighted fitness function. A
weighted support based on the individual weight of the items according to their
importance in the dataset was calculated in [13].



3 Methodology

3.1 Description of QARGA

This section describes the main features of the QARGA algorithm, which is used
to perform the fitness function sensitivity study according to the weighting of the
measures. QARGA is a real-coded genetic algorithm designed to discover existing
relationships, specifically QAR, among several variables. A detailed description
of the algorithm can be found in [10].

The fitness of each individual in the evolutionary process allows determining
which are the best candidates to remain in subsequent generations. In order to
make this decision, its calculation involves several measures that provide infor-
mation about the rules. The fitness function has been designed to maximize a
combination of different measures of AR.

The fitness function proposed in [8] to be maximized by QARGA was:

f(rule) = ws · sup+ wc · conf + wn · nAttrib

−wa · ampl − wr · recov
(1)

where sup is the support of the rule, conf is the confidence of the rule, recov
is the ratio of instances which had already been covered, nAttrib is the number
of attributes appearing in the rule and ampl is the average size of intervals of
the attributes belonging to the rule. Moreover, the fitness function was provided
with a set of weights (ws, wc, wn, wa and wr) to drive the process of search of
rules and will vary depending on the required rules.

However, the user should be aware of the importance of each measure, in order
to specify the weights or coefficient because significant differences in the AR
quality measures could be obtained. Next section describes the experimentation
framework carried out to assess how the weights included in QARGA’s fitness
function may influence, in order to provide a guide for the user’s decision.

3.2 Experimental Design

It is well known that one of the shortcomings of the weighted sum fitness function
is the parametrization of such weights. A fitness function-based sensitivity ana-
lysis and a detailed study of some weights are discussed in Section 4 to ascertain
the relative influence of each weight on the final results obtained by QARGA.
The aim of this study is to analyze the behavior of QARGA to achieve optimal
solutions.

Therefore, three sets of experiments have been performed by varying the
weights for support and confidence measures included in QARGA’s fitness func-
tion. The first set of experiments has used a minimum support threshold equal
to 0 to obtain all the QAR found by QARGA. The second and third set of
experiments have used a minimum support threshold equal to 0.05 and 0.1 res-
pectively to penalize the fitness function of those individuals of the population
which do not satisfy the minimum support thresholds, respectively. We aim to
force QARGA to learn QAR with the established minimum support.



Different configurations of QARGA have been executed by modifying the
weights of the support and confidence measures optimized in the fitness func-
tion for each set of experiments. Specifically, the weight values for support and
confidence measures, henceforth called ws and wc respectively, have been var-
ied from 0 to 1 with increments of 0.1 (11 different values for both). Hence,
QARGA was run 363 (3 x 11 x 11) times in total. To be precise, 363 executions
have carried out for each dataset, using them as training data. Note that the
rest of the weights included in the fitness function of QARGA have been set to
1 in order to avoid the influence of such weight in the results and to ensure that
the remaining measures are present in the fitness function.

These set of experiments were designed to highlight the main differences in
measures performance when the weights of the fitness function are modified
according to several minimum support thresholds.

4 Experimental Study

4.1 Datasets Description and Parameters Setup

This section presents the main features of the datasets used in the sensitivity
study carried out. Several datasets have been tested from the public BUFA
repository [6]. In particular, the thirty-five public datasets from BUFA repository
used in [9]. Note that Buying, Country, College, Education, Read and Usnews
Colleged have been preprocessed using K-means Imputation method proposed
in [5] (available in the KEEL tool [4]) in order to deal with missing values.

As for the values for the main parameters of QARGA, it is noteworthy that
these values have been used for each execution to assess the performance of
QARGA according to the different values of the weights included in the fitness
function.

The main parameters of QARGA are: 100 for the size of the population,
100 for the number of generations, 0.1 for the mutation probability pmut of
the individuals and 0.2 for the mutation probability pmutgen of each gene in
the individual. The maximum number of attributes which could include both
the antecedent and consequent are 10 and 5, respectively. Note that both the
antecedent and consequent must contain one attribute at least. QARGA has
obtained 100 QAR for each dataset and each setting of the fitness function
weights.

4.2 Sensitivity Analysis of the Quality Measures

In this section, the results obtained by QARGA when optimizing the fitness
function with variations in the weights of the measures are discussed. Specifically,
the results obtained by QARGA, first, when a minimum support threshold is
applied and second, when ws and wc are modified in the fitness function are
compared.

As described in Section 3.2, QARGA has been executed 363 times for each
dataset, that is, a total of 12705 executions. In order to perform the parametric



sensitivity study, the average results for the 35 datasets using the same configura-
tion has been calculated. Several interestingness measures have been calculated
to assess the quality of the AR obtained by QARGA for each run. In particular,
support, confidence, lift, gain, leverage, accuracy, number of attributes, ampli-
tude of the attributes, number of the rules obtained and percentage of covered
records have been computed. A detailed explanation of these measures can be
found in [8].

Tables 2 and 3 summarize the behavior of the quality measures depending
on the minimum support threshold used by QARGA. Note that similar results
have been obtained when the minimum support threshold is 0.05 and 0.1, hence,
only the results obtained by QARGA with a minimum support threshold equal
to 0.05 are shown in Table 3.

Each table presents the studied quality measures grouped by their perfor-
mance when the weights associated with the support and confidence measures
in the fitness function are increased or decreased.

Table 2. Performance of quality measures according to the support and confidence
weights with minimum support equal to 0

Weight Quality measures grouped by similar behavior

minsup = 0 Support Confidence Accuracy Lift #Attributes Amplitude
Leverage Gain

Covered instances #Rules
Support ↑ ↑ = = = ↓ ↑
Confidence ↑ = >0.1 = >0.1 ↑ ↑ ↑ ↓

≤0.1 ↑ ≤0.1↓
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Table 2 shows the ten studied quality measures arranged into six groups. It
can be noted that ws is positively correlated with support, leverage, covered
instances and amplitude whereas is negatively correlated with the number of
attributes if no minimum support threshold is applied. The performance of the
other measures under study is not affected by the variations of ws. With respect
to wc, some differences can be observed. For instance, although support, leverage
and covered instances are dependent of ws, such measures are not influenced by
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wc. Lift measure and number of attributes are positively correlated with wc and
amplitude is negatively correlated. However, confidence, gain and the number of
rules are only increased when wc achieves values of 0 and 0.1. A wc greater than
0.1 does not cause alterations in the performance of such measures. It can be
observed an opposite behavior in the accuracy since it is negatively correlated
with the confidence if such weight is 0 or 0.1 and positively correlated if wc is
greater than 0.1.

Figures 1, 2, 3, 4 and 5 summarize the values obtained for each group of
measures when the minimum support threshold is 0. Note that only one measure
of each group is displayed due to the similar performance among the measures
of each group and space limitations. Figure 1 represents the support, confidence
and covered instances measures. It can be observed that their values form an
increasing inclined plane relative to ws. Figure 2 visualizes the values obtained for
the confidence measure and its behavior can be extended to the gain measure and
number of rules. These measures present an awning model reaching their highest
values when wc is greater than 0.1. Figures 3 and 4 show the lift and amplitude
values respectively when the minimum support threshold is 0. These measures do
not follow any specific behavior pattern and can be considered as rough models.
Finally, the accuracy measure is displayed in Figure 5. It achieves the highest
value when wc is 0. The performance of this measure can be considered as a
valley model.



Table 3. Performance of quality measures according to the support and confidence
weights with minimum support equal to 0.05

Weight Quality measures grouped by similar behavior

minsup = 0.05 Support Lift Covered instances
Confidence Accuracy #Rules
Leverage Gain

Amplitude #Attributes
Support ↑ = = <0.8 ↑

≥0.8 =
Confidence ↑ ↑ ↓ ≤0.3 ↑

>0.3 =

Table 3 displays the ten measures under study grouped into only three groups
when a minimum support threshold is applied. It can be appreciated that the
performance of these measures are completely different when a minimum sup-
port threshold is not applied. For instance, the group composed of support,
confidence, leverage and amplitude and the group formed by lift, accuracy, gain
and number of attributes are only affected by wc. These groups are positively
and negatively correlated respectively with wc. Regarding the third group, that
is, covered instances and number of rules are only affected when ws is less than
0.8 and wc is less or equal to 0.3, both positively correlated. Weights above these
values do not cause performance variations on such measures.
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Figures 6, 7 and 8 illustrate the values obtained for each group of measures
when the minimum support threshold is 0.05.

Note that a similar behavior has been obtained when the minimum support
threshold is 0.1. Figure 6 represents the performance of confidence, support,
leverage and amplitude measures. These measures reach their highest values
when wc is 1. In this case, the confidence behaves as an increasing inclined plane
with respect to wc instead of presenting an awning model as Figure 2. Figure 7
shows the values obtained for the lift measure and summarizes the behavior of
accuracy, gain and number of attributes in addition to lift. In this case, these
measures get their highest values when wc is 0 and perform as a decreasing
inclined plane relative to wc. Finally, Figure 8 shows the values obtained for the
covered instances. This measure exhibits its maximum value when ws is 1 and
wc is above 0.3. The covered instances present a behavior similar to an awning
model.

As final remarks, we provide the following use recommendations. First, the ob-
tained AR are more specific when the minimum support threshold is 0. Therefore,
the support and instances covered values are lesser and the number of attributes
and accuracy are greater compared to the values obtained when the minimum
support threshold is 0.05. Second, although the confidence, gain, accuracy, and
lift are better when the minimum support threshold is 0, it is desirable to apply
a minimum support threshold in order to avoid support values below 1%. Taking
into account such decision, ws setting is not important in the final results. And
third, it has been observed that wc is the most influential weight. Thus, values
of wc around 0.5 are desirable because not all measures are increased according
to wc.

Finally, we note that it would be interesting to study the rest of weights
included in the fitness function of QARGA to analyze their influence on the AR
quality measures.

5 Conclusions

An analysis based on the sensitivity of the quality measures based on the varia-
tions of the weights included in the fitness function of the QARGA algorithm has
been carried out in this paper. Specifically, QARGA has been applied to several
public datasets with the aim of studying how its performance is affected accor-
ding to the choice of the weights. Significant differences have been observed in the
results of ten AR quality measures calculated from the AR obtained by QARGA
when ws and wc were ranged from 0 to 1. However, wc has been more influen-
tial than ws over the set of AR quality measures studied. Furthermore, several
groups of measures have been identified according to their behavior against the
weight variations.
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