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CO2’S MAIN DRIVERS FOR SPAIN’S ECONOMY. A STRUCTURAL 

DECOMPOSITION ANALYSIS   

 

Abstract: 

The aim of this paper is to identify the main drivers of CO2 emissions in Spain, using an 

enhanced Structural Decomposition Analysis (SDA) from an extended Input-Output 

Model, which would allow both the direct and indirect effects of possible drivers to be 

captured. Six factors are considered; for two of them at wo-level decomposition is 

conducted. The approach used is a multisectoral one that offers a fine analysis, which is 

interesting for policy discussion. Data came from the World Input-Output Database 

(WIOD), a free database offering relevant data for the 1995-2009 period. The results are 

examined in light of past and current political mitigation measures at both the 

international level and by Spain so the historical analysis from SDA is completed with 

prospective documents. 

 

KEYWORDS: CO2 EMISSIONS, STRUCTURAL DECOMPOSITION ANALYSIS, 

SPAIN 
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1. INTRODUCTION 

 

Not only the amount of carbon dioxide (CO2) but also other greenhouse gases (GHG) in 

the atmosphere are increasing, which is leading to global climate change (IPCC, 2013).  

In fact, climate change is one of the main problems facing nations today. The main 

anthropogenic driver is emissions into the atmosphere of GHG emissions from fossil 

fuel combustion. Anthropogenic activities under business-as-usual scenario would lead 

to a 5 °C increase in global temperature but proper and timely interventions could 

restrict it within 2 °C (The World Bank, 2010; Das and Kumar, 2014). There is ample 

consensus in its mitigation from global measures which began in 1997 with the Kyoto 

Protocol Agreement. For European Union (EU) members states, such measures 

continued with Directive 2003/87/CE (European Commission, 2003) and the so-called 

2020 Horizon approved in 2009 (European Parliament, 2009). This latest European 

agreement established three important targets to reach by 2020; a 20% reduction in 

GHG emissions, a 20% reduction in energy consumption and a share of 20% of 

Renewable Energy Sources (RES) in the energy matrix. This document also established 

national targets. For the case of Spain, the fixed target was to reduce its GHG emissions 

for 2020 up to 10% when compared to the 2005 statistics. In Spain, the main contributor 

to total GHG emissions is CO2 which shares around 80% (Spanish National Inventory 

GHG emissions, 2013). 

 

If we focus on CO2 emissions, the dominant anthropogenic greenhouse gas flux 

from fossil fuel combustion, although a set of mitigation measures are in force, their 
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effectiveness could be enhanced in light with results from the main drivers of CO2 

emissions. Only if mitigation measures are oriented towards the divers of emissions will 

it be possible to reduce them effectively. In others words, by acting from previous 

knowledge of the drivers would help the decoupling between economic growth and CO2 

emissions. Acting this way would make meeting economic growth without higher 

emissions possible. Indeed, it could be possible to meet economic growth and a 

decrease in CO2 emissions. 

 

This paper analysis the main drivers of Spain’s CO2 emissions by using an 

enhanced Structural Decomposition Analysis (SDA) supported on a rich database. The 

results are interesting, not only for researchers but also for utility companies and policy-

makers. Emissions from biomass and marine and aviation bunkers are excluded from 

the analysis.  Such results will allow us to know the connection between economic and 

technical factors with CO2 emissions. They will also help us determine what the various 

responsive factors are in emissions for the 1995-2009 period. This period of analysis is 

determined by the available dataset as described below. 

 

This paper aims to contribute to this growing body of knowledge about CO2 

emissions drivers by carrying out such an approach. Past and current political mitigation 

measures are also analyzed in line with such results. This paper focuses on the main 

drivers that explain the annual change in CO2 emissions from 1995 to 2009 in Spain. To 

do this, an enhanced (SDA) was carried out with a multi-sectoral approach. To the 

knowledge of the authors, Spain’s GHG (particular CO2) emissions drivers have not 

been previously investigated from such an approach. The solution developed to solve 
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the SDA and a two-level decomposition for two of the factors considered enhances the 

analysis which has been developed with the following main objectives:  

 

1. Decomposition of changes in CO2 emission between 1995–2009 into 

carbonization effect, energy intensity effect, technology effect, the structural demand 

effect, the consumption pattern effect and scale effect. 

2. Decomposition of changes in CO2 emission between 1995–2009 at the 

sectoral level and tracing the changes in emissions from each consumption category to 

the contributing sectors. 

3. To analysis the impact of past relevant policy measures, the entire period was 

divided into four sub-periods: 1995-2000 (before European directive 2001/77/EC of 

Renewable Energy Sources -European Commission 2001-), 2001-2004 (after European 

directive 2001/77/EC and before Kyoto -United Nations, 1998-), 2005-2007 (after 

Directive 2003/87/EC –European Commission, 2003- and after Kyoto implementation), 

and 2008- 2009 (after Kyoto first stage). 

4. To Analysis the impact of current policy measures oriented towards CO2 

emissions mitigation and provision of energy policy recommendations at the sectoral 

level. 

 

This paper has been structured as follow. After the introduction, section 2 reviews 

the literature, section 3 provides the methodology. Section 4 shows the dataset used. 

The results are presented and discussed in section 5. Current political measures are 

examined in section 6. In the light of our results, we draw a number of conclusions, 

which are presented in Section 7. 
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2. Review of the Literature  

 

Understanding the forces to change CO2 emissions over time has best been 

analyzed by means of a decomposition analysis. A decomposition analysis looks into 

the effects of changing one parameter at a time, while keeping all others unchanged at 

the base year, along with an interaction effect (Das and Kumar, 2014). A decomposition 

analysis could show which effects are more crucial to reduce CO2 emissions. Grossman 

and Krueger (1991) were the first to use a decomposition analysis for environmental 

studies. The authors decomposed emissions into three factors: a scale factor measuring 

the effect of growth on economic activity; the structure of the economy that quantified 

the variation in emissions due to a change in the sectoral composition of production; 

and a technological factor that measured the change in emissions caused by changes in 

technology. The authors applied this decomposition in member countries of the North 

American Free Trade Agreement and concluded that economic growth tended to 

decrease pollution problems. Freitas and Kaneko (2011) offered an overview of 

decomposition studies from the seminal paper by Grossman and Krueger (1991). 

 

Similarly, Torvanger (1991) analyzed the change in emissions in the industrial 

sectors of nine OECD countries. Their results indicated that the main factor contributing 

to the decline of emissions was a reduction in the energy intensity of production.  

 

In early 1990, the decomposition method began to be applied for developing 

countries. Some examples are the papers by Ang (1995), Shrestha and Timilsina (1996), 

Ang and Pandiyan (1997), Han and Chatterjee (1997), Sun (1998), Sun and Malaska 

(1998), Ang (1999), Ang and Zhang (1999), Luukkanen and Kaivo-oja (2002), Paul and 
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Bhattacharya (2004), Wu et al. (2005), Lee and Oh (2006) and Zhang et al. (2009). 

More recently, this methodology has been used to decompose energy intensity and 

emissions.  Examples include  Kerhof et al. (2009), Wu and Zeng (2013), Duarte et al. 

(2013), Fernández et al. (2014), Ren et al. (2014) and Wang et al. (2014). This method 

was also applied to studies by the International Energy Agency (IEA/OECD, 2004). 

 

The decomposition analysis involves two main, recently developed methods; the 

Index Decomposition Analysis (IDA) and the Structural Decomposition Analysis 

(SDA). Ang & Zhang (2000), Ang (2005), Hoekstra & van der Bergh (2002) and, more 

recently, Su & Ang (2012) compared both of them. Policy makers use these techniques 

widely as an analytical tool. 

 

IDA is a less data demanding method. However, the results show fewer details 

than SDA regarding economic structure. Recently, IDA has been applied to analyze 

energy consumption (Tunç et al, 2009; Oh et al, 2010), GHG emissions (Lu et al, 2007; 

Dong et al, 2010), among other topics.  

 

SDA uses data from Input Output (IO) Tables and offers a broader range of 

information concerning technical aspects and the effects of final demand than does IDA. 

SDA is implemented by researchers using an extended input-output analysis (IOA) to 

study changes in energy consumption or emissions. SDA is a useful approach to study 

the drivers of physical movements in an economy (Hoekstra & van der Bergh, 2002), as 

a consequence is an appropriated approach to analyze changes in the economic structure 

driving environmental changes. Thus, changes in environmental variables could be 

matched with changes in technical coefficients in the Leontief Matrix or in final demand 
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and its components. One of the seminal papers (Rose & Cheng, 1991) uses SDA to 

analyze changes in sectoral energy consumption in the U.S. Later, Rose & Casler 

(1996) showed the main principles to obtain equations of structural changes. SDA could 

carry out two type of decomposition; additive and multiplicative (Dietzenbacher et al, 

2000). The difference between these two types of decomposition analysis is the 

discussion about results. Any case, certain limits also affect SDA (Dietzenbacher and 

Loss, 2000). 

 

SDA has been applied to analyze GHG drivers. These are the cases of Chang et 

al (2008), Guan et al (2008), Zhang (2009), Achão & Schaeffer (2009), Baiocchi & 

Minx (2010) who use a multi-regional IO model, as do Cellura et al., 2012 and Zhu et 

al., 2012. Most papers use a reduced number of decomposition factors from a range of 

four or five. However, literature offers a number of studies with a higher number of 

factors, such as the case of Lim et al (2009) with eight factors; Chang et al. (2008) with 

nine factors or Wood (2009) with ten factors. Although in SDA studies it is 

commonplace to consider demand side factors, papers with a supply side factors are 

available. These papers use the Goshian instead of the Leontief matrix (Zhang, 2010).  

 

In the case of Spain,  similar papers focusing on GHG include the work by Llop 

(2007), Roca & Serrano (2007), Tarancón and Del Río (2007 a and b), Bartoletto and 

Rubio (2008), Alcántara & Padilla (2009), Butnar & LLop (2011), Alcántara et al. 

(2010), Bhattacharyya and Matsumura (2010), Cansino et al. (2011), Zafrilla et al. 

(2012), Demisse et al. (2014) and Cansino et al. (2015) among others.  
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3. METHODOLOGY 

 

3.1. Input-Output analysis (IOA). 

 

IOA is a useful method to better understand and account for the links between 

consumption and production sectors (Leontief, 1986). The input-output relationship 

may be expressed as follows (Miller and Blair, 1985): 

                                                    (1) 

 

Being x an n x 1 vector that shows the total output of each sector in an economy, A is an 

n x n technical coefficient matrix that indicates the inputs that each sector needs for its 

own production. Therefore, A.x is the intermediate output. Finally, y is an n x 1 vector 

that refers to the final demand of each sector. This equation may be reformulated as 

follows: 

                                            (2) 

  

Where I is n x n identity matrix, (I-A)
-1

 is the Leontief inverse matrix (L) that shows the 

requirements for an economy’s production. Consequently, the eq. 2 may be expressed as 

follows: 

                                                    (3) 

Leontief-style IOA accounting has become an increasingly active area of research for a 

variety of environmental indicators, including CO2 (Kanemoto et al., 2014). IO 

embodiment analysis, which facilitates a deeper appreciation of the sectoral total 

emission requirements in terms of both the direct and indirect hidden emissions costs, 
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has been popular as a main frontier method for benchmarking CO2 emissions embodied 

in economic activity (Chen and Zhang, 2010). 

 

 The Environmental Input-Output (EIO) model allows us to analysis the link 

among CO2 emissions, productive sectors and the final demand. In the EIO model, the 

total production based CO2 emissions are calculated as follows: 

 

                                                           (4) 

 

Where e is an n x 1 vector representing the total supply chain of CO2 emissions needed 

to meet the final demand,  is a diagonal matrix n x n that represents the emission 

intensities of economic sectors.  In other words, every element shows the CO2 emissions 

per unit of each economic output sector.  

  

3.2. Structural decomposition analysis. 

 

CO2 emissions from the burning of fossil fuel and industrial processes were 

related to Climate Change through the IPAT equation 

(Impact=Population×Affluence×Technology) (York et al., 2002) and the ‘Kaya identity’ 

(Commoner, 1971 and Metz, 2007). One of the main barriers of the IPAT equation is 

that only assesses the direct effects of CO2 drivers on environment. Together with this, 

the IPAT equation implies an aggregated approach that not allows a sectoral analysis to 

be developed but can be bridged through IOA and SDA. The combination of IOA-IPAT 

and SDA strengthens the standard IPAT analysis by identifying with economic sectors 

driving changes (Guan et al, 2008).  
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The SDA approach is used in this paper to analyze the changes of CO2 emissions 

due to six factors.  These are the carbonization factor, C, that represents the ratio of CO2 

emissions, measured in Gg, related to the relevant energy use, measured in Terajules 

(TJ); the energy intensity factor is represented by E and is defined as the ratio of 

emissions due to relevant energy use per unit of output (this factor is often used as a 

measure of the energy efficiency of a country’s economy); the technology factor, L, is 

the Leontief inverted matrix, which reflects the relationship between the final demand 

vector and the total output vector; the structural demand factor, S, where each of its 

elements shows the relative weight that every demand category (private consumption, 

gross capital, public expenditure and exports)  has in every 35 economic sectors; the 

final demand pattern factor, D,  represents the ratio of the final demand of each category 

over total final demand; and the scale factor, f, shows final demand of economy. 

 

Considering equation (4), first,  is decomposed into , where  is a diagonal matrix 

(n x n)  that shows the carbonization of the economy.  is a diagonal matrix (n x n) that 

represents the energy intensity of an economy. The expression for the decomposition 

analysis identity is: 

                                                  ( 5) 

 

 Secondly, y is decomposed into , with S being an n x d matrix (d categories of 

final demand allocation ) and represents the final demand sectoral structure.  is a 

diagonal matrix (d x d) that shows the percentage of each category for final demand by 

economic sectors, while f is a column vector d x 1  that shows final demand of the 

economy, where all of the d elements are equal and represents the total final demand.  
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                                                      (6)           

 

Hence, this decomposition allows us to express total CO2 emissions of an 

economy ‘e’ into the six effects or factors defined above (carbonization, energy 

intensity, technology, structural demand, consumption patterns and scale factor), as 

follows: 

 

                                              (7) 

 

The basic approach to additive structural decomposition analysis, using these six 

factors changes in CO2 emissions for one country may be expressed as follows: 

                                (8) 

 

Each of the six addends of the expression (8) represents a column vector (n x 1), 

where each element shows the contribution of each factor to the variation of CO2 

between two time periods. Similarly, the sum of the 35 elements of each vector 

represents the total contribution of each factor to the variation of emission. 

 

The change in CO2 emissions between two periods may be decomposed into 

changes in the component driving forces as follows:  

  

  

                                          (9) 
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For example, the first element  shows the change in factor 'C' while the rest 

of the factors remain unchanged. The main problem to calculate the value of every 

component in (9) is due to the fact that the remaining factors may be evaluated at the 

start or end-point of the time period investigated. As a consequence, the number of 

possible decomposition is high and is determined by the expression: . In this 

paper, with six factors, the number of possible decompositions amounts 2
30 

= 

1,073,741,824. However, not all decompositions are valid. The number of correct 

decompositions is determined by the expression n!; that in our case is 6! = 720 

(Dietzenbacher & Los, 1998).  

 

There are methods to accurately calculate the various effects. Miller & Blair 

(2009) use the average for a two-polar decomposition; Dietzenbacher & Los (1998) use 

weighted average in intermediate periods; De Haan (2001) uses the average of specular 

pairs and (Boer, 2008) uses the Montgomery's decomposition. However, the main 

disadvantage is the high number of calculations that are needed. It is not necessary to 

carry out n! decomposition forms (Seibel, 2003) in all cases. For each element, there are 

only 2
n-1

 different ways to appear in the decomposition. This means that each of these 

appear more than once. The number that appears for the decomposition or frequency is 

determined by the expression (n-1-k)!·k!, where k is the number of factors that remain 

unchanged, which is different for the variable value (notes by Δ) evaluated in period 

t+1. Moreover, due to unchanged factors that could appear in various  sites within the 

decomposition path, the number of different ways in which the path could appears as (n-

1)!/[(n-1-k)!·k!]. For example, the decomposition for the first element is shown in Table 
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A.1 of Appendix 1. As a solution, this paper uses the average of correct decompositions 

(in our case is 6! = 720). We follow the complete decomposition method proposed by 

Seibel (2003). However, although the average for all decompositions does not offer any 

residue, the problem of the high number of possible solutions persists. Nonetheless, this 

method is comparatively easier. It offers the advantages of being complete/perfect (no 

residuals, Sun, 1998), ideal (time/factor reversal, Su and Ang, 2012), symmetric (no 

theoretical assumptions for the factors) and mathematically simple.  

 

4. DATABASE 

 

The data used in this paper comes from the World Input-Output Database 

(WIOD), as described by Timmer et al. (2015) and Dietzenbacher et al. (2013). This is 

a free-access database financed by the EU and developed to analyze the effects of 

globalization on trade patterns, environmental pressures and the socioeconomic 

development of a large group of countries. The WIOD database is heavily grounded on 

official statistics from the national statistical institutes of the countries listed. WIOD 

opened to the public on 16 April 2012. The data include world input-output tables for 

the 27 European Union countries and 13 other major world economies. It covers the 

period of 1995-2013 and includes 35 industries and 59 commodities.  

The WIOD environmental accounts offer information on sectoral energy 

consumption and CO2 emissions, but only for the period 1995-2009. Emission relevant 

energy use is considered for the calculations in order to avoid double counting.  

Limits in data concerning emissions have determined the period studied for this 

analysis as 1995-2009.  More specifically, national input-output tables in national 
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currencies and current prices provided by WIOD database have been recalculated into 

constant 1995 prices. The methodology applied is as follow: 

Given that for each year of the 1995-2009 period the TIO to current prices are 

available as are the TIO prices for hte previous years, thus, it is possible to calculate the 

variation rate of the transactions between each of the two periods. This variation may 

also be expressed as an index number. Thus, for example, to say that a variable has 

increases 50% is similar to stating that a variable has seen a 1.5 times increase as a 

result of dividing its value for the moment t+1 by its value for the moment t. Having 

both tables mentioned (TIO for the current prices and TIO for the next year to prices of 

the previous year) for a couple of years, we may divide this latter among the first and 

obtain a new TIO, whose elements are index numbers. Each cell of the new matrix 

would indicate the volume variation observed between the two periods.   

 

Given that there are 15 time periods (from 1995 to 2009), 14 tables of index 

numbers have been obtained between two consecutive periods. Once the corresponding 

tables have been obtained, it is then possible to calculate the accumulative index tables 

for these same time periods. These are obtained by multiplying cell by cell of the 

corresponding tables in such a way that each new cell would show just how much the 

inter-sectorial transactions have varied between any two time periods.   For example, if 

the index tables for 1995-96 (T96), for 1996-97 (T97), for 1997-98 (T98) and for 1998-99 

(T99) are taken into consideration, it is possible to calculate the table for accumulative 

indexes for the 1995-99 (T95-99) period, such as 

 

    (10) 
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Each of the cells on the resulting table shows the variation of the inter-sectorial 

transactions between 1995 and 1999.   

 

As of the 14 accumulative index tables, all of the TIO to constant prices could be 

obtained for each year.  To do this, the TIO to current prices for the year was multiplied, 

which becomes the base—in this case, it was 1995—for each of the periods for the 

accumulative index table.   In the example, the table to constant prices for 1999 would 

result from multiplying the TIO for the year 1995 (TIO95) by the corresponding 

accumulative index table of our example (T95-99).  

 

This procedure must be completed with an RAS adjustment, given that there are 

variations in the rows (employment) and the total columns (resources) of the TIO 

calculated. The origin of these variations has to be sought in the actual magnitude of the 

table (it is a table with 35 sectors, to which the values of the components of the final 

demand and added value must be added) and the complexity of the calculation; this has 

the prices of the previous year (previous treatment). Specifically, to create the 

accumulative index tables, the table is multiplied up to fourteen times.   

 

 

5. RESULTS 

 

Table 1 shows values for changes in each decomposition factor (columns 2 to 7) 

and the total changes in CO2 emissions (column 8). Figures are related to the years 

expressed in column 1.  
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From the figures of Table 1, Spain’s CO2 emissions increased for most of the 

period under consideration. This not goes against the EU commitment derived from 

Kyoto’s Protocol. In fact, Spain was one of the EU member states that could increase its 

emissions level from the 1990 value. However, from 2005 onward, CO2 emissions trend 

showed negative values for most years--2007 was the only exception. So, after 

implementing the Kyoto protocol (2005-2007) and after stage one of Kyoto (2008-

2009), the European Union’s mitigation commitments seems to impact on Spain’s CO2 

emissions. Now, an effect by effect analysis is carried out. 

Changes in the carbonization factor Ce fails to follow a regular path during the 

1995-2009 period, although some periods are negative (1995/96, 1997/98, 1999/00, 

2000/01, 2002/03, 2005/06, 2007/08, 2008/09) thus contributing positively to 

diminishing CO2. The results are similar to those of Cansino et al. (2015) by using a 
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LMDI approach. Despite these unclear results, it is possible to carry out a richer 

analysis based of figures from Tables 2 and 3. 

 

Table 2. Gross energy inland consumption. Thousand tonnes of oil equivalent (TOE) 
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Table 2 shows the total gross, inland energy consumption in Spain for the 1995-2009 

period. During the 2006-2009 sub-period, when the carbonization factor Ce  has 

negative values, Spain’s energy mix was cleaner and helped reduce total CO2 emissions. 

When the carbonization factor Ce  has negative values, as shown on Table 2, there is a 

lesser use of coal as a primary energy source while at the same time, an increase in the 

use of natural gas (a low carbon emission source).The same occurs when there is a 

decrease in the use of total petroleum products as primary energy source. During the 

sub-period 2006-2009, the lesser use of coal and total petroleum products were added to 

the higher use of RES; this led to an important decrease in the CO2 emissions. This is 

coherent with the implementation of the 2005-2007 Kyoto Protocol and the initial state 

of said Protocol (2008- 2009). 

 

RES, as a whole, showed an increasing trend for 1995-2009 but not all clean 

technologies follow the same path. The contribution of hydropower to renewable 

energies is quite unique because it depends directly on rainfall. The main contribution 

of technologies to total RES is due to biomass (solid biofuels) that were used for heating 

but also as a fuel in combined cycled plants to generate power. At any rate, wind energy 

was the one technology with the greatest deployment during 1995-2009. Deployment of 

PV, solar thermal technology and the use of biodiesel (despite its unclear desirable 

effects, Sanz et al., 2014) must be stressed for 2007-2009. In fact, with Kyoto’s first 

stage (2008- 2009) Spain’s authorities implemented a very strong policy towards RES. 

In addition to the feed-in tariffs, the government also adopts direct public funding, 

subsidized loans and tax credits to encourage wind and solar power, biomass, biofuels 

and small hydro plants. The G-20 Clean Energy Fact book (2010) pointed out Spain as 
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the 5
th

 largest G-20 investor in renewable energies and the 1
st
 in clean energy 

investment intensity (clean energy investment as a percentage of GDP). 

 

In summary, Table 2 shows that the positive contribution of the carbonization 

effect that decreases CO2 emissions in most of the periods are due to a lesser use of coal 

and petroleum products and an increase in RES used in 2008-2009 (Kyoto’s first stage). 

That is, clean technologies have a main effect against CO2 emissions from the 

carbonization effect point of view. 

 

If changes in the carbonization factor are analyzed by sectors (Table A.2 of 

Appendix 2), the electricity, gas and water supply sectors are the most important, 

followed by Transportation, Other Non-metallic Mineral and Coke, and the Refined 

Petroleum sectors. In these sectors, the changes in the carbonization factor do not follow 

a defined trend but they do show the highest values.   

 

Figure 1 shows the carbonization factor trend in the electricity, gas and water 

supply sector. When the carbonization factor is compared to the primary energy 

consumption for power generation, a similar path could be found between the coal 

consumption and the carbonization factor. This sector shows the most important 

changes in the carbonization factor during the previously mentioned 2006-2009 period. 

As a result, the increase in the use of RES for electricity is one of the main drivers 

diminishing CO2 emissions in Spain. 
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Figure 1. Carbonization factor’s trend in Electricity, gas and water supply sector (kt) 

 

Source: Own elaboration 

 

Other pollutant sectors include coke, refined petroleum and other non-metallic 

minerals. In these sectors, coal is an important energy source as seen in Table 3 and 

therefore coal consumption might explain an important percentage of CO2 emission 

changes due to the carbonization factor. It is important to note the decrease in the use of 

coal as of 2005. This applies to of two Kyoto’s sub-periods considered (2005-2007) and 

(2008-2009). 
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Table 3. Coal consumption in cement factories in Spain (miles tn) 

 

 

Coal 

consumption 

Cement 

factories 

2000 3,580 310 

2001 3,794 299 

2002 3,593 245 

2003 3,611 221 

2004 4,555 163 

2005 4,316 175 

2006 3,662 210 

2007 3,740 387 

2008 3,491 280 

2009 2,363 35 

   Source: Ministerio de Industria, Energía y Comercio (2001-2010) 

 

The changes in the energy intensity effect ( Ee ) follow an irregular path. 

Sometimes, this effect contributes negatively to the CO2 emissions’ cut down (1996-

1998, 2001-2003 and 2008-2009), while in others, it contributes positively. However, 

the longest period when the energy intensity factor contributes positively corresponds to 

the years 2003-2008, prior to implementing Kyoto. 2008-2009 was characterized by a 

negative contribution of the energy intensity factor to decrease CO2 emission; the 

explanation for this situation was the commencement of Spain’s economic recession. 

That is due to lower use of the productive capacities and maintaining the same 

consumption pattern, explained, to a large extend, by the increase in the consumption 

per production unit;  that is, energy intensity. 
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Our attention is drawn to the positive contribution of the energy intensity factor 

to decreasing CO2 emissions during 2003-2008. Relevant sectors for those years include 

Other Non-metallic, Oil and Electricity sectors. Although the European Energy 

Efficiency Directive was not approved until 2012 (European Commission (2012), the 

government of Spain applied a number of political measures in 2003 to enhance energy 

efficiency. That year, Spain’s Strategy for Energy Saving and Efficiency (Ministerio de 

Economía, 2003) was approved. This was the first and most important policy measure 

aimed at promoting efficiency and energy saving. The first energy efficiency plan was 

implemented in 2004-2008, followed by the Action Plan 2008-2012 (Ministerio de 

Industria, Turismo y Comercio, 2008).  

After 2004, the international oil prices began to rise significantly as shown in 

Figure 2. As a consequence of the price spike in 2004, the industrial and the residential 

sectors responded to that market trend with a decrease in the consumption of oil-derived 

products.  
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Figure 2. Oil price per barrel and the contribution of the EI factor for the Coke,  

Refined Petroleum and Nuclear Fuel sector. 

 

Source: UNCTAD (2014) 

 

In summary, since 2004, the changes in energy intensity factor in Spain’s 

economy might be affected by the upward trend in oil prices, and the implementation of 

policy aimed at promoting energy efficiency.  

 

The analysis of energy intensity factor by sectors is displayed in Table A.3 in 

Appendix II. The Table A.3 shows that the most important sectors that contribute to the 

changes in energy intensity factor are Coke and Electricity sectors. Special attention 

must be paid to 2004-2009; two Kyoto sub-periods (2005-2007) and (2008-2009) and in 

the EU Emissions Trading System—EU ETS—  (European Commission, 2003). This is 
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the longest period in which the Coke sector shows a positive contribution to Spain’s 

decarbonizing trend. In 2005, the first national plan of GHG emissions allowances 

(Ministry of the Presidency, 2004) was applied, which extended up to 2007. After this 

plan, another two were approved for 2008-2012 and 2013-2020. Those two productive 

sectors received most of the emission allowances free of charge but only for this first 

period. As it well known, ETS is one of the available tools for pricing carbon; thus the 

behavior of these two relevant sectors oriented towards enhancing their energy intensity 

is coherent with such a tool. 

 

Together with the Coke and Electricity sectors, other industrial sectors show a 

great influence on changes in the energy intensity factor. That is the case for the sectors 

“Other non-metallic materials,” “Air transport,” “Inland transport,” “Agriculture” and 

“Basic metals.”  Neither of them shows a regular trend in their sign, so for some years, 

they act as a driver of CO2 emissions while others do not. Efficiency measures seem 

unsuccessful in these sectors, although in the case of inland transport, major efforts 

were made in the energy efficiency policies implemented. In fact, during the 2005-2008 

period, the inland transport sector contributed positively to decreasing CO2 emissions 

through the energy intensity factor. This implies that there is room for policy measures 

oriented towards promoting the use of Flexible Fuel Vehicles and Electrical Vehicles 

(Sánchez-Braza et at, 2014). The work of Cansino et al. (2015) also analyzes this effect, 

to show similar results to those appearing in this work, not only regarding total data, but 

also when analyzing the data by sectors.  

 

The technology effect ( Le ) is affected by the change in Leontief inverse matrix 

and provides information about changes in CO2 emissions due to alterations in 
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productive structure of the economy. A detailed consideration by sectors based on Table 

A.5 in Appendix II shows that the Electricity sector is the main driving force, as it 

contributes to increasing CO2 emissions during most periods, except in 1996/1997, 

1997/1998, 2001/2002 and 2006/2007. Other relevant sectors are “Other non-metallic 

materials” and “Coke, Refined Petroleum and Nuclear Fuel”. Cansino et al. (2015) does 

not consider the technology effect due to limits of the LMDI approach. In this sense, 

SDA carried out in this paper offers richer results. From a sectoral perspective, major 

findings point to the Electricity sector driving CO2 emissions. A previous paper by 

Alcántara et al. (2010) offers similar findings. 

The structural demand effect ( Se ) is the fourth factor under analysis. It can be 

observed that the weight of “Refined sector” and “Electricity sector” on final values are 

very high. There are two, well-differentiated sub-periods from the sign point of view. 

For most of the years between 1995 and 2001, the demand effect drives CO2 emissions 

in Spain. The exception is 1998. However, for the sub-period 2002-2009, the demand 

effect shows a negative sign, meaning that it contributes negatively to CO2 emissions 

and only for 2006, does it act as a driver. 

A richer analysis of eS effect could be derived from a two level analysis, as 

inspired by Xu and Ang (2014). To do that, eS effect is decomposed into components of 

final demand. Table 4 shows results. 
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Table 4. Broken down of eS into final demand categories 

 

For most of the years from 2002 onwards, private consumption has contributed 

to reduce CO2 emissions, so consumption patterns focus on sectors with less embodied 

CO2 emissions. The same could be said of gross capital. However, for most of the years, 

public expenditure had driven CO2 emissions; only when the budget constraints were 

applied due to recession did the sign move to negative. No clear pattern appears when 

looking into export figures. 

 

A sectoral analysis from Table A.5 in Appendix II helps find some keys to 

understanding what happened. If we focus on sectors oriented towards final demand 

consumption, they show a negative sign for sub-period 2007-2009 (Kyoto’s first stage). 

Indeed, for the “Coke sector” which shows a positive value for 2007, this is lower in 

2006 and turns negative in 2009. This is coherent with what happened in the cases of 

the Food, Leather, Wood and Pulp sectors. Another sector oriented towards the final 

demand as is the case of Manufacturing that shows a similar trend. Displacement from 

domestic sectors to imports might explain this fact. This change might displace CO2 
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emissions from Spain to import countries. By using a multiregional analysis that is also 

based on WIOD database, it could be feasible to find information for the carbon 

footprint. Available results offered by Arto et al. (2012) and Mundaca et al. (2015) for 

the Swedish case seems to support our hypothesis. Any case, this interesting issue 

exceeds the aim of this paper.  

 

The discussion factor De  (final demand pattern) is similar to that made for 

factor . For most of the years as of 2001, the final demand has contributed to 

reducing CO2 emissions for the sub-period (2005-07), which is an exception. Two 

relevant sub-periods must be stressed in the analysis of eD effect; during 1995-2000 

(before European Directive 2001/77/EC), it drives CO2 emissions. With the 

implementation of the Kyoto Protocol, it acted against them. The four main sectors that 

contribute to this effect are Other Non-metallic Minerals, Metallurgy, Refined 

Petroleum and the Electricity sectors. Their contribution for most of the period 

considered (1995-2007) is to reduce emissions uninterruptedly. In the last two years 

(2007-09), although its contribution was positive, and limited, it had no effect on global 

values.  

As in the previous case, a richer analysis of eD effect may be derived from a two-

level analysis by decomposing it into components of final demand as Table 5 shows. 
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Table 5. Broken down of eS into final demand categories 

 

 

The discussion on factor eD is similar to that for factor eS. For most of the years 

as of 2002, private consumption has contributed to reducing CO2 emissions until the 

recession started. The same could be said about gross capital but also in a period of 

recession. However, for most of the years, public expenditure drove CO2 emissions; 

only when the budget constraints were applied due to recession did the sign turn 

negative. No clear pattern appears when we look into exports figures. 

 

The last effect is the scale effect ( Fe ). It explains the changes in CO2 emissions 

due to changes in the size of the final demand. An increase in the final demand implies a 

higher production and therefore, greater CO2 emissions. The scale effect has contributed 

to increasing CO2 emissions due to the final demand increase taking place in the decade 

before 2008. From then, the scale effect started to be negative, and therefore, a lower 

final demand implied lower emissions. The role of scale effect as a driver of CO2 has 

been widely considered by the literature. Economic activity is the major determinant of 

change in emissions. Our results are in line with those found for other countries by 
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Freitas and Kaneko (2011), Jeong and Kim (2013), Wang et al. (2014), Wu and Zeng 

(2013) and Ren et al. (2014). In any case, thinking in a post crisis scenario, it might be 

taken into account that Mundaca et al. (2013) found a rebound effect in CO2 emissions 

for various developed regions. 

 

An analysis of scale effect by sectors leads us to the same previous results. The 

“Coke, Refined Petroleum,” “Electricity, Gas and Water Supply,” “Inland Transport” 

and “Other Non-metallic Minerals” are the most important sectors that explain changes 

of CO2 emissions due to this effect. It is noteworthy that all of the sector have a similar 

behavior for the period studied.  

 

6.  Historical results vs current mitigation measures 

 

The results obtained for SDA are useful when analyzing the policy measures 

established by Spain authorities, mainly those applied after 2009.  This comparison 

allows us to know how well oriented these measures were for the most sensitive sectors 

and in the behavior when each factor was analyzed.   

The measures developed by Spain’s authorities focused on mitigating CO2 

emissions and are included in the outline of the document titled ‘Strategy for energy 

efficiency and savings 2004-2012 in Spain –E4- (in Spanish, Estrategia de ahorro y 

eficiencia energética para España 2004-2012, E4; Ministerio de Economía, 2003). This 

document has no specific policy measures but only general lines that were necessary in 

later documents.  These later documents could be grouped together in two main groups:  

a) plans focusing on the development of RES and b) plans oriented towards improving 

energy efficiency and reducing energy consumption.  
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The first group of documents includes the document named Renewable Energy 

Plan (2005-2010) (in Spanish Plan de energías renovables 2005-2010; Ministerio de 

Industria, Turismo y Comercio, 2005) and the National Action Plan for RES in Spain 

(PANER) (in Spanish, Plan de acción nacional de energías renovables en España, 2011-

2020; Ministerio de Industria, Turismo y Comercio, 2010). Both documents are in line 

with the past deployment of RES in Spain and are coherent with values of the eC factor 

in the last years of the period considered in the SDA. 

The second group of documents includes the Action Plan (2008-2012) 

(Ministerio de Industria, Turismo y Comercio, 2008) and the Action Plan (2011-2020) 

(Ministerio de Industria, Turismo y Comercio, 2011 a). Both documents include 

measures oriented to the economic sectors that appear in Table 6. 

As can be derived from Table 6, there are a number of differences among the 

sectors that have previously received attention from the Authorities of Spain and others 

that should receive attention when taking into consideration the SDA results. This might 

be due to the fact that SDA reports a finer analysis of the key sectors, while the political 

documents do not discriminate between a single category titled ‘Industry’. In fact, the 

multisectoral approach developed by SDA offers useful information that allows the 

focus to be put on more detailed key sectors. Additionally, in the case of the 

Agriculture, Hunting, Forestry and Fishing sector, although it receives a lot of attention 

in political documents, it only plays a significant role for the eE factor in SDA.  

As expected, there are also coincidences between the results from the historical 

analysis and the measures included in political documents; that is the case of Electricity, 

Gas and Water Supply Coke, Refined Petroleum and Nuclear Fuel and Other Non-

Metallic Mineral sectors; all of them are well-known drivers of CO2 emissions. Also, in 

the case of the last five sectors listed in Column 1 of Table 6, they only appear in 
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political documents related to a single measure that is used to develop energy audits but 

it is not mandatory. Regarding the Public Administration sector, it receives lot of 

attention in political documents but not its components (Health, Education…) and it 

appears as a key sector from SDA. However, this could be explained if its role is 

observed when eS and eD are broken down into final demand categories as shown on 

Tables 4 and 5. 

Table 6. Key sectors from SDA and from political documents 
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For discussion, it could be said that the historical SDA analysis supports most of 

the measures put into force by Spain’s Authorities after the period under consideration. 

However, these authors consider that other measures oriented towards mitigating CO2 

should be included in future political documents considering the SDA results.  

Our recommendation is that it might be useful to insert tax benefits into 

programs for energy efficiency improvements in Spain for those companies that show 

reductions in their energy intensity ratios. We recommend including such tax benefits in 

the areas of Corporation Tax and Personal Income Tax. These measures include energy-

use auditing and analysis and investment in profitable efficiency improvements, etc. 

Undertaking energy audits (as those actually included in the applicable political 

documents) enables the fundamental energy parameters of the process and its equipment 

to be determined, as well as an awareness of the deviations with regard to the energy 

standard of the sector. 

Measures to be considered might not be significantly affected by the company 

productivity. The Swedish Program for Improving Energy Efficiency (Swedish Energy 

Agency, 2005) could be an example for such measures. 

 

7. Conclusions and policy implications 

 

The historic analysis carried out for the 1995-2009 period concludes the 

following for each of the factors analyzed:  

Carbonization effect: For the two periods linked to the Kyoto Protocol (2005-

2007) and (2008-2009), a change in Spain’s energy mix contributed to reducing CO2 

emissions. Mainly, this change implied a lesser use of coal as a primary energy source 
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and a higher share of RES in the energy matrix. However, it must be pointed out that the 

contribution of high hydro power to RES depends on rainfall. 

From a sectoral perspective, the Electricity sector shows to have the greatest 

impact on total value of the carbonization effect. By substituting coal as primary energy 

source, RES appears as a main factor in the mitigation of CO2. Coke, Refined Petroleum 

and Other Non-metallic Mineral sectors might remain in the core of political measures 

oriented towards mitigation due to their weight in the carbonization effect trend. 

Energy intensity effect: Looking at the intensity effect, an initial view of the 

findings let us to conclude that neither European directive 2001/77/EC nor the Kyoto 

Protocol seem to explain its positive contribution to CO2 mitigation as of 2003 (with the 

only exception  being 2009). However, if we review these findings, it can be concluded 

that measures implemented by the government of Spain oriented towards energy 

efficiency and the upward trend in oil prices could explain the behavior of this effect, as 

it works in the same way as the carbonization effect in reducing CO2 emissions. 

When the energy intensity effect is analyzed from a sectoral perspective, EU 

ETS seems to have driven Coke and Electricity sectors in Spain to enhance their energy 

intensity. Although after economic crisis began, the EU ETS probably fell, for the 

period 2004-2009, as it acted as the driving force behind the mitigation of CO2 for these 

relevant sectors in Spain. Together with these findings, the results allow us to conclude 

that there is room for policy measures to promote the use of Flexible Fuels Vehicles and 

Electrical Vehicles. 

Technology effect: If two previous effects acted together against CO2 emissions 

after the implementation of the Kyoto Protocol, the effect of technology reveals the 

Electricity sector as the driving force behind CO2 emissions in Spain. This effect is 

derived from changes in the inter-sectoral relationship and is a broad analysis based on 
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an LMDI approach. The weight of the Electricity sector as a driver of CO2 emissions 

means that Electricity is still a crucial input for most of the sectors in Spain’s economy. 

The lesson learned is clear: less intensive technologies in electricity consumption are 

need. 

Structural demand effect: The structural demand effect captures the weight of 35 

productive sectors in the four categories of the final demand (private consumption, 

gross capital, public expenditure and exports). A major finding is that prior to the 

European directive 2001/77/EC, this factor drove CO2 emissions although with no 

significant values as a hole. The exception was 1998.  

Since 2001, and during the two Kyoto Protocol periods (2005-2007) and (2008-

2009), structural demand effect contributed negatively to CO2 emissions with the only 

exception being 2006. It might be stressed that for most of the negative value years, this 

effect is not significant. The picture changed after Kyoto first stage (2008-2009); then, 

the effect acted strongly against CO2 emissions. From a sectoral perspective, the results 

recommend further analysis to verify whether there is a displacement of CO2 emissions 

from Spain to imports countries. Further analysis might incorporate not only a multi-

sectoral approach but also a multi-regional one for this paper. 

Final demand effect: The impact of final demand effect on CO2 emissions seems 

to also be affected by measures considered in this paper to break down the entire 1995-

2009 period into relevant sub-periods. After the implementation of the Kyoto Protocol, 

this effect acted against CO2 emissions. From a sectoral point of view, four sectors 

might receive special attention from authorities: these are Other Non-metallic Minerals, 

Steel, Oil and Crude Refined and Electricity sector. 

Both the final and structural demand effects offer interesting findings when a 

two-level decomposition is carried out. The attention that Public Administration sector 
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receives in current political document against CO2 emissions could be explained after 

this decomposition. 

The last effect under consideration is the scale effect. This is a usual factor in 

decomposition analysis (either LMDI or SDA) and the results were as expected as a 

driver of CO2 emissions until the crisis started. An interesting finding appears for 2006–

prior to the onset of the crisis. For this year, the carbonization factor, energy intensity 

factor, and structural demand factor over compensated the role of the technology effect 

and scale effect as CO2 drivers, in which case, total emissions decreased. In any case, a 

risk of a rebound effect in a post-crisis scenario does exist. 

These results allow us to conclude that that the implementation of the Kyoto 

Protocol seems to have an impact on CO2 emissions trends in Spain, together with 

European Directives related to the promotion of RES. Specifically, the EU ETS as a 

pricing carbon tool seems to be effective in decisions for certain crucial sector despite 

its fall at the beginning of the economic crisis. This allows us to recommend other 

pricing carbon tools. 

By comparing a historical analysis with Spain’s political measures currently in 

force, it could be said that they focus properly on the key sector that could act as CO2 

emission drivers. 

In light of major finding and after reviewing the current mitigation measures in 

Spain, a number of policy recommendations are given to avoid the rebound effect and to 

enhance the fight against Climate Change. We recommend the insertion of tax benefits 

into Spain’s programs for energy efficiency improvements for those companies that 

prove reductions in their energy intensity ratios. In a more accurately way, we 

recommend including such tax benefits in the areas of Corporation Tax and Personal 

Income Tax. 
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APPENDIX 1 

Table A.1 Structural decomposition for the first sum component 

Total different decomposition forms: 2
n-1

 = 2
6-1

 = 32 

Decomposition pattern 1. Ningún factor valorado en t+1 

Number of different decomposition forms: 

 

 

Frequency of every component: 

 

Forms of decomposition Frequency 

1.  120 

Decomposition pattern 2. Un factor valorado en t+1 

Number of different decomposition forms: 

 

Frequency of every component: 

 

Forms of decomposition Frequency 

2.  24 

3.  24 

4.  24 

5.  24 

6.  24 

Decomposition pattern 3. Dos factores valorados en t+1 

Number of different decomposition forms: 
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Frequency of every component: 

 

Forms of decomposition Frequency 

7.  12 

8.  12 

9.  12 

10.  12 

11.  12 

12.  12 

13.  12 

14.  12 

15.  12 

16.  12 

Decomposition pattern 4. Tres factores valorados en t+1 

Number of different decomposition forms: 

 

 

Frequency of every component: 

 

Forms of decomposition Frequency 

17.  12 

18.  12 

19.  12 
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20.  12 

21.  12 

22.  12 

23.  12 

24.  12 

25.  12 

26.  12 

Decomposition pattern 5. Cuatro factores valorados en t+1 

Number of different decomposition forms: 

 

Frequency of every component: 

 

Forms of decomposition Frequency 

27.  24 

28.  24 

29.  24 

30.  24 

31.  24 

Decomposition pattern 6. Cinco factores valorados en t+1 

Number of different decomposition forms: 

 

Frequency of every component: 

 

Forms of decomposition Frequency 



53 
 

32.  120 

Total different decomposition forms: n! = 6! = 720 720 

Source: Own elaboration 
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