
ar
X

iv
:m

at
h/

06
09

61
6v

2
 [

m
at

h.
G

T
]

 2
2

Fe
b

20
07

Conjugacy in Garside Groups III: Periodic braids

Joan S. Birman∗ Volker Gebhardt Juan González-Meneses†

February 19, 2007

Abstract

An element in Artin’s braid group Bn is said to be periodic if some power of it lies
in the center of Bn. In this paper we prove that all previously known algorithms for
solving the conjugacy search problem in Bn are exponential in the braid index n for
the special case of periodic braids. We overcome this difficulty by putting to work several
known isomorphisms between Garside structures in the braid group Bn and other Garside
groups. This allows us to obtain a polynomial solution to the original problem in the spirit
of the previously known algorithms.

This paper is the third in a series of papers by the same authors about the conjugacy
problem in Garside groups. They have a unified goal: the development of a polynomial
algorithm for the conjugacy decision and search problems in Bn, which generalizes to other
Garside groups whenever possible. It is our hope that the methods introduced here will
allow the generalization of the results in this paper to all Artin-Tits groups of spherical
type.

1 Introduction

Given a group, a solution to the conjugacy decision problem is an algorithm that determines
whether two given elements are conjugate or not. On the other hand, a solution to the
conjugacy search problem is an algorithm that finds a conjugating element for a given pair
of conjugate elements. In §1.4 of [6] we presented a project to find a polynomial solution to
the conjugacy decision problem and the conjugacy search problem in the particular case of
Artin’s braid group, that is, the Artin-Tits group of type An−1, with its classical or Artin
presentation [1]:

(1) BA
n :

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi if |i− j| > 1,
σiσjσi = σjσiσj if |i− j| = 1.

〉

.

One of the steps in the mentioned project asks for a polynomial solution to the above conju-
gacy problems for special type of elements in the braid groups, called periodic braids. This is
achieved in the present paper. More precisely, if we denote by |w| the letter length of a word
w in σ1, . . . , σn−1 and their inverses, we will prove:

∗Partially supported by the U.S.National Science Foundation, under Grant DMS-0405586.
†Partially supported by MTM2004-07203-C02-01 and FEDER.

1

http://arXiv.org/abs/math/0609616v2

Theorem 1. Let wX and wY be two words in the generators σ1, . . . , σn−1 and their inverses,
representing two braids X,Y ∈ BA

n , and let l = max{|wX |, |wY |}. Then there is an algorithm
of complexity O(l3n2 log n) which does the following.

(1) It determines whether X and Y are periodic.

(2) If yes, it determines whether they are conjugate.

(3) If yes, it finds a braid C ∈ BA
n such that Y = C−1XC.

Here is a guide to this paper. In Section 2, we will review what is known and explain why steps
(1) and (2) of Theorem 1 follow easily from the work in [17, 24, 22]. On the other hand, in
Section 3 we show that the previously known solutions to the conjugacy search problem in the
Artin-Tits group of type An−1 present unexpected difficultites, which result in exponential
complexity for periodic braids. Thus they do not meet the requirements of Theorem 1.

A new idea allows us to overcome the difficulty. We have shown that the approach using the
classical Garside structure does not work. The new idea is to put to work the other known
Garside structure on the braid groups and in addition to consider a certain subgroup of the
braid group that arises in the course of our work, and use two known Garside structures on it.
This is accomplished in Section 4, where we give a solution to the conjugacy search problem
for periodic braids which has the stated polynomial complexity. Section 4 divides naturally
into two subsections, according to whether a given periodic braid is conjugate to a power of
δ or ε, two braids that are defined in Section 2 below. The proof in the two cases are treated
in Sections 4.1 and 4.2 respectively. Finally, in Section 5 we compare actual running times of
the algorithms developed in Section 4 to the ones of the best previously known algorithm.

Remark 2. We learned from D. Bessis that he has characterized the conjugacy classes of
periodic elements for all Artin-Tits groups of spherical type. We hope that this characteriza-
tion will allow the generalization of both the techniques and the results of this paper to all
other Artin-Tits groups of spherical type.

Acknowledgements: We are grateful to D. Bessis for useful discussions about his work
in [2] and his forthcoming results, to J. Michel for pointing out that our Corollaries 12 and
15 were known to specialists in Coxeter groups, and also to H. Morton for showing us the
algorithm in [26].

2 Known results imply steps (1) and (2) of Theorem 1

Our work begins with a review of known results. Garside groups were introduced by Dehornoy
and Paris in [15]. The main examples of Garside groups are Artin-Tits groups of spherical
type, in particular, Artin braid groups. In this paper we will use two known Garside structures
in the Artin-Tits group of type An−1, and also one Garside structure in the Artin-Tits group
of type Bm.

Although we refer to [6] for a detailed description of Garside structures, we recall here that
such a structure in a group G is given by a lattice order on its elements, together with a
distinguished element of G, called the Garside element, which is usually denoted by ∆. This
partial order and this element ∆ must satisfy several suitable conditions [6].

2

The classical Garside structure in the braid groups is related to the presentation (1). The
positive braids are those which can be written as a word in σ1, . . . , σn−1 (not using their
inverses). The lattice order is defined by saying that X 4 Y if X−1Y is a positive braid
(we will say that X is a prefix of Y). There are special elements called simple braids
which are those positive braids in which any two strands cross at most once. The Gar-
side element ∆ is the positive braid in which any two strands cross exactly once, that is,
∆ = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · · σ1). It is also called the half twist, since its geometrical
representation corresponds to a half twist of the n strands. For every braid X ∈ BA

n , given
as a word of letter length l, there exists a left normal form, which is a unique way to de-
compose the braid as X = ∆px1 · · · xr, where p is maximal and each xi is a simple braid,
namely the maximal simple prefix of xi · · · xr. This left normal form can be computed in time
O(l2n log n) [19].

Artin proved in [1] that the center of BA
n is infinite cyclic and generated by the full twist

∆2 = (σ1σ2 · · · σn−1)
n of the braid strands. If the braid group is regarded as the mapping

class group of the n-times punctured disc D
2
n, then ∆2 is a Dehn twist about a curve which

lies in a collar neighborhood of the boundary ∂D
2
n and is parallel to it. An element X ∈ BA

n

is said to be periodic if some power of X is a power of ∆2.

Periodic braids can be thought of as rotations of the disc. Indeed, there is a classical result
by Eilenberg [17] and Kérékjártó[24] (see also [12]) showing that an automorphism of the disc
which is a root of the identity (a periodic automorphism) is conjugate to a rotation. Since a
finite order mapping class can always be realized by a finite order homeomorphism [23], this
implies that a periodic braid is conjugate to a rotation. It is not difficult to see that a braid
can be represented by a rotation of D

2 if and only if it is conjugate to a power of one of the
two braids represented in Figure 1, that is, δ = σn−1σn−2 · · · σ1 and ε = σ1(σn−1σn−2 · · · σ1).
(If we need to specify the number of strands, we will write δ = δn and ε = εn.)

Remark 3. The braid ε defined in Figure 1 has a fixed strand, namely strand 2. There are,
to be sure, braids which are conjugate to ε in which the fixed strand is the first one or the last
one, seemingly more natural choices. However, ε is a simple braid, and (as we shall prove in
Proposition 13 below) there is no simple braid which is conjugate to ε and which fixes either
the first or the last strand. This is why we decided to use ε, which fixes the second strand, as
a representative of its conjugacy class. And this is also the reason why, in Section 4.2 below,
we identify the Artin-Tits group of type Bn−1 with the subgroup of the n-strand braid group
formed by those braids which fix the second strand, a choice that will surely seem awkward
to specialists.

The theorem of Eilenberg and Kérékjártó can then be restated as follows.

Theorem 4. [17, 24] A braid X is periodic if and only if it is conjugate to a power of either
δ or ε.

Notice that δn = εn−1 = ∆2. Since ∆2 belongs to the center of BA
n , this immediately gives

an efficient algorithm to check whether a braid is periodic.

Corollary 5. A braid X ∈ BA
n is periodic if and only if either Xn−1 or Xn is a power of ∆2.

Proof. We only need to prove that the condition is necessary. Suppose that X is periodic.
By Theorem 4, X is conjugate to a power of either δ or ε. In the first case, X = C−1δkC for

3

Figure 1: The periodic elements δ and ε.

some C ∈ BA
n . Then Xn = C−1δknC = C−1∆2kC = ∆2k, where the last equality holds since

∆2 is central. In the second case, X = C−1εkC, so that Xn−1 = C−1εk(n−1)C = C−1∆2kC =
∆2k.

After this result, one can determine whether X is periodic, and also find the power of δ or ε
which is conjugate to X, by the following algorithm.

Algorithm A.

Input: A word w in Artin generators and their inverses representing a braid X ∈ BA
n .

1. Compute the left normal form of Xn−1.

2. If it is equal to ∆2k, return ‘X is periodic and conjugate to εk’.

3. Compute the left normal form of Xn.

4. If it is equal to ∆2k, return ‘X is periodic and conjugate to δk’.

5. Return ‘X is not periodic’.

Proposition 6. The complexity of Algorithm A is O(l2n3 log n), where l is the letter length
of w.

Proof. Algorithm A computes two normal forms of words whose lengths are at most nl.
By [19], these computations have complexity O((nl)2n log n), and the result follows.

We remark that if one knows, a priori, that the braid X is periodic, then one can determine
the power of δ or ε which is conjugate to X by a faster method: Observe that the exponent
sum of a braid X, written as a word in the generators σ1, . . . , σn−1 and their inverses is
well defined, since the relations in (1) are homogeneous. The exponent sum is furthermore
invariant under conjugacy, hence every conjugate of δk has exponent sum k(n − 1), whereas
every conjugate of εk has exponent sum kn. Moreover, the exponent sum determines the
conjugacy class of a periodic braid:

Lemma 7. (Proposition 4.2 of [22]) Let X be a periodic braid. Then X is conjugate to δk

(resp. εk) if and only if X has exponent sum k(n− 1) (resp. kn).

4

Computing the exponent sum of a word of length l has complexity O(l). Hence, once it is
known that two given braids are periodic, the conjugacy decision problem takes linear time.

3 Known algorithms are not efficient for periodic braids

We have already determined all conjugacy classes of periodic braids, and we have seen that
the conjugacy decision problem for these braids can be solved very fast. It is then natural to
wonder whether this is also true for the conjugacy search problem. The first natural question
is: Are the existing algorithms for the conjugacy search problem efficient for periodic braids?

The best known algorithm to solve the conjugacy decision problem and also the conjugacy
search problem in braid groups (and in every Garside group) is the one in [21], which consists
of computing the ultra summit set of a braid, defined as follows. Denote by τ the inner
automorphism that is defined by conjugation by ∆. Given Y ∈ BA

n whose left normal form
is ∆py1 · · · yr, we define its canonical length as ℓ(Y) = r, and call the conjugates c(Y) =
∆py2 · · · yrτ

−p(y1) and d(Y) = ∆pτp(yr)y2 · · · yr−1 of Y its cycling respectively its decycling.
For every X ∈ BA

n , the ultra summit set USS(X) is the set of conjugates Y of X such that
ℓ(Y) is minimal and ct(Y) = Y for some t ≥ 1. It is explained in [21] how the computation
of USS(X) solves the conjugacy decision and search problems in Garside groups.

The complexity of the conjugacy search algorithm given in [21] is proportional to the size
of USS(X), so if one is interested in complexity, it is essential to know how large the ultra
summit sets of periodic braids are. If they turned out to be small, the algorithm in [21] would
be efficient, but we will see in this section that the sizes of ultra summit sets of periodic braids
are in general exponential in n.

More precisely, it was shown by Coxeter in 1934 [13, Theorem 11], that in any finite Coxeter
group, any two elements which are the product of all standard generators, in arbitrary order,
are conjugate. Applied to our case, one sees that the elements of USS(δ) are in bijection
with the elements of the above kind, in the symmetric group Σn. One can count the number
of different elements, and it follows that #(USS(δ)) = 2n−2. The same result is shown in [9,
Chapter V, §6. Proposition 1], in the more general case in which the Coxeter group is defined
by a tree, and also in [29, Lemma 3.2] and in [26, Theorem 2]. Moreover, it can be seen
from the proof in [9] that any two elements in USS(δ) are conjugate by a sequence of special
conjugations, that we denote partial cyclings in [6].

Concerning the elements in USS(ε), in [16, Proposition 9.1] it is shown that any two such
elements are conjugate by a sequence of partial cyclings. It also follows from [16] that every
element in USS(ε) is represented by a word of length n, which is the product of all n − 1
generators, in some order, with one of the generators repeated. One can also count the number
of different elements of this kind, to obtain that #(USS(ε)) = (n− 2)2n−3.

The above arguments show that the sizes of USS(δ) and USS(ε) are exponential with respect
to the number of strands, hence the algorithm in [21] is not polynomial for conjugates of these
braids. In this paper we shall study USS(δ) and USS(ε) in a new way. More precisely, in
Corollaries 12 and 15 we will show that #(USS(δ)) = 2n−2 and #(USS(ε)) = (n − 2)2n−3

just by looking at the permutations induced by their elements. This will also provide a fast
solution to the conjugacy search problem in the particular cases of conjugates of δ or ε.

5

Once shown that the algorithm in [21] is not polynomial, in general, for periodic braids, in
Section 4 we will give a procedure to solve the conjugacy search problem for all periodic braids
in polynomial time.

Let us then study the ultra summit sets of δ and ε. First, we recall that the factors in a left
normal form are simple braids, which are in bijection with the elements of the symmetric group
Σn. More precisely, every braid X, being a mapping class group of the n-times punctured
disc, determines a permutation πX of the n punctures. Conversely, there is exactly one simple
braid for each permutation. We will then determine simple elements by their permutations,
written as a product of disjoint cycles. For instance, the permutation associated to δ is
πδ = (1 2 · · · n), and the permutation associated to ε is πε = (2)(1 3 4 · · · n).

Remark 8. Although we described braids as mapping classes, we will not adopt the usual
convention for compositions of maps. We consider braids as acting on the punctures from
the right. This means that the braid σ1σ2 first swaps the punctures in positions 1 and 2, and
then the punctures in positions 2 and 3. Hence πσ1σ2

= (132).

Remark 9. The permutation associated to a simple braid s determines the pairs of strands
that cross in s. More precisely, two strands i and j (i < j) cross in s if and only if the induced
permutation reverses their order, that is, if πs(i) > πs(j).

For simplicity of notation let us define, for 1 ≤ i < j ≤ n, the braids σ[i→j] = σiσi+1 · · · σj−1

and σ[j→i] = σj−1σj−2 · · · σi. Notice that σ[k→l] (no matter which subindex is bigger) is the
shortest positive braid sending the puncture k to the puncture l.

Let us characterize the elements in USS(δ).

Proposition 10. An element s ∈ BA
n belongs to USS(δ) if and only if it is simple and its

permutation πs is a cycle of the form:

πs = (1 u1 u2 · · · ur n dt dt−1 · · · d1),

for some u1 < u2 < · · · < ur and some dt > dt−1 > · · · > d1, with r, t ≥ 0 and r + t + 2 = n.
Moreover, in this case α−1sα = δ, where

α = σ[d1→1] σ[d2→1] · · · σ[dt→1].

Proof. First notice that, since δ is simple, all elements in USS(δ) are simple, so that by the
definition of a simple element they can be characterized by their permutations. Actually,
USS(δ) is the set of simple conjugates of δ. Notice also that πδ is a single cycle of length n.
Since conjugation of braids in BA

n implies conjugation of their corresponding permutations, it
follows that the elements in USS(δ), which are conjugates of δ, are simple elements determined
by a cycle of length n. Moreover, if s ∈ USS(δ) then sn = ∆2, which is a positive braid in
which any two strands cross exactly twice.

Let s ∈ USS(δ). Its permutation can be written as πs = (1 u1 u2 · · · ur n dt dt−1 · · · d1),
where r, t ≥ 0 and r + t + 2 = n. We must show that u1 < · · · < ur and dt > · · · > d1. See in
Figure 2 an example of two simple braids whose permutations are cycles of length n, so the
permutations are conjugate in the symmetric group, but one of the braids satisfies the above
inequalities and the other one does not.

6

Figure 2: Two simple braids in BA
8 whose permutations are cycles of length 8. By Proposi-

tion 10, the first one is conjugate to δ and the second one is not. Notice that the exponent
sum of the second one (i.e. the number of crossings or the letter length, in this case) is 9,
while the exponent sum of conjugates of δ ∈ BA

8 is 7.

Suppose that ui > ui+1 for some i, where 1 ≤ i < r, and consider the strands 1 and u1. We
will see that these two strands cross more than twice in sn. Indeed, one has 1 < u1, but in
si these strands end at ui and ui+1, respectively. Since ui > ui+1, this means that they have
crossed at least once in si. Now in sr these two strands end at ur and n, respectively, and
since ur is necessarily less than n, they have crossed again. Next, in sr+1 they end at n and
dt (or n and 1 if there are no dj ’s), so they have crossed one more time. This means that in
sr+1 the strands 1 and u1 cross at least three times, showing that sn cannot be equal to ∆2, a
contradiction. Therefore u1 < · · · < ur. Similarly, if we had di+1 < di for some i, then strands
n and dt would cross more than twice in sn, which is impossible. Therefore dt > · · · > d1.

Conversely, suppose that s is simple and πs = (1 u1 u2 · · · ur n dt dt−1 · · · d1) for some
u1 < · · · < ur and dt > · · · > d1. We will show that s is conjugate to δ in a constructive way,
by finding a conjugating element. First notice that if t = 0 then πs = (1 2 · · · n) = πδ. Since
simple elements are determined by their permutations, this means that s = δ. Hence we can
assume that t > 0. Denote k = d1. One has

πs = (1 2 · · · k − 1 uk−1 · · · ur n dt · · · d2 k).

A schematic picture of the first k strands of s can be seen in Figure 3. We will conjugate s
by σ[k→1], so we consider s′ = σ−1

[k→1] s σ[k→1]. Recall that two strands i and j (i < j) cross

in s if and only if πs(i) > πs(j). Then we can easily check that the strand of s ending at k
(that is, the strand d2 if t > 1 or the strand n if t = 1) does not cross the strands ending at
1, 2, . . . , k − 1 (that is, the strands k, 1, 2, . . . , k − 2, respectively). This implies that s σ[k→1]

is a simple braid. Moreover, one can also check that the strand k of s (thus the strand k of
s σ[k→1]) crosses the strands k − 1, k − 2, . . . , 1, hence s′ = σ−1

[k→1] s σ[k→1] is a simple braid.

Since the permutation associated to σ[k→1] is (1 2 · · · k), it follows that

πs′ = (1 2 · · · k − 1 k uk−1 · · · ur n dt · · · d2).

We can continue this process, by recurrence on t, conjugating by elements of the form σ[di→1]

and obtaining new simple conjugates of s whose permutations have more indices between 1
and n at each step, until we get the permutation (1 2 · · · n), that is, until we obtain δ. In this

7

way we have shown that if s is a simple element with the permutation given in the statement,
then α−1sα = δ, where

α = σ[d1→1] σ[d2→1] · · · σ[dt→1].

Therefore, we have determined the elements in USS(δ) in terms of their permutations.

Figure 3: Conjugating s to s′.

Remark 11. The above element α is simple, hence all elements in USS(δ) are conjugate to
δ by a simple element.

Corollary 12. If δ = σn−1 · · · σ1 ∈ BA
n then #(USS(δ)) = 2n−2.

Proof. The elements in USS(δ) are characterized by the permutation given in the above
result, which is itself characterized by the sequence 1 < u1 < · · · < ur < n. The number
of possible sequences is equal to the number of subsets of {2, . . . , n − 1} which is precisely
2n−2.

Now let us do the same for USS(ε).

Proposition 13. An element s ∈ BA
n belongs to USS(ε) if and only if it is simple and

πs = (a)(1 u1 u2 · · · ur n dt dt−1 · · · d1),

for some u1 < u2 < · · · < ur and some dt > dt−1 > · · · > d1, with r, t ≥ 0 and r + t + 3 = n.
Notice that a 6= 1, n. Moreover, in this case one has β−1sβ = ε, where

β = σ[d1→1] σ[d2→1] · · · σ[dt→1] σ[b→2]

and b = a + t−max{i : di < a},

8

Proof. Since ε is simple, the elements of USS(ε) are precisely the simple conjugates of ε; in
particular, USS(ε) consists of simple elements whose permutation is the product of a cycle of
length 1 (a fixed point) and a cycle of length n−1. Moreover, if s ∈ USS(ε) then sn−1 = ∆2,
where any two strands cross exactly twice.

Let s ∈ USS(ε), and let πs = (a)(x1 · · · xn−1). If a = 1 then the first strand of s does
not cross any other strand. This means that we can write s as a word in Artin generators
in which the letter σ1 does not appear. But in that case every power of s would satisfy
the same property. In particular, the first strand of sn−1 = ∆2 would not cross any other
strand, a contradiction. Hence a 6= 1. In the same way one shows that a 6= n. Therefore the
permutation induced by s can be written as

πs = (a)(1 u1 u2 · · · ur n dt dt−1 · · · d1).

We can show that u1 < · · · < ur and that dt > · · · > d1, using the same proof as in
Proposition 10. In Figure 4 we can see an example of two braids whose permutations are
cycles of length n − 1. The first one satisfies the above inequalities and the second one does
not.

Figure 4: Two simple braids in BA
8 whose permutations are cycles of length 7. By Proposi-

tion 13, the first one is conjugate to ε and the second one is not. As in Figure 2, the exponent
sums of the two braids differ; the exponent sum of second one is 12, while the exponent sum
of conjugates of ε ∈ BA

8 is 8.

Now let s be a simple element such that

πs = (a)(1 u1 u2 · · · ur n dt dt−1 · · · d1)

for some u1 < u2 < · · · < ur, some dt > dt−1 > · · · > d1 and some a 6= 1 or n.

Suppose that t > 0. Similarly to the proof of Proposition 10, we will conjugate s by σ[d1→1],
and this will reduce the index t. Let k = d1. If a > k one has

πs = (a)(1 2 · · · k − 1 uk−1 · · · ur n dt · · · d2 k),

otherwise

πs = (a)(1 2 · · · a− 1 a + 1 · · · k − 1 uk−2 · · · ur n dt · · · d2 k).

The picture in the former case is the same as in Figure 3, while the latter case is represented
in Figure 5. In either case, the strand of s that ends at k (that is, d2 if t > 1 or n if t = 1)

9

does not cross the strands that end at 1, 2, . . . , k − 1 (that is k, 1, 2, · · · , k − 2, where one of
them could possibly be equal to a). Therefore sσ[k→1] is simple. At the same time, the strand
k of s crosses the strands k − 1, k − 2, . . . , 1 (where one of them could be equal to a). Hence
s′ = σ−1

[k→1]s σ[k→1] is simple. Depending on whether a > k or not, one has either

πs′ = (a)(1 2 · · · k − 1 k uk−1 · · · ur n dt · · · d2),

or
πs′ = (a + 1)(1 2 · · · a a + 2 · · · k uk−2 · · · ur n dt · · · d2).

Figure 5: Conjugating s to s′ when a < k.

We can continue this process, increasing the number of indices between 1 and n. Notice that
the index a increases at some step i if and only if di > a, and in that case we will also have
di+1, . . . , dt > a, so once the index a increases, it continues increasing at every further step of
the procedure. Eventually, one obtains a simple element s0 = α−1sα such that

α = σ[d1→1]σ[d2→1] · · · σ[dt→1]

and
πs0

= (b)(1 2 · · · b− 1 b + 1 · · · n),

where b = a + t−max{i : di < a}.

If b = 2 we already have s0 = ε. Otherwise we will conjugate s0 by σ[b→2]. Notice that
the strand of s0 that ends at b (that is, strand b itself) does not cross the strands ending
at b − 1, b − 2, . . . , 2. Hence s0σ[b→2] is simple. Next, the strand b of s0σ[b→2] crosses the

strands b − 1, b − 2, . . . , 2, hence σ−1
[b→2]s0σ[b→2] is simple, and its permutation is equal to

(2)(1 3 4 · · · n), hence this simple braid is equal to ε. Therefore, if we define

β = σ[d1→1] σ[d2→1] · · · σ[dt→1] σ[b→2]

where b = a + t−max{i : di < a}, then β−1sβ = ε.

10

Remark 14. The element β defined above is not necessarily simple, but in the worst case
it is the product of two simple elements, σ[d1→1] σ[d2→1] · · · σ[dt→1] and σ[b→2]. Hence, every
element in USS(ε) is connected to ε by a conjugating element of canonical length at most 2.

Corollary 15. If ε = σ1(σn−1 · · · σ1) ∈ BA
n then #(USS(ε)) = (n− 2)2n−3.

Proof. The elements in USS(ε) are characterized by the permutation given in Proposition 13,
which is itself characterized by the sequence 1 < u1 < · · · < ur < n and the number a. Since
a 6= 1, n, one has n − 2 choices for the index a. And for every choice of a, the number of
possible sequences is equal to the number of subsets of {2, . . . , a− 1, a + 1, . . . , n− 1}, which
is precisely 2n−3. Hence the total number of choices is (n− 2)2n−3.

Notice that the results in this section not only characterize the elements in USS(δ) and
USS(ε) by their permutations, determining the sizes of these two sets, but also find con-
jugating elements from any given element in USS(δ) (resp. USS(ε)) to δ (resp. ε). This
fact, together with the known algorithm for obtaining for any braid X a conjugate Y of X
whose canonical length is minimal [18], which for periodic X implies Y ∈ USS(X), provides
a solution to the conjugacy search problem for conjugates of δ or ε. Moreover, this algorithm
has complexity O(l3n3 log n), where l is the letter length in Artin generators of the input
braid. But this algorithm is not easily generalized to other periodic braids (conjugates of
powers of δ or ε), so in the next section we will present an alternative approach that solves
the conjugacy search problem for every periodic braid, using other Garside structures and
other groups (namely Artin-Tits groups of type B).

Remark 16. In [26] there is a simple algorithm which finds a conjugating element from any
braid in USS(δ) to δ. It is also an efficient algorithm, and very easy to implement, but
Proposition 10 directly provides a conjugating element and at the same time characterizes
the elements in USS(δ), in such a way that we can count them all.

Remark 17. We end this section by remarking that, in practical computations for small n,
the sizes of USS(δk) and USS(εk) for different values of k are in most cases much bigger
than the sizes of USS(δ) and USS(ε), respectively. Hence the usual algorithm in [21] is
not efficient in general for periodic braids. We also notice that the algorithm in [26] can be
generalized to ε, but it does not generalize to powers of δ or ε. Hence the algorithm in the
next section is, to our knowledge, the first efficient algorithm to solve the conjugacy search
problem for periodic braids.

4 Proof of Theorem 1

In this section we will complete the proof of Theorem 1 by developing a polynomial algorithm
to solve the conjugacy search problem for periodic braids.

Suppose that we are given two braids X,Y ∈ BA
n . Using Algorithm A, we may assume that

X and Y are periodic, and that they are conjugate to the same power of δ or ε (otherwise
we would stop and return a negative answer for steps (1) or (2) in Theorem 1). We can also
assume that we know the specific power of δ (resp. ε) which is conjugate to X and Y , say δk

(resp. εk). Clearly, we just need an algorithm that finds a conjugating element from X to δk

11

(resp. εk), since the same algorithm can be applied to Y and we would immediately obtain a
conjugating element from X to Y .

Therefore, we will suppose that we are given a braid X ∈ BA
n as a word of length l in

σ1, . . . , σn−1 and their inverses, and that X is conjugate to δk respectively εk for some k 6=
0. We will describe algorithms finding a conjugating element from X to δk or εk, whose
complexities are polynomial in n and l. The two cases are treated separately, in Sections 4.1
and 4.2 below.

4.1 Solving the conjugacy search problem for conjugates of δk

We remind the reader that in [4], Birman, Ko and Lee investigated a then-new presentation
for the braid groups:

(2) BB
n :

〈

ats, 1 ≤ s < t ≤ n

∣

∣

∣

∣

atsarq = arqats if (t − r)(t − q)(s − r)(s − q) > 0,
atsasr = atrats = asratr if 1 ≤ r < s < t ≤ n.

〉

.

The elements ats are called band generators or Birman-Ko-Lee generators. The left sketch
in Figure 6 shows one way to think of the generator ats. A different way is shown on the
right, where we consider D

2
n to be the disc in C centered at the origin with radius 2, the n

punctures being the n-th roots of unity ζk = e2kπi/n for k = 1, . . . , n. Then ats is the braid
that swaps the punctures ζs and ζt as shown in the right hand side of Figure 6.

Figure 6: The band generator ats.

In will be convenient to think of BA
n and BB

n as defining distinct groups. The relation between
them is then given by the isomorphism Φ : BB

n → BA
n :

Φ(ai,i+1) = σi, 1 ≤ i ≤ n− 1
Φ(ats) = (σt−1σt−2 · · · σs+1)σs(σ

−1
s+1 · · · σ

−1
t−2σ

−1
t−1), 1 ≤ s < t− 1 ≤ n.(3)

The inverse automorphism sends σi to ai,i+1.

The reason we wish to think of these two groups as being distinct, is because we need to
distinguish the Garside structure on BA

n [20] from that on BB
n , introduced in [4]. When we

say that X ∈ BA
n (resp. X ∈ BB

n) is written in left normal form, our notation is intended to
mean that we are using the Garside structure associated to the presentation (1) (resp. (2)).
The key point here (which we will generalize when we treat the case of braids conjugate to
ε, is that the Garside element for BB

n is precisely our periodic braid δ. It is shown in [4] that

12

with respect to the Garside structure introduced in [4], the left normal form of a braid in BB
n ,

given as a word of length l in the band generators and their inverses, can be computed in
time O(l2n). We will solve the conjugacy search problem for braid conjugate to δ by making
use of the algorithm in [21], using the Garside structure on BB

n . This will enable us to bypass
the difficulty which was uncovered in Corollary 15.

It will be important for our purposes to describe the simple elements in the Garside structure
on BB

n . These simple elements are known to be in bijection with the non-crossing partitions
of the n-th roots of unity R = {ζ1, . . . , ζn} [4, 2]. Non-crossing partitions can be defined as
follows: Given a partition ℘ ofR, every part of ℘ with d elements (d ≥ 2) gives rise to a unique
convex polygon joining the d punctures (if d = 2 the polygon is just a segment). The partition
℘ is said to be non-crossing if these polygons are pairwise disjoint. Each polygon determines a
braid which corresponds to a rotation of its d vertices in the counterclockwise sense, and that
we will call a polygonal braid. Disjoint polygons determine commuting polygonal braids. The
simple element corresponding to a non-crossing partition ℘ is the product of the (mutually
commuting) polygonal braids determined by ℘, as is shown in Figure 7. Hence, each simple
element of BB

n is a product of at most n/2 polygonal braids. Notice also that the polygonal
braid corresponding to the part {ζi1 , ζi2 , · · · , ζik}, with i1 < i2 < · · · < ik, is precisely
aik,ik−1

aik−1,ik−2
· · · ai2,i1. The element δ is the polygonal braid corresponding to the whole

set {ζ1, . . . , ζn}.

Figure 7: A simple element of BB
12, which is a product of three polygonal braids. It is the

braid (a11,2a2,1)(a10,8a8,4a4,3)(a6,5), where the three factors (the polygonal braids) commute.

Before stating and proving the main result of this section, we need a lemma that will improve
the estimation of the complexity of our algorithms for periodic braids. It is the following:

Lemma 18. If a nontrivial periodic braid X ∈ BA
n is given as a word of length l in the Artin

generators and their inverses, then l ≥ n− 1.

Proof. Suppose that l < n− 1. Then the exponent sum of X is an integer m with 0 ≤ |m| <
n − 1. By Lemma 7, the exponent sum of a periodic braid is a multiple of either n − 1 or
n. It follows that m = 0, so X is conjugate to δ0 = 1. But in this case X is trivial, a
contradiction.

We can finally show our main result for conjugates of powers of δ.

Proposition 19. Let X ∈ BA
n be given as a word of length l in the Artin generators

σ1, . . . , σn−1 and their inverses. If X is conjugate to δk for k 6= 0, there exists an algorithm
of complexity O(l3n2) that finds a conjugating element C ∈ BA

n such that C−1XC = δk.

13

Proof. We are given a word X ∈ BA
n :

X = σǫ1
µ1

σǫ2
µ2
· · · σǫl

µl
.

It is very simple to rewrite X as a word in the band generators, because Φ−1(σi) = ai+1,i for
each i = 1 . . . , n− 1. So we have:

Φ−1(X) = aǫ1
µ1+1,µ1

aǫ2
µ2+1,µ2

· · · aǫl

µl+1,µl
.

We can then apply iterated cycling and decycling to X ∈ BB
n , in order to obtain a conjugate

X ′ ∈ BB
n of minimal canonical length, together with a conjugating element. It is shown

in [5] that we need to apply at most |δ| l cyclings and decyclings, this means at most |δ| l
computations of normal forms, where |δ| is the letter length of δ written as a positive word
in the band generators. Since |δ| = n− 1, it follows that we can obtain X ′ ∈ BB

n of minimal
canonical length, and a conjugating element from X to X ′, in time O(l3n2).

But X is conjugate to δk, which is a power of the Garside element of BB
n , so ℓ(δk) = 0.

This means that USS(X) = {δk}, and more precisely X ′ = δk. Hence, we have found a
conjugating element C ∈ BB

n from X to δk in time O(l3n2). As this conjugating element is
given in terms of band generators, the last step consists of translating C to Artin generators.

Recall that a cycling (resp. a decycling) consists of a conjugation by a simple element (resp.
by the inverse of a simple element). So C is a product of at most (n− 1)l simple elements (or
inverses) in BB

n . In the Birman-Ko-Lee structure, the letter length of a simple element is at
most n−1, so C ∈ BB

n has letter length at most (n−1)2l. Since each band generator is equal
to a word in Artin generators of length at most 2n− 3, this means that one can translate C
to Artin generators, via the isomorphism Φ, in time O(n3l).

Therefore, the conjugacy search problem for conjugates of δk, given as words in Artin gen-
erators, can be solved in time O(l3n2 + ln3). By Lemma 18, one has l ≥ n − 1, so that
ln3 ≤ l(l+1)n2 < l3n2 (we can assume l > 1). Hence this complexity is equal to O(l3n2).

The algorithm described in the proof of Proposition 19 is the following.

Algorithm B:

Input: A word w in Artin generators and their inverses representing X ∈ BA
n conjugate to

δk.

Output: C ∈ BA
n such that C−1XC = δk.

1. Translate w to a word w′ in band generators using the rule σi → ai+1,i.

2. Apply iterated cyclings and decyclings in BB
n to w′ until δk is obtained. Let C ′ ∈ BB

n

be the product of all the conjugating elements in this process.

3. Translate C ′ to a word C ∈ BA
n , using the rule

ats → (σt−1σt−2 · · · σs+1)σs(σ
−1
s+1 · · · σ

−1
t−2σ

−1
t−1).

4. Return C.

By Proposition 19, Algorithm B has complexity O(l3n2).

14

4.2 Solving the conjugacy search problem for conjugates of ε
k

Our final task is to learn how to find the conjugating element in the case when X is conjugate
to εk. The methods will be identical to those used in case of conjugates of δk: We will begin
with X ∈ BA

n , i.e. X will be given as a word in the generators of BA
n and their inverses. Using

Algorithm A we will have verified that X is periodic and conjugate to a known power of ε.
Our task will be to find the conjugating element. We will prove that there is also a suitable
Garside group, with a known Garside structure, whose Garside element is ε. This group,
however, is not the braid group, rather it is a subgroup of the braid group that we will denote
Pn,2. The subgroup is formed by the braids whose corresponding permutation preserves the
second puncture. It is well known that Pn,2 is a Garside group, since it is isomorphic to
the Artin-Tits group of type Bn−1 [14]. Nevertheless, we won’t use the classical Garside
structure on the Artin-Tits group A(Bn−1), but the dual Garside structure defined in [2].
This explains why we shall start, in Section 4.2.1, by describing the groups, embeddings and
Garside structures that we will need to use in our algorithm. We then put them to work in
Section 4.2.2

4.2.1 Braids fixing one puncture, Artin-Tits groups of type B and symmetric

braids

We shall now describe the five groups we are interested in, with their corresponding Garside
structures. The first two groups are well known, they are just BA

n and BB
2n−2.

Next, let us consider the subgroup Pn,2 ⊂ BA
n , consisting of braids that fix the second punc-

ture. That is, Pn,2 = {X ∈ BA
n : πX(2) = 2}. We will not consider right now a Garside

structure on Pn,2, but we remark that ε ∈ Pn,2.

Now let Sym2n−2 be the centralizer of δn−1 in BB
2n−2, where we write δ for δ2n−2. In other

words, if we represent the 2n − 2 punctures of D
2
2n−2 as the (2n − 2)-nd roots of unity, the

elements of Sym2n−2 are precisely the braids which are invariant under a rotation of 180
degrees. This is why they are called symmetric braids.

Finally, consider the Artin-Tits group A(Bn−1), whose presentation is

A(Bn−1) =

〈

s1, . . . , sn−1

∣

∣

∣

∣

∣

∣

sisj = sjsi if |i− j| > 1
sisjsi = sjsisj if |i− j| = 1 and i, j 6= 1
s1s2s1s2 = s2s1s2s1

〉

.

We shall now recall from the literature that the last three groups we just considered are
isomorphic, that is, one has the following situation:

BA
n BB

2n−2

∪ ∪
Pn,2

∼= A(Bn−1) ∼= Sym2n−2

(4)

Moreover, it can be deduced from [28] that the restriction of the Garside structure of BB
2n−2

determines a Garside structure in Sym2n−2. Via the above isomorphisms, this induces Garside
structures in A(Bn−1) and in Pn,2. We shall see that the Garside element of the latter is
precisely ε, and this will help us to solve the conjugacy search problem for conjugates of εk.

Let us then study in detail the mentioned isomorphisms.

15

Lemma 20. The map ρ : A(Bn−1) → Pn,2 given by ρ(s1) = σ2
1, ρ(s2) = σ1σ2σ

−1
1 and

ρ(si) = σi for i > 2, is an isomorphism.

Proof. Proposition 5.1 in [14] provides an isomorphism ρ0 : A(Bn−1) → Pn,1, where Pn,1 is
the subgroup of BA

n consisting of braids which fix the first puncture. This isomorphism is
given by ρ0(s1) = σ2

1 and ρ0(si) = σi for i > 1, and it was already known to specialists, prior
to [14]. Now we just need to notice that the inner automorphism ϕ : BA

n → BA
n given by

ϕ(X) = σ1Xσ−1
1 sends Pn,1 isomorphically to Pn,2, and that ϕ|Pn,1

◦ ρ0 = ρ.

Remark 21. It is well known [14] that Pn,2 (hence A(Bn−1)) can be identified with the
braid group of the open annulus D

2\{0} on n− 1 strands. Indeed, an element X ∈ Pn,2 fixes
the second puncture, so it can be isotoped to a braid whose second strand in D

2 × [0, 1] is a
straight line, say {0} × [0, 1]. This second strand can be considered to be a hole of D

2, so X
can be regarded as a braid on n− 1 strands of D

2\{0}.

In order to avoid confusion, we will represent elements in Pn,2 ∈ BA
n in the usual way, as they

are represented at the bottom of Figure 8, while elements of A(Bn−1) will be represented in
the Birman-Ko-Lee style, as braids on D

2\{0} whose base points are the (n − 1)-st roots of
unity, as we can see at the top of Figure 8.

Figure 8: The generators of A(Bn−1), represented as braids on D
2\{0}, and their images

under the isomorphism ρ : A(Bn−1)→ Pn,2.

Lemma 22. The map θ′ : A(Bn−1) → Sym2n−2 given by θ′(s1) = an,1 and θ′(si) =
ai,i−1 ai+n−1,i+n−2 for i > 1, is an isomorphism.

Proof. In [10], Brieskorn showed that an Artin-Tits group of finite type is the fundamental
group of the regular orbit space of its corresponding Coxeter group, acting as a finite real
reflection group on a complex space. In particular, since the Coxeter group associated to
A(Bn−1) is W = Σn−1⋉(Z/2Z)n−1, where the symmetric group acts by permuting coordinates

16

(that is, W is the signed permutation group), and its corresponding hyperplane arrangement
is x1x2 · · · xn−1

∏

i6=j(xi − xj)(xi + xj), it follows that A(Bn−1) = π1(XBn−1
/W), where

XBn−1
= {(x1, . . . , xn−1) ∈ C

n−1 | xi 6= ±xj for i 6= j; xi 6= 0 for all i}.

A good way to describe the space XBn−1
is as the set of (n− 1)-tuples of pairs

((x1,−x1), (x2,−x2), . . . , (xn−1,−xn−1)),

where each xi ∈ C, any two pairs are distinct, and xi 6= 0 for all i. Considering the action of
W , all the above pairs and (n−1)-tuples can be regarded as unordered. Hence XBn−1

/W is the
configuration space of 2n− 2 disjoint and undistinguishable points in C, whose configuration
is invariant under multiplication by −1. We can choose as a base point of this space the
(2n − 2)-nd roots of unity. Hence, an element of its fundamental group is represented by a
braid which is invariant under a rotation by 180 degrees, that is, by a symmetric braid in
BB

2n−2.

It is important to note that two symmetric braids represent the same element in π1(XBn−1
/W)

if and only if they are isotopic through symmetric braids, hence one cannot say a priori that two
symmetric braids that are isotopic in BB

2n−2 represent the same element of π1(XBn−1
/W). For-

tunately, it is shown in [3] that two symmetric braids are isotopic in BB
2n−2 if and only if they

are isotopic through symmetric braids. That is, it is shown that A(Bn−1) = π1(XBn−1
/W) ∼=

Sym2n−2.

Moreover, from the work in [3] one obtains an isomorphism θ : Sym2n−2 → A(Bn−1), where
elements of Sym2n−2 are symmetric braids based on the (2n − 2)-nd roots of unity, and the
elements of A(Bn−1) are considered as braids on the annulus D

2\{0} based on the (n − 1)-
st roots of unity. The isomorphism θ can be easily described geometrically, since it just
identifies antipodal points in C. That is, it sends z ∈ C\{0} to z2/|z|. This corresponds to
a two-sheeted covering map of C\{0}, and since no strand of a symmetric braid touches the
axis {0} × [0, 1], this map is well defined.

In Figure 9 we can see that θ(an,1) = s1 and that θ(ai,i−1 ai+n−1,i+n−2) = si for i > 1, where
in the picture one has ζk = e2kπi/(2n−2) and ξk = e2kπi/(n−1). Therefore θ′ = θ−1, so it is an
isomorphism.

By Lemmas 20 and 22 we know that Pn,2
∼= A(Bn−1) ∼= Sym2n−2, and we also know how

to transform any word in the generators s1, . . . , sn−1 of A(Bn−1) and their inverses, into
a word in either the Artin generators of Pn,2 or the band generators of Sym2n−2, via the
isomorphisms ρ and θ′ = θ−1.

BA
n BB

2n−2

∪ ∪

Pn,2
ρ
←− A(Bn−1)

θ′
−→ Sym2n−2.

But in our algorithm we will need to translate any word in the Artin generators of BA
n ,

representing an element of Pn,2, to a word in the band generators of Sym2n−2, and vice versa.
Hence, we need the following results.

17

Figure 9: The map θ transforms the symmetric braids on the left hand side to the generators
of A(Bn−1) on the right hand side.

Lemma 23. Let X ∈ Pn,2 ⊂ BA
n be given as a word of length l in the Artin generators

and their inverses, X = σǫ1
µ1

σǫ2
µ2
· · · σǫl

µl
. For i = 0, . . . , l, let Xi = σǫ1

µ1
σǫ2

µ2
· · · σǫi

µi
and let

ki = πXi
(2), that is, the final position of the second strand of Xi. Then one obtains a word

in the band generators and their inverses representing θ′(ρ−1(X)) ∈ Sym2n−2, by replacing
each letter σǫi

µi
using the following rules:

σµi
→

aµi+1,µi
aµi+n,µi+n−1 if µi < ki−1 − 1,

1 if µi = ki−1 − 1,

aµi+n−1,µi
if µi = ki−1,

aµi,µi−1 aµi+n−1,µi+n−2 if µi > ki−1,

and

σ−1
µi
→

a−1
µi+n,µi+n−1 a−1

µi+1,µi
if µi < ki−1 − 1,

a−1
µi+n−1,µi

if µi = ki−1 − 1,

1 if µi = ki−1,

a−1
µi+n−1,µi+n−2 a−1

µi,µi−1 if µi > ki−1.

Moreover, this algorithm has complexity O(l), and produces a word of length at most 2l.

Proof. Recall that we are given a braid X ∈ BA
n that fixes the second puncture, that is,

X ∈ Pn,2, written as a word in the Artin generators of BA
n and their inverses. We want to

18

write ρ−1(X) as a word in the generators s1, . . . , sn−1 and their inverses, and then θ′(ρ−1(X))
as a word in the band generators of BB

2n−2.

The first problem is that X is not given as a word in the generators of Pn,2, but in the
generators of BA

n . We will then use the Reidemeister-Schreier method (see Section 2.3 of [27])
to decompose X as a product of elements in Pn,2. In order to do this, notice that Pn,2 is a
subgroup of BA

n of index n. The right coset of a braid Z depends on where it sends the second
puncture. If πZ(2) = k, we denote by Rk a representative of the right coset Pn,2 Z ∈ Pn,2\B

A
n .

For technical reasons, we will choose as coset representatives the elements R1 = σ1, R2 = 1
and Rk = σ−1

[k→2] = σ−1
2 · · · σ

−1
k−1 if k > 2.

Then, for i = 0, . . . , l, we define Xi = Rki
. That is, Xi is the chosen representative of

Pn,2 Xi ∈ Pn,2\B
A
n . Note that X0 = Xl = R2 = 1.

By the Reidemeister-Schreier method, one has

X =
l
∏

i=1

(

Xi−1 σǫi
µi

Xi
−1
)

=
l
∏

i=1

(

Rki−1
σǫi

µi
R−1

ki

)

,

where each of the above l factors belongs to Pn,2. Notice that ki = ki−1, unless either µi = ki−1

(in which case ki = ki−1 + 1) or µi = ki−1 − 1 (and then ki = ki−1 − 1). One can check that,
depending on µi and ki−1, each of the above factors can be written in terms of the Artin
generators and their inverses as follows. If ǫi = 1, one has:

(Rki−1
σµi

R−1
ki

) =

σ−1
2 σ1σ2 if 1 = µi < ki−1 − 1,

σµi+1 if 1 6= µi < ki−1 − 1,

1 if µi = ki−1 − 1,

σ2
1 if 1 = µi = ki−1,

(σ−1
2 σ−1

3 · · · σ
−1
µi−1)σµi

(σµi
σµi−1 · · · σ2) if 1 6= µi = ki−1,

σ1σ2σ
−1
1 if 2 = µi > ki−1,

σµi
if 2 6= µi > ki−1.

If ǫi = −1, one obtains the inverses of the above, in the following way:

(Rki−1
σ−1

µi
R−1

ki
) =

σ−1
2 σ−1

1 σ2 if 1 = µi < ki−1 − 1,

σ−1
µi+1 if 1 6= µi < ki−1 − 1,

σ−2
1 if 1 = µi = ki−1 − 1,

(σ−1
2 σ−1

3 · · · σ
−1
µi

)σ−1
µi

(σµi−1 · · · σ2) if 1 6= µi = ki−1 − 1,

1 if µi = ki−1,

σ1σ
−1
2 σ−1

1 if 2 = µi > ki−1,

σ−1
µi

if 2 6= µi > ki−1.

Now we need to apply ρ−1 to each factor (Rki−1
σǫi

µi
R−1

ki
), and write the image in in terms of

the generators s1, . . . , sn−1 and their inverses. Recall that ρ(s1) = σ2
1 , ρ(s2) = σ1σ2σ

−1
1 =

19

σ−1
2 σ1σ2 and ρ(si) = σi for i > 2. Notice also that ρ(s2s1s

−1
2) = σ2

2 , and that if µi > 2 one
has

ρ
(

(sµi
sµi−1 · · · s3 s2) s1 (s−1

2 s−1
3 · · · s

−1
µi

)
)

= (σµi
σµi−1 · · · σ3)σ

2
2(σ

−1
3 · · · σ

−1
µi

)

= (σ−1
2 · · · σ

−1
µi−1)σµi

(σµi
· · · σ2).

Therefore, if ǫi = 1, one has:

ρ−1(Rki−1
σµi

R−1
ki

) =

sµi+1 if µi < ki−1 − 1,
1 if µi = ki−1 − 1,

(sµi
sµi−1 · · · s2) s1 (s−1

2 s−1
3 · · · s

−1
µi

) if µi = ki−1,

sµi
if µi > ki−1,

and if ǫi = −1, one obtains:

ρ−1(Rki−1
σ−1

µi
R−1

ki
) =

s−1
µi+1 if µi < ki−1 − 1,

(sµi
sµi−1 · · · s2) s−1

1 (s−1
2 s−1

3 · · · s
−1
µi

) if µi = ki−1 − 1,

1 if µi = ki−1,
s−1
µi

if µi > ki−1.

Finally, we need to apply θ′ to the above factors. Notice that there are only two kinds
of elements to consider. The first one is si, with i > 1, which by definition is mapped
to θ′(si) = ai,i−1 ai+n−1,i+n−2. The elements of the second kind are those of the form
(sisi−1 · · · s2)s1 (s−1

2 s−1
3 · · · s

−1
i), for i = 1, . . . , n−1. One can use the Birman-Ko-Lee presen-

tation to show that the image under θ′ of this element is precisely ai+n−1,i, but it is easier to
show it geometrically, since the element (sisi−1 · · · s2)s1 (s−1

2 s−1
3 · · · s

−1
i) is precisely the one in

the right hand side of Figure 10, in which the puncture corresponding to the (n−1)-st root of
unity ξi makes a loop around the origin. It is then easy to lift such a path via θ−1, obtaining
the braid ai+n−1,i. Since θ−1 = θ′, one has θ′

(

(sisi−1 · · · s2) s1 (s−1
2 s−1

3 · · · s
−1
i)
)

= ai+n−1,i,
as we wanted to show.

Figure 10: The image under θ of ai+n−1,i.

One can finally transform the word X = σǫ1
µ1
· · · σǫl

µl
to a word representing θ′(ρ−1(X)), if

one replaces each σǫi
µi

by θ′(ρ−1(Rki−1
σǫi

µi
R−1

ki
)). By the above discussion, the formulae in the

statement hold.

It remains to notice that the numbers µi and ki, for i = 1, . . . , l can be obtained in time
O(l), and that the procedure given by the statement replaces each letter of X by at most two
letters of θ′(ρ−1(X)). Hence the length of the obtained word is at most 2l, and the whole
procedure has complexity O(l).

20

Now we also need to know how to translate an element Y ∈ Sym2n−2, given as a word in the
band generators of BB

2n−2 and their inverses, to a word representing ρ(θ(Y)) ∈ Pn,2 ⊂ BA
n .

We first need a preparatory result:

Lemma 24. If Y ∈ Sym2n−2 is given as a word of length l in the band generators of BB
2n−2

and their inverses, then one can compute in time O(l2n) a word δtp1p2 · · · pk representing Y ,
such that each pi ∈ Sym2n−2 is either a symmetric polygonal braid ΣP , or the product of two
commuting polygonal braids ΣP1

ΣP2
such that a rotation of 180 degrees permutes ΣP1

and
ΣP2

. Moreover, |t| ≤ l and k ≤ ln/2.

Proof. The way to obtain the word p1 · · · pk is just the computation of the left normal form
of Y in BB

2n−2. It is shown in [28] that the set of symmetric non-crossing partitions of the
(2n − 2)-nd roots of unity (the symmetric simple elements in BB

2n−2) is a sublattice of the
whole lattice of non-crossing partitions. This implies that the Garside structure of BB

2n−2

restricts to a Garside structure on Sym2n−2. Therefore, since δ ∈ Sym2n−2, the greatest
common divisor of Y and any power of δ is also symmetric, and hence every factor in the left
normal form of Y is symmetric.

By [4], the left normal form of Y can be computed in time O(l2n). Once that it is computed,
each non-δ factor is the product of mutually commuting polygonal braids, and the union of
these polygons must be symmetric. Hence, each of these polygons is either symmetric, or it
belongs of a pair of polygons which are permuted by a rotation of 180 degrees, so the result
follows.

Finally, notice that the left normal form of Y has the form δty1 · · · ys with |t| ≤ l and s ≤ l.
Now every yi contains at most one symmetric polygonal braid, namely the one containing the
origin. The remaining polygonal braids of yi come in pairs. The symmetric polygonal braid,
if it exists, involves at least two punctures, and each pair of polygonal braids involves at least
4 punctures. Hence yi can be decomposed into a product of at most 1 + (2n − 4)/4 = n/2
factors of the form pj. Since s ≤ l, one finally obtains k ≤ ln/2, as we wanted to show.

Lemma 25. Let Y ∈ Sym2n−2 be given as a word of length l in the band generators and their
inverses, and let Y = δtp1 · · · pk be the decomposition given in Lemma 24. Then one obtains
a word in the Artin generators and their inverses representing ρ(θ(Y)) as follows.

1. Each δ ∈ BB
2n−2 should be replaced by ρ(θ(δ)) = ε ∈ BA

n .

2. If pi is the product of two polygonal braids ΣP1
ΣP2

, where the vertices of the polygons
are {ζi1 , . . . , ζid} and {−ζi1 , . . . ,−ζid} respectively, let k ∈ {0, . . . , n − 2} be such that
{ζi1+k, . . . , ζid+k} = {ζj1 , . . . , ζjd

} with 1 ≤ j1 < · · · < jd < n. Then pi should be
replaced by

ρ(θ(ΣP1
ΣP2

)) = εkσ1

jd−1
∏

i=j1+1
(i6=jk ∀k)

σ−1
i

(σjd
σjd−1 · · · σj1+1) σ−1

1 ε−k.

3. If pi is a symmetric polygonal braid ΣP , and the vertices of the polygon P are

{ζj1 , . . . , ζjd
,−ζj1, . . . ,−ζjd

},

21

with 1 ≤ j1 < · · · < jd < n, then pi should be replaced by

ρ(θ(ΣP)) = σ1

jd−1
∏

i=j1+1
(i6=jk ∀k)

σ−1
i

(σjd
σjd−1 · · · σ1)σ1(σ

−1
2 · · · σ

−1
j1

) σ−1
1 .

Proof. Consider the element α = sn−1sn−2 · · · s1 ∈ A(Bn−1). It is represented in the central
picture of Figure 11. On the one hand, by Lemma 20 one has:

ρ(α) = σn−1σn−2 · · · σ3 (σ1σ2σ
−1
1)σ2

1 = σ1(σn−1σn−2 · · · σ1) = ε.

On the other hand, Lemma 22 together with presentation (2) tell us that

θ′(α) = (an−1,n−2 a2n−2,2n−3)(an−2,n−3 a2n−3,2n−4) · · · (a2,1 an+1,n) an,1

= (a2n−2,2n−3 a2n−3,2n−4 · · · an+1,n)(an−1,n−2 an−2,n−3 · · · a2,1) an,1

= (a2n−2,2n−3 a2n−3,2n−4 · · · an+1,n) an,n−1 (an−1,n−2 an−2,n−3 · · · a2,1) = δ.

Therefore, since θ′ = θ−1, one has ρ(θ(δ)) = ρ(α) = ε and the first case holds.

Figure 11: A geometric interpretation of ρ(θ(δ)) = ε.

Now suppose that pi is the product of two polygonal braids ΣP1
ΣP2

, where the vertices of
the polygons are {ζi1 , . . . , ζid} and {−ζi1, . . . ,−ζid}. Notice that conjugation by δ in BB

2n−2

rotates the base points, increasing each index by one. Therefore, since P1 and P2 belong to a
non-crossing partition, there exists some k ∈ {0, . . . , n− 2} such that the rotation induced by
δk transforms {P1, P2} into {P ′

1, P
′
2}, where the vertices of P ′

1 belong to {ζ1, . . . , ζn−1}. Then
ΣP1

ΣP2
= δkΣP ′

1
ΣP ′

2
δ−k. Since ρ(θ(δ)) = ε, in order to compute ρ(θ(ΣP1

ΣP2
)) it suffices to

know the value of ρ(θ(ΣP ′
1
ΣP ′

2
)). See an example in Figure 12.

Let ζj1, . . . , ζjd
be the vertices of P ′

1 in increasing order, as in the statement. For simplicity
of notation, denote j∗ = j + n− 1 for j = 1, . . . , n− 1. The computation goes as follows:

ΣP ′
1
ΣP ′

2
= (ajd,jd−1

ajd−1,jd−2
· · · aj2,j1)(aj∗

d
,j∗

d−1
aj∗

d−1
,j∗

d−2
· · · aj∗

2
,j∗

1
)

= (ajd,jd−1
aj∗

d
,j∗

d−1
) · · · (aj2,j1 aj∗

2
,j∗

1
)

=

2
∏

i=d

(aji,ji−1
aj∗i ,j∗i−1

),

22

Figure 12: Translating pairs of symmetric polygonal braids in BB
2n−2 to Artin generators in

BA
n .

where the index i decreases from d to 2.

Now one can check using Lemma 22 and presentation 2, or just by drawing the corresponding
pictures, that for 1 ≤ u < v < n one has θ′((s−1

u+1s
−1
u+2 · · · s

−1
v−1)(svsv−1 · · · su+1)) = av,uav∗,u∗ .

Hence, since θ′ = θ−1, one obtains:

θ(ΣP ′
1
ΣP ′

2
) =

2
∏

i=d

(s−1
ji−1+1s

−1
ji−1+2 · · · s

−1
ji−1)(sji

sji−1 · · · sji−1+1).

Notice that si commutes with sj if |i− j| > 1, hence all positive letters in the above formula
can be collected to the right (the only exception would appear if ji−1 and ji are consecutive
for some i, but in that case the corresponding negative factor is empty). It follows that:

θ(ΣP ′
1
ΣP ′

2
) =

(

2
∏

i=d

(s−1
ji−1+1s

−1
ji−1+2 · · · s

−1
ji−1)

)

(sjd
sjd−1 · · · sj1+1).

Also, the d − 1 factors made by negative letters commute with each other, so one finally
obtains:

θ(ΣP ′
1
ΣP ′

2
) =

(

d
∏

i=2

(s−1
ji−1+1s

−1
ji−1+2 · · · s

−1
ji−1)

)

(sjd
sjd−1 · · · sj1+1).

=

jd−1
∏

i=j1+1
(i6=jk ∀k)

s−1
i

(sjd
sjd−1 · · · sj1+1).

Now we must apply ρ to the above element. Notice that all indices are greater than 1, so this
will replace s2 by σ1σ2σ

−1
1 and si by σi for i > 2. This is equivalent to replacing si by σ1σiσ

−1
1

for every i > 1. Hence, applying ρ reduces to replacing each si by σi, and then conjugating
the whole element by σ−1

1 . That is,

ρ(θ(ΣP ′
1
ΣP ′

2
)) = σ1

jd−1
∏

i=j1+1
(i6=jk ∀k)

σ−1
i

(σjd
σjd−1 · · · σj1+1) σ−1

1 ,

23

and ρ(θ(ΣP1
ΣP2

)) is precisely as we stated.

It remains to show the third case, in which pi is a single symmetric polygonal braid ΣP ,
where the vertices of P are {ζj1 , · · · ζjd

,−ζj1, · · ·−ζjd
} = {ζj1, · · · ζjd

, ζj1+n−1, · · · ζjd+n−1}. An
example can be seen in Figure 13.

Figure 13: Translating a single symmetric polygonal braid in BB
2n−2 to Artin generators in

BA
n .

Recall that j∗ = j + n− 1 for j = 1, . . . , n − 1. In this case one has

ΣP = (aj∗
d
,j∗

d−1
aj∗

d−1
,j∗

d−2
· · · aj∗

2
,j∗

1
) aj∗

1
,jd

(ajd,jd−1
ajd−1,jd−2

· · · aj2,j1)

= (aj∗
d
,j∗

d−1
aj∗

d−1
,j∗

d−2
· · · aj∗

2
,j∗

1
) (ajd,jd−1

ajd−1,jd−2
· · · aj2,j1) aj∗

1
,j1.

One can apply the reasoning of the previous step to the first two factors, so it only remains
to compute ρ(θ(aj∗

1
,j1)). This is done by noticing that

aj∗
1
,j1 = (aj1,j1−1 aj∗

1
,j∗

1
−1)(aj1−1,j1−2 aj∗

1
−1,j∗

1
−2) · · · (a2,1 an+1,n) · an,1 ·

·(a−1
2,1 a−1

n+1,n) · · · (a−1
j1−1,j1−2 a−1

j∗
1
−1,j∗

1
−2)(a

−1
j1,j1−1 a−1

j∗
1
,j∗

1
−1),

which yields
θ(aj1,j∗

1
) = (θ′)−1(aj1,j∗

1
) = (sj1 · · · s2) s1 (s−1

2 · · · s
−1
j1

).

Since applying ρ reduces to replacing s1 by σ2
1 , then si by σi for i > 1, and then conjugating

everything by σ−1
1 , one obtains:

ρ(θ(aj1,j∗
1
)) = σ1(σj1 · · · σ2)σ2

1 (σ−1
2 · · · σ

−1
j1

)σ−1
1 .

Therefore

ρ(θ(ΣP)) = σ1

jd−1
∏

i=j1+1
(i6=jk ∀k)

σ−1
i

(σjd
σjd−1 · · · σj1+1)(σj1 · · · σ2)σ2

1 (σ−1
2 · · · σ

−1
j1

)σ−1
1 ,

which is precisely the formula in the statement, so the proof is finished.

24

4.2.2 Using symmetric braids to solve the conjugacy search problem

Recall that we are given X ∈ BA
n as a word in the Artin generators σ1, . . . , σn−1 and their

inverses, and we know that X is conjugate to εk for some k 6= 0. This means that the permu-
tation πX consists of the k-th power of a cycle of length n−1, that is πX = (a)(b1 · · · bn−1)

k,
where a 6= bi for every i.

The easy case happens when k is a multiple of n− 1, say k = (n− 1)t. Then εk = ∆2t, so X
is conjugate to a power of ∆2. But since ∆2 is a central element, this implies that X = ∆2t.
Hence X = εk and we are done.

We can then assume that k is not a multiple of n−1. This means that the only puncture which
is fixed by X is the a-th one. If we denote C1 = σ[a→2], it clearly follows that Y = C−1

1 XC1

fixes the second strand, that is, Y ∈ Pn,2. Notice also that ε ∈ Pn,2, so εk ∈ Pn,2. This means
that Y and εk are two elements in Pn,2 which are conjugate in BA

n . Fortunately, they are also
conjugate in Pn,2, as it is shown in the following result.

Lemma 26. If Y,Z ∈ Pn,2 are conjugate braids whose permutations have a single fixed point
(namely 2), then for every conjugating element C ∈ BA

n such that C−1Y C = Z, one has
C ∈ Pn,2.

Proof. Let j = πC(2). If j 6= 2, then πY C(2) = πC(πY (2)) = πC(2) = j, while πCZ(2) =
πZ(πC(2)) = πZ(j) 6= j (since the only fixed point of πZ is 2, and j 6= 2). This contradicts
the assumption Y C = CZ, so we must have πC(2) = 2, that is C ∈ Pn,2.

As a consequence, every conjugating element from Y to εk, when k is not a multiple of n− 1,
must belong to Pn,2. Therefore, finding a conjugating element from Y to εk in BA

n reduces to
solving the conjugacy search problem in Pn,2 for conjugates of εk.

Our strategy consists of applying θ′ ◦ ρ−1, solving the resulting problem in Sym2n−2, and
then mapping the solution back to Pn,2 using ρ ◦ θ. Recall from Lemma 25 that ρ(θ(δ)) = ε,
hence θ′(ρ−1(ε)) = δ ∈ Sym2n−2. Therefore we must solve the conjugacy search problem in
Sym2n−2 for θ′(ρ−1(Y)) and δk.

Recall that, as a consequence of [28], the group Sym2n−2 has a Garside structure which is the
restriction of the Birman-Ko-Lee structure of BB

2n−2. The Garside element of this structure is
hence δ, so the conjugacy search problem for powers of δ ∈ Sym2n−2 can be solved very fast,
by applying iterated cyclings and decyclings. But one does not need to care about the Garside
structure of Sym2n−2, since one can directly work with the Garside structure of BB

2n−2, as it
is shown in the following result.

Lemma 27. Let Z ∈ Sym2n−2 ⊂ BB
2n−2 be given as a word of length l in the band generators

and their inverses. Suppose that Z is conjugate to δk for some k 6= 0. Then by applying
at most (2n − 3)l cyclings and decyclings to Z, using the Garside structure of BB

2n−2, one
conjugates Z to δk and the conjugating element that is obtained belongs to Sym2n−2.

Proof. By [5], by applying at most (2n − 3)l cyclings and decyclings to Z one obtains an
element which has minimal canonical length. Since Z is conjugate to δk, and δ is the Garside
element of BB

2n−2, it follows that the resulting element is precisely δk. Hence one obtains
C ∈ BB

2n−2 such that C−1ZC = δk.

25

Now recall that if a braid in BB
2n−2 is symmetric, then every factor in its left normal form is

also symmetric. Hence the conjugating elements in all cyclings and decyclings applied above
are symmetric braids, so C ∈ Sym2n−2, as we wanted to show.

This finally gives us the algorithm to solve the conjugacy search problem for conjugates of εk.

Algorithm C:

Input: A word w in Artin generators and their inverses representing X ∈ BA
n conjugate to

εk.

Output: C ∈ BA
n such that C−1XC = εk.

1. If k is a multiple of n− 1, return C = 1.

2. Compute a, the only puncture fixed by πX . Let Y = σ−1
[a→2]Xσ[a→2] ∈ Pn,2.

3. Using Lemma 23, compute Z = θ′(ρ−1(Y)).

4. Apply iterated cycling and decycling to Z ∈ BB
2n−2 until δk is obtained. Let C0 ∈

Sym2n−2 be the conjugating element.

5. Using Lemma 25, compute C1 = ρ(θ(C0)).

6. Return C = σ[a→2]C1.

Proposition 28. Algorithm C has complexity O(l3n2).

Proof. The number a in step 2 can be computed in time O(ln), and the letter length of
the word Y is at most 2(n − 2) + l, hence, by Lemma 23, the word Z is obtained in time
O(n+ l), and its letter length is at most 4(n−2)+2l, that is, O(n+ l) as well. By Lemma 18,
O(n + l) = O(l), so the letter length of Z in band generators is O(l).

By Lemma 27, one just needs to apply O(nl) cyclings and decyclings to Z in step 4, each
computation taking time O(l2n) since it is equivalent to computing a left normal form of a
word of length O(l). Hence, step 4 takes time O(l3n2), and it is the most time-consuming step
of the algorithm. The conjugating element C0 ∈ Sym2n−2 consists of at most O(ln) simple
factors.

Notice that C0 is already given as a product of symmetric simple elements. Hence one can
directly apply the formulae in Lemma 25, to compute C1 = ρ(θ(C0)). Since there are O(ln)
factors, and each one is replaced by at most n/2 words of letter length O(3n + 2n2) = O(n2),
it follows that step 5 takes time O(ln4) = O(l3n2), hence the whole algorithm has complexity
O(l3n2) as we wanted to show.

26

4.3 The complete algorithm

We are finally ready to prove Theorem 1 by giving an algorithm which solves step (3) in the
statement of Theorem 1 in time O(l3n2 log n).

Algorithm D

Input: Two words wX , wY in Artin generators and their inverses representing two braids
X,Y ∈ BA

n .

Output: ‘Fail’ if either X or Y is not periodic, or if they are not conjugate. Otherwise, an
element C ∈ BA

n such that C−1XC = Y .

1. Apply Algorithm A to wX and wY .

2. If either X or Y is not periodic return ‘Fail’. If X and Y are not conjugate to the same
power of δ or ε, return ‘Fail’.

3. If X and Y are conjugate to δk for some k, apply Algorithm B to X and Y to find
C1, C2 ∈ BA

n such that C−1
1 XC1 = δk = C−1

2 Y C2. Return C = C1C
−1
2 .

4. If X and Y are conjugate to εk for some k, apply Algorithm C to X and Y to find
C1, C2 ∈ BA

n such that C−1
1 XC1 = εk = C−1

2 Y C2. Return C = C1C
−1
2 .

Proposition 29. Algorithm D has complexity O(l3n2 log n), where l = max{|wX |, |wY |}.

Proof. By Proposition 6, Algorithm A has complexity O(l2n3 log n). By Proposition 19, the
complexity of Algorithm B is O(l3n2), which is the same complexity as that of Algorithm C, by
Proposition 28. Therefore, Algorithm D has complexity O(l2n3 log n + l3n2). By Lemma 18,
this complexity is equivalent to O(l3n2 log n), as we wanted to show.

5 Timing results

In this section we present and analyze running times for the conjugacy search for periodic
elements in Artin braid groups; we compare the established algorithm based on computing
ultra summit sets [21] to the algorithms developed in this paper.

For several values of the parameters n, k and c, tests in Bn were conducted as follows.

1. For i = 1, . . . , 100, we construct a pseudo-random element zi ∈ BA
n as the product of c

randomly chosen simple elements.

2. We compute the samples {(δk)zi : i = 1, . . . , 100} and {(εk)zi : i = 1, . . . , 100}; each
element is stored in left normal form.

3. For each element x in a sample we compute an element conjugating x to δk or εk,
respectively.

27

Step 3 was performed separately for each sample, first using the algorithm from [21], in the
sequel referred to as Algorithm U, and then again using Algorithm B or Algorithm C. Only
the total time for this step was measured for each case. A memory limit of 512 MB and a
time limit of 250 s were applied for each test.

All computations were performed on a Linux PC with a 2.4 GHz Pentium 4 CPU, 533 MHz
system bus and 1.5 GB of RAM using the computational algebra system Magma [8]. An
implementation of Algorithm U written in C is part of the Magma kernel; Algorithms B and
C were implemented in the Magma language.

Remark: One technical aspect of the implementation of Algorithms B and C needs to be
mentioned briefly to explain the observed behavior.

As Algorithms B and C involve mapping a given word, generator by generator, to another
Garside group, a naive implementation of these algorithms will react very sensitively to the
word length of the given element x.

Note, however, that a conjugate y of x having minimal canonical length with respect to the
usual Garside structure, together with a conjugating element, can be computed by iterated
application of cycling and decycling in time O(ℓ3n3 log n), where ℓ is the number of simple
factors of x.1 Note further that if x is periodic, the canonical length of y as above is at most 1.
Moreover, powers of ∆2 can be discarded for the purpose of computing conjugating elements,
as ∆2 is central in Bn. The techniques from Algorithms B and C are then applied to the
resulting element whose length in terms of Artin generators is bounded by n2.

While this does not improve the complexity bounds, it significantly reduces computation
times, especially for large values of the parameter c above, and is critical for the cross-over
points between Algorithm U on the one hand and Algorithms B and C on the other hand.

We finally remark that in the special case that the minimal canonical length of conjugates
of x is 0, that is, in the case that x is conjugate to a power of ∆, its ultra summit set has
cardinality 1 and we do not have to use Algorithms B and C, as a conjugating element can
be obtained directly, just by iterated application of cycling and decycling.

The main results can be summarized as follows; see Tables 1 and 2.

1. Time (and memory) requirements of Algorithm U increase rapidly with increasing value
of n. With the exception of elements which are conjugate to a power of ∆, conjugacy
search using Algorithm U fails for n & 15.

In the light of the exponential growth of USS(δ) and USS(ε) established in Corollar-
ies 12 and 15, this had to be expected.

2. In contrast to this, the computation times for Algorithms B and C grow much more
slowly with increasing value of n. The data is consistent with a polynomial growth;
a regression analysis for fixed values of the parameters k and c suggests that average
times are proportional to nen , where the value en ≈ 2.2 is suggested by a regression
analysis.2

1Note that ℓ, unlike the letter length l, is not bounded below by n for periodic braids.
2Note that for fixed values of k and c the word length l is not fixed but grows at least linearly in n;

cf. Lemma 18. Hence this value of en does not contradict the complexity bounds from Propositions 19 and 28.

28

Table 1: Total execution times of Algorithms U, B and C for all 100 elements of a sample for
c = 10 and various values of n and k. Where no value is given, either the memory limit of
512 MB or the time limit of 250 s was exceeded.

k 1 2

n 5 7 10 15 20 50 5 7 10 15 20 50

U[δ] 0.03 0.12 1.56 88.14 — — 0.02 0.38 22.15 — — —
B 0.02 0.04 0.07 0.16 0.34 3.56 0.02 0.03 0.06 0.16 0.29 2.75

U[ε] 0.03 0.19 4.05 — — — 0.02 0.16 64.22 — — —
C 0.05 0.12 0.23 0.53 0.97 6.92 0.01 0.10 0.25 0.52 1.01 6.95

k 3 4 6

n 7 10 15 20 50 10 15 20 50 15 20 50

U[δ] 0.05 58.81 — — — 3.86 — — — — — —
B 0.04 0.08 0.12 0.34 2.79 0.06 0.16 0.23 2.37 0.10 0.29 2.39

U[ε] 0.02 9.59 — — — 0.45 — — — — — —
C 0.01 0.22 0.60 1.03 7.02 0.22 0.57 1.07 7.02 0.53 1.09 7.22

k 7 8 9 10 11 12

n 15 20 50 20 50 20 50 20 50 50 50

U[δ] 6.17 — — — — — — 0.16 — — —
B 0.12 0.33 3.04 0.18 2.60 0.23 3.03 0.03 1.71 3.18 2.83

U[ε] 0.09 — — — — 130.34 — 67.69 — — —
C 0.02 1.06 7.86 1.02 7.68 0.95 7.84 0.73 7.96 8.23 8.26

Table 2: Total execution times of Algorithms U, B and C for all 100 elements of a sample for
c = 250 and various values of n and k. Where no value is given, either the memory limit of
512 MB or the time limit of 250 s was exceeded.

k 1 2

n 5 7 10 15 20 50 5 7 10 15 20 50

U[δ] 0.16 0.40 2.05 85.20 — — 0.15 0.65 20.42 — — —
B 0.16 0.32 0.67 1.21 1.83 8.24 0.16 0.33 0.66 1.22 1.76 6.79

U[ε] 0.16 0.49 4.32 — — — 0.14 0.42 59.76 — — —
C 0.19 0.40 0.83 1.51 2.37 10.75 0.14 0.38 0.86 1.57 2.42 10.69

k 3 4 6

n 7 10 15 20 50 10 15 20 50 15 20 50

U[δ] 0.33 56.14 — — — 4.36 — — — — — —
B 0.31 0.69 1.14 1.81 6.86 0.65 1.22 1.66 6.26 1.11 1.76 6.36

U[ε] 0.31 9.64 — — — 0.99 — — — — — —
C 0.29 0.83 1.59 2.47 11.06 0.85 1.60 2.55 10.85 1.57 2.52 11.19

k 7 8 9 10 11 12

n 15 20 50 20 50 20 50 20 50 50 50

U[δ] 7.72 — — — — — — 1.44 — — —
B 1.15 1.89 6.79 1.62 6.37 1.70 6.80 1.41 5.23 7.00 6.53

U[ε] 1.04 — — — — 162.83 — 90.88 — — —
C 0.99 2.50 11.57 2.49 11.47 2.43 11.55 2.21 11.70 12.51 11.93

29

In particular, solving the conjugacy search problem for periodic elements using Algo-
rithm D is is not significantly harder than other operations in with braids, that is, it is
feasible whenever the parameter values permit any computations at all.

3. The computation times of Algorithm U depend in a very sensitive way on the value of
k, whereas the running times of Algorithms B and C, with the exception of elements
which are conjugate to a power of ∆ and are treated differently, show relatively little
dependency on k.

4. Average running times for all algorithms appear to be sub-linear in c for fixed values of
the parameters n and k.

For Algorithm U, the effect of c becomes negligible for n & 10. This is no surprise as
the value of c only affects the initial computation of a conjugate with minimal canonical
length; the time used in this step of the computation is only relevant if the ultra summit
set is small.

5. Using the implementations as explained above, the cross-over point between Algorithm
U and Algorithm B was n ≈ 5, whereas the cross-over point between Algorithm U
and Algorithm C was n ≈ 7; the latter corresponds to the cross-over point between
Algorithm U and Algorithm D for the implementations used in our tests.

We remark that the fact that Algorithms B and C were implemented in the Magma

language (which is partly an interpreter language) incurs some overhead compared to
the C implementation of Algorithm U. This overhead is probably not significant for
Algorithm B, as its implementation is quite simple.3 However, for Algorithm C the
overhead can be expected to be significant, as its implementation is rather complex.4

This difference can be assumed to be the main cause for the different cross-over points,
whence a cross-over point of n ≈ 5 for comparable implementations of Algorithms U
and D seems likely.

Remark 30. After this paper was accepted for publication, and as we were preparing this
final copy for the publisher, we learned that E-K Lee and S.J. Lee had posted on the arXiv
their own solution to the same problem [25]. They reference our work and suggest some small
improvements in it.

References

[1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Hamburg, 4 (1925), 47-72.

[2] D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), No. 5,
647-683.

[3] D. Bessis, F. Digne and J. Michel, Springer theory in braid groups and the Birman-Ko-Lee
monoid, Pacific J. Math. 205 (2002) 287310.

3Uses 20 lines of Magma code. As Magma provides a kernel function computing ultra summit sets with

respect to the Birman-Ko-Lee presentation, no low level operations had to be written in the Magma language.
4Uses 200 lines of Magma code. Many low level operations had to be written in the Magma language.

30

[4] J. Birman, K. Y. Ko and S. J. Lee, A new approach to the word and conjugacy problems
in the braid groups, Adv. Math. 139, No. 2, (1998), 322-353.

[5] J. Birman, K. Y. Ko and S. J. Lee, The infimum, supremum and geodesic length of a
braid conjugacy class, Adv. Math. (2001), 164, No. 1, (2001), 41-56.

[6] J. Birman, V. Gebhardt and J. González-Meneses, Conjugacy in Garside groups I: Cy-
cling, Powers and Rigidity, preprint arXiv math.GT/0605230.

[7] J. Birman, V. Gebhardt and J. González-Meneses, Conjugacy in Garside groups II:
Structure of the Ultra Summit Set, preprint arXiv math.GT/0606652.

[8] W. Bosma, J. Cannon and C. Playoust, The MAGMA algebra system I: The user lan-
guage, J. Symbolic Comput. 24 (1997) 235–265, See also the Magma homepage at
http://magma.maths.usyd.edu.au/magma/.

[9] N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 2002.

[10] E. Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen
komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61.

[11] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17

(1972), 245-272.

[12] A. Constantin and B. Kolev, The theorem of Kerékjártó on periodic homeomorphisms of
the disc and the sphere, Enseign. Math (2) 40 (1994), 193-204.

[13] H. S. M. Coxeter, Discrete groups generated by reflections. Ann. of Math. (2) 35 (1934),
no. 3, 588–621.

[14] J. Crisp, Injective maps between Artin groups, Geometric group theory down under (Can-
berra, 1996), 119–137, de Gruyter, Berlin, 1999.

[15] P. Dehornoy and L. Paris, Gaussian groups and Garside groups, two generalizations of
Artin groups, Proc. London Math. Soc. 79 (1999), No. 3, 569-604.

[16] F. Digne and J. Michel. Endomorphisms of Deligne-Lusztig varieties. Nagoya Math. J.
183 (2006), 35–103.

[17] S. Eilenberg, Sur les transformations périodiques de la surface de la sphère,
Fund. Math. 22 (1934), 28-41.

[18] E. ElRifai and H. Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser
(2), 45 (180) (1994), 479-497.

[19] D. Epstein, J. Cannon, F. Holt, S. Levy, M. Patterson and W. Thurston, Word processing
in groups, Jones and Bartlett, Boston, MA 1992.

[20] F. Garside, The braid group and other groups, Quart. J. Math Oxford 20 (1969), 235-254.

[21] V. Gebhardt, A new approach to the conjugacy problem in Garside groups, Journal of
Algebra 292, No. 1 (2005), 282-302.

31

http://arXiv.org/abs/math/0605230
http://arXiv.org/abs/math/0606652

[22] J. González-Meneses, The nth root of a braid is unique up to conjugacy, Algebraic and
Geometric Topology 3 (2003), 1103-1118.

[23] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2,
235–265.

[24] B. de Kerékjártó, Über die periodischen Transformationen der Kreisscheibe und der
Kugelfläche, Math. Annalen 80 (1919), 3-7.

[25] E-K Lee and S.J. Lee, Conjugacy classes of periodic braids, preprint
arXiv:math.GT/0702349.

[26] H. Morton and R. Hadji, Conjugacy for positive periodic permutation braids, preprint
arXiv math.GT/0312209.

[27] W. Magnus, A. Karass and D. Solitar, Combinatorial Group Theory, 1066, John Wiley
and Sons.

[28] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177

(1997) 195-222.

[29] J.-Y. Shi, The enumeration of Coxeter elements. J. Algebraic Combin. 6 (1997), no. 2,
161–171.

Joan S. Birman Volker Gebhardt Juan González-Meneses

Department of Mathematics, School of Computing and Mathematics, Departamento de Álgebra,

Barnard College and Columbia University, University of Western Sydney, Universidad de Sevilla,

2990 Broadway, Locked Bag 1797, Apdo. 1160,

New York, New York 10027, USA. Penrith South DC NSW 1797, Australia, 41080 Sevilla, Spain.

jb@math.columbia.edu v.gebhardt@uws.edu.au meneses@us.es

32

http://arXiv.org/abs/math/0702349
http://arXiv.org/abs/math/0312209

	Introduction
	Known results imply steps (1) and (2) of Theorem 1
	Known algorithms are not efficient for periodic braids
	Proof of Theorem 1
	Solving the conjugacy search problem for conjugates of k
	Solving the conjugacy search problem for conjugates of k
	Braids fixing one puncture, Artin-Tits groups of type B and symmetric braids
	Using symmetric braids to solve the conjugacy search problem

	The complete algorithm

	Timing results

