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Abstract. In this paper it is proved that the pure braided Thompson’s group BF
admits a bi-order, analog to the bi-order of the pure braid groups.

Introduction

Braid groups have been a constant object of study all along the 20th century, and have
exerted a strong fascination on algebraists since their inception, due to their rich and in-
teresting properties and useful applications to other branches of mathematics. Literature
about braid groups is abundant; we will mention only a small sample of it, namely, the
seminal work of Artin [1], a more modern text [11], and a recent survey [3]. In particular,
the properties which will be of interest here are their orderings and bi-orderings, see [8],
[10] and [12] for details. Orderings of groups are also a classical subject of study, related,
for instance, to the existence of zero divisors in the group ring.

Thompson’s groups have been studied since the late 1960s, initially as examples of infinite,
finitely presented simple groups —V being the first such a group known—, but in the
subsequent years they showed other, equally striking properties, for instance, F was the
first torsion-free FP∞ group, see [6]. For details and many proofs of the properties of
Thompson’s groups see the excellent introduction in [7].

Recently and independently, Brin [5] and Dehornoy [9] have introduced braided versions of
Thompson’s groups, which show a mixture of properties of both. They are a very natural
extension of Thompson’s group V , where the permutations, characteristic in V , have been
replaced by braids. Hence, the braided Thompson’s group BV (in Brin’s notation) is a
torsion-free version of V , sharing many of its properties, for instance, finite presentation,
with a presentation very similar to that of V . One can think of the braided Thompson’s
groups as “Artin” versions of Thompson’s groups V and F , very much in the same way
as braid groups are the corresponding Artin groups for the permutation groups.

The main concern of this paper are some properties that braided Thompson’s groups
inherit from braid groups, namely, orderings and bi-orderings. It is a well-known fact that
braid groups are orderable but not bi-orderable, and pure braid groups are bi-orderable.
The same thing happens in the braided Thompson’s groups: the braided version of V ,
analog to B∞, is orderable but not bi-orderable, and its pure subgroup BF is bi-orderable,
as it models on P∞. This last statement is the main result of this paper, Theorem 3.3.
On the way to proving this result, we study a somewhat non-standard version of the pure
braid group on infinitely many strands, where there are n different embeddings of Pn

into Pn+1, each one defined by splitting a given strand in two. The direct limit obtained
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this way is an infinitely generated group, already appeared in [4], and which is also bi-
orderable, a fact whose proof is the crucial ingredient of the proof of the main result,
and takes up the largest and most technical part of Section 3. The previous sections of
the paper are dedicated to set up the table for the main result, the first section with an
introduction to the braided Thompson’s groups, and the second one about orderings and
the ordered groups that will be involved in the construction of the bi-order of BF .

The first author would like to acknowledge the great hospitality of the Departamento de
Álgebra of the Universidad de Sevilla, during a visit to which this work was developed.

1. The braided Thompson’s groups

Thompson’s group F is the group of piecewise-linear, orientation-preserving homeomor-
phisms of the interval [0, 1] whose breakpoints are dyadic integers, and whose slopes are
powers of 2. An element of F can be understood as a map between two subdivisions of
the unit interval, subdivisions into intervals of lengths 1/2n with dyadic endpoints, where
the subintervals are mapped linearly in order-preserving fashion. See [7] for an excellent
introduction to Thompson’s groups and proofs of their basic properties.

Such a subdivision of the unit interval is in correspondence with a binary tree, in the
usual way. Hence, an element of F can be represented as a pair of binary trees (T−, T+),
with the same number of leaves, as is shown in Figure 1. An element admits more than
one representation as a pair of binary trees by further subdividing an interval and its
target, but each element admits a unique reduced element whose subdivision is optimal.
See again [7] for details.

Figure 1. An element of F , and its reduced pair of binary trees (T−, T+).

Thompson’s group V is represented in a similar way by subdivisions of the interval, but
now the subintervals are still mapped linearly to each other, but they can be permuted,
thus not necessarily preserving their order. So an element of V is represented as a triple
(T−, π, T+), where the binary trees T− and T+ have n leaves, and π is a permutation in
Sn which indicates how the leaves are mapped to each other. See [7] and Figure 2 to
understand this interpretation of elements of V .

The group V is infinite, simple and finitely presented, being the first such group historically
known. Observe that fixing a tree T , and varying π, the elements (T, π, T ) form a subgroup
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Figure 2. An element of V , and its pair of binary trees (T−, T+). The
labels of the leaves describe the permutation π.

of V isomorphic to Sn. Hence, V has torsion, and indeed, it contains all finite groups as
subgroups. As a contrast, F is torsion-free.

We will denote Artin’s braid group in n strands by Bn. It is the fundamental group of the
configuration space of n unordered points in the plane. See [2] for details. Its elements
are usually visualized as a set of n disjoint strands in 3-space, as in the left hand side of
Figure 3, and it admits the following well-known presentation [1]:

(1) Bn =

〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi if |i− j| > 1,
σiσjσi = σjσiσj if |i− j| = 1.

〉
.

Let

ρn : Bn −→ Sn

be the homomorphism from the braid group onto the symmetric group, which maps a
braid to the permutation it induces on the base points. The kernel of ρn is Pn, the
subgroup of pure braids in n strands.

Figure 3. An element of B5 and an element of BV .
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The braided group BV (which means “braided V ”) is a torsion-free version of V using
braids instead of permutations. Elements of BV are seen as triples (T−, b, T+), where
the trees T− and T+ have n leaves, and b ∈ Bn is a braid in n strands. The braid
is understood as joining the leaves of T− with those of T+, see the right hand side of
Figure 3 for an example. An element of BV , as it happens in other Thompson’s groups,
admits many representatives, by adding carets to the trees and splitting the corresponding
strands. Hence, to multiply two elements in BV we only need to subdivide the trees
until we find representatives with matching trees: given two elements (T−, b, T+) and
(T ′
−, b′, T ′

+), we construct, by adding carets to the trees and splitting strands into parallel

ones, two representatives (T−, b, T+) and (T
′
−, b

′
, T

′
+) such that T+ = T

′
−, and then the

product is the triple (T−, bb
′
, T

′
+), where the product of the two braids takes place in the

corresponding braid group, with as many strands as leaves in the trees. Observe that

since T+ = T
′
−, the two braids have the same number of strands. For details on BV , see

[5], [9] and [4].

As it happens in Bn, forgetting the braid and focusing on the corresponding permutation
gives a homomorphism

ρ̃ : BV −→ V

such that

ρ̃(T−, b, T+) = (T−, ρ(b), T+).

Notice that the element in Figure 3 maps to the element in Figure 2.

Finally, the group BF is the subgroup of BV of those elements (T−, p, T+) whose braid
is pure. See an example in the left hand side of Figure 4. Observe that if p is pure, then
ρ(p) is the identity permutation, so then (T−, ρ(p), T+) is actually an element of F inside
V . Then, it is clear that BF = ρ̃−1(F ), hence the name BF (“braided F”). For details
on BF , in particular for a finite presentation, see [4].

Figure 4. An element x ∈ BF , and an element y ∈ PBV represented in
two different ways.
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A group which will be of great relevance later is the group PBV = ker ρ̃. Clearly, since
(T−, p, T+) is in PBV if ρ̃(T−, p, T+) = 1, we must have that p is a pure braid, and also
T− = T+. Then, PBV is the subgroup of BV (actually inside BF ) of all those elements
where the two trees are the same and the braid is pure. See an example in Figure 4.
Observe that if an element has a representative where the two trees are the same and the
braid is pure, then all representatives satisfy these two conditions.

Given a tree T with n leaves, the subgroup of PBV of the elements represented by
(T, p, T ), varying p, is a group isomorphic to Pn. We will denote this particular copy of
Pn inside PBV by Pn,T , and there are as many such subgroups isomorphic to Pn inside
PBV as there are trees with n leaves, i.e., the Catalan number

Cat(n− 1) =
1

n

(
2n− 2

n− 1

)
.

If we now consider the tree T ′ obtained from T by attaching a caret to the i-th leaf
of T , we get another representative for (T, p, T ), namely, (T ′, p′, T ′), where p′ has been
obtained from p by splitting the i-th strand in two parallel ones (see examples in Figure 4
and Figure 5). We have then a one-to-one homomorphism

αn,T,i : Pn,T −→ Pn+1,T ′

obtained via this process. The group Pn,T can be identified with the subgroup of Pn+1,T ′

of those elements whose i-th and (i + 1)-st strands are parallel. Observe that both an
element of Pn,T and its image under αn,T,i represent the same element in PBV . With
these subgroups and maps, the following proposition is straightforward.

Figure 5. An example of an element in P3,T and its image under α3,T,2,
by splitting the second strand.

Proposition 1.1. The groups Pn,T , for n > 1 and T a tree with n leaves, together with
the maps αn,T,i, for 1 ≤ i ≤ n, form a direct system of groups and homomorphisms, whose
direct limit is isomorphic to PBV . That is,

PBV = lim−→
T

Pn,T .
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In the next section we will recall the notion of orderable groups. We will also recall that
the pure braid group Pn is bi-orderable, and we will review the bi-order for the Thompson
group F . Showing that there is a bi-order of Pn which is consistent with the above direct
system, we will be able to show that PBV is bi-orderable. This fact, together with the
bi-order of F , will allow us to show that BF is also bi-orderable.

2. Orderings

2.1. Concepts and basic properties. A group G is said to be left-orderable if there
exists a total order on its elements which is invariant under left multiplication, that is,
a < b implies ca < cb for every a, b, c ∈ G (see [14]). Such an order is determined by the
set of positive elements, P = {x ∈ G; 1 < x}, since a < b if and only if 1 < a−1b, in other
words, if a−1b ∈ P .

Notice that every subset P ∈ G determines a binary relation on the elements of G in the
above way (a < b ⇔ a−1b ∈ P ). This relation is clearly invariant under left-multiplication.
Moreover, the relation is transitive if and only if P is a semigroup, and it is antisymmetric
and total if and only if G = P t{1}tP−1. Hence, a group G is left-orderable if and only
if it contains a subsemigroup P ⊂ G such that G = P t {1} t P−1.

A very simple example of left-orderable group is Zn, with the lexicographical order. A
less obvious example is Bn [8, 10]. Notice that, in a left-orderable group, all powers of a
positive element are positive, hence left-orderable groups are torsion-free. This shows in
particular that finite groups, as well as Thompson’s group V , are not left-orderable.

If a group is left-orderable, one can use the monoid P to define a right-order ≺, that is a
total order of its elements which is invariant under right multiplication: we just say that
a ≺ b if b a−1 ∈ P . Hence, a group is left-orderable if and only if it is right-orderable, but
the two orderings do not necessarily coincide.

A group is said to be bi-orderable if it admits a left-order which is also a right-order.
Notice that a group G is bi-orderable if and only if it admits a subsemigroup P such
that G = P t {1} t P−1 (thus G is left-orderable), and furthermore P is closed under
conjugation in G (thus the left-order is also a right-order). The group Zn is hence bi-
orderable, with the lexicographical order. The free group Fn of rank n is also bi-orderable,
as we shall see later.

Notice that, in a bi-orderable group, every conjugate of a positive element is positive.
Since products of positive elements are positive, this implies that a bi-orderable group
cannot have generalized torsion, which means that the product of nontrivial conjugate
elements can never be trivial. The braid group Bn (n > 2) is an example of a left-
orderable group which is not bi-orderable, since it has generalized torsion. Namely, in Bn

one has σ1σ
−1
2 · (σ1σ2σ1)

−1σ1σ
−1
2 (σ1σ2σ1) = 1. But Bn contains a finite index subgroup

which is bi-orderable, namely the pure braid group Pn. Later in this section we will recall
the explicit bi-order that can be defined in Pn.

There is a well-known result (see for instance [12]) that shows how left and bi-orderability
behave under extensions.

Proposition 2.1. Consider the following exact sequence of groups:

1 −→ A
α−→ B

β−→ C −→ 1.
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Suppose that A and C are left-orderable, and let PA and PC be their corresponding semi-
groups of positive elements. Then B is also left-orderable, an explicit left-order being
defined by the semigroup α(PA) ∪ β−1(PC).

Moreover, suppose that PA and PC define bi-orders on A and C respectively. Suppose also
that the above sequence splits, so B = C nA. If the action of C on A preserves the order
in A (i.e. preserves PA), then B is bi-orderable, an explicit bi-order being defined by the
semigroup α(PA) ∪ β−1(PC).

The above left-order (say bi-order) of B can be explained as follows: An element b ∈ B
is positive if and only if β(b) is positive in C, or β(b) = 1 and b is positive in A. In
the case of the semi-direct product, we can just say that the order in B = C n A is the
lexicographical order.

2.2. Explicit bi-orders in some groups. We will now explain some specific bi-orders
in three groups which are important for our purposes. They are Thompson’s group F ,
the free group of rank n, Fn, and the pure braid group on n strands Pn. The three groups
are already known to be bi-orderable, and we shall explain the known bi-orders of Fn and
Pn, together with a review of the ordering of F .

The bi-order in F is defined as follows. Recall that an element f ∈ F is a piecewise-linear,
orientation preserving homeomorphism of the interval [0, 1] and all slopes are powers of 2.
An element is then positive if its first slope different from 1 is a positive power of 2. It is
not difficult to prove that it is a bi-order, see [9] for details and other descriptions of this
bi-order. It is important to realize that this definition of positive element is different from
a commonly used notion of positive word in F , which is given by the appearance of only
positive generators (no inverses) in the normal form for the element. In this paper, the
word “positive”, referring to elements of F , will always make reference to the definition
above, that is, their first nontrivial slope being a positive power of 2.

We will now recall the usual bi-order of the free group Fn. A detailed proof can be
found in [12]. It is based on the so called Magnus expansion of the free group [13], so
it is usually called the Magnus ordering. Let Fn be the free group of rank n, freely
generated by x1, . . . , xn. Let Z[[X]] = Z[[X1, . . . , Xn]] be the ring of formal series on n
non-commutative variables X1, . . . , Xn, with coefficients in Z. The Magnus expansion is
the homomorphism ϕ : Fn −→ Z[[X]] defined by ϕ(xi) = 1 + Xi, for i = 1, . . . , n. Notice
that one then has ϕ(x−1

i ) = 1−Xi +X2
i −X3

i + · · · . It is shown in [13] that ϕ is injective.
The elements in Im(ϕ) are formal series f(X) such that f(0) = 1.

Notice that the set of monomials of Z[[X]] can be totally ordered: First, we order the
variables by X1 < X2 < · · · < Xn. Then, given two monomials, the smallest one will
be the one of smallest degree, or in case their degrees coincide, the smallest one in lex-
icographical order. One can then say that a nontrivial element x ∈ Fn is positive if the
coefficient of the smallest nontrivial term of ϕ(x)− 1 is positive. This defines a set P of
positive elements in Fn which yields a bi-order of Fn.

There is an important property of the Magnus expansion that we will need later. Define
the map δ : Fn → Z[[X]] to be the map (but not homomorphism) that sends the trivial
element to 0, and every nontrivial x ∈ Fn to the nontrivial homogeneous form of smallest
degree in ϕ(x) − 1. The form δ(x) is called the deviation of x. Notice that x is positive
if and only if the coefficient of the smallest term in δ(x) is positive. Consider now the
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lower central series of Fn, Fn = G1 ⊃ G2 ⊃ G3 ⊃ · · · . It is shown in [13] that δ(x) has
degree d if and only if x ∈ Gd and x /∈ Gd+1. Moreover, if we denote Z[[X]]d the set of
homogeneous forms of degree d in Z[[X]], one has:

Theorem 2.2. [13] For every d > 0, the map δ determines a one-to-one homomorphism
from the abelian group Gd/Gd+1, under group multiplication, to Z[[X]]d, under addition.

We end this section with a exposition of a bi-order of the pure braid group Pn, given
in [12]. It comes from the above bi-orders of free groups, together with Proposition 2.1,
since there is a well-known split exact sequence of groups:

1 −→ Fn−1 −→ Pn
η−→ Pn−1 −→ 1,

where for every braid p ∈ Pn, η(p) is the braid obtained from p by deleting its first
strand. Indeed, if all strands except the first one are trivial in a pure braid p, these trivial
strands can be considered as being punctures of the plane, and the first strand of p can be
considered as describing a loop in the (n− 1)-punctured plane. Hence ker η is isomorphic
to the fundamental group of the (n− 1)-punctured plane, which is a free group on n− 1
generators. The above sequence clearly splits, by adding a strand to the left of a braid in
Pn−1, so Pn = Pn−1nFn−1, and the action of Pn−1 on Fn−1 preserves the Magnus ordering
of Fn−1 [12]. It follows by recurrence on n that Pn = (· · · ((F1nF2)nF3)n· · ·Fn−2)nFn−1,
and Pn is bi-orderable by Proposition 2.1, an explicit bi-order being the lexicographical
order in (· · · ((F1 n F2) n F3) n · · ·Fn−2) n Fn−1, using the Magnus ordering in each Fi.
This semidirect product decomposition is called the Artin combing of Pn.

It will be convenient to introduce a free generating set for each Fi in the above semidirect
product decomposition of Pn. Notice that each element in Fi corresponds to a loop made
by the strand n−i crossing the strands n−i+1, n−i+2, . . . , n. In this way, if we consider
the pure braid Ai,j in the left hand side of Figure 6, the group Fi is freely generated by
{An−i,j; j > n − i}. In the right hand side of Figure 6 we can see the Artin combing
of the pure braid p in Figure 4, which is p = (A3,5)(A

−1
2,3)(A

−1
1,3A

−1
1,2A1,3). Notice that the

strands 4 and 5 do not cross, so the first nontrivial factor in the decomposition of p is
A3,5, which is a positive element of F2. Hence p is a positive pure braid.

3. The main theorem

We have already described all the tools we need to show the main results of this paper,
namely that PBV and BF are bi-orderable. Recall that PBV = lim−→

T

Pn,T , that is, PBV

is the direct limit of an infinite number of copies of Pn (with distinct values of n). We
already know that each Pn has a bi-order, hence Pn,T is bi-orderable for every T , where
(T, p, T ) ∈ Pn,T is said to be positive if and only if p is a positive pure braid. But it is
not clear that this order is compatible with the above direct system. This is shown in the
following result, which we will use several times later.

Lemma 3.1. The element (T, p, T ) ∈ Pn,T is positive in Pn,T if and only if αn,T,i(T, p, T )
is positive in Pn+1,T ′, for any i = 1, . . . , n.

Proof. Since the order in Pn is determined by the Artin combing, we need to see how
the Artin combing of a pure braid p ∈ Pn is transformed when we apply αn,T,i to the
element (T, p, T ). Suppose that p = f1f2 · · · fn−1 is the Artin combing of p, where each
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Figure 6. The generators Ai,j, and the combing of the pure braid p.

fi ∈ Fi = 〈An−i,l; l > n− i〉, and suppose that fj is the first nontrivial factor in the above
decomposition, for some j ≥ 1. This means that the last j strands of p form a trivial
braid, while the last j + 1 strands do not. Now suppose we apply αn,T,i to (T, p, T ). The
pure braid p is then replaced by p′, which is obtained from p by doubling its i-th strand.
Let p′ = f ′1f

′
2 · · · f ′n be the Artin combing of p′ (notice that p′ has one more strand, hence

one more factor in its Artin combing). We will distinguish two cases.

If i ≤ n− j, the last j + 1 strands of p and p′ form the same braid, only that the indices
in p′ are shifted by one. Hence f ′1, . . . , f

′
j−1 are all trivial, and f ′j is obtained from fj by

replacing each An−j,k by An−j+1,k+1. Since fj and f ′j determine the same element of Fj,
their Magnus expansions coincide, hence p is positive if and only if p′ is positive. The
geometric meaning of this computation is that, in this case, after recombing the braid
obtained by splitting the i-th strand, the first factor of the combing is the same as before,
which is clear geometrically.

If i > n − j, we have doubled one of the last j strands of p, hence p′ is a braid whose
last j + 1 strands form a trivial braid, and then f ′1, . . . , f

′
j are all trivial. Moreover, f ′j+1

is obtained from fj by replacing each An−j,k either by An−j,k (if k < i), by An−j,k+1 (if
k > i), or by An−j,kAn−j,k+1 (if k = i). To simplify notation, if we denote An−j,k by xk,
then f ′j+1 is obtained from fj by the injective homomorphism

θi : Fn → Fn+1

given by

θi(xk) =





xk if k < i,
xkxk+1 if k = i,
xk+1 if k > i.

.

The problem is now reduced to its algebraic setting. The proof will be finished if we
show that f ∈ Fn is positive if and only if θi(f) ∈ Fn+1 is positive. We will do this



10 JOSÉ BURILLO AND JUAN GONZÁLEZ–MENESES

by looking at the deviations of f and θi(f). Let Fn = G1 ⊃ G2 ⊃ G3 ⊃ · · · and
Fn+1 = G′

1 ⊃ G′
2 ⊃ G′

3 ⊃ · · · be the lower central series of Fn and Fn+1, respectively.
Suppose that f ∈ Gd and f /∈ Gd+1, so its deviation δ(f) is a form of degree d in Z[[X]]. It
is well-known [13] that Gd/Gd+1 is generated by the elements [[· · · [[xi1 , xi2 ], xi3 ], · · · ], xid ],
where ik ∈ {1, . . . , n} for k = 1, . . . , d, and [a, b] = a−1b−1ab. We can assume i1 6= i2, since
otherwise the bracket is trivial. These generators are called simple commutators, and we
remark that they do not form a basis of the abelian group Gd/Gd+1, although they do
generate the group. As in [13], we will denote each of the above simple commutators by
[xi1 , xi2 . . . , xid ].

It is shown in [13] that given x, y ∈ Fn then, if δ(x)δ(y)−δ(y)δ(x) 6= 0, one has δ([x, y]) =
δ(x)δ(y)−δ(y)δ(x). Hence, since δ(xk) = Xk for k = 1, . . . , n, it follows that δ([xi1 , xi2 ]) =
Xi1Xi2 −Xi2Xi1 , provided i1 6= i2. We will show by induction on d that

δ([xi1 , . . . , xid ]) = δ([xi1 , . . . , xid−1
])Xid −Xidδ([xi1 , . . . , xid−1

]),

that no monomial in the above expression has the form Xd
j , and that the coefficient of

the smallest monomial is either 1 or −1. We know the claim is true for d = 2, so suppose
it is true for d− 1 and let M be the smallest monomial of δ([xi1 , . . . , xid−1

]). Notice that
the smallest monomial of δ([xi1 , . . . , xid−1

])Xid is MXid , and the smallest monomial of
Xidδ([xi1 , . . . , xid−1

]) is XidM . These two monomials cannot coincide, since this would

imply that M = Xd−1
id

, which is not true by induction hypothesis. Hence, either MXid or
XidM is the smallest monomial of δ([xi1 , . . . , xid−1

])Xid −Xidδ([xi1 , . . . , xid−1
]). Moreover,

its coefficient will be ±1, since the same happens for M in δ([xi1 , . . . , xid−1
]), by induction

hypothesis. This in particular implies that

δ([xi1 , . . . , xid−1
])Xid −Xidδ([xi1 , . . . , xid−1

]) 6= 0,

and since δ(xid) = Xid it follows that δ([xi1 , . . . , xid ]) is equal to the above expression,
as we wanted to show. It is also clear that no monomial of δ([xi1 , . . . , xid ]) can be a
power of a variable, since this would imply that the same happens for some monomial of
δ([xi1 , . . . , xid−1

]). We have then shown the claim.

A particular consequence of the above claim is that

(2) δ([xi1 , xi2 . . . , xid ]) =
∑
σ∈Σ

εσXiσ(1)
Xiσ(2)

· · ·Xiσ(d)
,

where Σ is a certain subset of the symmetric group Sd (which only depends on d) and
εσ = ±1. Hence, every monomial in δ([xi1 , xi2 . . . , xid ]) consists of a permutation of
the variables. Notice that if there are some repeated variables in Xi1 , . . . , Xid , then
some monomials in the above expression may coincide, so the coefficients in the form
δ([xi1 , xi2 . . . , xid ]) may be distinct from ±1.

Since we will compare simple commutators in Fn and in Fn+1, we will need the follow-
ing concepts. Given a simple commutator [xi1 , . . . , xid ] ∈ Fn and a simple commutator
[xj1 , . . . , xjd

] ∈ Fn+1, we will say that the latter is an i-successor of the former if it is
obtained from it by replacing each xk by xk+1, if k > i, and each xi by either xi or xi+1.
Notice that if m is the number of appearances of xi in [xi1 , . . . , xid ], then this commutator
has 2m i-successors. In the same way, if M is a monomial in the variables X1, . . . , Xn,
and M ′ is a monomial in the variables X1, . . . , Xn+1, we will say that M ′ is an i-successor
of M if it is obtained from it by replacing each Xk (k > i) by Xk+1 and each Xi by either
Xi or Xi+1. As above, if m is the number of appearances of Xi in M , then M has 2m

i-successors. Notice also that among those 2m i-successors, there is only one which does
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not involve the variable Xi+1, which we will call the minimal i-successor of M , since it is
the smallest one with respect to the total order on monomials defined above.

Let us define ξi : Z[[X1, . . . , Xn]] → Z[[X1, . . . , Xn+1]] to be the ring homomorphism given
by

ξi(Xk) =





Xk if k < i,
Xk + Xk+1 if k = i,
Xk+1 if k > i.

Observe that if M is a monomial in the variables X1, . . . , Xn, then ξi(M) is equal to the
sum of all i-successors of M .

Now suppose we apply θi to [xi1 , . . . , xid ]. This would replace each xik by either xik or
xikxik+1 or xik+1, depending wether ik is smaller than, equal to or greater than i, respec-
tively. It is shown in [13] that for every a1, . . . , ak−1, ak, a

′
k, ak+1, . . . , ad ∈ Fn+1 (actually

in any group), one has [a1, . . . , aka
′
k, . . . , ad] = [a1, . . . , ak, . . . , ad] [a1, . . . , a

′
k, . . . , ad] (mod

G′
d+1). Hence, if we define S to be the set of all i-successors of [xi1 , . . . , xid ], one has

θi([xi1 , . . . , xid ]) =
∏

[xj1
,...,xjd

]∈S
[xj1 , . . . , xjd

] (mod G′
d+1).

Now, if we apply δ to θi([xi1 , . . . , xid ]), Theorem 2.2 tells us that

(3) δ(θi([xi1 , . . . , xid ])) =
∑

[xj1
,...,xjd

]∈S
δ([xj1 , . . . , xjd

]).

Let us see that the above form can be rewritten as follows:

δ(θi([xi1 , . . . , xid ])) = ξi(δ([xi1 , . . . , xid ])).

Indeed, by (2) and (3) one has

δ(θi([xi1 , . . . , xid ])) =
∑

[xj1
,...,xjd

]∈S

(∑
σ∈Σ

εσXjσ(1)
Xjσ(2)

· · ·Xjσ(d)

)

=
∑
σ∈Σ

εσ


 ∑

[xj1
,...,xjd

]∈S
Xjσ(1)

Xjσ(2)
· · ·Xjσ(d)




=
∑
σ∈Σ

εσ ξi

(
Xiσ(1)

Xiσ(2)
· · ·Xiσ(d)

)

= ξi

(∑
σ∈Σ

εσ Xiσ(1)
Xiσ(2)

· · ·Xiσ(d)

)

= ξi(δ([xi1 , . . . , xid ])).

Finally, suppose that f ∈ Fn belongs to Gd but not to Gd+1. Since the set of simple
commutators generates Gd/Gd+1, one has f = ce1

1 · · · cet
t (mod Gd+1), where each cj is

a simple commutator of order d. By Theorem 2.2 and by the fact that θi and ξi are
homomorphisms, it follows that δ(θi(f)) = ξi(δ(f)), since the same equality is true for
the generators cj.

Therefore, every monomial in δ(θi(f)) with nontrivial coefficient is an i-successor of a
unique monomial of δ(f), and furthermore their coefficients coincide. This means that
the smallest monomial in δ(θi(f)) is precisely the minimal i-successor of the smallest
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monomial of δ(f). Since their coefficients coincide, it follows that f is positive if and only
if so is θi(f), as we wanted to show. The proof of Lemma 3.1 is finished. tu

From Lemma 3.1 we see that doubling the i-th strand preserves the order of the pure
braid group, so αn,T,i preserves the order of Pn,T . It follows that if (T, p, T ) and (T ′, p′, T ′)
are two representatives of the same element in PBV , then p is a positive pure braid if and
only if so is p′. This allows to define an ordering in PBV , just by saying that (T, p, T ) is
positive if and only if p is a positive pure braid. By Lemma 3.1 this is well defined, and
by the following result, it is a bi-order.

Corollary 3.2. The group PBV is bi-orderable.

Proof. Since Pn is bi-orderable for every n, and Pn is isomorphic to Pn,T , we can define Pn,T

to be the semigroup of positive elements of Pn,T , that is Pn,T = {(T, p, T ) ∈ Pn,T ; 1 < p}.
Now define P = lim−→

T

Pn,T ⊂ PBV , that is, P is the set of elements in PBV having

one representative (T, p, T ) such that p is positive. By Lemma 3.1, P is also the set of
elements in PBV all of whose representatives have the form (T, p, T ) with p a positive
braid. We will show that this set defines a bi-order in PBV . We must show that P is a
semigroup, that PBV = P t {1} t P , and that P is invariant under conjugation.

We see that P is a semigroup, since two elements (T1, p1, T1), (T2, p2, T2) ∈ P can be mul-
tiplied by finding suitable representatives with matching trees, say (T, p′1, T ), (T, p′2, T ),
and their product will be (T, p′1p

′
2, T ). Since p1 and p2 are positive pure braids, from

Lemma 3.1, the same happens to p′1 and p′2, hence p′1p
′
2 is also positive, and so is

(T, p′1p
′
2, T ) ∈ P . On the other hand, since the inverse of (T, p, T ) ∈ PBV is (T, p−1, T ), it

follows immediately that PBV = Pt{1}tP−1. Finally, the action of conjugating an ele-
ment (T1, p1, T1) ∈ P by another element (T2, p2, T2) ∈ PBV is done by obtaining suitable
representatives (T, p′1, T ) ∈ P and (T, p′2, T ) ∈ PBV , and the result is (T, p′2p

′
1(p

′
2)
−1, T ).

Since the set of positive pure braids is invariant under conjugation, it follows that the
resulting pure braid is positive, so P is invariant under conjugation. Therefore P defines
a bi-order on PBV , as we wanted to show. tu

Theorem 3.3. The group BF is bi-orderable.

Proof. This is a consequence of the above corollary, together with Proposition 2.1, since
by definition of BF one has a short exact sequence

1 −→ PBV −→ BF
ρ̃−→ F −→ 1.

Moreover, this sequence splits, a section of ρ̃ being the map that sends (T−, T+) ∈ F
to (T−, 1, T+) ∈ BF . Hence BF = F n PBV . By Proposition 2.1, we just need
to show that the action of F on PBV preserves the order of PBV defined in Corol-
lary 3.2. The action determined by an element (T−, T+) ∈ F on an element (T, p, T ) ∈
PBV is given by conjugating the latter by (T−, 1, T+), that is, if we choose repre-
sentatives (T ′

−, 1, T ′) = (T−, 1, T+) and (T ′, p′, T ′) = (T, p, T ), then the conjugate is
(T ′
−, 1, T ′)(T ′, p′, T ′)(T ′, 1, T ′

−) = (T ′
−, p′, T ′

−). Hence the pure braid p is replaced by p′.
Since (T, p, T ) = (T ′, p′, T ′), by Lemma 3.1, it follows that p is positive if and only if so is
p′. Therefore, the action of F on PBV preserves the order, so BF is bi-orderable as we
wanted to show, an explicit bi-order being the lexicographic order in F nPBV , where F
is given the usual bi-order and PBV is bi-ordered as in Corollary 3.2. tu



BI-ORDERINGS ON PURE BRAIDED THOMPSON’S GROUPS 13

Notice that the order in BF can be easily described. An element (T−, p, T+) is positive if
(T−, T+) ∈ F is positive (its first slope different from 1 is greater than one), or if (T−, T+)
is trivial (T− = T+) and p is a positive pure braid.
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