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ABSTRACT. We investigate variants of the maximal operator and
show their applications to study boundedness of the classical Hardy-
Littlewood maximal operator between weighted Banach function
spaces which satisfy certain geometrical lattice conditions. We prove
inequalities for rearrangement of the maximal operators generated
by rearrangement invariant spaces. Applying this to the Lorentz
spaces, we give new sufficient conditions for the boundedness of the
Hardy-Littlewood maximal operator between weighted Lp-spaces
with different weights. We also prove that under some mild hy-
potheses these conditions are also necessary.

1. INTRODUCTION

Maximal functions have proved to be tools of great importance in analysis and
in particular in harmonic analysis. The main example is the Hardy-Littlewood
maximal function, which is defined for locally integrable functions f ∈ L1

loc(R
n)

by

Mf(x) = sup
Q∋x

1
|Q|

∫

Q
|f(y)|dy, x ∈ Rn,

where the supremum is taken over all the cubes Q containing x. Their study
not only contains intrinsic interest but also intertwines with the study of singular
integral operators, very particularly in the context of weighted norm inequalities
(see [7, 8, 10]). As an example of the central role played by M, we mention the
celebrated extrapolation theorem of Rubio de Francia. Indeed, the proof of this
theorem is based on appropriate boundedness properties of the Hardy-Littlewood
maximal function on weighted Lp-spaces. We refer to [5] for an overview of
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the theory and to [9] for a recent improvement of the extrapolation theorem.
Therefore the study of weighted estimates with one or two weights for maximal
functions will yield a better understanding for the corresponding situation for
singular integral operators.

The starting point of the modern theory of weighted norm inequalities goes
back to the paper of Muckenhoupt [15]. In that paper the inequality

(1.1)
∫

Rn
(w(x)Mf(x))p dx ≤ c

∫

Rn
(v(x)|f(x)|)p dx

with w = v was characterized in terms of the surprisingly simple geometric con-
dition

(1.2) sup
Q

(
1
|Q|

∫

Q
w(y)p dy

)1/p( 1
|Q|

∫

Q
w(y)−p

′

dy

)1/p′

< ∞,

usually denoted by Ap, although the normalization we will be using in this paper
on the weights differs from the usual one in harmonic analysis.

The study of the case when the weights are different is of interest for many
reasons, and there is a revival of the area mainly because of its relationship with the
theory of singular integrals. Sawyer obtained in [22] a characterization by means
of the following Sp condition: there is a positive constant c such that for all cubes
Q we have

∫

Q
(M(v−p

′

χQ)(y)w(y))
p
dy ≤ c

∫

Q
v−p

′

(y)dy.

We note that in general Sawyer’s Sp condition is not so easy to verify in prac-
tice, especially if we compare it with the two weight Ap condition (1.2) which is
necessary and sufficient for the weak type boundedness, namely,

(1.3) sup
λ>0

λpwp({x ∈ Rn : Mf(x) > λ}) ≤ C
∫

Rn
(|f(x)|v(x))p dx,

as it is well known [7]. However, simple examples show (cf. [7, p. 395]) that
this condition is not sufficient for the two weight problem (1.1), namely, we have
the strict inclusion Sp ⊂ Ap. It is therefore natural to try to understand the
“gap” between the two conditions. In particular, it would be interesting to obtain
sufficient conditions “close” in form to Ap due to its simplicity. The first author
who studied this problem was Neugebauer in [16], where he proved that if (w,v)
is a couple of weights such that for some r > 1

(1.4) sup
Q

(
1
|Q|

∫

Q
w(y)pr dy

)1/pr( 1
|Q|

∫

Q
v(y)−p

′r
dy

)1/p′r

<∞,
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where the supremum is taken over all cubes Q, then (1.1) holds. This condition
is often called the “power bump” condition. The method in [16] is interesting
because it shows that (1.4) is equivalent to “inserting” an Ap weight between
the given weights w and v. However, it is not sharp enough to obtain better
conditions.

The two weight problem was further considered in [19] by the second au-
thor, who used a different approach that allowed the generation of larger classes
of couples of weights (w,v) for which (1.1) holds. These larger classes contain
Neugebauer’s condition (1.4) as a particular case. The key idea is to replace the
average norm associated to the weight v−1 in (1.2) by an “stronger” norm defined
in terms of any appropriate Banach function space whose associated space satisfies
an appropriate Lp boundedness. The main non-power bump example is given by

(1.5) sup
Q

(
1
|Q|

∫

Q
w(y)p dy

)1/p

‖v−1‖X,Q < ∞,

where X = LB is the Orlicz space defined by the Young function B and the average
is given by

(1.6) ‖f‖X,Q = ‖f‖B,Q = inf
{
λ > 0 :

1
|Q|

∫

Q
B

(
|f(y)|

λ

)
dy ≤ 1

}
.

The key point is to assume that the maximal operator corresponding to its asso-
ciate space X′, namely, MX′ , is bounded on Lp(Rn). In the case that X = LB this
is given by the tail condition:

(1.7)
∫∞
c

(
tp

′

B(t)

)p−1
dt

t
<∞,

and no better than that. Interesting examples are given by B(t) ≈ tp
′
(log t)p

′−1+δ,
or B(t) ≈ tp

′
(log t)p

′−1(log(log t))p
′−1+δ, where δ > 0. Applications of these

ideas can be found in [4,6]. We refer the reader to [5] for more information about
classes of weights and for some other related results.

Besides its intrinsic interest, conditions like (1.5) carry some deep information
because they are intimately related to some sharp endpoint estimate for singular
integral operators. Indeed, it is shown in [18] that as a consequence of a special
choice of B in (1.7), for a given ε > 0, there is c > 0 depending on ε, the
dimension and the smoothness of the kernel of T such that

(1.8) ‖Tf‖L1,∞(w) ≤ cε,n,T

∫

Rn
|f(x)|ML(logL)ε(w)(x)dx, w ≥ 0.

It was conjectured in that paper that this result would be false in the case ε = 0
whereML(logL)ε is replaced byM, but only recently this result was shown to be false
by Reguera and Thiele in [21] (see also the previous work by Reguera in [20]).
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The purpose of this paper is to study the two weight problem for M within
the context of Banach function spaces. We believe that some of our results may
lead to a better understanding of more difficult operators like singular integrals.

The paper is organized as follows. In Section 2, we introduce some funda-
mental notation. In Section 3, we prove the main result on the boundedness of
the Hardy-Littlewood maximal operator between Banach function spaces. We in-
volve a general variant of the Hardy-Littlewood maximal MF operator introduced
in [19]. The operator MF is generated by a rearrangement invariant space on
R
n. We study the boundedness of this type of operator between Banach function

spaces. This problem is motivated by the two weight problem for M and by (1.8),
and seems interesting on its own. In Section 3, we also prove estimates of the re-
arrangement the Hardy-Littlewood type maximal function generated by Lorentz
space. These estimates allow us to provide a sufficient condition on rearrange-
ment invariant spaces F and X on Rn which ensures that the maximal operator
MF is bounded on X. As a consequence we derive that if F is a rearrangement
invariant space with fundamental function ϕF , then MF is bounded on Lp(Rn),
1 < p <∞, provided

∫ 1

0
s−1/p

dϕF(s) <∞.

Furthermore, we prove that if ϕF is a submultiplicative function near zero, then
the condition above is also necessary for boundedness of MF on Lp(Rn). As an
application of our results, we are able to localize a class of couples of weights
(w,v) for which M is bounded from Lp(vp) to Lp(wp). In particular, in the
case of classical Lorentz space Ls,1 with 1 < s < ∞, we recover the result proved
in [19] in a different way.

2. NOTATION AND PRELIMINARIES

In this paper we shall use the standard notation and terminology in the theory of
Banach lattices. A Banach function space on a measure space (S, µ) is defined to be
a Banach space X which is a subspace of L0 = L(µ) (the topological linear space
of all equivalence classes of the real Lebesgue measurable functions equipped with
the topology of convergence in measure) such that there exists u ∈ X with u > 0
almost everywhere and if |f | ≤ |g| almost everywhere, where g ∈ X and f ∈ L0,
then f ∈ X and ‖f‖X ≤ ‖g‖X .

Let X be a Banach lattice on (S, µ) and w ∈ L0(µ) be a weight, i.e., with
w > 0 almost everywhere on S. We define the weighted Banach function space
X(w) by ‖x‖X(w) = ‖xw‖X . The Banach function space X is said to be order
continuous if for every x ∈ X and every sequence (xn) such that 0 ≤ xn ≤ |x|
and xn ↓ 0 almost everywhere, it holds that ‖xn‖X → 0. We say that X satisfies
the Fatou property whenever for any xn ∈ X and x ∈ L0 such that xn → x
almost everywhere and supn ‖xn‖X < ∞, we have that x ∈ X and ‖x‖X ≤

lim infn ‖xn‖X .



The Hardy-Littlewood Maximal Type Operators 887

The Köthe dual space X′ of X is a collection of all elements y ∈ L0 such that

‖y‖X′ = sup
{∫

S
|xy|dµ : ‖x‖X ≤ 1

}
< ∞.

The space X′ equipped with the norm ‖ · ‖X′ is a Banach function space with the
Fatou property. It is well known that X = X′′ with equality of norms whenever X
satisfies the Fatou property.

Given f ∈ L0, its distribution function is defined by

µf (λ) = µ({x ∈ S : |f(x)| > λ}),

and its decreasing rearrangement is defined by

f∗(t) = f∗µ (t) := inf{λ ≥ 0 : µf (λ) ≤ t}

for t ≥ 0.
A Banach function space (X,‖ · ‖X) on (S, µ) is called admissible provided

χA ∈ X for every measurable set A of finite measure. In what follows, if X is a
Banach function space on Rn (i.e., on (Rn, µ), where µ is the Lebesgue measure),
we write ϕX(|A|) := ‖χA‖, where χA denotes the characteristic function of a
measurable set A and |A| := µ(A). Here ϕX is said to satisfy the ∆2-condition
provided there exists a constant C > 0 such that ϕX(|2Q|) ≤ CϕX(|Q|) for all
cubes Q with finite Lebesgue measure.

Important classes of admissible Banach function spaces X are rearrangement
invariant (r.i.) spaces. Recall that X is called an r.i. space provided µf = µg,
f ∈ X implies g ∈ X, ‖f‖X = ‖g‖X . Clearly ‖χA‖X depends only on µ(A).
The function ϕX(t) := ‖χA‖X , where µ(A) = t, 0 ≤ t ≤ µ(S), is called the
fundamental function of X.

Examples of r.i. Banach spaces are Marcinkiewicz and Lorentz spaces on (S, µ).
Let I := [0, µ(S)) and ϕ : I → [0,∞) be a quasi-concave function, that is,
ϕ(0) = 0 and ϕ(t) > 0 for all 0 < t ∈ I and both ϕ and t ֏ ϕ∗(t) := t/ϕ(t)
are non-decreasing functions on I. We note that a quasi-concave function ϕ is

equivalent to its least concave majorant ϕ̃; more exactly, 1
2ϕ̃(t) ≤ ϕ(t) ≤ ϕ̃(t)

for all t ∈ I.
The Marcinkiewicz space M(ϕ) is the r.i. space of all f ∈ L0(µ) such that

‖f‖M(ϕ) := sup
t∈I

1
ϕ(t)

∫ t
0
f∗(s)ds <∞.

If ϕ : I → [0,∞) is a non-decreasing concave function, with ϕ(0) = 0, the
Lorentz space Λ(ϕ) consists of all f ∈ L0 such that

‖f‖Λ(ϕ) =
∫

I
f∗(s)dϕ(s) :=ϕ(0+)f∗(0+)+

∫

I
f∗(s)ϕ′(s)ds <∞,
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where ϕ′ denotes the derivative of ϕ (which exists almost everywhere).
Notice here that the fundamental functions of these spaces are ϕΛ(ϕ) = ϕ

and ϕM(ϕ) =ϕ∗.
In the sequel we will need the well-known fact that if X is an r.i. Banach

space on Rn with the fundamental function ϕ, then ϕ is quasi-concave and the
following continuous inclusions hold (see [11, Theorems II.5.5 and II.5.7] or
[3, Theorem II.5.13]):

Λ(ϕ̃)֓ X ֓ M(ϕ∗).

3. MAIN RESULTS

Let X be a Banach function space on Rn. Throughout the paper Xloc denotes the
space of all f ∈ L0 such that fχQ ∈ X for every cube Q in Rn. Following [19],
for every f ∈ Xloc, we define the X-average by

‖f‖X,Q = ‖τℓ(Q)(fχQ)‖X .

Here τδ with δ > 0 is the dilatation operator defined for all f ∈ L0 by τδf(x) =
f(δx), and ℓ(Q) is the side-length of the cube Q. We define the maximal opera-
tor MX associated to the space X by

MXf(x) = sup
Q∋x

‖f‖X,Q, f ∈ Xloc,

where the supremum is taken over all the cubes Q containing x.
We observe that in the case of the Orlicz space Lϕ on Rn, the maximal oper-

ator Mϕ := MLϕ is given by

Mϕf(x) = sup
Q∋x

‖fχQ‖ϕ,Q,

where

‖f‖ϕ,Q := inf
{
λ > 0 :

1
|Q|

∫

Q
ϕ

(
|f(x)|

λ

)
dx ≤ 1

}
.

In [1] it was proved that there exists a constant cn > 0 such that

(Mϕf)
∗(t) ≤ cn‖f

∗‖ϕ,(0,t), t > 0.

It is easy to see that the maximal operator Mp,q := MLp,q associated to the
Lorentz Lp,q on Rn with 1 < p,q <∞ is given by

Mp,qf(x) = sup
Q∋x

1
|Q|1/p

‖fχQ‖p,q.
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This operator was studied in [2, 12, 23]. It was proved in [2], using interpolation,
that if 1 ≤ q ≤ p, then there exists a constant c > 0 such that

(Mp,qf)
∗(t) ≤

c

t1/p

(∫ t
0
f∗(s)qsq/p−1

ds

)1/q

, t > 0.

We extend the above-mentioned rearrangement estimates to the more general set-
ting of maximal operators and show applications to study boundedness of the
Hardy-Littlewood maximal operator.

For formulation of the first result on boundedness of the maximal operator,
some additional notation and definitions are required. Given a Banach function
space X and 1 < p < ∞, we define the p-concavification Xp to be a quasi-Banach
function space of all x ∈ L0(µ) such that |x|1/p ∈ X, equipped with the quasi-
norm ‖x‖Xp = ‖ |x|

1/p ‖
p
X . The Banach function space X is said to be p-convex

if there exists a constant C > 0 such that for any x1, . . . , xn ∈ X, we have

∥∥∥
( n∑

k=1

|xk|
p
)1/p∥∥∥

X
≤ C

( n∑

k=1

∥∥xk
∥∥p
X

)1/p
.

The least C is denoted by M(p)(X).
Note that if X is p-convex, then for x ∈ Xp and x1, . . . , xn ∈ Xp with

|x| ≤
∑n
k=1 |xk|, we have

‖x‖Xp ≤
∥∥∥
( n∑

k=1

(|xk|
1/p)p

)1/p∥∥∥
Xp
≤ M(p)(X)p

n∑

k=1

∥∥ |xk|1/p
∥∥p
X

= M(p)(X)p
n∑

k=1

‖xk‖Xp .

This shows that the lattice norm ‖ · ‖∗ defined on Xp by

‖x‖∗ := inf
{ n∑

k=1

‖xk‖Xp : |x| ≤
n∑

k=1

|xk|, n ∈ N
}
, x ∈ Xp,

satisfies
M(p)(X)−p‖ · ‖Xp ≤ ‖ · ‖

∗ ≤ ‖ · ‖Xp .

In particular, this implies a well-known fact: if a Banach function space X on
(S, µ) is p-convex (1 < p < ∞), then there exists a Banach function space Y on
(S, µ) such that x ∈ X if and only if |x|p ∈ Y and

M(p)(X)−1‖x‖X ≤
∥∥ |x|p

∥∥1/p
Y ≤ ‖x‖X .

This fact will be used below in the proof without any references.
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A Banach lattice X is said to satisfy a lower p-estimate, 1 < p < ∞, if there
exists a constant C such that

( n∑

i=1

∥∥xi
∥∥p
E

)1/p
≤ C

∥∥∥
n∑

i=1

xi
∥∥∥
E
,

for every finite set of pairwise disjoint elements {x1, . . . , xn} in X (see [14, 1.f.4]).
The least C is denoted by ℓ(p)(X).

The following theorem is an extension of the main result, Theorem 1.2, from
[19].

Theorem 3.1. Let E, X, and Y be Banach function spaces over Rn where E, X
are admissible, and let (w,v) be a couple of weights on Rn. If the maximal operator
ME′ associated to E′ is bounded on X, X satisfies a lower p-estimate, Y is p-convex
for some 1 < p <∞, ϕX satisfies the ∆2-condition, and

sup
Q∋Q

ϕY(w)(|Q|)

ϕX(|Q|)
‖v−1‖E,Q <∞,

then the Hardy-Littlewood maximal operator M is bounded from X(v) into Y(w).

Proof. Our hypothesis that X(w) satisfies a lower p-estimate implies that
X(w) is order continuous and so a separable space. Thus the set of bounded
functions with compact support is dense in X(w). Fix f ∈ X(w)b and a > 2n.
For each integer k, we set

Ωk = {x ∈ Rn : ak < Mf(x)},

Dk =

{
x ∈ Rn : Mdf(x) >

ak

4n

}
.

Applying the classical Calderón-Zygmund decomposition [7, p. 137], we con-
clude that there is a family of maximal non-overlapping dyadic cubes {Qk,j} such
that Ωk ⊂

⋃
j 3Qk,j , Dk =

⋃
jQk,j , and

ak

4n
<

1
|Qk,j|

∫

Qk,j
f(y)dy ≤

ak

2n
.

Without loss of generality, we may assume that the M(p)(Y) = 1 and so there
exists a Banach function space Ỹ on Rn such that y ∈ Y if and only if |x|p ∈ Ỹ

and ‖x‖Y = ‖ |x|p ‖
1/p

Ỹ
. Combining the above yields that for some universal
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constants Cj (j = 1, . . . ,4), we have

‖Mf‖Y(w) =
∥∥((Mf)w)p

∥∥1/p

Ỹ
=
∥∥∥
∑

k

((Mf)w)pχΩk\Ωk+1

∥∥∥1/p

Ỹ

≤ C1

∥∥∥
∑

k

akpwpχΩk\Ωk+1

∥∥∥1/p

Ỹ

≤ C2

∥∥∥∥
∑

k,j

(
1

|Qk,j|

∫

Qk,j
|f(y)|dy

)p
wpχ3Qk,j

∥∥∥∥
1/p

Ỹ

≤ C3

∥∥∥∥
∑

k,j

(
1

|3Qk,j|

∫

3Qk,j
|f(y)|v(y)v(y)−1

dy

)p
wpχ3Qk,j

∥∥∥∥
1/p

Ỹ

≤ C4

(∑

k,j

(
1

|3Qk,j|

∫

3Qk,j
|f(y)|v(y)v(y)−1

dy

)p∥∥χ3Qk,j

∥∥p
Y(w)

)1/p
.

For any integers k, j, we put Ek,j = Qk,j \Qk,j ∩Dk+1, and by [19, Lemma
4.2] there exists a constant β > 0 such that |Qk,j| < β|Ek,j| for each k, j. The
∆2-condition forϕX gives that there exists a constant Cβ > 0 such that for all k, j

ϕX(|3Qk,j|) ≤ CβϕX(|Ek,j|) = Cβ‖χEk,j‖X .

For all cubes Q,g ∈ Eloc and h ∈ E′loc, we have

1
|Q|

∫

Q
g(y)h(y)dy ≤ ‖g‖X,Q ‖h‖X′,Q.

Thus the combination of the inequalities shown above with our hypotheses onME′

and X implies that the following estimates hold with some universal constants C̃j ,
j = 1,2,3:

‖Mf‖Y(w) ≤ C̃1

(∑

k,j

∥∥fv
∥∥p
E′,3Qk,j

∥∥v−1
∥∥p
E,3Qk,j

∥∥χ3Qk,j

∥∥p
Y(w)

)1/p

≤ C̃2

(∑

k,j

∥∥fv
∥∥p
E′,3Qk,j

∥∥v−1
∥∥p
E,3Qk,j

(
ϕY(w)(|3Qk,j|)

ϕX(|3Qk,j|)

)p
ϕX(|3Qk,j|)p

)1/p

≤ C̃2Cβ

(∑

k,j

∥∥ME′(fv)χEk,j
∥∥p
X

)1/p

≤ C̃2Cβℓ(p)(X)‖ sup
k,j

ME′(fv)χEk,j‖X

≤ C̃3‖ME′(fv)‖X ≤ C̃3 ‖f‖X(v). ❐
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We conclude by discussing some applications. We will need some rearrange-
ment inequalities for some nonstandard maximal operators investigated in the pa-
per [13]. We recall some notation introduced in this paper. If F is a non-negative
set function defined on the collection B of all sets of positive finite Lebesgue mea-
sure, then its maximal function is given by

MF(x) = sup
Q∋x

F(Q),

where the supremum is taken over all cubesQ ∈ Q containing x, whereQ denotes
the set of all cubes Q such that 0 < |Q| <∞.

A set function F is said to be pseudo-increasing with a constant c if there
exists a constant c > 0 such that for any finite collection of pairwise disjoint cubes
{Qi}, we have

min
i
F(Qi) ≤ cF

(⋃

i

Qi
)
.

If c = 1, then F is said to be increasing.
An interesting result obtained by Lerner in [13] states that if F is a pseudo-

increasing set function with constant c, then for any t > 0

(MF)∗(t) ≤ c sup
|A|>t/3n

F(A),

where the supremum is taken over all sets A of finite Lebesgue measure |A| >
t/3n.

Throughout the rest of the paper, an r.i. space on Rn is said to be generated
by an r.i. space X̃ on (0,∞) provided f ∈ X if and only if f∗ ∈ X̃ and ‖f‖X =
‖f∗‖X̃ . It is well known that any r.i. space X on Rn with the Fatou property is
generated by some r.i. space on [0,∞) (see [3]).

For every 0 < t < ∞, a dilatation operator Dt is defined for a Lebesgue
measurable function f on (0,∞) by

Dsf(t) = f(t/s), 0 < t <∞.

It is a well-known fact that Ds is bounded on every r.i. space on (0,∞) (see [3,11,
14]). Thus, by Drs = DrDs , we have ‖Drs‖ ≤ ‖Dr‖‖Ds‖ for all r , s > 0.

A consequence of the mentioned Lerner result is the following corollary on
the rearrangement inequality of the maximal operator MX .

Proposition 3.2. Let X be an r.i. space on Rn generated by the r.i. space X̃ on
(0,∞). Assume the set function B ∋ A ֏ ‖τ|A|1/n(fχA)‖X generated by a fixed
f ∈ Xloc is pseudo-increasing with a constant c. Then, for every t > 0, we have

(MXf)
∗(t) ≤ c‖(D3n/tf

∗)χ(0,1)‖X̃ .
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Proof. Let F(A) := ‖τ|A|1/n(fχA)‖X for all A ∈ B. It follows by the Lerner
result that for any t > 0, we have

(MF)∗(t) ≤ c sup
{
F(A) : A ∈ B, |A| >

t

3n

}
.

For all s > 0, A ∈ B, we have τ|A|1/n(fχA)
∗(s) = (fχA)

∗(s|A|), (fχA)
∗ ≤

f∗χ(0,|A|). This implies

F(A) = ‖D1/|A|(fχA)
∗)‖X̃ ≤ ‖D1/|A|(f

∗χ(0,|A|))‖X̃ = ‖(D1/|A|f
∗)χ(0,1)‖X̃ .

Combining the above inequalities, we obtain

(MF)∗(t) ≤ c‖(D3n/tf
∗)χ(0,1)‖X̃ .

The obvious equality MXf = MF completes the proof. ❐

We will present new examples of pseudo-increasing set functions and show
applications to the Hardy-Littlewood maximal type operators. We recall the defi-
nition of the generalized Orlicz space. Let E be a Banach lattice on (S, µ), and let
ϕ : [0,∞) → [0,∞) be an Orlicz function, i.e., ϕ is convex with ϕ(t) = 0 if and
only if t = 0. The generalized Orlicz space

Xϕ :=
{
x ∈ L0(µ) : ϕ

(
|x|

λ

)
∈ X for some λ > 0

}

is a Banach function space under the norm

‖x‖Xϕ := inf
{
λ > 0 :

∥∥∥∥ϕ
(
|x|

λ

)∥∥∥∥
X
≤ 1

}
.

If X = Λ(ψ) is the Lorentz space, then Λ(ψ)ϕ is called the Orlicz-Lorentz space
and is denoted by Λϕ,ψ. In particular, (L1)ϕ is the classical Orlicz space equipped
with the Luxemburg norm and is denoted by Lϕ.

Lemma 3.3. Let Xϕ be a generalized Orlicz space on Rn and ρ : (0,∞) →
(0,∞) be a function. Assume that for every f ∈ Xloc the set function B ∋ A ֏

‖τρ(|A|)(fχA)‖X is pseudo-increasing with a constant c. Then the set function

B ∋ A֏ ‖τρ(|A|)(fχA)‖Xϕ

is also pseudo-increasing with a constant c1 = min{1, c}.

Proof. For f ∈ (Xϕ)loc with f ≠ 0, we define the set function F : B → [0,∞)
by

F(A) := ‖τρ(|A|)(fχA)‖Xϕ , A ∈ B.
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Let {Qi} be a finite collection of pairwise disjoint cubes. Without loss of generality
we may assume that 0 < mini F(Qi). Fix 0 < ε < mini F(Qi), and set λ =
mini F(Qi)− ε. Using the convexity of ϕ and our hypothesis yields

∥∥∥∥∥ϕ
(
τρ(|

⋃
iQi|)

(
fχ⋃

iQi

c1λ

))∥∥∥∥∥
X

=

∥∥∥∥τρ(|⋃iQi|)
(
ϕ

(
|f |

c1λ

)
χ⋃

iQi

)∥∥∥∥
X

≥ cmin
i

∥∥∥∥∥τρ(|Qi|)
(
ϕ

(
|fχQi|

c1λ

))∥∥∥∥∥
X

≥
c

c1
min
i

∥∥∥∥∥τρ(|Qi|)
(
ϕ

(
|fχQi|

F(Qi)
− ε

))∥∥∥∥∥
X

≥ 1.

This implies that

F
(⋃

i

Qi
)
≥ c1λ = c1(min

i
F(Qi)− ε),

and so by letting ε → 0, we obtain the required inequality. ❐

Lemma 3.4. Let E := Λϕ,ψ be the Orlicz-Lorentz space on Rn generated by
Orlicz function ϕ and concave function ψ with ψ(0+) = 0. Then, for every t > 0,
the maximal operator ME associated to E satisfies the rearrangement inequality

(MEf)
∗(t) ≤ ‖(D3n/tf

∗)χ(0,1)‖Ẽ , f ∈ Eloc,

where Ẽ is the Orlicz-Lorentz space Λϕ,ψ on (0,∞). In particular, for any f ∈

Λ(ψ)loc and t > 0, we have

(MΛ(ψ)f)∗(t) ≤
∫ 1

0
f∗

(
st

3n

)
dψ(s).

Proof. Note that the following formula holds (see [11, formula (5.4)]):

(3.1) ‖f‖Λ(ψ) =
∫∞

0
ψ(µf (s))ds, f ∈ Λ(ψ).

Given f ∈ Λ(ψ)loc, we define the set function F : B → [0,∞) by

F(A) =
∥∥τ|A|1/n(fχA)

∥∥Λ(ψ), A ∈ B.

Formula (3.1) implies

F(A) =

∫∞
0
ψ

(µfχA(s)
|A|

)
ds, A ∈ B.
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We claim that the set function F is increasing. In fact, for any pairwise disjoint
sets A and B with finite Lebesgue measures, we have (by concavity of ψ)

F(A∪ B) =

∫∞
0
ψ

(
µfχA∪B (s)

|A∪ B|

)
ds

=

∫∞
0
ψ

(
|A|

|A| + |B|

µfχA(s)

|A|
+

|B|

|A| + |B|

µfχB (s)

|B|

)
ds

≥
|A|

|A| + |B|
F(A)+

|B|

|A| + |B|
F(B) ≥ min{F(A), F(B)}.

This concludes the proof, by Lemma 3.3 and Proposition 3.2. ❐

We will need the following lemma (see [11, p. 136]).

Lemma 3.5. If E is an r.i. space on (0,∞) and ψ is a nondecreasing continuous
function on (a, b), 0 ≤ a < b ≤ ∞, then, for all x ∈ E, we have

∥∥∥∥
∫ b
a
D1/sx

∗(t)dψ(s)

∥∥∥∥
E
≤

∫ b
a
‖D1/sx‖E dψ(s).

Now we are ready to present the sufficient conditions for boundedness of the
maximal operator ME on r.i. spaces.

Theorem 3.6. Assume that r.i. spaces F and X on Rn are such thatϕF(0+) = 0,
X is generated by an r.i. space X̃, and

∫ 1

0
‖D1/s‖X̃→X̃ dϕF(s) < ∞.

Then the following statements hold true for the maximal operator MF associated to F :
(i) If ϕX(0+) = 0, then there exists a constant C > 0 such that

‖MFf‖X ≤ C‖f‖X , f ∈ L1 ∩ L∞.

(ii) If X is separable, then the maximal operator MF is bounded on X.

Proof. (i) Since ϕF is equivalent to its concave minorant, we may assume
without loss of generality that ϕF is a concave function. Then the inclusion map
Λ(ϕF)֓ F has norm 1, and so for all x ∈ Rn and f ∈ L1 ∩ L∞,

MFf(x) ≤ MΛ(ϕF )f(x).

From Lemma 3.4 it follows that, for any t > 0, we have

(MFf)
∗(t) ≤

∫ 1

0
f∗

(
st

3n

)
dϕF(s).
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Combining this inequality with Lemma 3.5, we deduce that for C := ‖D3n‖X̃→X̃
we obtain

‖MFf‖X = ‖(MFf)
∗‖X̃ ≤

∥∥∥∥
∫ 1

0
D1/s(D3nf

∗)dϕF(s)

∥∥∥∥
X̃

≤

∫ 1

0
‖D1/s(D3nf

∗)‖X̃ dϕF(s)

≤ C

(∫ 1

0
‖D1/s‖dϕF (s)

)
‖f‖X ,

for all f ∈ L1 ∩ L∞, as desired.

(ii) Note that MF is a positive sublinear operator, and so for all f , g ∈ Floc, we
have

|MFf −MFg| ≤ MF(f − g), almost everywhere.

Since X is separable, it follows that ϕX(0+) = 0 and L1 ∩ L∞ is a dense set in X.
Thus the above estimate allows us to extend the inequality obtained in (i) for all
f ∈ X by density. ❐

If 1 < p <∞ and X = Lp(Rn), then X is separable and X̃ = Lp, ‖Ds‖X̃→X̃ =
s1/p for all s > 0. Thus, applying Theorem 3.6, we obtain the following result.

Corollary 3.7. If 1 < p <∞ and F is an r.i. space on Rn such that

∫ 1

0
s−1/p

dϕF(s) <∞,

then the maximal operator MF associated to F is bounded on Lp(Rn).

We show that for a large class of r.i. spaces F , the condition shown above in
Lemma 3.7 is also necessary for the boundedness of the maximal operator MF on
Lp(Rn) with 1 < p < ∞. To do this it is convenient to use an index γF defined
for any r.i. space F on Rn by

γF = lim sup
s→0+

log s

logϕF(s)
.

Corollary 3.8. If F is an r.i. space on Rn with γF < ∞, then the maximal
operator MF associated to F is bounded on Lp(Rn) for every γF < p < ∞.

Proof. Let q be a positive number with γF < q < p < ∞. Then it follows
from the definition of γF that there exist C > 0 and 0 < δ < 1 such that

ϕF(s) ≤ Cs
1/q, 0 < s ≤ δ.
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Since ϕF(0+) = 0, (ϕF)′(s) ≤ϕF(s)/s for almost all s > 0. This implies

∫ δ
0
s−1/p

dϕF(s) ≤

∫ δ
0
s−1/p−1ϕF(s)ds ≤

C

q

∫ 1

0
s1/q−1/p−1

ds <∞

and hence ∫ 1

0
s−1/p

dϕF(s) <∞.

Thus Corollary 3.7 applies. ❐

Theorem 3.9. Let F be an r.i. space on Rn with γF < ∞. If 1 < p < ∞

and ϕF is submultiplicative near zero (i.e., there exist c > 0 and s0 > 0 such that
ϕF(st) ≤ cϕF(s)ϕF(t) for all 0 < s ≤ s0 and t > 0), then the following conditions
are equivalent:

(i) MF is bounded on Lp(Rn).
(ii) There exists c > 0 such that

∫ c
0 (ϕF(s)

p/s2)ds <∞.
(iii) γF < p.
(iv)

∫ 1
0 s

−1/p
dϕF(s) < ∞.

Proof. The implication (i) =⇒ (ii) follows from [19, Theorem 3.1].
(ii) =⇒ (iii) Put ϕ(t) := cϕF(t)/ϕF(1) for t ≥ 0. Then our hypothesis on ϕF
implies ϕ(1) = 1 and ϕ(st) ≤ ϕ(s)ϕ(t) for all 0 < s ≤ s0 and t > 0.

Let ϕ̄ : [0,∞)→ [0,∞) be a submultiplicative function on [0,∞) defined by

ϕ̄(s) = sup
t>0

ϕ(st)

ϕ(t)
, s ≥ 0.

Then we get (see, e.g., [3, Chapter 5] or [11, Chapter 2]) that there exists α ≥ 0
such that

α = sup
0<s<1

log ϕ̄(s)

log s
= lim
s→0+

log ϕ̄(s)

log s
.

Since ϕ̄(s) = ϕ(s) for all 0 < s < s0, our hypothesis γF <∞ implies α = 1/γF >
0. Thus there exists δ > 0 such that

s1/γF ≤ϕ(s), 0 < s < δ,

and hence we clearly have γF < p provided that condition (ii) holds.
The implications (iii) =⇒ (iv) and (iv) =⇒ (i) follow by Corollary 3.8 and

Corollary 3.7, respectively. ❐

Analysis of the proofs of Corollary 3.8 and Theorem 3.9 gives the following
result, which seems interesting on its own.
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Theorem 3.10. If F is an r.i. space on Rn with γF < ∞, then the following
formulas hold:

γF = inf
{
p > 1 : MF is bounded on Lp(Rn)

}

= inf
{
p > 1 :

∫ 1

0

ϕF(s)p

s2
ds <∞

}

= inf
{
p > 1 :

∫ 1

0
s−1/p

dϕF(s) <∞

}
.

To state the next result, we need the Köthe duality formulas for Lorentz and
Marcinkiewicz spaces (cf. [3, 11]). For the sake of completeness we show these
formulas below. If (S, µ) is an atomless measure space, then for any concave
function ψ : [0, µ(S)) → [0,∞) with ψ(0) = 0, the following duality formulas
with equality of norms hold true:

Λ(ψ)′ = M(ψ) and M(ψ)′ = Λ(ψ).

An immediate consequence of the above Corollary 3.7, Theorem 3.6, and the
duality formula M(ϕ∗)′ = Λ(ϕ̃∗) is the following theorem.

Theorem 3.11. Let 1 < p < ∞, and letϕ : [0,∞) → [0,∞) be a quasi-concave

function such that
∫ 1
0 s

−1/p dϕ∗(s) < ∞. Suppose that (w,v) is a couple of weights
on Rn such that

sup
Q∈Q

(
1
|Q|

∫

Q
w(y)p dy

)1/p

‖v−1‖M(ϕ∗),Q <∞.

Then the maximal Hardy-Littlewood operator M is bounded from Lp(vp) to
Lp(wp).

We conclude with the following remark: it follows from Theorem 3.11 that in
the class of r.i. spaces X on Rn with the same fundamental function ϕ satisfying

the condition
∫ 1
0 s

−1/p dϕ∗(s) <∞, the largest class of couples of weights (w,v)
on Rn which satisfy the condition

sup
Q∈Q

(
1
|Q|

∫

Q
w(y)p dy

)1/p

‖v−1‖X,Q <∞

is generated when X is the largest r.i. space with the fundamental functionϕ, i.e.,
when X is the Marcinkiewicz space M(ϕ∗).
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