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7000-Évora (Portugal) UMR 5584 du CNRS
E-mail: nmf@uevora.pt B.P. 47870

21078 - Dijon Cedex (France)
E-mail: nmf@u-bourgogne.fr

and
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We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster

than the one presented by Birman, Ko and Lee [3]. This algorithm can be applied not only to braid

groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among

others).

1. INTRODUCTION

Given a group G, the conjugacy problem in G consists on finding an algorithm which, given
a, b ∈ G, determines if there exists c ∈ G such that a = c−1bc. Sometimes one also needs to
compute c, for instance, when one tries to attack cryptosystems based on conjugacy in G ([2],
[12]).

We are mainly interested in Artin braid groups, which are defined, for n ≥ 2, by the following
presentation:

Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣
σiσj = σjσi (|i − j| ≥ 2)
σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2)

〉
(1)

1Both authors partially supported by the European network TMR Sing. Eq. Diff. et Feuill.
2Partially supported by SFRH/BD/2852/2000.
3Partially supported by BFM-3207.
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The first conjugacy algorithm for braid groups was given by Garside [11]. It was improved
by Elrifai and Morton [10] and, more recently, by Birman, Ko and Lee ([3] and [4]).

In all these algorithms, one of the key points is the existence of a finite set S ⊂ Bn, whose
elements are called simple elements, verifying some suitable properties (we will be more precise
later). One of the main disadvantages is the size of S, which is always greater than 3n.

In this paper we will show how one can avoid this problem by defining some small subsets
of S, whose size is smaller than n − 1. Their elements will be called minimal simple elements.
Unlike S, these sets of minimal simple elements are not unique for every group: The suitable set
of minimal simple elements must be recomputed many times in our algorithm. Nevertheless, we
will see that it is much faster to compute and use these very small subsets, than to use the whole
S all the time.

For instance, the known upper bound for the complexity of the Birman-Ko-Lee algorithm, to
decide wether two braids a and b are conjugated in Bn, is O(kl2n3n) (where k is a number that
will be explained later, and l is the maximum of the word lengths of a and b). An upper bound
for the complexity of our algorithm for Bn is O(kl2n4).

Let us mention that our algorithm, as well as the previous ones, also computes the element
c ∈ Bn such that a = c−1bc. Moreover, since our construction relies on the existence of simple
elements and their basic properties, we can extend our results to a much larger class of groups,
called Garside groups. They were introduced by Dehornoy and Paris [9]. At the origin, these
groups were called small Gaussian groups, but there has been a convention to call them Garside
groups. They include, besides Artin braid groups, spherical (finite type) Artin groups, torus knot
groups and others.

One final remark: one important property of Garside groups is the existence of embedable
monoids (for instance the monoid of positive braids, B+

n , which embeds in Bn). The conjugacy
class of an element a in such a monoid is known to be a finite set, C+(a). We will also show how
to compute C+(a), using the techniques mentioned above.

This paper is structured as follows: In Section 2, we give a brief introduction to Garside
monoids and groups; In Section 3, the known algorithms mentioned in this introduction are
detailed; We introduce the minimal simple elements in Section 4, and in Section 5 we present
our algorithms in detail; Complexity issues are treated in Section 6 and, finally, some effective
computations are described in Section 7.

2. GARSIDE MONOIDS AND GROUPS

The results contained in this section are well known, and can be found in [11], [10], [16], [3],
[9], [8] and [14]. We will define the Garside monoids and Garside groups, and explain some basic
properties.

Given a cancellative monoid M , with no invertible elements, we can define two different partial
orders on its elements, ≺ and ≻. Given a, b ∈ M , we say that a ≺ b (b ≻ a) if there exists c ∈ M
such that ac = b (b = ca), and we say that a is a left (right) divisor of b.

In this situation, we can naturally define the (left or right) least common multiple and greatest
common divisor of two elements. Given a, b ∈ M , we denote by a ∨ b the left lcm of a and b, if
it exists. That is, a minimal element (with respect to ≺) such that a ≺ a ∨ b and b ≺ a ∨ b. We
denote by a ∧ b the left gcd of a and b, if it exists. That is, a maximal element (with respect to
≺), such that a ∧ b ≺ a and a ∧ b ≺ b.

Definition 2.1. Let M be a monoid. We say that x ∈ M is an atom if x 6= 1 and if x = yz
implies y = 1 or z = 1. M is said to be an atomic monoid if it is generated by its atoms and,
moreover, for every x ∈ M , there exists an integer Nx > 0 such that x cannot be written as a
product of more than Nx atoms.
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Definition 2.2. We say that a monoid M is a Gaussian monoid if it is atomic, (left and
right) cancellative, and if every pair of elements in M admits a (left and right) lcm and a (left
and right) gcd

Definition 2.3. A Garside monoid is a Gaussian monoid which has a Garside element. A
Garside element is an element ∆ ∈ M whose left divisors coincide with their right divisors, they
form a finite set, and they generate M .

Definition 2.4. The left (and right) divisors of ∆ in a Garside monoid M are called simple
elements. The (finite) set of simple elements is denoted by S.

It is known that every Garside monoid admits a group of fractions. So we have:

Definition 2.5. A group G is called a Garside group if it is the group of fractions of a
Garside monoid.

The main example of a Garside monoid (actually the monoid studied by Garside) is the Artin
braid monoid on n strands, B+

n . It is defined by Presentation (1), considered as a presentation for
a monoid. Its group of fractions is the braid group Bn, and Garside [11] showed that B+

n ⊂ Bn.
Actually, every Garside monoid embeds into its corresponding Garside group [9].

The classical choice of a Garside element for B+
n is the following: ∆ =

(σ1σ2 · · ·σn−1) (σ1σ2 · · ·σn−2) · · · (σ1σ2)σ1. It can be defined as the positive braid (braid in B+
n )

in which any two strands cross exactly once (where, as usual, σi represents a crossing of the
strands in positions i and i + 1). It is represented in Figure 1 for n = 4. The simple elements
in this case are the positive braids in which any two strands cross at most once. Then one has
#(S) = n!

FIG. 1 The Garside element ∆ ∈ B+
4 .

Another important example of Garside monoid is the Birman-Ko-Lee monoid [3], which has
the following presentation:

BKL+
n =

〈
ats(n ≥ t > s ≥ 1)

∣∣∣∣
atsarq = arqats if (t − r) (t − q) (s − r) (s − q) > 0
atsasr = atrats = asratr where n ≥ t > s > r ≥ 1

〉
(2)

Its group of fractions is again the braid group Bn. The usual Garside element in BKL+
n is

δ = an,n−1an−1,n−2 · · · a2,1. The advantage of this monoid with respect to B+
n is that #(S) = Cn,

where Cn = (2n)!
n!(n+1)! < 4n is the nth Catalan number. Hence, the number of simple elements is

much smaller in this case, but it is still quite big, since Cn > 3n. Notice also that |δ| = n − 1,

while in B+
n , |∆| = n(n−1)

2 .
As we mentioned before, there are other examples of Garside groups, such as finite type Artin

groups, or torus knot groups (see [14] to find more examples of Garside groups).
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From now on, M will denote a Garside monoid, G its group of fractions and ∆ the corre-
sponding Garside element. Since M ⊂ G, we will refer to the elements in M as the positive
elements of G.

From the existence of left lcm’s and gcd’s, it follows that (M,≺) has a lattice structure, and S
becomes a finite sublattice with minimum 1 and maximum ∆. See in Figure 2 the Hasse diagram
of the lattice of S in B+

4 , where the lines represent left divisibility (from bottom to top). The
analogous properties are also verified by ≻.

FIG. 2 The lattice of simple elements in B+
4 .

Definition 2.6. For a ∈ M we define LM (a) ∈ S as the maximal simple left divisor of a,
that is, LM (a) = ∆ ∧ a. We also define RM (a) as the maximal simple right divisor of a.

Proposition 2.7 ([11]). For a ∈ G, there exists a unique decomposition a = ∆pa1 · · ·al,
called left normal form of a, where:

1. p = max {r ∈ Z : ∆−ra ∈ M} (hence a1 · · ·al ∈ M).

2. ai = LM (ai · · · al) ∈ S\{∆, 1}, for all i = 1, ..., l.

Symmetrically, one defines the right normal form of a ∈ G, using RM .

Sometimes, if we are dealing with elements in M and it does not lead to confusion, we will
say that an element w = w1 · · ·wt ∈ M is in left normal form to express that wi ∈ S\{1} for all
i and, for some p ≥ 0, the normal form of w is ∆pwp+1 · · ·wt.

Later we will use these technical results:

Lemma 2.8 ([13], Prop. 2.1). Let w1 · · ·wt ∈ M be in left normal form, and x1 · · ·xt ∈
M in right normal form. For every v ∈ M , one has LM (vw1 · · ·wt) = LM (vw1) and
RM (x1 · · ·xtv) = RM (xtv).

Lemma 2.9 ([13], Prop. 5.3). Let w = w1 · · ·wt ∈ M be written in right normal form. If we
write w in any other way as a product of t simple elements, w = u1 · · ·ut, then w1 ≺ u1.

4



Lemma 2.10 ([7], 3.1). Let w = w1 · · ·wt ∈ M be written in right normal form, and let s ∈ S.
Then we can decompose wi = w′

iw
′′
i , for all i, in such a way that the right normal form of ws

is (w′
1)(w

′′
1 w′

2) · · · (w
′′
t−1w

′
t)(w

′′
t s) if it has t + 1 factors, or (w1w

′
2) · · · (w

′′
t−1w

′
t)(w

′′
t s) if it has t

factors.

Corollary 2.11. Let w = w1 · · ·wt ∈ M be written in right normal form. Let s ∈ S and
suppose that we can write ws as a product of t simple elements, that is, w1 · · ·wts = u1 · · ·ut.
Then w1 ≺ u1.

Proof. Since ws can be written as a product of t simple elements, then its right normal form
has t factors, say v1 · · · vt. By Lemma 2.10, w1 ≺ v1, and by Lemma 2.9 v1 ≺ u1, so the result
follows.

We end this section with a last property of Garside groups: There is a power of their Garside
element which belongs to the center. For instance, in Bn the element ∆2 = δn generates the
center of Bn.

3. KNOWN ALGORITHMS FOR THE CONJUGACY PROBLEM.

We present here the Elrifai-Morton algorithm for the conjugacy problem in braid groups [10],
which is also valid for Garside groups, as can be seen in [15].

It goes as follows: for every element a ∈ G, it computes a finite subset Csum(a) of the
conjugacy class of a. This set is shown to be independent of a, so it is an invariant of its conjugacy
class. Therefore, two elements a and b are conjugated if and only if Csum(a) = Csum(b).

Let us explain the algorithm in more detail.

3.1. Definition of C≥m(a) and Csum(a)

Proposition 3.1. [10, 15] Let a = ∆pa1 · · ·al ∈ G be in left normal form. Then the right
normal form of a is as follows: a = x1 · · ·xl∆

p, where l and p are the same as above.

Definition 3.2. Let a = ∆pa1 · · ·al ∈ G be in left normal form. We define the infimum,
supremum and canonical length of a, respectively, by inf (a) = p, sup (a) = p + l, and ‖a‖ = l .

Definition 3.3. Let a ∈ G and denote by C (a) the conjugacy class of a. We define
the summit infimum, the summit supremum and the summit length of a as, respectively,
max {inf (x) : x ∈ C (a)}, min {sup (x) : x ∈ C (a)} and min {‖x‖ : x ∈ C (a)} .

Definition 3.4. Let a ∈ G.

1. For every integer m, we define C≥m(a) = {v ∈ C(a) : inf(v) ≥ m}.

2. We define the summit class of a, Csum (a), as the subset of C(a) containing all elements
of minimal canonical length.

Remarks:

1. One has C≥0(a) = C(a) ∩ M = C+(a).
2. In [10], Csum (a) is called the Super Summit Set.

Proposition 3.5. [10, 15] For every b ∈ Csum(a), the infimum, supremum and canonical
length of b are equal, respectively, to the summit infimum, the summit supremum and the summit
length of a.

It is known that C≥m(a) and Csum (a) are finite sets. Moreover, by Proposition 3.5, if
C≥m (a) 6= φ, then Csum (a) ⊂ C≥m (a).
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3.2. Cycling and decycling

Let τ : G → G be the automorphism defined by τ(a) = ∆−1a∆. The restriction of τ to S is
a bijection τ : S → S.

Definition 3.6. Let a = ∆pa1 · · · al ∈ G be written in left normal form. The functions
cycling and decycling are the maps c and d, from G to itself, defined by:

c (a) = ∆pa2 · · · alτ
−p (a1) ;

d (a) = ∆pτp (al) a1 · · ·al−1.

Notice that c (a) and d (a) are conjugates of a. Furthermore, for every a ∈ G, inf(a) ≤
inf(c(a)) and sup(a) ≥ sup(d(a)).

Suppose that we have an element a ∈ G, such that inf(a) is not equal to the summit infimum
of a. Then we can try to increase the infimum by repeated cycling. By [10] (and [15]), this
always works: there exists a positive integer k such that inf(ck(a)) > inf(a). We know a bound
for this integer k only for some special Garside monoids and groups: If M is homogeneous, i.e.
it has only homogeneous relations (for instance, if M is B+

n or BKL+
n ), then every two words

representing an element a ∈ M have the same length, denoted |a|. It is shown in [4] that, in this
case, k < |∆|.

Therefore, by repeated cycling, we can conjugate a to another element â of maximal infimum.
Even if M is not homogeneous, we know that we reached the summit infimum when we enter
into a loop: at some point ck(v) = v for some v conjugated to a. This always happens since the
set C≥m(a) is finite for every m, in particular for the summit infimum.

Once â is obtained, we can try to decrease its supremum by repeated decycling. By [10]
(and [15]), this also works: either we enter into a loop, and then the supremum is minimal, or
there exists an integer k such that sup(dk(â)) < sup(â). Again by [4], k < |∆| in homogeneous
monoids.

Therefore, using repeated cycling and decycling a finite number of times, one obtains an
element ã ∈ Csum (a). And, if M is homogeneous, this can be done in polynomial time in |a|.

3.3. The Elrifai-Morton algorithm

Once that we obtained an element ã ∈ Csum(a), we can construct the whole Csum (a), by
using the next result:

Proposition 3.7. [10, 15] For u, v conjugate elements in Csum(a) (resp. C≥m(a)), there
exists a sequence u = u1, u2, ..., uk = v of elements in Csum(a) (resp. C≥m(a)) such that, for
i = 1, . . . , k − 1, ui and ui+1 are conjugated by an element in S.

The Elrifai-Morton algorithm does the following: Given a, b ∈ G it computes, using cyclings
and decyclings, ã ∈ Csum(a) and b̃ ∈ Csum(b). Then it defines V1 = {ã} and it computes, by
recurrence,

Vi = {s−1vs; s ∈ S, v ∈ Vi−1} ∩ Csum(a).

Since 1 ∈ S, this creates an ascending chain of subsets of Csum(a). By the above proposition,
one has Vk = Vk+1 for some k, and then Vk = Csum(a). Hence, when the chain stabilises, the

whole Csum(a) has been computed. Then a and b are conjugated if and only if b̃ ∈ Csum (a).

Remark 3.8. This algorithm can be modified to compute C≥m(a) for a ∈ M and m ∈ Z. We
just need to replace Csum(a) by C≥m(a) in the above discussion.
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Notice that Csum(a) (resp. C≥m(a)) is computed at the cost of conjugating every element
in Csum(a) (resp. C≥m(a)) by every element in S. All these sets are quite big, and this makes
the algorithm to be slow. In what follows, we will get rid of the problem caused by the size of S,
using the minimal simple elements.

4. MINIMAL SIMPLE ELEMENTS

In this section we shall define some very small subsets of S, which will enable us to compute
C≥m(a) and Csum(a), for a ∈ G, much faster than the previous algorithms.

Recall the definition of the partial order ≺ in M .

Definition 4.1. Let P be a property for simple elements. We denote by SP the set of simple
elements satisfying P. The set of minimal simple elements for P, min(SP), is the set of minimal
elements (with respect to ≺) in SP .

We shall enforce P to be closed under g.c.d, that is, if s1, s2 ∈ SP then s1 ∧ s2 ∈ SP . Let us
see that, under this assumption, the set min(SP ) turns to be very small. For every atom x ∈ M ,
let mult(x) = {s ∈ S; x ≺ s}.

Lemma 4.2. Suppose that P is closed under gcd, and let x be an atom of M . If the set
SP ∩ mult(x) is non-empty, then it has a unique minimal element, that we denote ρx.

Proof. Suppose that there are two distinct minimal elements s1, s2 ∈ SP ∩ mult(x). Since
s1, s2 ∈ SP , then s1 ∧ s2 ∈ SP . Moreover, since x divides s1 and s2, it also divides s1 ∧ s2.
Therefore s1 ∧ s2 ∈ SP ∩ mult(x), so s1 and s2 cannot be both minimal.

Corollary 4.3. Suppose that M has m atoms. If P is closed under gcd, then #(min(SP)) ≤
m.

Proof. Notice that every element in M must be divisible by an atom. Take s ∈ min(SP) and
consider an atom x ≺ s. Since s is minimal in SP , it is also minimal in SP ∩ mult(x). Hence
s = ρx. Therefore

min(SP ) ⊂ {ρx : x is an atom}

and the result follows.

Example 4.4. In B+
n there are n − 1 atoms, namely σ1, . . . , σn−1. Therefore, if P is a

property closed under gcd, then min(SP) has at most n − 1 elements, while #(S) = n!

Example 4.5. In BKL+
n there are n(n−1)

2 atoms (the generators in Presentation 2). Hence,

if P is a property closed under gcd, then #(min(SP )) ≤ n(n−1)
2 , while #(S) = Cn > 3n.

We must now define some suitable properties, closed under gcd, that will allow us to compute
C≥m(a) and Csum(a), for a ∈ G. These properties will depend on some given elements in M , so
we will have an infinite number of properties, each one corresponding to a set of minimal simple
elements.

4.1. Minimal simple elements to compute C≥m(a)

Definition 4.6. Let a ∈ G and v ∈ C≥m(a), for some m ∈ Z. We will say that a simple
element s satisfies the property P≥m

v if it conjugates v to an element in C≥m(a), that is, s−1vs ∈
C≥m(a).

7



Proposition 4.7. (Caracterization of elements satisfying P≥m
v ). If v ∈ C≥m(a), one can

write v = ∆mw, where w ∈ M . Then a simple element s satisfies the property P≥m
v if and only

if τm(s) ≺ ws.

Proof. The first assertion comes from the definition of infimum. Let then v = ∆mw, where
w ∈ M , and let s ∈ S. One has s−1vs = s−1∆mws = ∆mτm(s−1)ws = ∆m(τm(s))−1ws. Hence,
s satisfies P≥m

v if and only if (τm(s))−1ws ∈ M , that is, τm(s) ≺ ws.

Proposition 4.8. For every v ∈ M and every m ∈ Z, the property P≥m
v is closed under gcd.

Proof. Suppose that s1 and s2 satisfy P≥m
v , and let s = s1∧s2. Notice that τ preserves gcd’s,

since it preserves left divisibility. Hence τ(s) = τ(s1)∧ τ(s2), and thus τm(s) = τm(s1)∧ τm(s2).
One has τm(s) ≺ τm(s1) ≺ vs1 and τm(s) ≺ τm(s2) ≺ vs2. But it is easy to show that, for

every v ∈ M , vs1 ∧ vs2 = vs. Hence, since τm(s) divides vs1 and vs2 then it divides its gcd, i.e.
τm(s) ≺ vs. Therefore, s satisfies P≥m

v , and the result follows.

Definition 4.9. For every v ∈ C≥m(a), we define S≥m
v = min(S

P
≥m
v

). That is, S≥m
v is the

set of minimal simple elements (with respect to ≺) among those who conjugate v to an element
in C≥m(a).

Notice that, by Corollary 4.3 and Proposition 4.8, the cardinal of S≥m
v for every v ∈ C≥m(a)

is no bigger than the number of atoms in M . Moreover, we have the following result, analogous
to Proposition 3.7.

Proposition 4.10. Given u, v ∈ C≥m(a) for some a ∈ G, there exists a sequence u =
u1, u2, ..., uk = v of elements in C≥m(a) such that, for i = 1, ..., k − 1, the elements ui and ui+1

are conjugated by an element in S≥m
ui

.

Proof. Just notice that any left or right divisor of a simple element is also a simple element,
and then decompose every simple element in the sequence given by Proposition 3.7 into a product
of minimal ones.

This result implies that, in order to compute C≥m(a) for a ∈ M , it suffices to conjugate every
v ∈ C≥m(a) by the elements in the small set S≥m

v .

4.2. Minimal simple elements to compute Csum(a)

Definition 4.11. Let a ∈ G, and let v ∈ Csum(a). We will say that a simple element s
satisfies the property Psum

v if it conjugates v to an element in Csum(a). In other words, if the
canonical length of s−1vs is equal to the canonical length of v (which is the summit length of a).

Proposition 4.12. For every v ∈ Csum(a), the property Psum
v is closed under gcd.

Proof. Let s1 and s2 be two simple elements satisfying Psum
v , and denote s = s1 ∧ s2. Write

si = sri for i = 1, 2, thus r1 ∧ r2 = 1.
Suppose that inf(v) = p and ‖v‖ = t. Then v = ∆pv′, where v′ ∈ M and we can write

v′ as a product of t simple elements (but not less). Since s1 satisfies Psum
v , one has s−1

1 vs1 =
s−1
1 ∆p v′s1 = ∆p τp(s−1

1 ) v′s1 = ∆p (τp(s1))
−1v′s1, where (τp(s1))

−1v′s1 ∈ M and we can write
it as a product of t simple elements, say x1 · · ·xt. The same happens for (τp(s2))

−1v′s2 ∈ M .
Now consider s−1vs. By Proposition 4.8 it belongs to C≥p(a), that is, (τp(s))−1v′s ∈ M . We

must show that we can write this element as a product of t simple elements. Suppose this is not
true, and write (τp(s))−1v′s = z1 · · · zt+1 in right normal form (it has no more than t + 1 factors

8



since it is a right divisor of v′s which has t + 1 factors). One has x1 · · ·xt = (τp(s1))
−1v′s1 =

(τp(r1))
−1(τp(s))−1v′sr1 = (τp(r1))

−1z1 · · · zt+1r1. Hence, z1 · · · zt+1r1 = τp(r1)x1 · · ·xt, and
z1 · · · zt+1 is in right normal form. Then by Corollary 2.11, z1 ≺ τp(r1). In the same way,
z1 ≺ τp(r2). Therefore z1 ≺ τp(r1) ∧ τp(r2) = τp(r1 ∧ r2) = τp(1) = 1. A contradiction.

Definition 4.13. For every v ∈ Csum(a), we define Ssum
v = min(SPsum

v
). That is, Ssum

v

is the set of minimal simple elements (with respect to ≺) among those who conjugate v to an
element in Csum(a).

As before, by Corollary 4.3 and Proposition 4.12, the cardinal of Ssum
v for every v ∈ M is no

bigger than the number of atoms in M . Furthermore, we can adjust the algorithm by Elrifai-
Morton to these new sets, since we have the following result, analogous to Propositions 3.7 and
4.10.

Proposition 4.14. For u, v conjugate elements in Csum (a), there exists a sequence u =
u1, ..., uk = v of elements in Csum (a) such that, for i = 1, ..., k− 1, the elements ui and ui+1 are
conjugated by an element in Ssum

ui
.

The proof of this result parallels that of Proposition 4.10. It implies that, in order to compute
Csum (a) for a ∈ G, it suffices to conjugate every v ∈ Csum (a) by the elements in Ssum

v .
We have then described small subsets of S which suffice to compute C≥m(a) and Csum(a).

But we still need to show how to compute these subsets. This is what we do in the next section.

5. ALGORITHMS FOR THE CONJUGACY PROBLEM

We shall explain in this section our algorithms to compute C≥m(a) and Csum(a), given a ∈ G.
Let us first explain a technical algorithm, which we did not find in the literature. Let s ∈ S

and v ∈ M . We will show how to compute their lcm s ∨ v. More precisely, our algorithm will
compute a simple element s′ such that s∨v = vs′. We must indicate that it is well known how to
compute the lcm and the gcd of two simple elements, as well as the normal forms of any element
in G.

Algorithm 1 (for computing s′ such that s ∨ v = vs′).

1. Compute the normal form of v = v1 · · · vt.

2. s0 = s.

3. For every i = 1, . . . , t, compute si−1 ∨ vi, and write it visi.

4. Return st.

Proposition 5.1. Let s ∈ S and v ∈ M . Let st be the simple element computed by Algo-
rithm 1. Then s ∨ v = vst.

Proof. We proceed by induction on t = sup(v). If t = 1 the result is trivial, so suppose that
t > 1 and the result is true for t − 1. Denote v′ = v1 · · · vt−1. We have s ∨ v′ = v′st−1, that
is, st−1 is the smallest element such that v′st−1 is divisible by s. Therefore, an element r ∈ M
satisfies s ≺ vr = v′(vtr) if and only if st−1 ≺ vtr, and this is equivalent to st−1 ∨ vt ≺ vtrt, that
is vtst ≺ vtr hence st ≺ r. Therefore, st is the smallest element satisfying s ≺ vst, as we wanted
to show.

9



5.1. Computation of C≥m(a)

Let a ∈ G and m ∈ Z. As we saw in Section 4, the main problem to compute C≥m(a) is to
compute S≥m

v , for every v ∈ C≥m(a).
Let then v ∈ C≥m(a) and let x be an atom of M . Consider the set S

P
≥m
v

∩ mult(x). It is

always nonempty, since ∆ satisfies P≥m
v (for every v) and is divisible by every atom (by definition

of the Garside element). Then, by Lemma 4.2, this set has a unique minimal element, which we
denote now rx.

Recall that S≥m
v ⊂ {rx : x is an atom}, so our first step consists of computing rx, for every

atom x ∈ M .
Let inf(v) = p ≥ m, so v = ∆mw where w ∈ M . Recall that, by Proposition 4.7, a simple

element s satisfies P≥m
v if and only if τm(s) ≺ ws.

Algorithm 2 (for computing rx, minimal element in S
P
≥m
v

∩ mult(x)).

1. Compute the left normal form of v = ∆pw1 · · ·wt.

2. If p > m then return x and stop.

3. w = w1 · · ·wt; s = x.

4. Compute τm(s).

5. Use Algorithm 1 to compute s′ such that τm(s) ∨ ws = wss′.

6. If s′ = 1 then return s and stop.

7. s = ss′; go to Step 4.

Proposition 5.2. Algorithm 2 gives an output, and it is rx.

Proof. First notice that, if we conjugate any g ∈ G by a simple element, we can decrease the
infimum of g by at most one. Hence, if p > m, inf(x−1vx) ≥ m, so rx = x and the algorithm
gives the correct output.

Now suppose p = m, we have computed w ∈ M such that v = ∆mw, and we need to find
the smallest rx, such that x ≺ rx and τm(rx) ≺ wrx. This is done as follows: we take a simple
element s such that x ≺ s ≺ rx (at the first step s = x). Then we use Algorithm 1 to compute
s′ such that τm(s) ∨ ws = wss′. If s′ = 1 then τm(s) ≺ ws, so s = rx and we obtain the correct
output. Otherwise, notice that τm(s) ≺ τm(rx) ≺ wrx, so wrx is divisible by τm(s) and by ws.
Hence wss′ ≺ wrx, so ss′ ≺ rx.

Therefore, if s is not equal to rx, the algorithm gives an element s′ 6= 1 such that s ≺ ss′ ≺ rx,
and it starts again checking if ss′ = rx. This process must stop, since the number of left divisors
of rx is finite, so the algorithm finds rx in finite time. (moreover if M has homogeneus relations,
like B+

n or BKL+
n , we find rx in at most |∆| steps).

Algorithm 3 (for computing S≥m
v ).

1. List the atoms of M , say x1, . . . , xν . Set R = φ.

2. For i = 1, . . . , ν, do the following:

2a. Compute rxi
, using Algorithm 2.
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2b. Compute Ji = {j : j ∈ R and xj ≺ rxi
} and

Ki = {j : j > i and xj ≺ rxi
}.

2c. If Ji = Ki = φ, then set R = R ∪ {i}.

3. Return {rxi
: i ∈ R}.

Proposition 5.3. Algorithm 3 computes S≥m
v .

Proof. We know by Corollary 4.3 that S≥m
v is the set of minimal elements in {rxi

: i =
1, . . . , ν}. We want to find a set R ⊂ {1, . . . , ν} such that S≥m

v = {rxi
: i ∈ R}. Since we could

have rxi
= rxj

for some i 6= j, and we want R to be as small as possible, we define it in the
following way: i ∈ R if and only if rxi

is minimal and there is no j > i such that rxi
= rxj

.
Suppose that, for some i, we already computed the elements in {1, . . . , i − 1} ∩ R (for i = 1,

this is the empty set). Then we compute rxi
and the sets Ji and Ki defined in the algorithm. If

i /∈ R, we have two possibilities: either there is some j < i such that rxj
is a proper divisor of

rxi
, or there is some j > i such that rxj

≺ rxi
. In the first case Ji 6= φ, and in the latter Ki 6= φ.

Therefore, if both sets are empty, i ∈ R.
Using this procedure for i = 1, . . . , ν, the algorithm computes R, thus S≥m

v .

Remark 5.4. Since S≥m
v is just the subset of {rxi

: i = 1, . . . , ν} formed by its minimal
elements, we could have computed S≥m

v just by comparing the rxi
’s and keeping the minimal

ones. We prefer to use Algorithm 3 since it is much faster to see if an atom divides an element,
than to compare two elements, even if these two elements are simple ones.

Remark 5.5. Algorithm 3 can still be improved in two different ways. First, we do not need
to compute all rxi

: if during the computation of rxi
(using Algorithm 2), we see that xj ≺ s, for

some j ∈ R or some j > i, we can stop Algorithm 2 and increase the index i in Algorithm 3.
Also, we do not need to compute the whole sets Ji and Ki: if we find some element belonging
to one of them, we can directly increase the index i. We presented Algorithm 3 as above for the
clarity of the exposition, and because these two improvements do not really change the complexity.

Finally, let a ∈ G and m ∈ Z. The following algorithm works after Proposition 4.10.

Algorithm 4 (for computing C≥m(a))

1. Compute the left normal form of a.

2. Apply repeated cycling to a, to obtain â ∈ C≥m(a) (if it exists).

3. If â is not obtained, return φ and stop.

4. Set v = â, V = {â} and W = φ.

5. Compute S≥m
v , using Algorithm 2.

6. For every r ∈ S≥m
v , do the following:

6a. Set w = r−1vr ∈ C≥m(a).

6b. Compute the left normal form of w.

6c. If w /∈ V , set V = V ∪ {w}.
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7. W = W ∪ {v}.

8. If V = W then return V and stop.

9. Take a new v ∈ V \W ; go to Step 5.

Remark 5.6. If we take m = 0, then C≥0(a) = C+(a) = C(a)∩M , so this algorithm can be
used to compute all positive elements conjugated to a.

5.2. Computation of Csum(a)

Let now a ∈ M and v ∈ Csum(a). Let inf(v) = p and ‖v‖ = t (so sup(v) = p+t), and consider
an atom x of M . Similarly to the previous case, the key point to compute Csum(a) consists on
finding the minimal element ρx ∈ SPsum

v
∩ mult(x) (it exists since ∆ belongs to this set, and it

is unique by Lemma 4.2).

Algorithm 5 (for computing ρx, minimal in SPsum
v

∩ mult(x))

1. Using Algorithm 2 compute rx, minimal in S
P
≥p
v

∩ mult(x).

2. s = rx.

3. Compute the right normal form of s−1vs, say w1 · · ·wk∆p.

4. If k = t, return s and stop.

5. s = sw1; go to step 3.

Remark 5.7. Algorithm 5 can be explained in a very natural way: first compute rx and
the right normal form r−1

x vrx = w1 · · ·wk∆p. If k is not minimal, that is, if k = t + 1, start
decycling this right normal form, that is, compute the right normal form of w2 · · ·wk∆pw1 (and
multiply rx by w1). If this new word has not minimal canonical length, decycle again, and so on.
The proposition below shows that this works.

Proposition 5.8. Algorithm 5 computes ρx, the minimal element in SPsum
v

∩ mult(x).

Proof. We can assume, by Proposition 5.2, that we already know rx, the minimal element in
S
P
≥p
v

∩ mult(x). We also know that rx ≺ ρx by minimality of rx, since ρ−1
x vρx ∈ Csum(a) ⊂

C≥p(a). So we have an element s ∈ S such that rx ≺ s ≺ ρx, s−1bs ∈ C≥p(a) and ‖s−1vs‖ ≤ t+1
(at the first step, s = rx). We compute the right normal form of s−1vs, say w1 · · ·wk∆p.

There are two possible cases: either k = t or k = t + 1. If k = t, then ‖s−1vs‖ = t, so s = ρx

and Step 4 gives the correct output. Otherwise, s 6= ρx and there exists a non trivial element
s′ ∈ S such that ss′ = ρx. In this case

ρ−1
x vρx = (s′)−1s−1vss′ = (s′)−1w1 · · ·wt+1∆

ps′ = u1 · · ·ut∆
p,

where u1 · · ·ut∆
p is in right normal form. Hence w1 · · ·wt+1∆

ps′ = s′u1 · · ·ut∆
p, so

w1 · · ·wt+1τ
−p(s′) = s′u1 · · ·ut. But w1 · · ·wt+1 is in right normal form, so by Corollary 2.11,

w1 ≺ s′. Therefore rx ≺ sw1 ≺ ρx, and s is a proper divisor of sw1. Also, (sw1)
−1v(sw1) =

w2 · · ·wt+1∆
qw1 ∈ C≥p(a) and ‖(sw1)

−1v(sw1)‖ ≤ t+1. So we can set s = sw1, and start again.
This procedure must stop, finding s = ρx, since the number of left divisors of ρx is finite. (In

homogeneous monoids, the number of steps is bounded by |∆|).

Algorithm 6 (for computing Ssum
v ).
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1. List the atoms of M , say x1, . . . , xν . Set R = φ.

2. For i = 1, . . . , ν, do the following:

2a. Compute ρxi
, using Algorithm 5.

2b. Compute Ji = {j : j ∈ R and xj ≺ ρxi
} and

Ki = {j : j > i and xj ≺ ρxi
}.

2c. If Ji = Ki = φ then R = R ∪ {i}.

3. Return {ρxi
: i ∈ R}.

Proposition 5.9. Algorithm 6 computes Ssum
v .

Proof. This algorithm parallels Algorithm 3, and it works in the same way, since Ssum
v is the

set of minimal elements in {ρxi
: i = 1, . . . , n}.

Finally, the following algorithm is analogous to Algorithm 4. Using the previous algorithms,
it will then compute Csum(a) for any given a ∈ G.

Algorithm 7 (for computing Csum(a))

1. Compute the left normal form of a.

2. Using cyclings and decyclings, compute ã ∈ Csum(a).

3. v = ã; V = {ã}; W = φ.

4. Compute Ssum
v , using Algorithm 6.

5. For every r ∈ Ssum
v , do the following:

5a. w = r−1vr ∈ M .

5b. Compute the left normal form of w.

5c. If w /∈ V then V = V ∪ {w}.

6. W = W ∪ {v}.

7. If V = W then return V and stop.

8. Take a new v ∈ V \W ; go to Step 4.

6. COMPLEXITY

In this section we shall study the complexity of our algorithms, applied to several examples
of Garside monoids, such as B+

n , BKL+
n and Artin monoids. We do not discuss here the general

case, since the complexity strongly depends on the way of computing normal forms, LM(a), a∨b,
ã, etc. in each particular case.

We shall give theoretical upper bounds for this complexity. In the next section we will also
compare, with many examples in B+

n , the running time of our algorithm with the one by Elrifai
and Morton, to show that our improvement is significant in practice.

We know that the theoretical results in this section can be improved: we are just interested
on showing that our algorithms are much faster than the preceding ones, while sharper bounds
for the complexity would require a deeper study.
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6.1. The Artin braid monoid B+
n
.

Complexity of computing C≥m(a)

Recall the definition of B+
n , and notice that the relations are homogeneous, so every two

conjugate elements in B+
n have the same word length. Let then v ∈ B+

n be of word length l. Its
left normal form v1 · · · vt verifies t ≤ l.

Algorithm 1. It computes the normal form of v, which takes time O(l2n log n) (see[16]). Then
it computes t words, s1, . . . , st. The computation of each one takes time O(n log n) ([16]), so all
of them are computed in time O(ln log n), and the whole algorithm has complexity O(l2n log n).

Now suppose that v ∈ Bn, and its left normal form is ∆pw1 · · ·wt. One has t ≤ l. In Bn, the
homomorphism τ can be defined as follows: τ(σi) = σn−i. Hence τ2 = id, so for every word w,
τm(w) can be computed in time O(|w|).

Algorithm 2. First it computes the left normal form of v in time O(l2n log n). If p = m, it runs
the loop consisting of Steps 4-7. The two important steps are the following:

• Step 4: Notice that, every time the loop is repeated, we already know τm(s) for the
old value of s. So in order to compute τm(ss′) = τm(s)τm(s′), we just need to compute
τm(s′), which is O(|s′|). Since the product of all possible s′ is still a simple element, rx, all
repetitions of this step can be made in time O(n(n − 1)/2), which is the length of ∆.

• Step 5: Here, when we apply Algorithm 1, we compute the normal form of ws, and the
elements s1, . . . , st, where s runs over an ascending chain of divisors of ∆. As above,
all these computations together require the same number of operations as just applying
Algorithm 1 to wrx (see [16]). Moreover, we have computed the normal form of w at the
beginning of Algorithm 2 so, again by [16], the normal form of wrx can be computed in
time O(ln log n). Hence all repetitions of this step can be made in time O(ln log n).

Therefore, the theoretical complexity of Algorithm 2 is O(l2n2).

Algorithm 3. The only non-negligible step is the loop of Step 2, which is repeated n− 1 times
(the number of atoms in B+

n ), and does the following: it computes rxi
(which takes time O(l2n2))

and it verifies at most n − 2 times if an atom divides rxi
(this takes time O(n) by [16]). Hence,

the complexity of Algorithm 3 is O(l2n3).

Finally, let a ∈ Bn be given as a word of length l in the generators σi.

Algorithm 4. It starts by computing the normal form of a (time O(l2n logn)). Then it finds
â, which takes O(l2n3) by [4]. Next it starts a loop, which is repeated k times (the number of
elements in C≥m(a)), and does the following: First, it computes S≥m

v , taking time O(l2n3). Then
it runs another loop, repeated at most n − 1 times, which works at follows:

• It computes the normal form of a word of length l, thus taking time O(l2n log n).

• It verifies if an element is in a list V , taking a negligible time compared to the previous
step.

Finally, it verifies if V = W , but since W ⊂ V we just have to compare the lengths. The time
to do this is negligible. Therefore, the complexity of Algorithm 4 (i.e. the complexity of computing
C≥m(a)), is O

(
l2n logn + l2n3 + k(l2n3 + (n − 1)l2n log n)

)
, which yields the following.

Proposition 6.1. Given a ∈ Bn as a word of length l, the complexity of computing C≥m(a)
(for the Artin presentation) is O

(
kl2n3

)
, where k is the number of elements in C≥m(a).
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Remark that if we try to compute C≥m(a) using the techniques of Elrifai and Morton, we
should use Algorithm 4, but replacing S≥m

v by the whole S, which has cardinality n!. The time
would be in this case O

(
kl2(n!)n log n

)
.

Complexity of computing Csum(a)

The study of the complexity of Algorithms 5, 6 and 7, is very similar to that of Algorithms 2,
3 and 4.

Algorithm 5. It starts by computing rx, taking O(l2n2). Next it computes a right normal form

(O(l2n log n)), and then it does a number of decyclings, which is bounded by n(n−1)
2 . By [4], each

decycling takes time O(ln), so the whole complexity of Algorithm 5 is O(l2n3).

Algorithm 6. It does the same as Algorithm 3, but it computes ρxi
instead of rxi

in Step 2a.
Hence its complexity is O(l2n4).

Algorithm 7. It has two main differences with respect to Algorithm 4. It computes ã instead
of â (but this can be made in O(l2n3) by [4]), and it computes Ssum

v instead of S≥m
v . Therefore

one has the following.

Proposition 6.2. Given a ∈ Bn as a word of length l, the complexity of computing Csum(a)
(for the Artin presentation) is O(kl2n4), where k is the number of elements in Csum(a).

Remark that, if we compute the complexity of the algorithm by Elrifai and Morton, using the
above methods, we obtain O

(
kl2(n!)n log n

)
.

6.2. The Birman-Ko-Lee monoid BKL+
n
.

Complexity of computing C+(a)

We just need to follow here the same reasoning that in the previous subsection, taking into
account the differences between BKL+

n and B+
n . The complexities of the basic computations in

BKL+
n can be found in [3]. For instance, in BKL+

n , the computation of each si in Algorithm 1
takes time O(n), the length of the Garside element is n − 1, and the normal form of a word
w is computed in time O(|w|2n). This implies that Algorithm 1 and Algorithm 2 both have
complexity O(l2n).

In order to study Algorithm 3, we must know that the number of atoms in BKL+
n is n(n−1)

2 ,
and to check if an atom divides a simple element takes time O(n), so Algorithm 3 has complexity
O(l2n5).

Finally, the computation of â takes time O(l2n2) (see [4]), so the above method to compute
the complexity of Algorithm 4 yields the following:

Proposition 6.3. Given a ∈ BKLn as a word of length l, the complexity of computing
C≥m(a) (for the Birman-Ko-Lee presentation) is O

(
kl2n5

)
, where k is the number of elements

in C≥m(a).

As above, the complexity of the previously known algorithm is much worse: O(kl2Cnn), where
3n < Cn < 4n.

Complexity of computing Csum(a)

We just need to know that the computation of ã takes time O(l2n2) (see [4]). Hence the
complexities of Algorithms 5, 6 and 7 are respectively O(l2n2), O(l2n5) and O(kl2n5). Therefore,
one has:
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Proposition 6.4. Given a ∈ BKLn as a word of length l, the complexity of computing
Csum(a) (for the Birman-Ko-Lee presentation) is O(kl2n5), where k is the number of elements
in Csum(a).

Notice that the complexity of the known algorithm was O(kl2Cnn), so our algorithm improves
it considerably.

One interesting remark is that our algorithm works faster, a priori, for the monoid B+
n than

for BKL+
n . This is due to a simple fact: in our algorithm the number of atoms is more relevant

than the number of simple elements. In BKL+
n , the number of simple elements is much smaller

than in B+
n , but the number of atoms is n(n−1)

2 , while in B+
n is n − 1.

6.3. Artin monoids

As we mentioned in the introduction, the Artin groups of finite type are Garside groups, so we
can apply our algorithms to the corresponding Artin monoids (see [5] for an introduction to Artin
monoids and groups). In [6] we can find algorithms to deal with Artin monoids: computation
of normal forms, greatest common divisors, division algorithms, etc. Although these algorithms
seem to be exponential in the length of the words involved, in [7] it is shown that finite type
Artin groups are biautomatic, so there are quadratic algorithms to compute all of the above.

Nevertheless, since we are mainly interested in comparing our algorithms with the previous
ones, we just need to know the length of the Garside element ∆, and the number of simple
elements in any given Artin group. Let then G be an Artin group of rank n, that is, An, Bn,
Dn, En (if n = 6, 7, 8), Fn (if n = 4), Hn (n = 3, 4) or I2(p) (if n = 2), and let h be its Coxeter
number. It is known that |∆| = nh

2 , where h = O(n), and that #(S) ≥ n!.
Hence, if the complexity of the conjugacy algorithm by Elrifai and Morton is O(xn!) for some

x depending on n and l, our algorithm will have complexity O(xn3). This is shown by using the
same arguments as in the previous subsections.

7. EFFECTIVE COMPUTATIONS

7.1. Comparison with the Elrifai-Morton algorthim

In the previous section, we found theoretical upper bounds for the complexity of our algo-
rithms. We showed that our algorithm is, in theory, much better than the Elrifai-Morton one
(for n > 5). In this section we effectively compare the two algorithms, in the following way: For
given n and l, (3 ≤ n ≤ 5 and 10 ≤ l ≤ 20) we took 5000 random pairs of positive braids in
Bn of length l (using Artin presentation), we tested conjugacy using both algorithms, and we
compared the Average Running Time (ART) and the Maximum Running Time (MRT). We did
the same for n = 6 and l = 10, for 1144 pairs.

We can conclude that our algorithm is faster for n ≥ 4, and much faster for n ≥ 5 (We were
not able to compute the cases n = 5 and l = 19, 20 using the Elrifai-Morton algorithm since the
computations were too long).

In the tables below one can see the results: We wrote F-GM for our algorithm and E-M for
the Elrifai-Morton one. The time is given in seconds.

n = 3

l 10 11 12 13 14 15

ART F-GM 0.1526 0.2011 0.2361 0.3038 0.3386 0.3951

ART E-M 0.1144 0.1460 0.1692 0.2133 0.2367 0.2723

MRT F-GM 2.429 3.599 4.680 6.080 7.450 6.960

MRT E-M 1.659 2.539 3.220 4.089 5.029 4.599
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l 16 17 18 19 20

ART F-GM 0.3896 0.5021 0.5473 0.6494 0.7292

ART E-M 0.2710 0.3392 0.3710 0.4329 0.4841

MRT F-GM 11.299 10.530 12.469 15.090 16.539

MRT E-M 7.219 6.729 7.970 9.950 11.039

n = 4

l 10 11 12 13 14 15

ART F-GM 0.3559 0.4796 0.6772 0.7870 1.0264 1.2599

ART E-M 0.6118 0.7233 1.0127 1.2086 1.5909 1.9538

MRT F-GM 8.680 11.390 16.519 23.949 33.969 42.029

MRT E-M 16.319 22.329 28.440 41.579 61.790 74.999

l 16 17 18 19 20

ART F-GM 1.4548 1.7436 2.2029 2.6616 2.9942

ART E-M 2.3106 2.7995 3.5548 4.3280 4.7226

MRT F-GM 41.910 62.940 72.940 103.470 148.989

MRT E-M 70.039 107.969 137.720 173.060 245.740

n = 5

l 10 11 12 13 14 15

ART F-GM 1.0997 1.8463 2.7657 3.7962 3.8195 4.4797

ART E-M 7.8690 11.1207 17.1455 23.2491 26.2595 29.7934

MRT F-GM 21.239 46.070 65.530 88.940 139.180 155.260

MRT E-M 177.489 322.039 456.669 611.609 1068.970 1178.790

l 16 17 18 19 20

ART F-GM 5.6410 7.1540 8.8198 9.4597 10.6614

ART E-M 38.7974 51.0028 62.0018

MRT F-GM 254.770 411.320 401.409 516.119 532.469

MRT E-M 2116.239 3221.880 3218.93

n = 6

l 10

ART F-GM 2.2450

ART E-M 506.224

MRT F-GM 43.935

MRT E-M 7495.288

7.2. Exhaustive computation of conjugacy classes and summit classes

In the previous section, we saw that the complexity of all our algorithms depends on the size
of the sets C≥m(a) or Csum(a), for a ∈ M . In the cases of B+

n or BKL+
n , the only upper bounds

known for these sets are exponential in n and in l = |a|. Nevertheless, we have the following
(recall that, in this case, C+(a) = C≥0(a) = C(a) ∩ B+

n ):
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Conjecture: (Thurston, [16]) Let n be a fixed integer and let a ∈ B+
n , having word length l.

There is an upper bound for C+(a) which is a polynomial in l.

The existence of this upper bound for C+(a), or even for Csum(a), would imply the following:

Conjecture: (Birman, Ko and Lee, [4]) For every fixed integer n, there exists a solution for the
conjugacy problem in Bn, which is polynomial in the word length of the elements involved.

In order to have some numerical evidence to support these conjectures, we have computed,
for n = 3, . . . , 8 and several values of l, all the conjugacy classes of words of length l in B+

n , as
well as the corresponding summit classes. In the tables below we present the following data, for
the set Wl of elements in B+

n having word length l:

• CC+: The number of Conjugacy Classes in Wl ⊂ B+
n .

• max C+: The size of the biggest one. That is, the number of elements in the biggest
C+(a), for a ∈ Wl.

• max Csum: The size of the biggest summit class.

• v: A representative from one of those biggest summit class. That is, an element v ∈
Csum(a), where Csum(a) has maximal size.

n=3

l CC+ maxC+ maxCsum v

4 3 6 2 σ3
1σ2

5 3 10 6 σ3
1σ

2
2

6 5 12 8 σ4
1σ

2
2

7 5 16 10 σ5
1σ

2
2

8 8 20 12 σ6
1σ

2
2

9 9 29 14 σ7
1σ

2
2

10 13 30 16 σ8
1σ

2
2

11 16 40 18 σ9
1σ

2
2

12 27 48 20 σ10
1 σ2

2

13 33 64 22 σ11
1 σ2

2

14 50 80 24 σ12
1 σ2

2

15 70 125 26 σ13
1 σ2

2

16 107 126 28 σ14
1 σ2

2

17 153 160 30 σ15
1 σ2

2

18 241 192 32 σ16
1 σ2

2

19 349 256 34 σ17
1 σ2

2

20 542 320 36 σ18
1 σ2

2
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n=4

l CC+ maxC+ maxCsum v

4 7 12 4 σ3
1σ2

5 9 20 12 σ3
1σ

2
2

6 16 40 16 σ4
1σ

2
2

7 21 54 22 σ5
1σ2σ3

8 36 72 32 σ6
1σ2σ3

9 54 94 50 σ4
1σ2

2σ2
3σ2

10 96 156 60 σ5
1σ2

2σ2
3σ2

11 160 252 70 σ6
1σ2

2σ2
3σ2

12 304 344 88 σ5
1σ

2
2σ1σ3σ1σ2σ3

13 538 582 114 σ6
1σ

2
2σ1σ3σ1σ2σ3

14 1030 752 140 σ7
1σ

2
2σ1σ3σ1σ2σ3

15 1954 1114 166 σ8
1σ

2
2σ1σ3σ1σ2σ3

n=5

l CC+ maxC+ maxCsum v

4 10 24 8 σ2
1σ2σ3

5 15 36 18 σ3
1σ

2
2

6 28 80 24 σ4
1σ

2
2

7 44 136 44 σ5
1σ2σ3

8 81 188 64 σ6
1σ2σ3

9 141 288 104 σ5
1σ2σ3σ2σ4

10 281 516 156 σ6
1σ2σ3σ2σ4

11 520 702 208 σ7
1σ2σ3σ

2
4

12 1194 1018 260 σ8
1σ2σ3σ

2
4

n=6

l CC+ max C+ maxCsum v

4 13 36 16 σ1σ2σ3σ4

5 22 56 30 σ1σ2σ1σ
2
4

6 44 120 36 σ4
1σ2σ3

7 76 272 72 σ4
1σ2σ3σ4

8 148 412 124 σ5
1σ2σ3σ4

9 276 576 208 σ5
1σ2σ3σ

2
4

10 573 1032 372 σ5
1σ2σ3σ4σ

2
5

n=7

l CC+ max C+ maxCsum v

4 14 60 24 σ1σ2σ
2
4

5 26 84 60 σ1σ2σ1σ
2
4

6 56 160 72 σ1σ2σ4σ2σ
2
1

7 104 408 108 σ4
1σ2σ3σ4

8 215 824 192 σ4
1σ2σ3σ4σ5

9 424 1160 416 σ4
1σ2σ3σ4σ

2
5

10 914 1992 744 σ5
1σ2σ3σ4σ

2
5
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n=8

l CC+ maxC+ maxCsum v

4 15 100 48 σ1σ2σ3σ5

5 29 144 100 σ1σ2σ1σ
2
4

6 66 216 144 σ1σ2σ1σ3σ
2
5

7 130 544 168 σ1σ2σ1σ3σ4σ
2
6

8 281 1236 360 σ1σ2σ1σ
3
4σ

2
5
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