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Abstract. A well known open problem of Muckenhoupt-Wheeden
says that any Calderón-Zygmund singular integral operator T is of
weak type (1, 1) with respect to a couple of weights (w,Mw). In
this paper we consider a somewhat “dual” problem:

sup
λ>0

λw

{
x ∈ Rn :

|Tf(x)|
Mw

> λ

}
≤ c

∫
Rn

|f | dx.

We prove a weaker version of this inequality with M3w instead of
Mw. Also we study a related question about the behavior of the
constant in terms of the A1 characteristic of w.

1. Introduction

In 1971, C. Fefferman and E.M. Stein [8] established the follow-
ing extension of the classical weak-type (1, 1) property of the Hardy-
Littlewood maximal operator M :

(1.1) sup
λ>0

λ w{x ∈ Rn : Mf(x) > λ} ≤ c

∫
Rn

|f |Mwdx,

where a weight w is supposed to be a non-negative locally integrable
function and w(E) =

∫
E

w(x)dx.
Assume now that T is a Calderón-Zygmund singular integral opera-

tor. It was conjectured by B. Muckenhoupt and R. Wheeden [13] many
years ago that the full analogue of (1.1) holds for T , namely,

(1.2) sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c

∫
Rn

|f |Mwdx.

This problem is open even for the Hilbert transform. In this direction,
the following result can be found in [16]:
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Theorem 1.1. There is a constant c = c(n, T ) such that for any weight
w and for all f ,

sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c

∫
Rn

|f |M2wdx.

Here Mk denotes the operator M iterated k times. In fact, it is shown
in [16] that M2 can be replaced by the (pointwise) smaller operator
M1+εw for any ε > 0 (see Remark 4.1 below for the definition of Mαw,
α ≥ 1).

We claim that (1.2) has a somehow “dual” version, namely,

(1.3) sup
λ>0

λw

{
x ∈ Rn :

|Tf(x)|
Mw

> λ

}
≤ c

∫
Rn

|f(x)| dx.

Indeed, if conjecture (1.2) holds, say for the Hilbert transform H, then
by the extrapolation theorem from [6] we can derive the following in-
equality for any 1 < p < ∞:∫

R
|Hf(x)|pwdx ≤ c

∫
R
|f(x)|p

(
Mw

w

)p

wdx.

Then by duality we have that for any 1 < p < ∞,∫
R

(
|Hf(x)|

Mw

)p′

wdx ≤ c

∫
R

(
|f(x)|

w

)p′

wdx,

and hence (1.3) can be viewed as a limiting weak-type (1, 1) case of the
latter inequality.

Estimates of the sort (1.3) are called sometimes in the literature
mixed weak type. They appeared for the first time in the work of
B. Muckenhoupt and R. Wheeden [14] and later on in Sawyer’s work [17].
More recently, extensions of these results can be found in [5] and [15].

We do not know how to prove (1.3) even for M2w instead of Mw.
However we prove the following result.

Theorem 1.2. There is a constant c = c(n, T ) such that for any weight
w and for all f ∈ L1(Rn),

sup
λ>0

λw

{
x ∈ Rn :

|Tf(x)|
M3w

> λ

}
≤ c

∫
Rn

|f | dx.

It is interesting to observe that even a weak variant of (1.2) is not
known:

sup
λ>0

λ w{x ∈ Rn : |Tf(x)| > λ} ≤ c‖w‖A1

∫
Rn

|f |wdx.
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We recall that w is an A1 weight if there is a finite constant c such that
Mw ≤ c w a.e., and where ‖w‖A1 denotes the smallest of these c. In a
recent paper [11] we proved the following related result:

Theorem 1.3. Let ϕ(t) = t(1 + log+ t)(1 + log+ log+ t). There is a
constant c = c(n, T ) such that for any A1 weight w and for all f ∈
L1

w(Rn),

sup
λ>0

λw{x ∈ Rn : |Tf(x)| > λ} ≤ c ϕ(‖w‖
A1

)

∫
Rn

|f |wdx.

Analogously, we do not know whether a weak variant of (1.3) is true:

(1.4) sup
λ>0

λ w

{
x ∈ Rn :

|Tf(x)|
w

> λ

}
≤ c‖w‖A1

∫
Rn

|f | dx.

Theorems 1.1 and 1.2 show that in “dual” direction we have a worst
result in terms of Mk. Therefore, it is natural to expect that the bound
for the left-hand side of (1.4) in terms of ‖w‖A1 must be at least not
better than the one in Theorem 1.3. However, we prove the following
surprising result.

Theorem 1.4. There is a constant c = c(n, T ) such that for any A1

weight w and for all f ∈ L1(Rn),

sup
λ>0

λw

{
x ∈ Rn :

|Tf(x)|
w

> λ

}
≤ c‖w‖A1(1 + log+ ‖w‖A1)

∫
Rn

|f | dx.

The paper is organized as follows. Section 2 contains some pre-
liminary information about maximal operators and singular integrals.
Proofs of Theorems 1.2 and 1.4 are contained in Sections 3. Several
concluding remarks are given in Section 4.

2. Preliminaries

2.1. Maximal Operator. Given a locally integrable function f on Rn,
the Hardy-Littlewood maximal operator M is defined by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q containing the point x.
It is well-known (see, e.g., [10, p. 175]) that

(2.1) Mkf(x) � sup
Q3x

1

|Q|

∫
Q

|f | log
( |f |
|f |Q

+ e
)k−1

dy,

where fQ = 1
|Q|

∫
Q

f . From this, by Hölder’s inequality we obtain

Mkf ≤ c(Mf)1− 1
k (Mk+1f)

1
k .
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In particular, for k = 2 we have the following estimate

(2.2)

(
Mf

M3f

) 1
2

≤ c
Mf

M2f
.

We say that a weight w satisfies the Ap condition if there exists a
constant c > 0 such that for any cube Q,(∫

Q

w
)(∫

Q

w−1/(p−1)
)p−1

≤ c|Q|p.

The smallest possible c here is denoted by ‖w‖Ap . Set A∞ = ∪p≥1Ap.
We recall that Muckenhoupt’s theorem [12] says that the maximal op-
erator M is bounded on Lp

w, 1 < p < ∞, if and only if w ∈ Ap.
We mention several well-known facts about Ap weights. First, it

follows from definitions and from Hölder’s inequality that if w1 and w2

are A1 weights, then w1w
1−p
2 ∈ Ap, and

(2.3) ‖w1w
1−p
2 ‖Ap ≤ ‖w1‖A1‖w2‖p−1

A1
.

Next, if 0 < α < 1, then (Mf)α ∈ A1 (see [4]), and

(2.4) ‖(Mf)α‖A1 ≤ cn,α.

Let M c
w be the weighted centered maximal operator defined by

M c
wf(x) = sup

Q3x

1

w(Q)

∫
Q

|f(y)|w(y)dy,

where the supremum is taken over all cubes Q centered at x. By the
Besicovitch covering theorem,

(2.5) w{x ∈ Rn : M c
wf(x) > λ} ≤ cn

λ
‖f‖L1

w
.

It is easy to see that for any x ∈ Rn one has

Mf(x) ≤ cnM
c
w(f/w)(x)Mw(x).

This along with (2.5) implies the following.

Proposition 2.1. For any weight w and for any f ∈ L1(Rn),∥∥∥Mf

Mw

∥∥∥
L1,∞

w

≤ c‖f‖L1 .
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2.2. Calderón-Zygmund operators. Let K(x, y) be a locally inte-
grable function defined off the diagonal x = y in Rn×Rn, which satisfies
the size estimate

(2.6) |K(x, y)| ≤ c

|x− y|n

and, for some ε > 0, the regularity condition

(2.7) |K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ c
|x− z|ε

|x− y|n+ε
,

whenever 2|x− z| < |x− y|.
A linear operator T : C∞

0 (Rn) → L1
loc(Rn) is a Calderón-Zygmund

operator if it extends to a bounded operator on L2(Rn), and there is a
kernel K satisfying (2.6) and (2.7) such that

Tf(x) =

∫
Rn

K(x, y)f(y)dy

for any f ∈ C∞
0 (Rn) and x 6∈ supp(f).

We shall need the following estimate due to R. Coifman [2, 3]: for
any 0 < p < ∞ and for w ∈ A∞,

(2.8)

∫
Rn

|Tf |pwdx ≤ c

∫
Rn

(Mf)pwdx.

The following theorem has been recently proved in [11].

Theorem 2.2. Let 1 < p < ∞ and let νp = p2

p−1
log
(
e + 1

p−1

)
. There

is a constant c = c(n, T ) such that for any A1 weight w,

(2.9) ‖T‖
Lp(w)

≤ c νp ‖w‖A1
.

Let T ∗ be the adjoint operator of T . Then T ∗ is also a Calderón-
Zygmund operator. Applying (2.9) to T ∗ instead of T and using duality
we have that (2.9) is equivalent to

(2.10) ‖T‖
Lp′ (w1−p′ )

≤ c νp ‖w‖A1
,

where, as usual, 1/p + 1/p′ = 1.

3. Proofs of main results

Proof of Theorem 1.2. We start with some ideas used in [5]. Fix p > 1.
Let

Sf =
M
(
f(Mw)1−1/2p

)
(Mw)1−1/2p

.

Note that by (2.4) along with (2.3), a weight (Mw)1−r(1− 1
2p

) belongs to
Ar with corresponding constants independent of w. Hence, by the
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Muckenhoupt theorem [12], S is bounded on Lr
Mw for any r > 1.

Therefore, by the Marcinkiewicz interpolation theorem [1, p. 225],

S is bounded on Lp′,1
Mw.

We now apply the Rubio de Francia algorithm (see [9]) to define the
operator R by

Rh(x) =
∞∑

j=0

Sjh(x)

(2K)j
,

where K is the “norm” of S on Lp′,1
Mw. It is easy to see that

(a) h(x) ≤ Rh(x);

(b) ‖Rh‖Lp′,1(Mw) ≤ 2‖h‖Lp′,1(Mw);

(c) S(Rh)(x) ≤ 2KRh(x).

It follows from the last property that (Rh)(Mw)1−1/2p ∈ A1 with the
A1 constant bounded by 2K. Using this fact and since Mw

M3w
≤ 1, we

conclude by (2.3) that

(3.1)
(Rh)Mw

(M3w)
1
p

≤ (Rh)(Mw)1− 1
2p

(M3w)
1
2p

∈ A2

with the A2 constant depending only on p and n.
Observe now that for any p > 1 we have∥∥∥∥ |Tf |

M3w

∥∥∥∥
L1,∞

w

≤
∥∥∥∥ |Tf |
M3w

∥∥∥∥
L1,∞

Mw

=

∥∥∥∥∥
(
|Tf |
M3w

)1/p
∥∥∥∥∥

p

Lp,∞
Mw

.

Next, by duality,∥∥∥∥∥
(
|Tf |
M3w

)1/p
∥∥∥∥∥

Lp,∞
Mw

= sup

∫
Rn

|Tf |
1
p h

Mw

(M3w)
1
p

dx,

where the supremum is taken over all non-negative h ∈ Lp′,1
Mw with

‖h‖
Lp′,1

Mw

= 1. Applying (3.1) and (2.8), we obtain

∫
Rn

|Tf |
1
p

hMw

(M3w)
1
p

dx ≤
∫

Rn

|Tf |
1
p

(Rh)Mw

(M3w)
1
p

dx

≤ c

∫
Rn

Mf(x)
1
p

(Rh)(Mw)1− 1
2p

(M3w)
1
2p

dx.
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From the last estimate and from (2.2) we get∫
Rn

|Tf |
1
p h

Mw

(M3w)
1
p

dx ≤ c
∥∥∥( Mf

M2w

)1/p ∥∥∥
Lp,∞(Mw)

‖Rh‖Lp′,1(Mw)

≤ 2c
∥∥∥( Mf

M2w

)1/p ∥∥∥
Lp,∞(Mw)

= 2c
∥∥∥ Mf

M2w

∥∥∥1/p

L1,∞(Mw)

(we have used also property (b) of Rh and that ‖h‖
Lp′,1

Mw

= 1).

Applying Proposition 2.1 to the last inequality completes the proof.
�

Proof of Theorem 1.4. We follow here the classical method of Calderón-
Zygmund although with some modifications. Fix λ > 0, and set

Ωλ = {x ∈ Rn : M c
w(f/w)(x) > λ}.

Let ∪jQj be the Whitney covering of Ωλ. Set b(x) = supj(f−fQj
)χQj

(x)
and g(x) = f(x)− b(x).

By (2.5),

w(Ωλ) ≤
cn

λ
‖f‖L1 .

Hence, we have to estimate

w

{
x 6∈ Ωλ :

|Tf |
w

> λ

}
≤ w

{
x 6∈ Ωλ :

|Tb|
w

> λ/2

}
+ w

{
x 6∈ Ωλ :

|Tg|
w

> λ/2

}
≡ I1 + I2.

By [7, Ineq. (5.4), p. 92] or [9, Lemma 5, p. 413], we get

I1 ≤
2

λ

∫
Rn\Ωλ

|Tb(x)|dx ≤ c

λ

∑
j

∫
Qj

|f − fQj
|dx ≤ c

λ
‖f‖L1 ,

where c = c(T, n).
Applying (2.10) for 1 < p′ < 2 yields

I2 ≤
cpp′‖w‖p′

A1

λp′

∫
Rn

|g|p′w1−p′dx

≤
cpp′‖w‖p′

A1

λp′

(∫
Rn\Ωλ

|f |p′w1−p′dx +
∑

j

(|f |Qj
)p′
∫

Qj

w1−p′dx

)
.
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We have that |f | ≤ cw a.e. on Rn \ Ωλ, and hence∫
Rn\Ωλ

|f |p′w1−p′dx ≤ λp′−1‖f‖L1 .

Next, by properties of the Whitney covering, it is easy to see that for
any cube Qj there exists a cube Q∗

j such that Qj ⊂ Q∗
j , |Q∗

j | ≤ cn|Qj|,
and the center of Q∗

j lies outside of Ωλ. Therefore,

(|f |Qj
)p′−1

∫
Qj

w1−p′dx ≤ ‖w‖p′−1
A1

(|f |Qj
)p′−1

∫
Qj

(Mw)1−p′dx

≤ c‖w‖p′−1
A1

|Qj|

(
|f |Q∗

j

wQ∗
j

)p′−1

≤ c(λ‖w‖A1)
p′−1|Qj|,

which gives∑
j

(|f |Qj
)p′
∫

Qj

w1−p′dx ≤ c(λ‖w‖A1)
p′−1

∑
j

|f |Qj
|Qj|

≤ c(λ‖w‖A1)
p′−1‖f‖L1 .

Combining the previous estimates, we obtain

I2 ≤
cpp′‖w‖2p′−1

A1

λ
‖f‖L1 .

Choose now p′ = 1 + 1
log(e+‖w‖A1

)
. Then we get

I2 ≤
c‖w‖A1 log(e + ‖w‖A1)

λ
‖f‖L1 .

This, along with estimates for I1 and for w(Ωλ), completes the proof.
�

4. Concluding remarks

Remark 4.1. Following (2.1), we extend the definition of Mk to frac-
tional order, setting for any α ≥ 1,

Mαf(x) = sup
Q3x

1

|Q|

∫
Q

|f | log
( |f |
|f |Q

+ e
)α−1

dy.

It was shown in [16] that M2w in Theorem 1.1 can be replaced by
M1+εw for any ε > 0 (with corresponding constant depending on ε).

Similarly, one can show that M3w in Theorem 1.2 can be replaced
by M2+εw for any ε > 0.
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Remark 4.2. It is easy to see that actually in Theorem 1.2 we proved
a stronger inequality, namely,

sup
λ>0

λMw

{
x ∈ Rn :

|Tf(x)|
M3w

> λ

}
≤ c

∫
Rn

|f | dx.

This yields an additional indication that Theorem 1.2 should be true
with M2w instead of M3w.

Remark 4.3. Combining ideas used in the proving Theorem 1.4 with
some estimates obtained in [16], one can show that Theorem 1.2 can be
improved by replacing M3w by a smaller weight (M3w)1−εwε for any
0 < ε < 1/2. We emphasize, however, that a more principal question
of interest if M3w can be replaced by M2w or simply by Mw.
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