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Abstract

The aim of this paper is to show some examples of matrix-valued orthogonal functions
on the real line which are simultaneously eigenfunctions of a second-order differential
operator of Schrödinger type and an integral operator of Fourier type. As a consequence
we derive integral equations of these functions as well as other useful structural formulas.
Some of these functions are plotted to show the relationship with the Hermite or wave
functions.

1 Introduction

In this paper we will show examples of N×N matrix-valued orthogonal functions (Φn)n which
are simultaneously eigenfunctions of a second-order differential operator of Schrödinger type,
i.e.

(1.1) (ΦnD)(x)
.
= Φ′′

n(x)− Φn(x)V (x) = ΓnΦn(x), x ∈ R,

where the matrix-valued potential V (x) (independent of n) is a diagonal quadratic matrix
polynomial (but not a scalar multiple of the identity), and an integral operator of Fourier
type, i.e.

(1.2) (ΦnI)(x) .=
1√
2π

∫ ∞

−∞
Φn(t)K(x, t)dt = ΛnΦn(x), x ∈ R,

where the matrix-valued kernel K(x, t) is also diagonal (but not a scalar multiple of the
identity) of the form K(x, t) = eixtK̃ for some diagonal matrix K̃. We will also show that
it is possible to construct suitable families (Φn)n such that the corresponding eigenvalues Γn
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and Λn are diagonal. Hence both differential and integral operators commute in the space of
all matrix-valued functions spanned by (Φn)n.

Observe that the operators D and I appear on the right. This denotes that the potential
coefficient and the kernel are multiplied on the right, respectively, while the eigenvalues appear
on the left. With this configuration it is straightforward to derive that both differential and
integral operators commute in the space of all matrix-valued functions spanned by (Φn)n, i.e.
for any F =

∑m
n=0 CnΦn,m ≥ 0, Cn ∈ C

N×N ,

FID = ΛnFD = ΛnΓnF = ΓnΛnF = ΓnFI = FDI,

since the eigenvalues are diagonal matrices. In particular we will see in Section 6 that this
commutativity property holds in L2(R,CN×N ) (see Section 2 for definitions) for the examples
we consider in this paper.

In the scalar situation the examples of simultaneously eigenfunctions of an integral and
a differential operator are very special and usually are related to many areas of engineering,
physics, chemistry and mathematics. Prominent examples are the Hermite or wave functions
which satisfy the Schrödinger equation (1.1) with V (x) = x2 and also are eigenfunctions of
the Fourier transform (see [13, 28, 30]). The Hermite functions play an important role in
quantum mechanics to model the one dimensional quantum harmonic oscillator (see [24]), or
in chemistry in vibration of molecules (see [24, 31]), among other applications.

Also the prolate spheroidal wave functions in signal processing satisfy certain second-order
differential equation and are eigenfunctions of the so-called sinc kernel. This remarkable
fact was discovered in a series of papers by the Bell Labs group in the early 1960s, see
[25, 19, 20, 26, 27]. See also [7].

The commuting property and other similar properties are very closely related to the
classical orthogonal polynomials of Hermite, Laguerre, Jacobi and Bessel. For instance, in
[15], the author produces naturally appearing global operators that happen to commute with
properly chosen local operators.

In the last few years many examples of matrix-valued orthogonal polynomials (Pn)n have
appeared satisfying second-order differential equations of Sturm-Liouville type, i.e.

P ′′
n (x)F2(x) + P ′

n(x)F1(x) + Pn(x)F0(x) = ΓnPn(x),

where F2, F1 and F0 are matrix polynomials (which do not depend on n) of degrees less than
or equal to 2, 1 and 0, respectively, and Γn are Hermitian matrices (if the family (Pn)n is
orthonormal). These examples are the matrix analogue of the classical families of Hermite,
Laguerre and Jacobi polynomials. Since the classical families are intimately related with
integral equations, it is natural to expect that these new families of matrix-valued orthogonal
polynomials are related to matrix-valued integral equations. The main goal of this paper
is to show some examples of simultaneously eigenfunctions of an integral and a differential
operator in the matrix case.

For that purpose we will consider families of matrix-valued orthogonal functions (con-
structed from the matrix-valued orthogonal polynomials and a weight matrix) such that
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they are orthogonal in the corresponding function spaces (more on this in Section 2). This
treatment will allow us to obtain, for the examples we study in this paper, matrix-valued
Schrödinger operators of the form (1.1) and integral equations of the form (1.2).

Schrödinger operators with Hermitian matrix-valued potentials (usually with some re-
strictions on the potential) are not new in the literature. They have been considered in
[3, 4, 14, 22] to study many analytical properties of these operators. Also matrix-valued
functions are considered for some problems in wavelet theory to model matrix-valued signals,
e.g. video images (see [29, 32]).

To give an idea of the results contained in this paper let us display here one of the examples
we study in Section 4. Consider a family of matrix-valued functions (Φn)n defined in (4.3).
Then they satisfy the following matrix-valued Schrödinger equation

Φ′′
n(x)− Φn(x)(x

2I + 2J) + ((2n + 1)I + 2J)Φn(x) = 0, x ∈ R,

where J is the diagonal matrix defined in (2.4). This differential equation (for the monic
family) was already derived in Section 6.2 of [11] (with non diagonal eigenvalue). The family
we consider in (4.3) will transform the eigenvalue into another convenient diagonal one.
Then the family of matrix-valued orthogonal functions (Φn)n satisfies the following integral
equation

1√
2π

∫ ∞

−∞
Φn(t)e

ixtei
π
2
Jdt = (i)nei

π
2
JΦn(x), x ∈ R,

where ei
π
2
J is the diagonal matrix (2.8).

Therefore the kernel and the eigenvalue in (1.2) are K(x, t) = eixtei
π
2
J and Λn = (i)nei

π
2
J ,

respectively. Observe that they are diagonal, but not necessarily scalars multiple of the
identity. This result will have important consequences. In particular we will derive some
structural formulas and integral equations of the corresponding matrix-valued orthogonal
polynomials.

The paper is organized as follows: in Section 2 we give some preliminaries. In Section
3 we derive the matrix-valued differential equation satisfied by the matrix-valued functions
constructed from the matrix-valued orthogonal polynomials and a weight matrix. We will
focus on the case when the leading coefficient F2 is of the form F2(x) = f2(x)I, where f2(x)
is a scalar polynomial of degree less than or equal to 2 (the case considered in [10]). This
result holds for any family supported in any interval [a, b], −∞ ≤ a < b ≤ ∞.

In Sections 4 and 5 we study in full detail two examples supported in R, which previously
appeared in [10] and derive differential and integral equations for the corresponding families
of matrix-valued orthogonal functions. As a consequence we will derive real (and complex)
integral equations for the families of matrix-valued orthogonal polynomials, among other
structural formulas of general size N ×N . We also study, for both examples, the special case
of N = 2. In this case we can write our (normalized) matrix-valued orthogonal functions Φn
in terms of classical Hermite or wave functions. We will plot some of the entries of ΦnΦ

∗
n

for the first values of n, as well as derive some integrals involving these functions. Finally,
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Section 6 addresses the issue of the completeness of these functions, gives a summary of the
results of the paper and the challenges that lie ahead.

2 Preliminaries

An N ×N matrix-valued function F is a matrix with real-valued functions as entries of the
form

F (x) =




f11(x) f12(x) · · · f1N (x)
f21(x) f22(x) · · · f2N (x)

...
...

. . .
...

fN1(x) fN2(x) · · · fNN (x)


 , x ∈ [a, b].

We will say that F ∈ L2([a, b],CN×N ) if

∫ b

a
F (x)F ∗(x)dx <∞,

where F ∗ denotes the Hermitian conjugate of the matrix F and −∞ ≤ a, b ≤ ∞. In the
above definition we mean that the integral is finite entry by entry. It is easy to see that
F ∈ L2([a, b],CN×N ) if and only if every entry Fij ∈ L2(a, b). This induces a matrix-valued
inner product for any two matrix-valued functions F,G ∈ L2([a, b],CN×N ), denoted by

(2.1) 〈F,G〉 =
∫ b

a
F (x)G∗(x)dx.

This is not an inner product in the common sense, but it has properties similar to the usual
scalar inner products. It is also possible to define a scalar product between two matrix-valued
functions (see [6]), given by

(F,G) = Tr (〈F,G〉) .

Therefore, L2([a, b],CN×N ) with the norm ‖F‖ = Tr (〈F,F 〉)1/2 is a Hilbert space and (2.1)
is the inner product (in fact, the set of equivalence classes F ∼ G if ‖F −G‖ = 0). Then we
can module Fourier expansions of orthonormal systems in L2([a, b],CN×N ) (see pp. 7–8 in
[6]).

In a similar way, we can define the weighted spaces L2
W ([a, b],CN×N ) of all matrix-valued

functions in one variable with the inner product

(2.2) 〈F,G〉W =

∫ b

a
F (x)W (x)G∗(x)dx,

where dW is a weight matrix with a smooth densityW with respect to the Lebesgue measure,
satisfying (1)W (B) is positive semidefinite for any Borel set B ∈ R, (2)W has finite moments
of every order and (3) 〈P,P 〉W is nonsingular if the leading coefficient of a matrix polynomial
P is nonsingular. Condition (3) above is necessary and sufficient to guarantee the existence of
a sequence of matrix polynomials orthogonal with respect to (2.2) of degree n with nonsingular
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leading coefficient, and it is fulfilled, in particular, when W is positive definite at an interval
of the real line. We will assume, for simplicity, that there exist a real number c ∈ (a, b) such
that W (c) = I.

Now we introduce two matrices that are going to play a very important role in the rest
of the paper. The first one is the N ×N nilpotent matrix (i.e. AN=0)

(2.3) A =
N∑

j=1

νjEj,j+1, νj ∈ R,

where Ej,k is a matrix with 1 at entry (j, k) and 0 elsewhere, while the second is the diagonal
matrix

(2.4) J =

N∑

j=1

(N − j)Ej,j .

A and J satisfy the algebraic relation

adAJ = [A, J ] = −A,

where adk, k ≥ 0, denote the usual adjoint operators defined by ad0XY = Y ,

(2.5) adXY = XY − Y X and adk+1
X Y = adX(ad

k
XY ), k ≥ 1.

As a consequence

(2.6) adAkJ = −kAk, k = 1, . . . , N − 1,

as it is easy to see by induction.

We will now introduce real or complex valued functions with matrix argument. The
Taylor series of an infinitely differentiable f in a neighborhood of x = 0 is

f(x) =

∞∑

j=0

f (j)(0)
xj

j!
.

Whenever we write f(X), for any N ×N matrix X, we will mean the following matrix

f(X) =

∞∑

j=0

f (j)(0)
Xj

j!
.

It is clear that f(X)g(X) = g(X)f(X) for any two real or complex valued functions f, g.
In particular we will be interested in the evaluation of f(A) or f(J), where A and J are

defined in (2.3) and (2.4) respectively, for certain real or complex valued functions f . Observe
first that, since A is nilpotent, then

f(A) =

N−1∑

j=0

f (j)(0)
Aj

j!
,

5



i.e. f(A) is a finite sum of linear combinations of the powers of A. It is clear that all real or
complex valued algebraic or differential manipulations for functions f(x) can be applied to
the matrix f(A). For instance, when we write (I +A)−1, it will denote the matrix

(I +A)−1 =

N−1∑

j=0

(−1)jAj.

On the contrary, the diagonal matrix f(J) will not be a finite sum of linear combinations of
the powers of J . That is the case of the following diagonal matrices. For f(x) = ei

π
2
kx, k ∈ Z,

the matrix f(J) is defined by

(2.7) ei
π
2
kJ = (i)kJ = ekJ log i =

N∑

j=1

(i)k(N−j)Ej,j, k ∈ Z,

where i is the imaginary unit. These matrices will play a very important role in the integral
equations that we will study in Sections 4 and 5. Observe that for k = 0 in (2.7) we have the
identity matrix I. For k = 1 we have the complex diagonal matrix

(2.8) ei
π
2
J =

N∑

j=1

(i)N−jEj,j =




(i)N−1

. . .

i
1


 ,

and for k = 2 we have

(2.9) eiπJ =

N∑

j=1

(−1)N−jEj,j =




(−1)N−1

. . .

−1
1


 ,

which is real and satisfies eiπJeiπJ = I. For k = 3 we have the inverse of (2.8), while for k ≥ 4
all matrices will reduce to one of the matrices mentioned above. These diagonal matrices are
going to play the same role that the imaginary unit i plays in the scalar situation.

Observe that in (2.7) we are taking the principal value of log. However it is clear that if
we take any other value we will have that ei(

π
2
+2mπ)kJ = ei

π
2
kJ for any m ∈ Z, so it will not

give any additional information.
Similarly we can define the following diagonal (and singular) matrices

sin

(
π

2
kJ

)
=

1

2i
(ei

π
2
kJ − e−i

π
2
kJ) =

N∑

j=1

sin

(
π

2
k(N − j)

)
Ej,j, k ∈ Z,

cos

(
π

2
kJ

)
=

1

2
(ei

π
2
kJ + e−i

π
2
kJ) =

N∑

j=1

cos

(
π

2
k(N − j)

)
Ej,j, k ∈ Z.
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In the special case of k = 1 the explicit expression of sin
(
π
2J
)
and cos

(
π
2J
)
are the diagonal

real matrices

(2.10) sin

(
π

2
J

)
=




sin
(
π
2 (N − 1)

)

. . .

−1
0

1
0




,

and

(2.11) cos

(
π

2
J

)
=




cos
(
π
2 (N − 1)

)

. . .

0
−1

0
1




.

This is the only significant case, since for k = 2, sin(πJ) = 0 and cos(πJ) = eiπJ and for
k = 3, sin

(
3π
2 J
)
= − sin

(
π
2J
)
and cos

(
3π
2 J
)
= cos

(
π
2J
)
.

We remark the following relations

ei
π
2
J cos

(
π

2
J

)
=

1

2
(I + eiπJ), ei

π
2
J sin

(
π

2
J

)
=

1

2i
(eiπJ − I),

eiπJ cos

(
π

2
J

)
= cos

(
π

2
J

)
, eiπJ sin

(
π

2
J

)
= − sin

(
π

2
J

)
,(2.12)

ei
3π
2
J cos

(
π

2
J

)
=

1

2
(I + eiπJ), ei

3π
2
J sin

(
π

2
J

)
= − 1

2i
(eiπJ − I).

We will use these matrices to derive real integral equations of matrix-valued orthogonal
polynomials in Section 4.

Now we will prove the following lemma, which gives commutativity relations between the
powers of A and ei

π
2
kJ :

Lemma 2.1. The matrices A and ei
π
2
kJ , defined in (2.3) and (2.7) respectively, satisfy the

following algebraic relation

(2.13) ei
π
2
kJAm = (i)kmAmei

π
2
kJ , m = 1, 2, . . . , N − 1, k ∈ Z.

Proof: It is enough to prove this for m = 1. For the rest of values of m we apply
recursively the formula for m = 1. As a consequence of the definitions of A and ei

π
2
kJ in (2.3)
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and (2.7) respectively, we have

(i)kAei
π
2
kJ =(i)k

(N−1∑

j=1

νjEj,j+1

)( N∑

l=1

(i)k(N−l)El,l

)
= (i)k

N−1∑

j=1

(i)k(N−j−1)νjEj,j+1

=
N−1∑

j=1

(i)k(N−j)νjEj,j+1 =

( N∑

j=1

(i)k(N−j)Ej,j

)(N−1∑

l=1

νlEl,l+1

)
= ei

π
2
kJA,

using that Ej,kEh,m = Ej,m for k = h or 0 otherwise. ✷

3 Matrix-valued orthogonal functions

As we mentioned in the Introduction, in the last few years many families of N ×N matrix-
valued orthogonal polynomials (Pn)n have been found along with their orthogonality measure
W satisfying second-order differential equations of the form

(3.1) P ′′
n (x)F2(x) + P ′

n(x)F1(x) + Pn(x)F0(x) = ΓnPn(x),

where F2, F1 and F0 are matrix polynomials (which do not depend on n) of degrees less
than or equal to 2, 1 and 0, respectively, and Γn are Hermitian matrices (if the family
(Pn)n is orthonormal). These families are natural orthogonal systems in the weighted spaces
L2
W ([a, b],CN×N ).
Typically the weight matrices with this property can be factorized in the form

W (x) = ρ(x)T (x)T ∗(x),

where ρ is a scalar function (Hermite, Laguerre or Jacobi weight) and T is a matrix-valued
function which satisfies a first order differential equation with initial conditions of the form

(3.2) T ′(x) = G(x)T (x), T (c) = I,

for some c ∈ (a, b). The differential coefficient G in (3.2) is connected with the coefficients
F2, F1 of the differential operator (3.1) and ρ (see the proof below of Theorem 3.1 for more
details or [10]). Many examples have been found in the last years by solving a set of three
symmetry differential equations that are equivalent to the second-order differential operator
(3.1) being self-adjoint with respect to the inner product (2.2) (see [10, 12, 16, 8, 9]). For a
different approach, using matrix-valued spherical functions, see [17, 23].

One possibility for finding orthogonal systems in the space L2([a, b],CN×N ) is considering,
for each family of matrix-valued orthogonal polynomials (Pn)n the following family

(3.3) Φn(x) = ρ1/2(x)Pn(x)T (x), n ≥ 0.

Then (Φn)n will be orthogonal with respect to the identity matrix I. Considering (3.1)
and (3.2) one verifies that the family (Φn)n also satisfies very special differential equations.
We will restrict ourselves to the special case where the differential coefficient F2(x) in (3.1)
is scalar, i.e. of the form F2(x) = f2(x)I, for some real polynomial f2(x) of degree less than
or equal to 2. This is the case considered in [10]. Therefore we have the following
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Theorem 3.1. The family (Φn)n defined by (3.3), satisfies the following second-order differ-
ential equation
(3.4)

f2(x)Φ
′′
n(x)+ f ′2(x)Φ

′
n(x)−Φn(x)

(
1

4

(
(f2(x)ρ

′(x))′

ρ(x)
+

(
f2(x)ρ

′(x)
ρ(x)

)′)
I +χ(x)

)
= ΓnΦn(x),

where χ(x) is the Hermitian matrix-valued function

χ(x) = T−1(x)

(
f2(x)G

′(x) + f2(x)G
2(x) +

(f2(x)ρ(x))
′

ρ(x)
G(x)− F0

)
T (x),

G is the coefficient in (3.2) and F0 and Γn are the independent coefficient and the eigenvalue,
respectively, of the differential equation (3.1).

Proof: Differentiating twice (3.3) one gets expressions of ρ1/2P ′
nT and ρ1/2P ′′

nT in terms
of the derivatives of Φn. Multiplying the differential equation (3.1) on the right by ρ1/2T and

substituting the formulas mentioned above we get (3.4) after using F1 = 2f2G + (f2ρ)′

ρ (see
formula (4.5) in [10]). The matrix-valued function χ is Hermitian as a consequence of the
third symmetry equation (see formula (4.12) in [10] for details). ✷

Observe that the coefficients of the differential operator (3.4) are extremely simplified and
are all scalar functions except for the independent coefficient or potential, which is Hermitian.
In fact, in all the examples in the literature until now, the matrix χ is a diagonal matrix (see
comment in pp. 93 of [9]).

The expression of the differential equation (3.4) for each one the classical weights of
Hermite, Laguerre and Jacobi is

1. For ρ(x) = e−x
2

and f2(x) = 1

(3.5) Φ′′
n(x)− Φn(x)((x

2 − 1)I + χ(x)) = ΓnΦn(x).

2. For ρ(x) = xαe−x, α > −1, and f2(x) = x

(3.6) xΦ′′
n(x) + Φ′

n(x)− Φn(x)

((
x

4
− α+ 1

2
+
α2

4x

)
I + χ(x)

)
= ΓnΦn(x).

3. For ρ(x) = (1− x)α(1 + x)β , α, β > −1, and f2(x) = 1− x2

(3.7)

(1−x2)Φ′′
n(x)−2xΦ′

n(x)−Φn(x)

((
α2

2(1−x) +
β2

2(1+x) −
(α+β)(α+β+2)

2

)
I + χ(x)

)
= ΓnΦn(x).

The explicit expression of the Hermitian matrix-valued function χ in each case can be found
in Lemma 2.2 of [12] for (3.5) and (3.6) and in formula (2.5) of [9] for (3.7).

Observe that the equation (3.5) may be regarded of as a matrix-valued version of the
one-dimensional Schrödinger equation. The equation (3.6) is related with a matrix-valued
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version of the confluent hypergeometric equation, while the equation (3.7) is related with a
matrix-valued version of the differential equation for spheroidal wave functions (for special
values of the parameters α and β). These differential equations in the scalar case are very
important with diverse applications to physics, engineering and mathematical analysis itself
(see [5, 21, 2]).

In this paper we will focus only on families satisfying matrix-valued Schrödinger differ-
ential equations as in (3.5), i.e. supported in the real line. For each of the families that we
consider, we will prove that there exists an integral operator of the form (1.2) with kernel
K(x, t) having the matrix-valued functions (Φn)n as eigenfunctions. We will concentrate on
Examples 5.1 and 5.2 of [10].

We will always denote by (Φn)n the matrix-valued functions for all the examples, while
there is no confusion about which family we are using from the context. In the case we are
referring to different examples at the same time we will denote them by (Φn,k)n, k = 1, 2,
where (Φn,1)n is the example in Section 4 and (Φn,2)n is the example in Section 5.

4 The first example

Let W be the following weight matrix

(4.1) W (x) = e−x
2

eAxeA
∗x, x ∈ R,

where A is the N ×N nilpotent matrix (2.3).
This example was considered for the first time in [10]. The family of monic orthogonal

polynomials (P̂n)n satisfies a second-order differential equation as in (3.1) with

F2(x) = I, F1(x) = −2xI + 2A, F0(x) = A2 − 2J, Γn = −2nI +A2 − 2J,

where J is the N ×N diagonal matrix defined in (2.4).
Now we construct a family of polynomials of the form Pn(x) = LnP̂n(x) where the leading

coefficient Ln is chosen such that the eigenvalue Γn transforms into one diagonal. A possible
choice for this example is

Ln = e−A
2/4.

It is straightforward to see, using the formula eXHe−X =
∑

j≥0 ad
j
X(H)/j! (see (2.5) for

definitions) and (2.6) for k = 2, that LnΓnL
−1
n = −2nI − 2J .

Hence, denoting

(4.2) Pn(x) = e−A
2/4P̂n(x),

the family

(4.3) Φn(x) = e−x
2/2Pn(x)e

Ax

satisfies a more convenient differential equation

(4.4) Φ′′
n(x)− Φn(x)(x

2I + 2J) + ((2n + 1)I + 2J)Φn(x) = 0,
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as a consequence of Theorem 3.1 (see (3.5)). Observe that in this case we have χ(x) = 2J
(see Theorem 5.1 of [10]). We remark that this differential equation is independent of the
matrix A. Note that a similar differential equation (using the monic family) was derived in
Section 6.2 of [11].

In order to prove the main result in this section (Theorem 4.1 below) we need the following

Lemma 4.1. The following formula holds

(4.5)
1√
2π

∫ ∞

−∞
e−t

2/2e−A
2/4eAteixtei

π
2
Jdt = ei

π
2
Je−x

2/2e−A
2/4eAx,

where ei
π
2
J is the diagonal matrix (2.8).

Proof: Expanding eAt on the left hand side of the formula (4.5), using formula (2.13)
for k = 1 and e−A

2/4ei
π
2
J = ei

π
2
JeA

2/4 (as a consequence of (2.13)), and denoting Ĥn(x) =
(−1)nex

2/2(e−x
2/2)(n) the monic Hermite polynomials, we obtain

1√
2π

∫ ∞

−∞
e−t

2/2e−A
2/4eAteixtei

π
2
Jdt =

1√
2π

N−1∑

j=0

e−A
2/4Ajei

π
2
J

∫ ∞

−∞
e−t

2/2 t
j

j!
eixtdt

=
1√
2π

N−1∑

j=0

e−A
2/4ei

π
2
JAj(−i)j

∫ ∞

−∞
e−t

2/2 t
j

j!
eixtdt

=

N−1∑

j=0

ei
π
2
JeA

2/4A
j

j!
(−i)je−x2/2(i)jĤj(x)

=ei
π
2
Je−x

2/2eA
2/4

N−1∑

j=0

Aj

j!
Ĥj(x)

=ei
π
2
JeA

2/4e−x
2/2eAx−A

2/2 = ei
π
2
Je−x

2/2e−A
2/4eAx,

since the monic Hermite functions Ĥn(x)e
−x2/2 are eigenfunctions of the Fourier transform

with eigenvalue (i)n and the generating function for the monic Hermite polynomials (Ĥn)n
is given by

∑∞
j=0 Ĥj(x)

tj

j! = ext−t
2/2. ✷

Theorem 4.1. The family of matrix-valued orthogonal functions (Φn)n defined in (4.3) sat-
isfies the following integral equation

(4.6)
1√
2π

∫ ∞

−∞
Φn(t)e

ixtei
π
2
Jdt = (i)nei

π
2
JΦn(x), x ∈ R,

where ei
π
2
J is the diagonal matrix (2.8).

Proof: Denote

(4.7) Ψn(x) =
1√
2π

∫ ∞

−∞
Φn(t)e

ixtei
π
2
Jdt.

11



By integration by parts using d
dxe

ixt = iteixt and d
dte

ixt = ixeixt we get that Ψn(x) satisfies
the same second-order differential equation as Φn(x), i.e. (4.4). Therefore Ψn(x) can be
written as Ψn(x) = CnΦn(x), n ≥ 0, for some sequence of nonsingular diagonal matrices Cn.
This follows if we expand Ψn(x) =

∑∞
k=0Cn,kΦk(x). Since Ψn(x) satisfies (4.4) and (Φn)n

is a system of linearly independent matrix-valued functions this is equivalent to say that
(n − k)Cn,k + JCn,k − Cn,kJ = 0 for all n, k ≥ 0. But now it is straightforward to conclude
that if n 6= k then Cn,k = 0 and if n = k then Cn,n

.
= Cn must be a diagonal matrix, since J

has simple spectrum.
Now we will use Lemma 4.1, which is exactly the case n = 0 in (4.7). After differentiating

the right hand side of the formula (4.5) n times with respect to x one obtains

(4.8) ei
π
2
Je−A

2/4 d
n

dxn
(e−x

2/2eAx) =
(i)ne−A

2/4

√
2π

∫ ∞

−∞
e−t

2/2tneAteixtei
π
2
Jdt.

Using the Leibniz’s formula, the left hand side of the formula (4.8) can be also written as

(4.9) ei
π
2
Je−A

2/4 d
n

dxn
(e−x

2/2eAx) = ei
π
2
Je−A

2/4((−1)nxnI + · · · )e−x2/2eAx.

Writing Φn(x) = e−x
2/2Pn(x)e

Ax = e−x
2/2e−A

2/4(xnI + · · · )eAx, by linearity, and using the
right hand side of (4.8) and (4.9) one obtains

Ψn(x) =
1√
2π

∫ ∞

−∞
Φn(t)e

ixtei
π
2
Jdt =

e−A
2/4

√
2π

∫ ∞

−∞
(tnI + · · · )eAteixteiπ2 Jdt

= (i)nei
π
2
Je−A

2/4(xnI + · · · )e−x2/2eAx.

Since we already know that Ψn(x) = CnΦn(x), equating the leading degree of x in the formula
above we obtain Cn = (i)nei

π
2
J . ✷

Observe that the integral equation (4.6) is also independent of the matrix A.
The integral equation will have important consequences:

Corollary 4.1. The family of matrix-valued orthogonal functions (Φn)n satisfies the following
symmetry condition

(4.10) Φn(x) = (−1)neiπJΦn(−x)eiπJ ,

where eiπJ is the real diagonal matrix (2.9). Consequently, the family of matrix-valued or-
thogonal polynomials Pn(x) = e−A

2/4P̂n(x), n ≥ 0, satisfies the same symmetry condition,
i.e.

(4.11) Pn(x) = (−1)neiπJPn(−x)eiπJ .

12



Proof: From (4.6) multiplying on the left by the eigenvalue (i)nei
π
2
J and substituting

again by the same formula we get

(−1)neiπJΦn(x) =
1√
2π

∫ ∞

−∞
(i)nei

π
2
JΦn(t)e

ixtei
π
2
Jdt =

1

2π

∫ ∞

−∞

∫ ∞

−∞
Φn(z)e

izteixteiπJdzdt

=

∫ ∞

−∞
Φn(z)δ(x + z)eiπJdz = Φn(−x)eiπJ ,

using standard Fourier analysis, where δ is the standard Dirac delta function. Therefore
(4.10) holds. The formula (4.11) holds from the observation that e−AxeiπJe−Ax = eiπJ , as a
consequence of (2.13). ✷

Corollary 4.2. The family of matrix-valued orthogonal polynomials Pn(x) = e−A
2/4P̂n(x),

n ≥ 0, with respect to the weight matrix (4.1) satisfies the following integral equation

(4.12) e−x
2/2Pn(x)e

Ax =
(−i)n√

2π
e−i

π
2
J

∫ ∞

−∞
Pn(t)e

−t2/2eixteAtei
π
2
Jdt,

where ei
π
2
J is the diagonal matrix (2.8).

Proof: Immediate from (4.6) using (4.3). ✷

We remark here that the family (Pn)n is a solution of the integral equation (1.2) with
kernel K(x, t) = e(x+it)

2

eAtei
π
2
Je−Ax.

Observe that (4.12) is an integral equation which depends on complex values. In the scalar
case it is well known that the Hermite polynomials (Hn)n satisfy real integral equations in
terms of the kernels cos(xt) and sin(xt) (see for instance [21]). This is possible since the
Hermite polynomials satisfy the symmetry condition Hn(x) = (−1)nHn(−x). In our case,
we have a different symmetry condition (4.11), so it will not follow the same lines as in the
scalar case. However, it is possible to derive real integral equations for (Pn)n:

Corollary 4.3. The family of matrix-valued orthogonal polynomials Pn(x) = e−A
2/4P̂n(x),

n ≥ 0, with respect to the weight matrix (4.1) satisfies the following real integral equations

(4.13) e−x
2/2(eiπJ ± I)Pn(x)e

AxC± =
(−1)⌊

n
2
⌋

√
2π

C±

∫ ∞

−∞
e−t

2/2kn(x, t)Pn(t)e
Atdt(eiπJ ± I),

and
(4.14)

e−x
2/2(eiπJ ± I)Pn(x)e

AxC∓ =
±(−1)⌊

n
2
⌋

√
2π

C±

∫ ∞

−∞
e−t

2/2kn+1(x, t)Pn(t)e
Atdt(eiπJ ∓ I),

where eiπJ is defined in (2.9), C− = sin
(
π
2J
)
, C+ = cos

(
π
2J
)
and are both defined in (2.10)

and (2.11) respectively, ⌊·⌋ denotes the floor function and

kn(x, t) =

{
cos(xt), if n is even,
sin(xt), if n is odd.
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Proof: From the symmetry condition (4.11) and using formula (2.13) we have that

e−x
2/2ei

π
2
JPn(x)e

Ax = (−1)neiπJ [e−x
2/2e−i

π
2
JPn(−x)e−Ax]eiπJ .

Therefore, the evaluation of (4.12) at x and −x and using the previous formula gives

2e−x
2/2ei

π
2
JPn(x)e

Ax =
(i)n√
2π

[ ∫ ∞

−∞
e−t

2/2 cos xt

(
(−1)nPn(t)e

Atei
π
2
J + eiπJPn(t)e

Atei
π
2
JeiπJ

)
dt

+ i

∫ ∞

−∞
e−t

2/2 sinxt

(
(−1)nPn(t)e

Atei
π
2
J − eiπJPn(t)e

Atei
π
2
JeiπJ

)
dt

]
.

Now we multiply on the right and on the left by appropriate matrices such that the elements
in the big parenthesis of the formula above are equal and the other vanishes for even or odd
values of n. This will become clear below. These matrices are sin

(
π
2J
)
and cos

(
π
2J
)
, defined

in (2.10) and (2.11) respectively. There are four possible combinations of multiplying these
matrices on the right and on the left. This is why we will get eventually eight formulas,
considering even and odd values of n. We will show the case when we multiply on the left by
cos
(
π
2J
)
and on the right by sin

(
π
2J
)
. From the analysis below the rest of formulas can be

derived in a similar way.
From the previous formula and using relations (2.12) one gets

e−x
2/2(eiπJ + I)Pn(x)e

Ax sin

(
π

2
J

)
=

(i)n

2i
√
2π

cos

(
π

2
J

)[∫ ∞

−∞
e−t

2/2 cos(xt)((−1)n − 1)Pn(t)e
Atdt

+ i

∫ ∞

−∞
e−t

2/2 sin(xt)((−1)n + 1)Pn(t)e
Atdt

]
(eiπJ − I).

Now it is clear that for even or odd values of n, either the integral with cos(xt) or sin(xt)
will vanish and that these integral equations are real. Therefore

e−x
2/2(eiπJ+I)P2n(x)e

Ax sin

(
π

2
J

)
=

(−1)n√
2π

cos

(
π

2
J

)∫ ∞

−∞
e−t

2/2 sin(xt)P2n(t)e
Atdt(eiπJ−I),

e−x
2/2(eiπJ+I)P2n+1(x)e

Ax sin

(
π

2
J

)
=

(−1)n+1

√
2π

cos

(
π

2
J

)∫ ∞

−∞
e−t

2/2 cos(xt)P2n+1(t)e
Atdt(eiπJ−I),

which are formulas (4.14) for the positive sign and both odd and even values of n. ✷

Observe that (4.13) and (4.14) give eight real integral equations of the family (Pn)n
according to positive or negative sign and odd or even values of n. The reason for eight
formulas is the structure of the matrices sin

(
π
2J
)
and cos

(
π
2J
)
, defined in (2.10) and (2.11)

respectively. These are diagonal singular matrices and whenever we multiply them on the
right or on the left we only get a description of some of the entries of Pn (which is a full matrix
in general). It is exactly this combination of multiplying on the right and on the left by these
matrices that allows us to have a formula for every entry of Pn. In other words, if we multiply
on the left by cos

(
π
2J
)
and on the right by both cos

(
π
2J
)
or sin

(
π
2J
)
, we get a description

of the N,N − 2, N − 4, . . . rows of Pn while if we multiply on the left by sin
(
π
2J
)
and on the

right by both cos
(
π
2J
)
or sin

(
π
2J
)
, we get a description of the N − 1, N − 3, N − 5, . . . rows

of Pn, respectively. Therefore all rows of Pn are covered.
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Remark 4.1. We have found that the family of polynomials (Pn)n defined in (4.2) (and
the family we will study in Section 5 defined in (5.2)) simplifies considerably many structural
formulas. For instance, the norms of (Pn)n (and consequently the norms of (Φn)n with respect
to the inner product (2.1)) are diagonal. Also the coefficients of the three-term recurrence
relation are considerably simplified. A detailed study of these and other structural formulas
for (Pn)n will be discussed in future publications.

4.1 A detailed study of the case N = 2

In this section we will study in detail the properly normalized matrix-valued functions (Φn)n
for the special case of N = 2. We will show their relationship with the scalar Hermite or
wave functions, derive some structural formulas and plot graphs of the diagonal entries of
(ΦnΦ

∗
n)n for some values of n and ν1 (the only free parameter in the matrix A, see (2.3)).

Using Theorem 5.1 of [11] one can derive an explicit expression for the family of matrix-
valued orthogonal polynomials (Pn)n defined in (4.2). They can be written as

Pn(x) =
1

2n

(
Hn(x) −nν1Hn−1(x)

−nν1
γn
Hn−1(x)

1
γn
(Hn(x) + nν21xHn−1(x))

)
,

where Hn(x) = (−1)nex
2

(e−x
2

)(n), n ≥ 0, are the classical Hermite polynomials, and (γn) is
a sequence of real positive numbers defined by

(4.15) γn = 1 +
n

2
ν21 , n ≥ 0.

We can normalize this family since the norms of (Pn)n are diagonal

‖Pn‖2W =
n!
√
π

2n

(
γn+1 0
0 1/γn

)
.

Therefore the normalized matrix-valued functions Φ̃n = ‖Pn‖−1
W Φn can be written as

(4.16) Φ̃n(x) =


 ψn(x)/

√
γn+1 ν1

√
n+1
2γn+1

ψn+1(x)

−ν1
√

n
2γn

ψn−1(x) ψn(x)/
√
γn


 ,

where ψn(x) =
1√

2nn!
√
π
e−x

2/2Hn(x) are the normalized Hermite or wave functions. Hence

(4.17)

Φ̃n(x)Φ̃
∗
n(x) =

(
ψ2
n+1(x) +

1
γn+1

(ψ2
n(x)− ψ2

n+1(x))
ν1√

γnγn+1
ψn(x)ψ

′
n(x)

ν1√
γnγn+1

ψn(x)ψ
′
n(x) ψ2

n−1(x) +
1
γn
(ψ2

n(x)− ψ2
n−1(x))

)
, n ≥ 0.

In the expressions above we are using standard properties of Hermite polynomials and wave

functions like Hn+1(x) = 2xHn(x) − 2nHn−1(x) and ψ
′
n(x) =

√
n+1
2 ψn+1(x) −

√
n
2ψn−1(x).
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Observe from the definition of (γn)n in (4.15) that the diagonal entries of (4.17) are probability
densities depending on one free parameter ν1.

The effect of the parameter ν1 can be studied from the explicit expression of (4.16) and
(4.17). For instance, as ν1 tends to 0 we observe that the diagonal entries of (4.16) converge
to two copies of the Hermite functions while the off diagonal entries tend to 0. If ν1 is large,
the diagonal entries get small compared with the off diagonal entries (for the first values of
n).

In Figure 1 and 2 we have plotted the diagonal entries of Φ̃n(x)Φ̃
∗
n(x), which are prob-

ability densities in R, for every n = 0, 1, . . . , 5, and for the special choice of ν1 = 1. The
numbers on the graphics correspond to the value of n. It is well known that in the scalar
situation there exist n points (the zeros of the Hermite polynomials) where the probability
density ψn(x)ψ

∗
n(x) is exactly 0. In our case our two probability densities never vanish.

4
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Figure 1: (Φ̃nΦ̃
∗
n)11, n = 0, . . . , 5, ν1 = 1
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Figure 2: (Φ̃nΦ̃
∗
n)22, n = 0, . . . , 5, ν1 = 1

Finally we compute the following formulas

(4.18) (xkI)nm
.
=

∫ ∞

−∞
xkΦ̃n(x)Φ̃

∗
m(x)dx, n,m ≥ 0, k = 1, 2.

In the scalar situation, we have, as a consequence of the three-term recurrence relation among
Hermite polynomials, that

(4.19) (x)nm =

√
n

2
δm,n−1 +

√
n+ 1

2
δm,n+1,

(4.20) (x2)nm =
1

2

√
n(n− 1)δm,n−2 + (n+ 1/2)δm,n +

1

2

√
(n+ 1)(n + 2)δm,n+2.

16



We can use the formulas in the scalar case to calculate the matrix-valued formulas (4.18).
From (4.16) we can obtain an explicit expression of Φ̃nΦ̃

∗
m:

Φ̃nΦ̃
∗
m =




ψnψm√
γn+1γm+1

+
ν2
1

2

√
(n+1)(m+1)
γn+1γm+1

ψn+1ψm+1
ν1√

γmγn+1
(
√

n+1
2 ψn+1ψm −

√
m
2 ψnψm−1)

ν1√
γnγm+1

(
√

m+1
2 ψm+1ψn −

√
n
2ψmψn−1)

ψnψm√
γnγm

+
ν2
1

2

√
nm
γnγm

ψn−1ψm−1


 .

And using formulas (4.19) and (4.20) for the scalar wave functions we obtain

(xI)nm =



√

nγn+1

2γn
0

0
√

nγn−1

2γn


 δm,n−1 +

(
0 ν1

2
√
γnγn+1

ν1
2
√
γnγn+1

0

)
δm,n

+



√

(n+1)γn+2

2γn+1
0

0
√

(n+1)γn
2γn+1


 δm,n+1,

and

(x2I)nm =




1
2

√
n(n−1)γn+1

γn−1
0

0 1
2

√
n(n−1)γn−2

γn


 δm,n−2 +

(
0 ν1

√
n

2γn−1γn+1

ν1
γn

√
n
2 0

)
δm,n−1

+

(
n+ 3

2 − 1
γn+1

0

0 n− 1
2 + 1

γn

)
δm,n +


 0 ν1

γn+1

√
n+1
2

ν1
√

n+1
2γnγn+2

0


 δm,n+1

+




1
2

√
(n+1)(n+2)γn+3

γn+1
0

0 1
2

√
(n+1)(n+2)γn

γn+2


 δm,n+2,

where (γn)n is the sequence (4.15). Observe that for k = 1 we get an extra term when n = m,
something that did not happen in the scalar situation. Likewise for k = 2 we get two new
extra terms.

In the scalar situation the tridiagonal matrix (x) given in (4.19) can be viewed as the
matrix of the homomorphism f 7→ xf in L2(R) with respect to the basis (ψn)n. In the
matrix case for this example we have that the block tridiagonal matrix (xI) is the matrix of
the homomorphism F 7→ xF in L2(R,CN×N ) with respect to the basis (Φ̃n)n. In this case,
(xI) is a 4 diagonal semi-infinite matrix with zeros in the main diagonal of the form

(xI) =




0 ⋆ ⋆
⋆ 0 0 ⋆
⋆ 0 0 ⋆ ⋆

⋆ ⋆ 0 0 ⋆
⋆ 0 0 ⋆ ⋆

. . .
. . .

. . .
. . .

. . .




,

where a ⋆ means a nonzero entry.
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5 The second example

Let W be the following weight matrix

(5.1) W (x) = e−x
2

eA(I+A)
−1x2e(I+A

∗)−1A∗x2 , x ∈ R,

where A is the N ×N nilpotent matrix (2.3). This weight matrix was considered for the first
time in Example 5.2 of [10], where the authors use the notation B = A(I +A)−1. Although
this new notation looks more complicated it will simplify considerably all computations in
this section. All proofs follow the same lines as in Section 4.

The family of monic orthogonal polynomials (P̂n)n satisfies a second-order differential
equation as in (3.1) with

F2(x) = I, F1(x) = 2(2A(I +A)−1 − I)x, F0(x) = 2A(I +A)−1 − 4J,

Γn = 2(2A(I +A)−1 − I)n+ 2A(I +A)−1 − 4J,

where J is the N ×N diagonal matrix defined in (2.4).
Now we construct a family of polynomials of the form Pn(x) = LnP̂n(x) where the leading

coefficient Ln is chosen such that the eigenvalue Γn transforms into one diagonal. Observe
that the eigenvalue has n dependence off the main diagonal. Therefore the coefficient Ln will
depend on n. A natural candidate in this case is

Ln = [(I +A)−1/2]2n+1,

as a consequence the algebraic relation log(I +A)J − J log(I +A) = −A(I +A)−1 which can
be proved using (2.6) (just expanding in power series).

Hence, denoting

(5.2) Pn(x) = [(I +A)−1/2]2n+1P̂n(x),

the family

(5.3) Φn(x) = e−x
2/2Pn(x)e

A(I+A)−1x2

satisfies a more convenient differential equation

Φ′′
n(x)− Φn(x)(x

2I + 4J) + ((2n + 1)I + 4J)Φn(x) = 0.

as a consequence of Theorem 3.1 (see (3.5)). Observe that in this case we have χ(x) = 4J
(see Theorem 5.2 of [10]). We remark again that this differential equation is independent of
the matrix A. Note that a similar differential equation (using the monic family) was derived
in Section 6.2 of [11].

As before, in order to prove the main result in this section, we need the following
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Lemma 5.1. The following formula holds

1√
2π

∫ ∞

−∞
e−t

2/2(I +A)−1/2eA(I+A)
−1t2eixteiπJdt = eiπJe−x

2/2(I +A)−1/2eA(I+A)
−1x2 ,

where eiπJ is defined in (2.9).

Proof: Although the proof is more elaborated than the one in Lemma 4.1, it follows the
same procedure using standard real analysis of power series of functions and the formulas
eiπJAk[(I + A)−1]k = (−1)kAk[(I + A)−1]keiπJ and (I + A)1/2eiπJ = eiπJ(I − A)1/2, which
hold using Lemma 2.1. ✷

Therefore we have the following

Theorem 5.1. The family of matrix-valued orthogonal functions (Φn)n defined in (5.3) sat-
isfies the following integral equation

1√
2π

∫ ∞

−∞
Φn(t)e

ixteiπJdt = (i)neiπJΦn(x),

where eiπJ is defined in (2.9).

Proof: The only difference with respect to the proof of Theorem 4.1 is that the leading
coefficient of Pn depends on n and that the formula (4.9) is now

dn

dxn
(e−x

2/2eA(I+A)
−1x2) = ((−1)n[2A(I +A)−1 − I]nxnI + · · · )e−x2/2eA(I+A)−1x2)

= ((−1)n[(I −A)(I +A)−1]nxnI + · · · )e−x2/2eA(I+A)−1x2).

The rest follows the same arguments as in Theorem 4.1. ✷

In a similar way we have the following corollaries, from which we omit the proofs since
they are exactly the same as in the example in Section 4.

Corollary 5.1. The family of matrix-valued orthogonal functions (Φn)n and the family of
matrix-valued orthogonal polynomials (Pn)n satisfy the following symmetric conditions

(5.4) Φn(x) = (−1)nΦn(−x), Pn(x) = (−1)nPn(−x).

Observe now that the symmetry conditions are exactly the same as the classical Hermite
polynomials.

Corollary 5.2. The family of matrix-valued orthogonal polynomials (Pn)n, n ≥ 0, with
respect to the weight matrix (5.1), satisfies the following integral equation

e−x
2/2Pn(x)e

A(I+A)−1x2 =
(−i)n√

2π
eiπJ

∫ ∞

−∞
Pn(t)e

−t2/2eixteA(I+A)
−1t2eiπJdt,
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where eiπJ is the diagonal matrix (2.9). Moreover, we have the following real integral equa-
tions

e−x
2/2eiπJP2n(x)e

A(I+A)−1x2 =
(−1)n√

2π

∫ ∞

−∞
e−t

2/2P2n(t)e
A(I+A)−1t2 cos(xt)eiπJdt,

e−x
2/2eiπJP2n+1(x)e

A(I+A)−1x2 =
(−1)n√

2π

∫ ∞

−∞
e−t

2/2P2n+1(t)e
A(I+A)−1t2 sin(xt)eiπJdt.

Observe now, because of (5.4), that there are only two real integral equations, unlike the
example studied in Section 4.

5.1 A detailed study of the case N = 2

Using Theorem 5.1 of [11] one can derive an explicit expression for the family of matrix-valued
orthogonal polynomials (Pn)n defined in (5.2). They can be written as

Pn(x) =
1

2n

(
Hn(x) −ν1((n+ 1/2)Hn(x) + n(n− 1)Hn−2(x))

−n(n− 1)ν1Hn−2(x)/γn Hn(x)/γn + n(n− 1)ν21x
2Hn−2(x)/γn

)
,

where Hn(x) = (−1)nex
2

(e−x
2

)(n), n ≥ 0 are the classical Hermite polynomials, and (γn)n is
a sequence of real positive numbers defined by

(5.5) γn = 1 +
ν21
2

(
n

2

)
, n ≥ 0.

We can normalize this family since the norms of (Pn)n are diagonal

‖Pn‖2W =
n!
√
π

2n

(
γn+2 0
0 1/γn

)
.

Therefore the normalized matrix-valued functions Φ̃n = ‖Pn‖−1
W Φn can be written in the

following form

(5.6) Φ̃n(x) =


 ψn(x)/

√
γn+2

ν1
2

√
(n+1)(n+2)

γn+2
ψn+2(x)

−ν1
2

√
n(n−1)
γn

ψn−2(x) ψn(x)/
√
γn


 ,

where ψn(x) =
1√

2nn!
√
π
e−x

2/2Hn(x) are the normalized Hermite functions. Therefore

(5.7)

Φ̃n(x)Φ̃
∗
n(x) =

(
ψ2
n+2(x) +

1
γn+2

(ψ2
n(x)− ψ2

n+2(x)) − ν1
2
√
γnγn+2

ψn(x)(ψn(x) + 2xψ′
n(x))

− ν1
2
√
γnγn+2

ψn(x)(ψn(x) + 2xψ′
n(x)) ψ2

n−2(x) +
1
γn
(ψ2

n(x)− ψ2
n−2(x))

)
.

Observe from the definition of (γn)n in (5.5) that the diagonal entries of (5.7) are probability
densities depending on one free parameter ν1. The effect of the parameter ν1 is similar to
the example studied in Section 4.
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Figure 3: (Φ̃nΦ̃
∗
n)11, n = 0, ..., 5, ν1 = 1/2
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Figure 4: (Φ̃nΦ̃
∗
n)22, n = 0, ..., 5, ν1 = 1/2

In Figure 3 and 4 we have plotted the diagonal entries of Φ̃n(x)Φ̃
∗
n(x) for n = 0, 1, . . . , 5,

and for the special choice of ν1 = 1/2. The numbers on the graphics correspond to the value
of n.

Finally we compute the following formulas

(xkI)nm
.
=

∫ ∞

−∞
xkΦ̃n(x)Φ̃

∗
m(x)dx, n,m ≥ 0, k = 1, 2,

in a similar way as in the previous example using formulas (4.19) and (4.20).
From (5.6) we can obtain an explicit expression of Φ̃nΦ̃

∗
m:

Φ̃n(x)Φ̃
∗
m(x) =




ψn(x)ψm(x)√
γn+2γm+2

+
ν2
1

4

√
(n+1)(n+2)(m+1)(m+2)

γn+2γm+2
ψn+2(x)ψm+2(x) ∗

ν1√
γnγm+2

(√
(m+1)(m+2)

2 ψm+2(x)ψn(x)−
√
n(n−1)

2 ψm(x)ψn−2(x)

)
∗

∗ ν1√
γmγn+2

(√
(n+1)(n+2)

2 ψn+2(x)ψm(x)−
√
m(m−1)

2 ψn(x)ψm−2(x)

)

∗ ψn(x)ψm(x)√
γnγm

+
ν21
4

√
n(n−1)m(m−1)

γnγm
ψn−2(x)ψm−2(x)


 .

Therefore we obtain

(xI)nm =




√
nγn+2

2γn+1
0

ν1
√

n
2γnγn+1

√
nγn−1

2γn


 δm,n−1 +



√

(n+1)γn+3

2γn+2
ν1
√

n+1
2γn+1γn+2

0
√

(n+1)γn
2γn+1


 δm,n+1,
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and

(x2I)nm =




1
2

√
n(n−1)γn+2

γn
0

ν1
√
n(n−1)

γn
1
2

√
n(n−1)γn−2

γn


 δm,n−2 +

(
n+ 5

2 − 2
γn+2

ν1(2n+1)
2
√
γnγn+2

ν1(2n+1)
2
√
γnγn+2

n− 3
2 +

2
γn

)
δm,n

+




1
2

√
(n+1)(n+2)γn+4

γn+2

ν1
√

(n+1)(n+2)

γn+2

0 1
2

√
(n+1)(n+2)γn

γn+2


 δm,n+2,

where (γn)n is the sequence (5.5).

Now the block tridiagonal matrix (xI) is the matrix of the homomorphism F 7→ xF in
L2(R,CN×N ) with respect to the basis (Φ̃n)n. In this case, (xI) is a 7 diagonal semi-infinite
matrix with zeros in the first three main diagonals of the form

(xI) =




0 0 ⋆ ⋆
0 0 0 ⋆ 0
⋆ 0 0 0 ⋆ ⋆
⋆ ⋆ 0 0 0 ⋆ 0

0 ⋆ 0 0 0 ⋆ ⋆
. . .

. . .
. . .

. . .
. . .

. . .
. . .




.

where a ⋆ means a nonzero entry.

6 Concluding remarks

In this paper we have shown the first examples of integral operators having families of matrix-
valued orthogonal functions as eigenfunctions, which at the same time are eigenfunctions of
a second-order differential operator of Schrödinger type. We have focused on two examples
supported in the real line appeared in [10]. Certainly other examples supported in the real
line have been found as well. For instance, the example in Theorem 1.1 in [9] and the
example included in the Appendix A.1 in [9]. These examples are generalizations of the
example studied in Section 4. We have found that these examples also satisfy similar integral
equations of the form (1.2), along with similar structural formulas and integral equations for
the matrix-valued orthogonal polynomials.

These integral operators are slight modifications of the usual Fourier transform, but
not necessarily the scalar Fourier transform. Instead, we can perform Fourier analysis for
matrix-valued functions using the families of matrix-valued orthogonal functions introduced
in Sections 4 and 5. This is different from the usual Fourier analysis where the kernel is
K(x, t) = eixtI, and the transform is applied entry by entry. For instance, for the examples
Φn,k, k = 1, 2, introduced in Sections 4 and 5 respectively we can recover any matrix-valued
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function F ∈ L2(R,CN×N ) that can be written in the form

F (x) =

∞∑

n=0

Cn,kΦn,k(x), Cn,k = 〈F,Φn,k〉, k = 1, 2,

with the inner product 〈·, ·〉 defined in (2.1). This representation is in fact always possible for
any F ∈ L2(R,CN×N ), since our families of eigenfunctions (Φn,k)n, k = 1, 2, are complete in
L2(R,CN×N ). We omit the details, but this is a consequence of having our weight matrices
(4.1) and (5.1) as nonsingular matrices that die out exponentially at infinity to the zero
matrix, that is

W (x) = O(e−α|x|) for some α > 0 as |x| → ∞.

Hence it is possible to extend to the matrix case all the results necessary to proof the
completeness of Hermite (and Laguerre) polynomials (see, for instance, the Theorem appeared
in [18] or Section 6.5 of [1]) and use Fourier expansions (see pp. 7–8 in [6]) to conclude that
our families (Φn,k)n, k = 1, 2, are complete in L2(R,CN×N ).

Therefore, define the following two integral transforms of F

(FFk)(x) =
1√
2π

∫ ∞

−∞
F (t)eixtei

π
2
kJdt, k = 1, 2,

where ei
π
2
kJ is defined in (2.7) and Fk acting on the right means that the kernel is multiplied

on the right. The case k = 0 is the usual Fourier transform entry by entry but if we multiply
on the right by ei

π
2
kJ we can recover F in a nicer way using the eigenfunctions (Φn,k)n,

k = 1, 2. If we define the inverse of the previous two integral transforms as

(FF−1
k )(x) =

1√
2π

∫ ∞

−∞
F (t)e−ixte−i

π
2
kJdt, k = 1, 2,

it is easy to see that (Φn,kFk)(x) = (i)nei
π
2
kJΦn,k(x) and (Φn,kF−1

k )(x) = (−i)neiπ2 kJΦn,k(x),
using the symmetry condition Φn,k(x) = (−1)neiπkJΦn,k(−x)eiπkJ (see (4.10) and (5.4)).
Therefore

F (x) = ((FFk)F−1
k )(x).

That means that Fourier analysis of matrix-valued functions in L2(R,CN×N ) can be
studied, at least, in two different ways according to the Fourier type transform that we
consider and its corresponding eigenfunctions, not only applying Fourier transform entry by
entry.
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