Two Weighted Norm Inequalities for
Riesz Potentials and Uniform
LP—-Weighted Sobolev Inequalities

CARLOS PEREZ

0. Introduction. Let —A + V be the time independent Schrédinger operator
in R™. S. Chanillo and E. Sawyer have proved (see [C—S]) that this operator has
“the strong unique continuation property” if the potential V satisfies

1/t
1
lim supr? | —— V(z)|' dz =0
r—0zeK (lB'r(x)l B,-(:z:)l ()I

for some t > ﬂg—l and for any compact set K. For a general introduction, further

references, and historical comments on unique continuation and related questions
we refer to [K].

A main ingredient in the proof of this result is the following weighted in-
equality:

/ L(f)()*u(z) dz < / f(@)?u(z) " de, f>0,

where I, is the Riesz potential operator defined for locally integrable functions
by

fy)

|z —y|" ™

I(f)(z) = dy, 0<a<n.

Chanillo and Sawyer have shown that if the weight « is in the Muckenhoupt
class Ay (see [GC-RF], Ch. 4) and satisfies

1/t
1
0.2) | — u(y)t dy <cC, z€R", r>0
( <|Br<x>| By )
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for some ¢ > 1, then (0.1) holds. This condition was introduced by Feferman
and Phong ([F]) in their study of the eigenvalues of —A+ V.

One of the consequences of our main result (Theorem 1.2) is that if the
weight u belongs to the largest class of Muckenhoupt, i.e. to the Ay, class, then
(0.1) holds if and only if u satisfies

1

0.3 r®—
(0:3) B @) .o

u(y)dy < C, z€R™, r>0.

By Hoélder’s inequality, this condition is weaker than (0.2).

We apply our main theorem to obtain uniform LP-weighted Sobolev in-
equalities (see [C-R] for related results). We then relate these to a question of
C. Fefferman [F]. He asks for conditions on the weight u which imply

(0.4) / | (@)Pu(z) dz < C f IV (@) de, fecs,

for some constant C'. By taking the Fourier transform, (0.4) is easily seen to be
equivalent to

/u1 (@) 2u(z x<C/|f(m)|2d:c, fece.

Corollary 1.6 states that if we start with u € Ay, then (0.4) holds if and only if

2 1 n
T B0 Br(w)u(y)dygc, ze R, r>0.
This result was obtained in [C-W-W], and also independently by E. Sawyer,
using different arguments.

We would like to remark that Theorem 1.2 follows from an analogous re-
sult, Theorem 1.1, for the fractional maximal operator M, , which was already
obtained in [S1]. The approach here is somewhat simpler, and combines some
ideas from [S3] and [J] (see also [GC-RF], Ch. 4), and can be extended to more
general measures (see Remark 2 in Section 2).

We also note that the results we establish in this paper have analogues for
more general convolution operators whose kernels are nonnegative and satisfy
certain weak size conditions, cf. [P] and [J-P-W].

The paper is organized as follows. In the first section we state our main
results and the conclusions that follow from them. In the second section we
give the proof of our main theorem. Also, we outline how the result can be
sharpened. In the third and last section we provide explicit examples of weights
in the classes that come out in our results.
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1. Statement of results and consequences. We shall start by recalling some
definitions and notations.

The letter C will be used to denote a positive constant, not necessarily the
same at each occurrence. @) will always be a cibe with sides parallel to the axes.
AQ denotes the cube concentric with ¢ and having sildelength A times that of
Q.

For 0 < a < n we let I, be the Riesz potential operator defined for locally
integrable functions by

e = [ L.

Also, for 0 < a < n, we let M, be the fractional maximal operator defined
for locally integrable functions f in R™ by

1
Mo (f)(z) = :ESW/QV(ZI)'@‘

M2 denotes the dyadic fractional maximal operator.

A weight u is a non-negative, locally integrable function. u(A) stands for
f A u(y) dy.

We adopt the convention to write T : LP(du) — LP(dv) if T is bounded
from LP(dp) to LP(dv), |Tf||Le(av) < cllfllLe(ap) -

We say that the weight u delongs to the Ao class of Muckenhoupt if it
satisfies the following property:

there are constants ¢, 6 > 0 so that, for each
cube @

(1.1) uwE) (@)‘5

c
w@) ~ \Q
whenever F is a measurable subset of Q.

We also denote by A2 the dyadic analog. for more information about weights
see [GC-RF).
Our first main result is:
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Theorem 1.1. Letl < p < ¢ < oo and let (u,v) be a couple of weights such
that o = v=1/®=1) belongs to AL . Then the following statements are equivalent:

(1.2) M2 LP(v) = LY(u);
(1.3) there exists K > 0 such that for all dyadic cubes Q

(gere) w@r/at@r= <.

In [M-W], Muckenhoupt and Wheeded show that if 0 < p < 00 and u € Au,
then

/ Lo f (2)Pu(z) dz = / Mo f(2)Pu(z) dz, fecse.
See also [Sc], Theorem 2.1. By a standard argument we get
/ Lo f (2)Pul(z) do = / MEf(z)Pu(z) d, fecs.

This, together with Theorem 1.1, gives our main result.

Theorem 1.2. Let1l <p < q < oo and let (u,v) be a couple opf weights

such that u € Ao, and 0 = v~1/P=1) € AL | Then the following statements are
equivalent:

(1.4) I, : LP(v) — L(u);
(1.5) there exists K > 0 so that, for all dyadic cubes Q

(e w@ieotar < x.

As a consequence we obtain the following corollary which contains Chanillo’s
and Sawyer’s result mentioned in the introduction.

Corollary 1.3. Let u be a weight such that u € Ay, . Then the following
statements are equivalent:

(1.6) I, : LZ(%) — L*(u);
(1.7) there exists K > 0 so that, for all dyadic cubes Q
1
I—Q“Il_—a/nu(Q) <K.

Clearly, (1.7) is equivalent to (0.3).

The next corollary gives the weighted Sobolev inequalities also mentioned
above.
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Corollary 1.4. Let (u,v) be a couple of weights such that u € Ay, and

o =v"1/®-1) € Ad . Then for 1 < p < oo and n > 2 the following statements
are equivalent:

(1.8) there exists a constant C so that
lgllLew) < CllAGllLr(v);
(1.9) there exists K > 0 so that, for all dyadic cubes Q

|QI*#/™ (T%T/Q“(y) dy) <|—22—|/Qv(y)'l/(”‘” dy)p_1 <K.

This follows from Theorem 1.1 by using that I is the inverse operator of —A;
see [St], Ch. 4.

We single out the cases and v = u™! and v = 1 for p = 2, since they are
especially interesting.

Corollary 1.5. Let u be a weight such that u € A, and let n > 2. Then
the following statements are equivalent:

(1.10) there exists C so that
Ifllz2w) < CllAFl21/w) fecs,
(1.11) there exists K > 0 so that, for all dyadic cubes Q

|Q|2/"|—§2—| /Q u(y)dy < K.

Corollary 1.6. Let u be a weight such that u € A, and let n > 1. Then
the following statements are equivalent:

(1.12) there exists C so that
|lf||L2(u) < C“Vf”L27 f € C(;)oa
(1.13) there exists K > 0 so that, for all dyadic cubes Q

@ [ uwdy < k.
1Ql Jg
Indeed, by taking Fourier transform we see that (1.12) is equivalent to
[ Ims@Pu@ s < ¢ [ 1@, fecs,

and we can apply Theorem 1.2 witho=1€ A, p=2anda=1.
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2. Proof of Theorem 1.1. (1.3) follows easily from (1.2) by testing with
f=v"/®"Dy4, and using the definition of M, .

To prove the converse, let us fix a constant a > 2. For each integer k we
define the sets Sy and Dy by

Sk ={z € R": a¥ < MZ(f)(z) < aF*'}.

Dy={zeR": ok < Mg(f)(x)}

Let {Qx,;} denote the maximal non-overlapping dyadic cubes satisfying

: /

k

a” < - f(y)dy
|Qk,j|1 a/n Qk,j

so that
Dy, = JQk,;-
J

Notice that if Q;c,j is the “father” cube of Qg ;, i.e., the unique dyadic cube
containing Q ;, we have

1
R / f(y) dy
le,jll—a/n Qk,j

S dy < 2"a*.
’Q ,,Il““/"/ f(y)dy

We also notice that Dy41 C Dy . Hence, by setting
Ek; = Qk,j — Qk,j N D41,
we obtain a disjoint family so that Dy = (J Ey ;. We claim that
(2.1) |Qk,5| < B|Ek;,
where 8 > 1 depends only on the dimension n.

To prove the claim we estimate the portion of Q ; that is covered by Qg+1.
We have

|QN Dp4a| _ ) |Qk,5 0 Qrr1,i]
| Q.51 Q.
Z |Qr+1,4]
|Qk,

Qi+1,iCQk,j



Weighted Norm Inegualities 37

I
< | +k+z1 fly)dy
Qi |kl a Qe
1 |Qugl*™ /
< ¥ f(y)dy
leJI aFt1 Qk,iNYiQk+1,i
271
<—x1
a

by our choice of a. This estimate yields

IEkJ| 2" -1
dls1-2 —g159
Qg " T =P

and the claim follows.
Now, we can write

(MEFYP =3 xs (MEF)P < aP) " a*Pxp,
k k

D
a”Z( l—a/n/ £( y)dy> XQx;
Qi
= a”Zhi’,j»
k,j
where

1
hk,'=———_'—'/ fW) dyxq,, -
J |Qk,j|1 a/n Q. kg

Since LP(u), 1 < p < o0, is a Banach space we have the following chain of
inequalities:

r/q
([Mzn@tis) = 1M lnc

< C||Zhlf,j”m/l’(u)
k,j

< CZ ”hlzc),j“L‘l/P(u)
k,j

scz ( / hij (@ )"u(w)dw)p/q <
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q
Z(wk o / fy)dy) u(Qi 5P/
k

u \P/q
;(le e / f(y)dy) (Qk)

Rewriting this inequality and using (1.3) we get

p
< CZ( T a/n) o(Qr)” (@)

I/\

|/\

(HQl_k,-) Qk'jf(y)a(y)'la(y) dy) o(Qk.5)

1 —1 ’ )
< KC% (m /Q N fWo(y) " a(y) dy) o (Qk,5)-

Now, since o € AZ, it follows from our claim above that

(2.3) o(Qk,;) < po(Ex,;)

for each k,j and for some p > 0, where {Ej ;} is a disjoint family. Hence we can
continue our chain of inequalities with

1 P
pC:L; (m /Q g fWeo(y) taly) dy) o(Ek.;)
sC ME(fo~ 1) (z)Po(z)d

<c / M (fo="Y(@)Po(x) dz

<c / f(@)Po(z) da,

where M ¢ stands for the weighted dyadic Hardy-Littlewood maximal operator,
that is,
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MEf(x) =2255%Q5/Q|f(y)la(y) dy.

where the supremum is taken over the dyadic cubes. Here we have used the

well-known fact that, for any regular positive measure  and any p, 1 < p < o0,
it holds

d.
Mg : TP () — LP(1).
The proof of the theorem is complete. O

Remark 1. If we want to extend (1.2) to M, , with 0 € A and Condition
(1.3) satisfied for all cubes, we may argue as follows. We have

1

2.4 M2 Com
( ) a f(fl') < IQZ"‘” (0)' Q,k42(0)

(r—toMZom)f(x)dt, z € R",
where 1 g(x) = g(z —t), Q,(0) is the cube centered at the origin with sidelength
r and MQ?’c is defined as M,, with the supremum taken only over cubes with
sidelength less than 2¥. This inequality, for the Hardy-Littlewood maximal
oeprator, was obtained by Fefferman and Stein (see [GC-RF], p. 431). For M,
it is due to Sawyer (see [Sa]). Now, since the class A, and the condition (1.3)
are invariant under translation, we can easily use Theorem 1.1 to deduce that
T_toM2o7; is bounded from LP(v) to LI(u), uniformly in t € R™. Finally,
(2.4), Minkowski’s integral inequality and the monotone convergence theorem
yield the boundedness of M,,.

We may also supply a different proof which is better adapted to the setting of
the spaces of homogeneous type. Indeed, by using a straightforward modification
of the classical Calderén—-Zygmund decomposition, related to the operator M, ,
we can obtain the following. Let E; = {:v € R": M, f(z) > t} for each t > 0.
There is a family of non-overlapping maximal dyadic cubes {Q;}, which satisfy

(2.5) Eysc|J3Q;
J
and
(2.6) < —1——/ |7(v)| dy
4" Qs Jg,
<t
< o

for each integer j. A similar argument as in (2.2) would yield (2.1) and then
(2.3). The proof of the theorem can now be completed in (essentially) the same
way as the proof of Theorem 1.1. we note that if we assume that u is doubling
and o is only in A% , then this proof shows that M, : LP(v) — L4(u) is equivalent
to the condition (1.3) restricted to all dyadic cubes Q.
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Remark 2. Theorem 1.1 can be sharpened as follows. We say that a weight
w satisfies the Bg condition with 0 < 8 < oo if

©(@) _ ( Q'] )"
w(@) ~ "\l
for all pairs of cubes @' C Q. The dyadic case B[} is defined similarly. We note

that the Lebesgue measure satisfies the B; condition.
We also say that the weight o is in Ao (w), for a weight w, if there exist C,

€ > 0 with
o(E) w(E)\*
<)

whenever F is a subset of a cube Q. Notice that if w = 1, we recover A,,. Now,
let us suppose that 0 € A% (w) in Theorem 1.1 with w satisfying the Bi_a/n
condition (the Newtonian potential is in By_3/,). Then, a similar argument as

in (2.2), with w instead of the Lebesgue measure, yields (2.1) for w. Then (2.3)
holds and the rest of the proof goes through without change.

3. Some examples of nice weights. From Theorem 1.1 and Theorem 1.2 it
is clear that it is interesting to get a better understanding of the class of weights

Apo = {(u,v) L |Q|er/m (ﬁ/@u(w) dx) (l—;—l/Qv(x)-l/(p—l) dx)"_l

< C for every Q}

and, more specifically, of the smaller classes

Bpoa=ApaN{v:v /PN e}

and
Cpoa=Bpan{u:u€ As}.

We also define the class

a/n
Dy,=qu€As: i /u(x)da:SCfor every @ ; ,
Rl Jo

which is the one that is relevant in Corollary 1.2.

In particular, we would like to have explicit examples of couples of weights
in these classes. We shall show that there is in fact a lot of them. To this end,
we use the following extension of the Coifman-Rochberg theorem (see [GC-RF],
p. 158), which was already observed in [S2], p. 113.
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Lemma 3.1. Let0 < a<n and0<+v < 2. If p is a positive Borel

measure with Myp(z) < oo (a.e. x € R™), then the functwn ( O“u(:c)) is an
Ay weight with a constant depending on vy, o, and n.

In the following discussion we assume that 0 < a < n, and that 1 < p < co.
Also, p’ denotes the dual of p, % + 1% = 1. The weights u and v may be assumed

in a “nice” class if necessary, o stands for o = v=1/(=1)
Id we take a weight v, and we assume that ap’ < n, then the couple of
weights ((Mopo)!™P,v) is in the Ay 4 class. Indeed,

aro (i ) Gy L)

/ 1-p -1
ap/ni IQlap /n ( )p —
< QP /Q (——IQl /Q owdy) o1 / o(w)dz) =1.

The restriction ap’ < n ensures that My, o is finite almost everywhere if o is in
some L? class. Furthermore, if o is assumed to be in A, then ((Map:a)l"’, v) €
Bp,«. Also, we notice that by lemma 3.1, Myp0 is in A;, and this implies that
(Mapo)'™P is in Ay C A Hence (May0)!7P,v) € Cpq

Suppose we start with a weight u and assume ap < n. If we take s so that
22 < 5 <1, then for 3 = 22

L (|Q| / u(@) d‘”) (I—éz_l /Q Mpgu(z)~*/ @D dx)”“l
o) 5 ] )
- (i fyuerw)

If s = 1 we get that (u,Mgu) € Apo. We point out that this result can be
obtained directly from the following inequality due to Sawyer (see, for instance,

[A]):
/ Mo f(z)Pu() dz < C / (@) Mapu(z) da.

On the other hand, if s < 1, we also have that (u, (Mgu)®v) € Ap , if we assume
u to be bounded.
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Now, by Lemma 1.1, Mgu € A; and, consequently, (Mgu)® € A;. This
means that (Mupu)~*/?~Y € Ay C Ay, and, therefore, (u, (Mgu)®) € Byq.
Furthermore, if u € Aoo, then (u, (Mpu)®) € Cpq-

So far we have always had a restriction on the indices o, p and n. In the first
case we needed ap’ < n, and in the second one ap < n. With the next example
we get rid of these restrlctlons Let us take a number s so that — ap <8< alp.
Then we claim that (M(u™!)7!, Mg(u®)}/*) is in By, where 8 = aps < n,

and M is the usual Hardy-Littlewood maximal operator. Indeed, as above we
get

o (ﬁ /QM(“—I)(‘”)_I dm) (llel [ ey o dw) B
<1097 (g [y ) (lngfn IR0 dy)‘”s
= lartre (Téﬂ/Qu(x)'l dx)—l <|Q| / u(z)* d:v) v <1.

Here we used that, for any s > 0, we have

1< (l_CIQ_I ]Q u(w)'lda;) <|—22—| /Q u(:c)“’dw)l/s,

which follows from Hoélder’s inequality.
Notice that by the choice of s we have that 8 < n and that % < n_ﬁﬁ The

last inequality implies that Mg(u’)l/ % is an A; weight by Lemma 3.1. Hence,
(M(u=1)=1, Mg(u®)1/*) is in By q.

We finally study the class D, . Let us pick v € A; N L7 for some 1 < g < o0
with M,v finite almost everywhere (there are many such v’s). Using Lemma
1.1 with v = 1 we see that M,v is an A; weight and, hence, u = v(Myv)!~2 =
v(Muav)™! € Ay C A . Furthermore,

a/n afn a/n -1
S yeras < S [Lvee )(IQIII /. "’(y)dy> o

=1.

Consequently, we find that u € D,,.
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Remark. We want to point out that by using similar arguments as above,
it is possible to prove that the class

where

Bp,g,a = Ap,g,aN {v L~ /1) ¢ Aoo},

Apga = {(U,'U) : <W)pu(Q)p/qa(Q)p_l < K for each Q}

is not empty for the case p # q.

(A]

[C-W-W]

(C-R]
[C-S]
(F]

[GC-RF]

9]

[J-P-W]

(K]

M-W]
(P]
[Sal]

[Sa2]
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