
ar
X

iv
:1

11
2.

54
85

v3
 [

m
at

h.
G

R
]

 2
2

Ju
l 2

01
2

Generating random braids

Volker Gebhardt∗, Juan González-Meneses†

June 30, 2012

Abstract

We present an algorithm to generate positive braids of a given length
as words in Artin generators with a uniform probability. The complexity
of this algorithm is polynomial in the number of strands and in the length
of the generated braids.

As a byproduct, we describe a finite state automaton accepting the
language of lexicographically minimal representatives of positive braids
that has the minimal possible number of states, and we prove that its
number of states is exponential in the number of strands.

1 Introduction

Recently, many research papers have appeared that describe effective compu-
tations with braids on n strands. In many cases, the results of performing a
certain computation for a set of ‘random’ or ‘pseudo-random’ braids of a given
length are reported. Usually, the authors generate so-called positive braids, that
is, elements of the submonoid B+

n of the braid group Bn generated (as a monoid)
by the standard Artin generators {σ1, . . . , σn−1}. Methods commonly used to
generate such positive braids are the following:

1. In order to generate a positive braid of length k, choose k times an element
of {σ1, . . . , σn−1} with uniform probability, and form their product.

2. In order to generate a positive braid of canonical length k, choose k times
a simple braid with uniform probability on the (finite) set of simple braids
and compute their product; if the obtained braid has canonical length
smaller than k, discard it and try again.

However, none of these procedures generates braids with a uniform distribution;
some braids are far more likely to appear than others. For instance, if one uses
the first procedure to produce positive braids of length 6 in B4, the probability

∗Both authors acknowledge support under Australian Research Council’s Discovery
Projects funding scheme (project number DP1094072), and the Spanish Project MTM2010-
19355.

†Partially supported by Project P09-FQM-5112 and FEDER.

1

http://arxiv.org/abs/1112.5485v3

of obtaining the braid (σ1)
6 is 3−6, as there is only one way to write this braid

as a positive word in Artin generators. On the other hand, the probability of
obtaining the braid ∆ = σ1σ2σ1σ3σ2σ1 is 16 · 3−6, as there are 16 distinct ways
to write ∆ ∈ B4 as a positive word in Artin generators [8]. That is, the above
procedure is 16 times more likely to generate ∆ than to generate (σ1)

6. This
bias becomes more dramatic as n and the length of the braids involved increase.

In this paper we shall give a procedure to generate random positive braids of
given length with a uniform probability. That is, given n and k as input, the
algorithm generates a positive braid in Bn of length k, in such a way that the
probability of obtaining any given braid is 1/xn,k, where xn,k is the number of
positive braids of length k in Bn.

The structure of the paper is as follows. Section 2 describes the basic idea
of generating uniformly random positive braids via lexicographically minimal
representative words (lex-representatives, for short). In Section 3, we count the
braids in B+

n of a given length k using a result by Bronfman. In Section 4,
we develop a description of lex-representatives, which will be used in Section 6
to count the lex-representatives that start with a given prefix, completing the
description of our algorithm.

It is known that the set of lex-representatives is a regular language. In Section 5,
we show that our description of lex-representatives yields an acceptor for this
regular language that has the minimal number of states, and that the number
of states is exponential in n. This shows, in particular, that using standard
language theoretical techniques to generate uniformly random positive braids is
not efficient. Finally, in Section 7, we analyse the complexity of our algorithm
and give timing results.

Acknowledgements: We thank Pascal Weil, Frédérique Bassino and Cyril
Nicaud, for suggesting to us the use of automatic structures to generate random
elements, which led us to realise that our sets of minimal forbidden prefixes
provide a minimal finite state automaton.

2 Structure of the algorithm

The basic idea of our algorithm to produce random positive braids is the fol-
lowing. Let An = {σ1, . . . , σn−1} be the set of standard generators (or atoms)
in B+

n . Let A∗
n be the free monoid generated by An. We know there is a mor-

phism of monoids b : A∗
n → B+

n which sends each element in A∗
n (a word in

σ1, . . . , σn−1) to the positive braid it represents. As we saw above, the map b
is not injective, so we are going to define a section of b. For that purpose, we
will order the elements in A∗

n having the same length using <lex, which is the
lexicographical order in which σ1 < σ2 < · · · < σn−1.

Definition 2.1. Given β ∈ B+
n , we define the lex-representative of β to be

ω(β) = min
<lex

{b−1(β)} ∈ A∗
n.

2

In other words, ω(β) is the smallest positive word, with respect to <lex, that
represents β. Notice that this is well defined as B+

n is a homogeneous monoid
(all words representing a given element have the same length). For instance
ω(σ3σ1) = σ1σ3, ω(σ2σ1σ2) = σ1σ2σ1 and for ∆ ∈ B4, ω(∆) = σ1σ2σ1σ3σ2σ1.
Here the arguments of ω are braids in B+

n , whereas the images are words in A∗
n.

It is clear that ω : B+
n → A∗

n is a section of b, so it is injective. Moreover,
as B+

n is homogeneous, we can define (B+
n)k to be the set of positive braids of

length k, and Ln,k to be the set of lex-representatives of length k (L stands for
language). Then ω : (B+

n)k → Ln,k is a bijection, whose inverse is b|Ln,k
.

Our algorithm will produce a random element of Ln,k with uniform probability.
By the above arguments, this is equivalent to producing a random positive braid
of length k with uniform probability on (B+

n)k. There are three main steps:

1. Determine the size of Ln,k, that is, compute xn,k =
∣

∣(B+
n)k

∣

∣.

2. Choose a random integer r between 1 and xn,k.

3. Find the r-th word in Ln,k, where Ln,k is ordered by <lex.

The second step poses no difficulty (assuming we know how to generate random
integers), so our task is to be able to perform steps 1 and 3 in polynomial time.

It is useful to identify the lex-representatives of braids in B+
n as the vertices

of a rooted tree, with the elements of Ln,k being the vertices at depth k and
edges given by the prefix partial order in the monoid A∗

n. (That is, the root
corresponds to the trivial word ǫ, and given a word w ∈ Ln,s and σi ∈ An such
that wσi ∈ Ln,s+1, there is an edge labelled σi joining w to wσi.)

Figure 1 shows the tree of lex-representatives in B+
4 truncated at depth 3;

the elements of L4,3 correspond to the leaves of the truncated tree. We have
|L4,0| = 1, |L4,1| = 3, |L4,2| = 8 and |L4,3| = 19. Notice that there are no
vertices corresponding to the words σ3σ1 and σ2σ1σ2, as these words are not
lex-representatives. The fact that there are 19 leaves means that there are
19 positive braids in B+

4 of length 3. Hence, in this example, our algorithm
will choose a random number r between 1 and 19, and it will look for the
r-th leaf of the rooted tree, counting from left to right, as leaves are ordered
lexicographically by construction.

Of course, it is not efficient at all to try to compute the whole set Ln,k, as it has
exponential size with respect to k. We shall overcome this problem by counting
suitable subsets of leaves of the truncated rooted tree, as follows.

Definition 2.2. Given a word w ∈ A∗
n and an integer m ∈ {0, . . . , n− 1}, we

define xn,k(w,m) to be the number of words in Ln,k of the form ww′, where
w′ ∈ A∗

n does not start with σ1, . . . , σm.

Obviously, xn,k(w,m) = 0 if w is not a lex-representative, or if |w| > k. More-
over, if w is a lex-representative, then xn,k(w, n − 1) = 1 if k = |w| and
xn,k(w, n − 1) = 0 otherwise. We will show in Section 3 how to compute
xn,k(ǫ, 0) = xn,k, and in Section 6 how to compute xn,k(ǫ,m) for m ≥ 1, and
also xn,k(w,m) where w = w′σj and m ≥ j − 1, in polynomial time and space

3

•

• • •

• • • • • • • •

σ
1
σ
1
σ
1
•

σ
1
σ
1
σ
2
•

σ
1
σ
1
σ
3
•

σ
1
σ
2
σ
1
•

σ
1
σ
2
σ
2
•

σ
1
σ
2
σ
3
•

σ
1
σ
3
σ
2
•

σ
1
σ
3
σ
3
•

σ
2
σ
1
σ
1
•

σ
2
σ
1
σ
3
•

σ
2
σ
2
σ
1
•

σ
2
σ
2
σ
2
•

σ
2
σ
2
σ
3
•

σ
2
σ
3
σ
2
•

σ
2
σ
3
σ
3
•

σ
3
σ
2
σ
1
•

σ
3
σ
2
σ
2
•

σ
3
σ
3
σ
2
•

σ
3
σ
3
σ
3
•

σ1

❢❢❢❢❢❢
❢❢❢❢❢❢

❢❢❢❢❢❢
❢❢❢❢❢❢

❢❢

σ2
σ3

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱

σ1

rrr
rrr

rrr
σ2

σ3

❋❋
❋❋

❋❋
❋

σ1

ttt
ttt

tt
σ2

σ3

❋❋
❋❋

❋❋
❋

σ2
σ3

✿✿
✿✿

✿

σ1

✚✚
✚✚
✚✚
✚✚
✚✚

σ2

σ3

✩✩
✩✩
✩✩
✩✩
✩✩

σ1

✚✚
✚✚
✚✚
✚✚
✚✚

σ2

σ3

✩✩
✩✩
✩✩
✩✩
✩✩

σ2 σ3

✩✩
✩✩
✩✩
✩✩
✩✩

σ1

✜✜
✜✜
✜✜
✜✜
✜✜

σ3

✧✧
✧✧
✧✧
✧✧
✧✧

σ1

✚✚
✚✚
✚✚
✚✚
✚✚

σ2

σ3

✩✩
✩✩
✩✩
✩✩
✩✩

σ2 σ3

✩✩
✩✩
✩✩
✩✩
✩✩

σ1

✚✚
✚✚
✚✚
✚✚
✚✚

σ2 σ2 σ3

✩✩
✩✩
✩✩
✩✩
✩✩

Figure 1: The rooted tree corresponding to L4,3

with respect to n and k. If we assume this to be known, we can explain our
main algorithm with some more detail:

Theorem 2.3. Suppose the time and space required to compute xn,k(w,m),
where m ≥ 0 if w = ǫ and m ≥ j − 1 if w = w′σj, is polynomial in n and k.
Then there is an algorithm generating a random element of

(

B+
n

)

k
, with uniform

probability, whose time and space complexity is polynomial in n and k.

Proof. In order to generate a random element of
(

B+
n

)

k
, we compute xn,k and

choose a random integer r between 1 and xn,k. It just remains to determine the
r-th element w(r) of the chain Ln,k with respect to <lex. We will find the word
w(r) letter by letter. (Pseudocode is given in Algorithm 1.)

Suppose that we have computed a prefix w of w(r) and know that there are ν
words in Ln,k of the form ww′, where w′ ∈ A∗

n and w(r) <lex ww′. (Initially,
w = ǫ and ν = xn,k − r.) If w 6= ǫ, let σj be the last letter of w; otherwise
let j = 0. Let σi be the next letter of w(r). Observe that i ≥ j − 1, since
otherwise w(r) would not be lexicographically minimal. By Definition 2.2, we
have m ≥ i if and only if xn,k(w,m) ≤ ν. Hence, we have i = minS, where
S =

{

m ∈ {j − 1, . . . , n − 1} | xn,k(w,m) ≤ ν
}

∋ n − 1. We can determine
i using binary search in at most ⌈log2(n − 1)⌉ steps, each step requiring the
computation of one number of the form xn,k(w,m). We then replace w by wσi

and ν by ν−xn,k(w, i), and proceed to the next letter of w(r). (While this does
not affect the complexity, we remark that xn,k(w, i) is known from the binary
search, so updating ν just requires one subtraction.)

As w(r) has length k, at most k⌈log2(n − 1)⌉ steps are required to find w(r);
since each step is polynomial in n and k, the claim follows.

Example 2.4. Suppose we want to generate a random braid of length 3 in B+
4

(see Figure 1). Compute x4,3 = 19. Choose a random number r between 1 and

4

19. Say r = 16, so ν = 3. Now compute x4,3(ǫ, 2) = 4 > 3 = ν. Thus, the first
letter of w(16) is σ3. Since x4,3(ǫ, 3) = 0, the value of ν remains unchanged.

Now we find the second letter of w(16), which must belong to the set {σ2, σ3} (as
the first letter is σ3). We compute x4,3(σ3, 2) = 2 ≤ 3 = ν. Hence, the second
letter of w(16) is σ2, and we must replace ν by ν − x4,3(σ3, 2) = 1.

Finally, as the second letter of w(16) is σ2, the third one could be any letter in
{σ1, σ2, σ3}. We compute x4,3(σ3σ2, 2) = 0 ≤ 1 = ν, then x4,3(σ3σ2, 1) = 1 ≤
1 = ν, and conclude that the third letter of w(16) is σ1. Thus, w(16) = σ3σ2σ1.

Algorithm 1 gives pseudocode for finding w(r), assuming we know how to com-
pute xn,k(w,m) as in the statement of Theorem 2.3. It contains references to
two algorithms which will be introduced in Section 3 respectively Section 6. In
Section 3 we will use a known result [2] to compute xn,k(ǫ, 0) = xn,k (line 1
of Algorithm 1). An algorithm for computing all other required instances of
xn,k(w,m) (line 8 of Algorithm 1) will be given in Section 6.

Algorithm 1 Producing a uniformly random braid in B+
n of length k

Input: Integers n ≥ 2 and k ≥ 0.
Output: A braid in B+

n of length k.

1: Compute xn,k. [Section 3; equations (2) and (3)]
2: Choose a random integer r ∈ {1, . . . , xn,k} with uniform probability.
3: w := ε ; ν := xn,k − r ; a := 0
4: for l := 1 to k do

5: a := max{a− 1, 1} ; b := n− 1 ; µ := 0 /* µ = xn,k(w, b) at all times */
6: while a < b do

7: m := ⌊a+b

2
⌋

8: Compute xn,k(w,m). [Algorithm 2]
9: if xn,k(w,m) ≤ ν then

10: b := m ; µ := xn,k(w,m)
11: else

12: a := m+ 1
13: w := wσa ; ν := ν − µ /* at this point a = b, hence µ = xn,k(w, a) */
14: return b(w)

3 Counting all positive braids of a given length

In this section we use a formula given by Bronfman [2] to describe how to
compute the number of elements of

(

B+
n

)

k
in time respectively space that is

polynomial in n and k. To our knowledge, the paper [2] was never published,
but one can find proofs of its main result in [1] and also in [7]. Bronfman gave a
recurrence relation for the growth function of the monoid B+

n . More precisely, if
xn,k is the number of elements of length k in B+

n , then the formal power series

Gn(t) =
∑

k≥0

xn,k t
k

5

is the growth function of B+
n . Deligne [4] showed that this function was rational,

namely the inverse of a polynomial Hn(t). The following recurrence relation to
compute this polynomial was given in [2]:

Hn(t) =

n
∑

i=1

(−1)i+1t(
i
2)Hn−i(t) , (1)

where H0(t) = H1(t) = 1. In particular, Hn(t) is a polynomial of degree
(

n
2

)

such that Hn(0) = 1. Denoting the coefficient of tm in Hi(t) by hi,m, it follows
from Gn(t)Hn(t) = 1 that for any j > 0 one has

xn,j = −
(

xn,j−1hn,1 + xn,j−2hn,2 + · · ·+ xn,0hn,j

)

, (2)

where the sum has at most min{j,
(

n

2

)

} terms, since hn,m = 0 if m >
(

n

2

)

.
Therefore, we can iteratively compute the numbers xn,0, xn,1, . . . , xn,k, knowing
the coefficients hn,1, . . . , hn,k. From (1), the latter can in turn be calculated
with the recurrence relation

hm,j =

m
∑

i=1

(−1)i+1h
m−i,j−(i2)

, (3)

where we define h
m−i,j−(i2)

= 0 if j −
(

i

2

)

< 0. Note that in order to compute

xn,k, only the coefficients hm,j for 0 ≤ m ≤ n and 0 ≤ j ≤ k are required. In
particular, time and space required to compute xn,k are polynomial in k and n.

The coefficients hm,j as well as the integers xm,j for 0 ≤ m ≤ n and 0 ≤ j ≤ k
will be used later in our algorithm generating random elements of B+

n . Note
that coefficients hm,j that have already been computed do not change if n and
k are changed; one merely might have to compute additional coefficients. Thus,
any values of hm,j and xm,j that are computed can be stored once and for all;
their computation should be thought of as a precomputation.

4 Forbidden prefixes

It only remains to compute xn,k(w,m), where m ≥ 1 if w = ǫ, and m ≥ i − 1
if w = w′σi. (Recall Definition 2.2.) This calculation, which will be done in
Section 6, relies on a detailed description of the words w′ that can be appended
to w so that the concatenation ww′ is still a lex-representative in terms of what
we call forbidden prefixes.

Denote by

Ln =
⋃

k≥0

Ln,k =
⋃

k≥0

ω
(

(B+
n)k

)

⊆ A∗
n

the set of words in {σ1, . . . , σn−1} that are lex-representatives. To simplify
notation, let M = B+

n and Mk = (B+
n)k for k ∈ N. We denote the length of a

word w ∈ A∗
n by |w|, and the length of a braid x ∈ M by |x|.

6

Definition 4.1. For w ∈ Ln, we define the set of forbidden prefixes after w
as Fn(w) = {α ∈ M | wω(α) /∈ Ln}.

For a braid α ∈ M , we define the set of multiples of α as αM = {αβ | β ∈ M}.
The following is an important property of the sets of forbidden prefixes.

Lemma 4.2. Let w ∈ Ln. If α ∈ Fn(w), then αM ⊆ Fn(w).

Proof. For u ∈ A∗
n and k ∈ N, let u|k denote the initial subword of length k of u.

As α ∈ Fn(w), we have ω(b(w)α) <lex wω(α), and thus ω(b(w)α)||w|
<lex w.

For any β ∈ M , the latter implies ω(b(w)αβ) ≤lex ω(b(w)α)ω(β) <lex wω(αβ),
proving the claim.

As M is a cancellative monoid, it admits a well-defined partial order 4, where
a 4 b if there exists c ∈ M such that ac = b; in this case we say that a is a
prefix of b. It is well known that (M,4) is Noetherian, that is, that there are no
infinite descending chains with respect to 4 in M . We can then define a special
subset of the forbidden prefixes.

Definition 4.3. For w ∈ Ln, the set of minimal forbidden prefixes after w,
denoted Fmin

n (w), is the set of minimal elements, with respect to 4, in Fn(w).

From Lemma 4.2 and the Noetherianity ofM , one has Fn(w) =
⋃

α∈Fmin
n (w) αM .

The rest of this section will be devoted to the study of Fmin
n (w). We will show

that it is a finite set, we will describe its elements, and we will show how to
compute them in linear time with respect to n and |w|.

First we recall a particularly useful property of the prefix order 4 of M : It is
a lattice order [5], that is, for any a, b ∈ M there are a greatest common prefix
a ∧ b and a least common multiple a ∨ b with respect to 4. In the particular
case of Artin generators, we have σi ∨ σj = σiσj = σjσi if |i − j| > 1, and
σi ∨ σj = σiσjσi = σjσiσj if |i− j| = 1.

Given two elements a, b ∈ M , there are positive elements a\b and b\a, such that
a ∨ b = a(a\b) = b(b\a). As the monoid M embeds in the group Bn, we can
write a\b = a−1(a∨b) and b\a = b−1(a∨b). Notice that σj\σi = σi if |i−j| > 1
and σj\σi = σiσj if |i− j| = 1.

We shall frequently use the following property:

Lemma 4.4. If a, b, c ∈ M , then a 4 bc is equivalent to b\a 4 c.

Proof. As b 4 bc, it follows that a 4 bc if and only if a ∨ b 4 bc; the latter is
equivalent to b−1(a ∨ b) 4 c, so the claim is shown.

The following two results form the basis for an inductive description of Fmin
n (w).

Proposition 4.5.

(a) Fn(ǫ) = Fmin
n (ǫ) = ∅.

7

(b) Fmin
n (σj) = {σ1, . . . , σj−2, σj−1σj}.

(Here and in the sequel, we use the convention that words involving indices
less than 1 are ignored. That is, Fmin

n (σ1) = ∅ and Fmin
n (σ2) = {σ1σ2}.)

Proof. It is obvious that {σ1, . . . , σj−2, σj−1σj} ⊆ Fn(σj). Indeed, σ1, . . . , σj−2

are atoms and σj−1 /∈ Fn(σj), so {σ1, . . . , σj−2, σj−1σj} ⊆ Fmin
n (σj).

Conversely, if α ∈ Fn(σj) then ω(σjα) <lex σjω(α), and hence ω(σjα)|1 <lex σj .
This means that σi 4 σjα for some i < j, whence α admits a prefix from the
set {σj\σi | i = 1, . . . , j − 1} = {σ1, . . . , σj−2, σj−1σj}.

This proves Claim (b). Claim (a) is trivial.

Proposition 4.6. Let w ∈ Ln with |w| ≥ 1. If w = vσj, then Fmin
n (w) is the

set of 4-minimal elements in

{σ1, . . . , σj−2, σj−1σj} ∪ {σj\β | β ∈ Fmin
n (v)}.

Proof. The case |w| = 1 is clear from Proposition 4.5, as Fmin
n (ǫ) = ∅. Suppose

that |w| > 1 and let α be a forbidden prefix after w = vσj , that is, vσjω(α) /∈ Ln.
We will distinguish two cases: either σjω(α) is a lex-representative, or not.

If σjω(α) is not a lex-representative, then α is a forbidden prefix after σj . By
Proposition 4.5, in this case α admits a prefix α′ ∈ {σ1, . . . , σj−2, σj−1σj}.

If σjω(α) is a lex-representative, then σjα is a forbidden prefix after v, hence
there is β ∈ Fmin

n (v) such that β 4 σjα, that is, σj\β 4 α.

We have then shown that if α is a forbidden prefix after w, then α admits a prefix
α′ ∈ {σ1, . . . , σj−2, σj−1σj} ∪ {σj\β | β ∈ Fmin

n (v)}. Since the elements of the
latter set are forbidden prefixes after w by construction, the claim follows.

The following lemma will give us control over the elements of the form σj\β.

Lemma 4.7. For i ∈ {2, . . . , n− 1} and j ∈ {1, . . . , n− 1}, one has:

σj\σi−1σi =

(σi−1σi)(σi−2σi−1) if j = i − 2

σi if j = i − 1

σi−1σiσi+1 if j = i + 1

σi−1σi otherwise

For j ∈ {1, . . . , n− 1} and 1 ≤ m ≤ i ≤ n− 1, one has:

σj\σiσi−1 · · ·σm =

σiσi−1 · · ·σm if j 6= m− 1, i, i+ 1

σiσi−1 · · ·σm−1 if j = m− 1

σi−1σi−2 · · ·σm if j = i

(σiσi+1)(σi−1σi) · · · (σmσm+1) if j = i+ 1

Proof. For x ∈ M let πx ∈ Σn denote the permutation that x induces on the
n strands. A so-called permutation braid is a braid in which any two strands

8

cross at most once. If x is a permutation braid, then x is uniquely determined
by πx. Moreover, one has σi 4 x if and only if πx(i) > πx(i+ 1), that is, if and
only if strands i and i+ 1 cross in x. In particular, the least common multiple
of two permutation braids x and y can be computed easily from πx and πy [5].

All the braids occurring in the statement of the lemma are permutation braids
and the claimed equalities are readily checked.

Example 4.8. Consider σ4σ3σ2σ2σ1 ∈ B5. From Proposition 4.5 one has
Fmin
n (σ4) = {σ1, σ2, σ3σ4}. Using Proposition 4.6 and Lemma 4.7 repeatedly,

one then obtains:

Fmin
n (σ4σ3) = min

4

{

σ1, σ2σ3, σ3\σ1, σ3\σ2, σ3\σ3σ4

}

= {σ1, σ2σ3, σ4}

Fmin
n (σ4σ3σ2) = min

4

{

σ1σ2, σ2\σ1, σ2\σ2σ3, σ2\σ4

}

= {σ1σ2, σ3, σ4}

Fmin
n (σ4σ3σ2σ2) = min

4

{

σ1σ2, σ2\σ1σ2, σ2\σ3, σ2\σ4

}

= {σ1σ2, σ3σ2, σ4}

Fmin
n (σ4σ3σ2σ2σ1) = min

4

{

σ1\σ1σ2, σ1\σ3σ2, σ1\σ4

}

= {σ2, σ3σ2σ1, σ4}

Definition 4.9. Let [n] = {1, . . . , n− 1}.

(a) A function f : [n] → {−1, 0}∪[n] is called admissible, if it satisfies f(i) ≤ i
for all i ∈ [n], and f(1) 6= −1.

(b) For an admissible function f , we define

Ff =
{

σiσi−1 · · ·σf(i)

∣

∣ i ∈ f−1
(

[n]
)}

∪
{

σi−1σi

∣

∣ i ∈ f−1(−1)
}

⊂ M .

We now show that for any w ∈ Ln, there is an admissible function fw such that
Fmin
n (w) = Ffw , and we express f(wσj), for wσj ∈ Ln, in terms of fw.

Proposition 4.10.

(a) Fmin
n (ǫ) = Ff , where f : [n] → {−1, 0} ∪ [n] given by f(i) = 0 for all i is

admissible.

(b) Fmin
n (σj) = Fgj , where gj : [n] → {−1, 0} ∪ [n] given by

gj(i) =

i if 1 ≤ i ≤ j − 2

−1 if i = j > 1

0 otherwise

is admissible.

Proof. Claim (a) is trivial. Claim (b) is just a restatement of Proposition 4.5.

9

Proposition 4.11. Let w ∈ Ln and let f be admissible with Fmin
n (w) = Ff .

Then wσj ∈ Ln if and only if f(j) 6= j. Moreover, in this case, Fmin
n (wσj) = Fg,

for the admissible function g given as follows:

for i < j − 1: g(i) = i

g(j − 1) =

{

f(j) if f(j) > 0

0 otherwise

g(j) =

{

0 if j = 1 or f(j) = j − 1

−1 otherwise

for i > j: g(i) =

i if f(i) = −1

j if f(i) = j + 1

f(i) otherwise

Proof. One has wσj ∈ Ln if and only if σj /∈ Fn(w); the latter is the case if and
only if f(j) 6= j, as σj is an atom. Now assume wσj ∈ Ln, and thus f(j) 6= j.
Then it is clear that g is admissible, as f(j) ≤ j − 1.

Recall from Proposition 4.6 that Fmin
n (wσj) is the set of minimal elements in

{σ1, . . . , σj−2, σj−1σj} ∪ {σj\β | β ∈ Fmin
n (w)}. This implies that σ1, . . . , σj−2

belong to Fmin
n (wσj), as they are atoms, so g(i) = i for i < j − 1. Also,

Fmin
n (wσj) contains σj−1σj , unless j = 1 or σj−1 ∈ Fmin

n (wσj). We have
σj−1 ∈ Fmin

n (wσj) if and only if σj\β = σj−1 for some β ∈ Fmin
n (w). By

Lemma 4.7, the latter is equivalent to β = σjσj−1, and hence to f(j) = j − 1.

It follows by induction on |w| that one can have f(i) = −1 only if σi is the
last letter of w. In that case, σ1, . . . , σi−2 are forbidden prefixes after w, hence
j ≥ i − 1. Therefore, if i > j we can have f(i) = −1 only if i = j + 1. As
σj\σjσj+1 = σj+1, this is why in this case we have g(i) = i.

The other values of g follow directly from Proposition 4.6, using the identities
from Lemma 4.7 and discarding any elements which are not minimal (specifi-
cally, any multiples of σ1, . . . , σj−2 and σj−1σj).

Corollary 4.12. If w ∈ Ln, then there exists a unique admissible function fw,
such that Fmin

n (w) = Ffw . In particular, |Fmin
n (w)| ≤ n− 1.

Proof. If it exists, fw is uniquely determined by Fmin
n (w) and thus by w. The

existence follows by induction on |w|, using Propositions 4.10 and 4.11.

Example 4.13. Consider again σ4σ3σ2σ2σ1 ∈ B5. To shorten notation, we
identify an admissible function f with the sequence [f(1), . . . , f(n − 1)]. From
Proposition 4.10 one has fσ4 = [1, 2, 0,−1]. Repeated application of Proposi-
tion 4.11 then yields fσ4σ3 = [1, 0,−1, 4], fσ4σ3σ2 = [0,−1, 3, 4], fσ4σ3σ2σ2 =
[0,−1, 2, 4], and fσ4σ3σ2σ2σ1 = [0, 2, 1, 4]. Observe that the sets of minimal

10

forbidden prefixes described by these functions are exactly those computed in
Example 4.8.

Given w ∈ Ln, the set Fmin
n (w) can be computed efficiently using Proposi-

tions 4.10 and 4.11; the time required is obviously linear in n and |w|.

There are many admissible functions, but the ones corresponding to minimal
sets of forbidden prefixes are very special: It can be shown that they are exactly
those satisfying the conditions in the following corollary. However, proving that
these conditions are sufficient is quite technical; as we do not use this fact in
the sequel, we only show that they are necessary.

Corollary 4.14. Let w = w′σj ∈ Ln. Let i1 < i2 < · · · < ir be all the indices
greater than j such that 0 < fw(it) < it (t = 1, . . . , r). Denote m = fw(j − 1).

(a) fw(i) = i for i < j − 1.

(b) fw(i) ∈ {0, . . . , i} for all i 6= j.

(c) fw(j) =

{

0 if either j = 1 or fw(j − 1) = j − 1

−1 otherwise

(d) If fw(i) = 0 for some i > j, then fw(ℓ) = 0 for ℓ = i, . . . , n− 1.

(e) If r ≥ 1, then 0 < fw(ir) ≤ · · · ≤ fw(i1) ≤ j.

(f) If r ≥ 1 and m > 0, then either fw(i1) = j or fw(i1) ≤ m.

(g) If r ≥ 2 and m > 0, then 0 < fw(ir) ≤ · · · ≤ fw(i2) ≤ m.

Proof. If w′ = ǫ, that is w = σj , the results holds trivially by Proposition 4.10,
so let w′ = w′′σk and assume the result for fw′ . To shorten notation, let
f = fw′ and g = fw. Since w′σj ∈ Ln, we have f(j) 6= j and thus j ≥ k − 1.
Proposition 4.11 immediately yields Claims (a), (b) and (c).

For Claim (d) assume that g(i) = 0 for some i > j. By Proposition 4.11 this
happens only if g(i) = f(i) = 0, and if i > k this implies that g(r) = f(r) = 0
for r = i, . . . , n− 1. As i > j ≥ k − 1, the only remaining case is i = k = j + 1
and f(k) = 0. In this case Claim (c) applied to f gives f(k − 1) = k − 1, that
is f(j) = j, which is a contradiction. Thus Claim (d) holds.

Now suppose r ≥ 1. We have i1 > j ≥ k − 1, and i1 = k would imply
f(i1) ∈ {0,−1} and then, with Proposition 4.11, g(i1) ∈ {0, i1}; the latter is
a contradiction, so k < i1 < · · · < ir. For t = 1, . . . , r, Proposition 4.11 also
yields that either g(it) = f(it), or f(it) = j + 1 and g(it) = j. Since f(it) ≤ it
and j < i1 < i2 < · · · < ir, the latter implies that either 0 < f(it) < it, or
t = 1 and i1 = j + 1 = f(i1) = g(i1) + 1. In any case, applying Claim (e) to f
and using k ≤ j + 1, we obtain 0 < f(ir) ≤ · · · ≤ f(i1) ≤ j + 1. Again using
Proposition 4.11 then yields 0 < g(ir) ≤ · · · ≤ g(i1) ≤ j, showing Claim (e).

Suppose m = g(j − 1) > 0. If i1 = j + 1 = f(i1) = g(i1) + 1, then Claim (f)
holds. By the preceding paragraph, we may thus assume that 0 < f(it) < it

11

for 1 ≤ t ≤ r. By Proposition 4.11, m > 0 implies f(j) > 0 and m = f(j).
In particular, j 6= k (as f(k) ∈ {0,−1}), whence we have either j = k − 1 or
j > k. In the former case, m = f(k − 1), so we can apply the result to f
and obtain that f(it) ≤ m for 2 ≤ t ≤ r, and either f(i1) = k = j + 1 or
f(i1) ≤ m; as m ≤ j + 1, Proposition 4.11 then yields g(it) = f(it) ≤ m for
2 ≤ t ≤ r, and either g(i1) = j or g(i1) = f(i1) ≤ m, showing Claims (f)
and (g) in this case. On the other hand, if j > k we just need to notice that
0 < m = f(j) < j and apply Claim (e) to f , which yields f(it) ≤ f(j) = m < j,
whence g(it) = f(it) ≤ m. So Claims (f) and (g) hold.

One can show that the conditions of Corollary 4.14 are sufficient for f to be
the defining function of some Fmin

n (w) by constructing, for every f satisfying
the conditions, a word wf such that Fmin

n (wf) = Ff . As this construction for
general f is very technical, we do not describe it here. Instead, we only consider
some special cases; enough to show that the number of possible sets Fmin

n (w) is
exponential in n.

Proposition 4.15. For 1 ≤ i, j ≤ n − 1 define [i, j] ∈ A∗ as the product
σiσi±1 · · ·σj . To shorten notation, we identify an admissible function f with
the sequence

[

f(1), . . . , f(n− 1)
]

.

(a) One has [n− 1, 1] ∈ Ln and

f[n−1,j] =

{[

1, . . . , j − 2, 0,−1, j + 1, . . . , n− 1
]

if n− 1 ≥ j > 1
[

0, 2, . . . , n− 1
]

if j = 1

(b) If i ∈ [n] and w ∈ Ln such that fw =
[

0, 2, 3, . . . , i,mi+1, . . . ,mn−1

]

, with
mk ∈ {1, k} for k = i+ 1, . . . , n− 1, then w · [1, i− 1] ∈ Ln and

fw·[1,j] =

{[

1, . . . , j − 1, 0, j, j + 2, . . . , i,mi+1, . . . ,mn−1

]

if 1 ≤ j < i− 1
[

1, . . . , i− 2, 0, i− 1,mi+1, . . . ,mn−1

]

if j = i− 1

(c) If i ∈ [n] and w ∈ Ln such that fw =
[

1, . . . , i− 2, 0, i− 1,mi+1, . . . ,mn−1

]

,
with mk ∈ {1, k} for k = i+ 1, . . . , n− 1, then w · [i− 1, 1] ∈ Ln and

fw·[i−1,j] =

[

1, . . . , j − 2, 0,−1, j + 1, . . . , i− 1, j,mi+1, . . . ,mn−1

]

if i− 1 ≥ j > 1
[

0, 2, 3, . . . , i− 1, 1,mi+1, . . . ,mn−1

]

if j = 1

Proof. The claims easily follow by induction on j, using Proposition 4.11.

Corollary 4.16. If S = {i1, . . . , ir} is a subset of {1, . . . , n−2}, possibly empty,
with i1 > · · · > ir, then wS = [n− 1, 1] · [1, i1] · [i1, 1] · · · · [1, ir] · [ir, 1] ∈ Ln, and

fwS
(j) =

0 if j = 1

1 if j − 1 ∈ S

j otherwise .

12

Proof. The claim follows from Proposition 4.15 by induction on r.

Corollary 4.17. Let n > 1. The set {Fmin
n (w) | w ∈ Ln} is finite, but it has

at least 2n−2 elements.

Proof. The set is finite as each Fmin
n (w) is equal to Ff for some admissible

function f . It has at least 2n−2 elements by Corollary 4.16

Before using, in Section 6, our description of forbidden prefixes to compute the
numbers xn,k(w,m) required by Algorithm 1, we show in the next section that
minimal forbidden prefixes yield a finite state automaton accepting the language
of lex-representative words, that has the minimal possible number of states.

5 A minimal finite state automaton accepting Ln

The sets of minimal forbidden prefixes after a given word w ∈ Ln provide a very
natural way to construct a finite state automaton that accepts the language Ln

of lex-representatives of braids in M . Indeed, we will see that this finite state
automaton is minimal, in the sense that it has the minimal possible number of
states.

Recall that a finite state automaton is a quintuple Γ = (SS,A, µ, Y, S0) where
SS is a finite set, A is the alphabet, µ : SS×A → SS is the transition function,
Y ⊆ SS is the set of accepted states and S0 ∈ SS is the initial state [5]. We
extend µ to a function SS ×A∗ → SS, also denoted by µ, in the natural way.

Definition 5.1. Denote Γn = (SS,A, µ, Y, S0), where A = {σ1, . . . , σn−1},
SS =

{

S ⊂ A∗ | S = Fmin
n (w) for some w ∈ Ln

}

∪ {A}, S0 = ∅ = Fmin
n (ǫ),

Y = SS\{A}, and µ : SS ×A → SS is given by

(S, σi) 7→

{

A if σi ∈ S

min
4

(

{σ1, . . . , σi−2, σi−1σi} ∪ {σi\β | β ∈ S}
)

otherwise .

Proposition 5.2. Γn is a finite state automaton accepting the language Ln.
Moreover, any finite state automaton accepting the language Ln has at least as
many states as Γn.

Proof. By Corollary 4.12, every state S = Fmin
n (w) ∈ SS is uniquely determined

by an admissible function. As the number of admissible functions is finite, Γn

is indeed a finite state automaton.

If w ∈ Ln, then it follows from Proposition 4.6 by induction on |w| that
µ(S0, w) = Fmin

n (w) ∈ Y , so w is accepted. Conversely, if w /∈ Ln, let
w = vσiv

′, where v is the initial subword of maximal length of w that lies
in Ln. As above, we have µ(S0, v) = Fmin

n (v). Moreover, since vσi /∈ Ln, we
have σi ∈ Fn(v) and thus σi ∈ Fmin

n (v) = µ(S0, v), as σi is an atom. Then, by
the definition of µ, we have µ(S0, vσi) = A, and further (by induction on |v′|)
µ(S0, w) = µ(S0, vσiv

′) = A, so w is not accepted.

13

In order to show that Γn has the minimal possible number of states, assume
that Γ′ is a finite state automaton accepting the language Ln. Let w1, w2 ∈ Ln

be such that Fmin
n (w1) 6= Fmin

n (w2). This implies Fn(w1) 6= Fn(w2), so by
symmetry, assume that there exists some α ∈ Fn(w1)\Fn(w2), and consider the
word w = ω(α) ∈ Ln. As α is forbidden after w1, we have w1w /∈ Ln, so reading
w starting in the state corresponding to w1 one ends at a fail state. However,
as α is not forbidden after w2, one has w2w ∈ Ln, so reading w starting in
the state corresponding to w2 one ends at an accepted state; in particular, the
states corresponding to w1 and w2 in Γ′ must be distinct. As Γ′ has at least one
fail state, the number of states of Γ′ is at least the number of states of Γn.

Example 5.3. For n = 3, the automaton Γn has 5 accepted states; it is rep-
resented in Figure 2. Recall that the initial state corresponds to the empty set,
and notice that we did not represent the fail state: as usual, arrows which are
not drawn lead to the fail state {σ1, σ2}.

∅start {σ1σ2}

{σ2}

{σ2σ1}

{σ1}

σ1

σ2

σ1

σ2

σ1

σ1

σ2σ2

Figure 2: Finite state automaton accepting lex-representatives in B+
3 .

Example 5.4. For n = 4, the automaton Γn has 18 accepted states; it is
represented in Figure 3. As above, the initial state corresponds to the empty set,
and we did not represent the fail state {σ1, σ2, σ3}.

Proposition 5.5. Any finite state automaton accepting the language Ln has at
least 2n−2 states.

Proof. By Proposition 5.2 it is sufficient to show that Γn has at least 2n−2

states. The latter follows from Corollary 4.17.

Remark 5.6. We mentioned that the admissible functions that correspond to
sets of minimal forbidden prefixes are precisely those satisfying the conditions
of Corollary 4.14. This allows to give an exact expression for the number of
states of Γn. The arguments are extremely technical, however, and as we do
not use this result in the sequel, we skip the details here.

Just to give an idea, the following table contains the number of accepted states
of Γn, for n = 3, . . . , 20.

14

∅start

{σ1σ2}

{σ1, σ2σ3}{σ2}

{σ1σ2, σ3}

{σ2σ1}

{σ2, σ3} {σ1σ2, σ3σ2}{σ1}

{σ2σ1, σ3}

{σ2, σ3σ2σ1}

{σ1, σ2}

{σ1, σ3σ2}

{σ2σ1, σ3σ2σ1}

{σ1, σ2σ1, σ2σ3}

{σ1, σ3σ2σ1}

{σ1, σ3}

{σ1σ2, σ3σ2σ1}

σ1

σ2

σ3

σ1

σ2

σ3

σ2

σ3

σ1

σ3

σ1

σ2

σ1

σ2

σ3

σ1

σ1

σ2

σ3

σ2

σ3

σ1

σ2

σ1

σ3

σ3

σ2

σ3

σ1

σ2

σ3

σ2

σ3

σ2
σ3

σ2

σ1

σ2
σ3

Figure 3: Finite state automaton accepting lex-representatives in B+
4 .

n 3 4 5 6 7 8 9 10 11 12 13

|Y | 5 18 56 161 443 1190 3156 8315 21835 57246 149970

n 14 15 16 17 18 19 20

|Y | 392743 1028351 2692416 7049018 18454775 48315461 126491780

Remark 5.7. There are generic methods to generate uniformly random words
of a regular language, such as the recursive method [10, 6]. These algorithms
have a precomputation phase, in which a (minimal) acceptor for the language
in question is computed.

The results of this section show that the number of states of a minimal acceptor
for Ln is exponential in n. Thus, generating uniformly random words of Ln by
generic language-theoretic methods has a time complexity respectively a space
complexity that is exponential in n. While efficient for small values of n, such
approaches are not feasible for larger values of n, as the above figures show.

6 Counting braids with suitable prefixes

In this section we finally give a method to compute xn,k(w,m), where m ≥ 1 if
w = ǫ, and m ≥ j − 1 if w = w′σj . We assume that we have already computed
hs,t for 0 ≤ s ≤ n and 0 ≤ t ≤ k, as well as xn,s for 0 ≤ s ≤ k. (See Section 3.)

Recall from Definition 2.2 that xn,k(w,m) is the number of lex-representatives
of length k of the form wv where v ∈ Ln does not start with σi for i ≤ m.

15

As the relations of M are homogeneous, this amounts to counting the braids
x of length k − |w| for which wω(x) ∈ Ln and ω(x) does not start with σi for
i ≤ m. Knowing the number of braids x of length k − |w|, it suffices to count
those braids x of length k − |w| for which wω(x) /∈ Ln, or ω(x) starts with σi

for i ≤ m. If m = 0, the second condition is never satisfied and we simply need
to count Fn(w) ∩Mk−|w|. If m > 0, however, we have to add σ1, . . . , σm to the
set of forbidden prefixes.

Definition 6.1. Let w ∈ Ln and m ∈ {0, . . . , n− 1}. We define Fmin
n (w,m) to

be the set of minimal elements, with respect to 4, in {σ1, . . . , σm} ∪ Fmin
n (w).

Notice that Fmin
n (w,m) is obtained from Fmin

n (w) by removing all elements that
start with σ1, . . . , σm, and adding the elements σ1, . . . , σm. If m ≥ j − 1, where
σj is the last letter of w, this simplifies the description of the set Fmin

n (w,m):

Proposition 6.2. Let w ∈ Ln, let j = 1 if w = ǫ, or w = w′σj otherwise, and
let m ≥ j − 1. There is an admissible function f such that Fmin

n (w,m) = Ff .
Moreover, the following hold:

(a) f(r) = r for r = 1, . . . ,m and f(r) ≥ 0 for r = m+ 1, . . . , n− 1.

(b) f(j) = 0 if m = j − 1 and f(j) = j if m ≥ j.

(c) If i ∈ {j + 1, . . . , n− 1} and f(i) = 0, then f(r) = 0 for r = i, . . . , n− 1.

(d) If i ∈ [n] and 0 < f(i) < i, then f(i) ≤ j.

(e) If i, i′ ∈ [n], such that 0 < f(i) < i and 0 < f(i′) < i′, then i′ > i implies
f(i) ≥ f(i′).

In particular, all elements of Fmin
n (w,m) are of the form σrσr−1 · · ·σf(r) with

f(r) ≤ r, and those elements that are longer than one letter are nested: If
f(it) < it (1 ≤ t ≤ s) for j < i1 < · · · < is then j ≥ f(i1) ≥ f(i2) ≥ · · · ≥ f(is).

Proof. This follows immediately from Corollary 4.14 together with the fact that
σi ∈ Fmin

n (w,m) for i = 1, . . . ,m.

We are now in a position to calculate xn,k(w,m). For a non-empty finite set
S = {a1, . . . , ar} ⊂ M , we define

∨

S = a1 ∨ · · · ∨ ar. We also define
∨

∅ = 1.
Recall that Mk = {x ∈ M | |x| = k}; so xn,k = |Mk| and xn,k = 0 if k < 0.

Proposition 6.3. Let w ∈ Ln and m ∈ {1, . . . , n− 1}. One has

xn,k(w,m) =
∑

S⊆Fmin
n (w,m)

(−1)|S|xn,k−|w|−|
∨

S| =

k−|w|
∑

l=0

(

xn,k−|w|−l · Tl(w,m)
)

,

where
Tl(w,m) =

∑

S⊆Fmin
n (w,m)

|
∨

S|=l

(−1)|S| .

16

Proof. The second equality is just a reordering of terms. For α ∈ M , let
(αM)k = αM ∩ Mk. As M is a cancellative monoid with homogeneous re-
lations (αM)k = αMk−|α| = {αβ | β ∈ Mk−|α|}, that is, |(αM)k| = xn,k−|α|.

The braids x for which wω(x) /∈ Ln or ω(x) starts with σi for i ≤ m are exactly
those that admit a prefix α ∈ Fmin

n (w,m). Moreover, |wω(x)| = |w|+ |x|. Hence

xn,k(w,m) = xn,k−|w| −

∣

∣

∣

∣

∣

⋃

α∈Fmin
n (w,m)

(αM)k−|w|

∣

∣

∣

∣

∣

.

By the inclusion-exclusion principle,
∣

∣

∣

∣

∣

⋃

α∈Fmin
n (w,m)

(αM)k−|w|

∣

∣

∣

∣

∣

=
∑

∅6=S⊆Fmin
n (w,m)

(−1)|S|−1

∣

∣

∣

∣

∣

⋂

α∈S

(αM)k−|w|

∣

∣

∣

∣

∣

.

Noting that
∨

∅ = 1 ∈ M , whence |
∨

∅| = 0, the claim then follows from
∣

∣

∣

∣

∣

⋂

α∈S

(αM)k−|w|

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

⋂

α∈S

αM

)

∩Mk−|w|

∣

∣

∣

∣

∣

=
∣

∣

∣

(

(
∨

S)M
)

∩Mk−|w|

∣

∣

∣

=
∣

∣

∣

(
∨

S
)

Mk−|w|−|
∨

S|

∣

∣

∣
= xn,k−|w|−|

∨
S| .

In order to obtain a sub-exponential algorithm, we need to compute Tl(w,m)
without explicitly summing over all subsets of Fmin

n (w,m). To this end, we use
some special properties of the braid monoid. By Proposition 6.2, the elements of
Fmin
n (w,m) are permutation braids, thus so is the least common multiple of any

collection of them. The crucial point is that, under certain conditions, we only
need to know the final position of some strands in a permutation braid, in order
to describe sufficiently its least common multiple with another permutation
braid. Specifically, we have the following lemma, which can be readily verified
working with the induced permutations [5].

Lemma 6.4. Let x ∈ 〈σa, σa+1, . . . , σb−1〉+ ⊂ M be a permutation braid and
let πx be the permutation induced by x. Let πx(a) = a+ r and πx(b) = b− s.

(a) If a > 1, then x′ = σa−1 ∨ x = x(σa−1σa · · ·σa−1+r). Moreover,

πx′(a− 1) = a+ r and πx′(b) =

{

b− s if a+ r < b − s

b− s− 1 if a+ r > b − s
.

(b) If b < n, then x′ = σb ∨ x = x(σbσb−1 · · ·σb−s). Moreover,

πx′(a) =

{

a+ r if a+ r < b− s

a+ r + 1 if a+ r > b− s
and πx′(b + 1) = b− s .

(c) If b < n then x′ = (σbσb−1 · · ·σa) ∨ x = x(σbσb−1 · · ·σa). Moreover,

πx′(a) = a+ r + 1 and πx′(b + 1) = a .

17

Evaluating Tl(w,m)

Let w ∈ Ln, let j = 1 if w = ǫ, or w = w′σj otherwise, and let m ≥ j − 1.

We work with a 3-dimensional array T of size (k−|w|+1)×n×n, which is trans-
formed in at most n−1 steps. At each step, we have two distinguished positions
a and b with 1 ≤ a ≤ b ≤ n, defining Sa,b = Fmin

n (w,m)∩〈σa , σa+1, . . . , σb−1〉+,
and for l ∈ {0, . . . , k − |w|} and r, s ∈ {0, . . . , n− 1}, the entry Tl,r,s of T is

Tl,r,s =
∑

S⊆Sa,b , |
∨

S|=l

π(
∨

S)(a)=a+r , π(
∨

S)(b)=b−s

(−1)|S| .

Initially, we take a = b = j, so Sa,b = ∅. Obviously, in this case all entries of T
are 0, except T0,0,0 = 1, which corresponds to

∨

∅ = 1.

At the final step, we will have a = 1 and b = n, so Sa,b = Fmin
n (w,m), whence

Tl(w,m) =
n−1
∑

r=0

n−1
∑

s=0

Tl,r,s .

In each step we replace (a, b) by (a′, b′) ∈ {(a− 1, b), (a, b+1)}: If there is some
σbσb−1 · · ·σs ∈ Fmin

n (w,m) with s < a or if b = n then we set (a′, b′) = (a−1, b),
otherwise we set (a′, b′) = (a, b+ 1). By Proposition 6.2, either Sa′,b′\Sa,b = ∅,
or Sa′,b′\Sa,b = {σb}, or Sa′,b′\Sa,b = {σbσb−1 · · ·σa}, or Sa′,b′\Sa,b = {σa−1}.
Hence, if Sa′,b′\Sa,b = {x} 6= ∅ and y ∈ Sa,b, then according to Lemma 6.4, the
length, the displacement of strand a′, and the displacement of strand b′ of the
element x ∨ y only depend on x, and the length, the displacement of strand a,
and the displacement of strand b of the element y. Therefore, the table T can be
updated when replacing (a, b) by (a′, b′): The elements contributing to Tl,r,s in
the old table will in the updated table contribute to Tl,0,s if (a′, b′) = (a− 1, b),
respectively to Tl,r,0 if (a′, b′) = (a, b + 1). If Sa′,b′\Sa,b 6= ∅, then in addition,
their least common multiples with x will contribute to the entry of the updated
table given by Lemma 6.4.

The arguments from this section yield Algorithm 2 computing xn,k(w,m).

7 Complexity and timing analysis

The analysis of the worst-case complexity of Algorithm 1 is relatively straight-
forward. We assume that the addition of two N -bit integers has cost O(N), and
that the multiplication of two N -bit integers, in the relevant range of N , has
cost O(Nα) with α = log2 3 ≈ 1.585 (Karatsuba multiplication).

Proposition 7.1.

(a) The worst-case complexity of Algorithm 2 is at most O(n4kα+1).

(b) The worst-case complexity of Algorithm 1 is at most O(n4 lnn kα+2).

18

Algorithm 2 Computing xn,k(w,m)

Input: Integers n ≥ 2 and k ≥ 0. A word w = σa1 · · ·σat ∈ A∗
n. An integer m ≤ n−1,

where m ≥ 1 if w = ǫ and m ≥ j − 1 if w = vσj . The numbers xn,0, . . . , xn,k.
Output: The number xn,k(w,m).

1: if t > k then

2: return 0
3: F := ∅
4: for i := 1 to t do

5: if σai
∈ F then

6: return 0
7: else

8: F := min4 ({σ1, . . . , σai−2, σai−1σai
} ∪ {σai

\β | β ∈ F})
9: F := min4 ({σ1, . . . , σm} ∪ F)

10: Tl,r,s := 0 for all (l, r, s) ∈ I = {0, . . . , k − t} × {0, . . . , n− 1} × {0, . . . , n− 1}
11: if t = 0 then

12: a := 1 ; b := 1 ; α := 0 ; T0,0,0 := 1
13: else

14: a := at ; b := at ; α := 0 ; T0,0,0 := 1
15: while (a, b) 6= (1, n) do
16: if b = n or σbσb−1 · · ·σs ∈ F for some s < a then

17: (a′, b′) := (a− 1, b) ; α := α+ 1
18: if F ∩ 〈σa′ , . . . , σb′−1〉

+ = F ∩ 〈σa, . . . , σb−1〉
+ then

19: for (l, r, s) ∈ I do T ′
l,r,s :=

{

∑b−a

u=0
Tl,u,s if r = 0

0 otherwise

20: else if (F ∩ 〈σa′ , . . . , σb′−1〉
+) \ (F ∩ 〈σa, . . . , σb−1〉

+) = {σa−1} then

21: for (l, r, s) ∈ I do T ′
l,r,s :=

∑b−a

u=0
Tl,u,s if r = 0

−Tl−r,r−1,s if 1 ≤ r ≤ l and r + s < α

−Tl−r,r−1,s−1 if 1 ≤ r ≤ l and r + s > α

0 otherwise
22: else

23: (a′, b′) := (a, b+ 1) ; α := α+ 1
24: if F ∩ 〈σa′ , . . . , σb′−1〉

+ = F ∩ 〈σa, . . . , σb−1〉
+ then

25: for (l, r, s) ∈ I do T ′
l,r,s :=

{

∑b−a

u=0
Tl,r,u if s = 0

0 otherwise

26: else if (F ∩ 〈σa′ , . . . , σb′−1〉
+) \ (F ∩ 〈σa, . . . , σb−1〉

+) = {σb} then

27: for (l, r, s) ∈ I do T ′
l,r,s :=

∑b−a

u=0
Tl,r,u if s = 0

−Tl−s,r,s−1 if 1 ≤ s ≤ l and r + s < α

−Tl−s,r−1,s−1 if 1 ≤ s ≤ l and r + s > α

0 otherwise

28: else if (F ∩ 〈σa′ , . . . , σb′−1〉
+) \ (F ∩ 〈σa, . . . , σb−1〉

+) = {σb · · · σa} then

29: for (l, r, s) ∈ I do T ′
l,r,s :=

∑b−a

u=0
Tl,r,u if s = 0

−
∑b−a

u=0
Tl−α,r−1,u if s = α, l ≥ α, r ≥ 1

0 otherwise

30: (a, b) := (a′, b′) ; T := T ′

31: return
∑k−t

l=0

(
∑n−1

r=0

∑n−1

s=0
Tl,r,s

)

xn,k−t−l

19

Proof. The absolute values of all entries of the array T are bounded by 2n, so
the entries of T have at most n bits. As it is known [9, Theorem 10] that the

logarithmic volume limk→∞
log xn,k

k
of B+

n is bounded above by 4, the numbers
xn,j for 0 ≤ j ≤ k have O(k) bits.

Consider Algorithm 2 and recall that we can describe forbidden prefixes by
admissible functions as explained in Section 4. By Proposition 4.11, line 8, which
is executed at most k times, and line 9 both have a cost of O(n). Line 10 has
cost O(n2k). Now consider lines 19, 21, 25, 27 and 29: At most n executions of
these occur. Each line involves O(nk) sums of O(n) terms, and possibly O(n2k)
assignments. Since the operands have at most O(n) bits, the total cost is at
most O(n4k). Line 31 involves O(n2k) additions with operands of size O(n),
and k multiplications and additions with operands of size O(n+ k), so the cost
is at most O(n3k+ k(n+ k)α) = O(n3kα+1). All other lines have cost O(1) and
are executed at most n times, so Claim (a) is shown.

Consider Algorithm 1. The body of the for-loop (lines 5 to 13) is executed k
times, the body of the while-loop (lines 7 to 12) at most O(lnn) times. The cost
of the for-loop is dominated by the invocations of Algorithm 2; by Claim (a),
the cost is at most O(n4 lnn kα+2). Line 2 has a cost of O(k). From Section 3,
equation (3), calculating hm,j involves m additions. We need to calculate hm,j

for 0 ≤ m ≤ n and 0 ≤ j ≤ k, so overall O(n2k) additions are required; as it
follows by induction on n that the operands have at most O(n lnn) bits, this
has a cost of at most O(n3 lnn k). Similarly, from equation (2), the calcula-
tion of xn,j involves O(j) additions and multiplications; we need to calculate
xn,j for 0 ≤ j ≤ k, so overall this requires O(k2) additions and multiplica-
tions of operands with at most O(n lnn + k) bits, which has a cost of at most
O((n lnn)α kα+2). This shows Claim (b).

Remark 7.2. There are several optimisations that can be applied when im-
plementing Algorithms 1 and 2. While they do not affect the estimate of the
worst-case complexity, they have a significant impact on actual running times.

1. It is clearly not necessary to compute the forbidden prefixes from scratch in
every invocation of Algorithm 2. If the forbidden prefixes of the generated
part of the word are stored in Algorithm 1, only one invocation of line 8
of Algorithm 2 is needed.

2. It is possible to initialise the array T in Algorithm 2 directly for the values
of a and b corresponding to the largest range that does not involve a for-
bidden prefix consisting of more than one letter, using the data computed
in Section 3.

3. The array T in Algorithm 2 is in general very sparse, as its contents are
often collapsed to the 2-dimensional subarrays given by r = 0 respectively
s = 0. Keeping track of the values of r and s that actually can contain
non-zero entries and only considering those in any subsequent summations
greatly reduces actual running times; see Remark 7.3.

4. Since the least common multiple of all forbidden prefixes is a permutation
braid, its length is bounded above by

(

n

2

)

. Similarly, Hn(t) is a polynomial

20

of degree
(

n

2

)

, so hn,j = 0 if j >
(

n

2

)

. It is therefore possible to restrict

some summations to min{k,
(

n

2

)

} terms. It is clear from the proof of

Proposition 7.1 that in this case (that is, n constant and k >
(

n

2

)

) the
complexity in terms of k is reduced to O(kα+1).

Table 1 contains timing results for several values of n and k, using the imple-
mentation of the algorithm in the C-kernel of the computational algebra package
Magma [3] by the first author. Computations were done with a development
version of Magma V2.16 on a GNU/Linux system with an Intel E8400 64-bit
CPU (core: 3GHz, FSB: 1333MHz) and a main memory bandwidth of 4.7GB/s
(X38 chipset, dual channel DDR2 RAM, memory bus: 1066MHz). The mini-
mum sample size was 100. The sample size was varied to achieve an approximate
running time of 2.5 minutes per sample (where possible honouring the minimum
sample size), and hence a sufficient degree of accuracy for all parameter values.

n
4 8 16 32 64 128 256 512

4 1.09e0 1.33e0 1.76e0 2.07e0 2.45e0 2.95e0 3.58e0 8.03e0
8 4.62e0 6.39e0 5.79e0 6.10e0 1.26e1 2.19e1 3.13e1 4.84e1

16 2.20e1 5.10e1 4.56e1 7.52e1 9.73e1 1.35e2 2.31e2 2.42e2
32 1.07e2 3.81e2 4.63e2 6.70e2 8.81e2 1.01e3 1.15e3 1.79e3

k 64 4.84e2 2.07e3 4.55e3 6.72e3 5.72e3 7.94e3 7.61e3 7.72e3
128 2.01e3 9.55e3 3.30e4 5.24e4 5.70e4 1.03e5 1.13e5 1.04e5
256 8.42e3 4.27e4 1.90e5 4.17e5 6.06e5 1.20e6 1.81e6 2.06e6
512 4.36e4 1.78e5 9.70e5 3.27e6 5.85e6 1.23e7 2.56e7 3.29e7

1024 2.52e5 7.24e5 4.77e6 2.07e7 5.22e7 1.25e8 2.78e8 4.29e8

Table 1: Running times in µs per random braid for different values of n and k.

k 4 8 16 32 64 128 256 512 1024

en 0.35 0.50 0.48 0.48 0.47 0.75 1.08 1.36 1.59

Table 2: Observed exponent en of n for different values of k; see Remark 7.3.

n 4 8 16 32 64 128 256 512

ek 2.30 2.41 2.80 3.02 3.08 3.19 3.27 3.21

Table 3: Observed exponent ek of k for different values of n; see Remark 7.3.

Remark 7.3. Assuming that the observed running time t is approximated by
a relation of the form t = c nenkek , the value of en for a fixed value of k can be
obtained by applying regression analysis to the rows of Table 1. Similarly, the
value of ek for a fixed value of n can be obtained from the columns of Table 1.
The observed values of en and ek are given in Tables 2 and 3, respectively.

21

1. The observed values of ek are close to α+ 2 ≈ 3.585 for large values of n.
For small values of n, where k >

(

n
2

)

for most of the parameter range
tested, the observed values of ek are closer to α+ 1 ≈ 2.585.

This is exactly what should be expected from Proposition 7.1 and Re-
mark 7.2 (4). That is, as far as k is concerned, the average case complexity
is quite close to the worst-case complexity.

2. The observed values of en are significantly smaller than 4, that is, the
average case complexity in n is significantly better than the worst-case
bound of Proposition 7.1.

This is not surprising in the light of Remark 7.2 (3): Our implementation
exploits the fact that the array T is sparse and tends to contain non-zero
entries only for relatively few values of the indices r and s. The experimen-
tal results suggest that the array T effectively is far from 3-dimensional,
especially if k is relatively small. We expect that the theoretical growth
rate in n will be achieved, if at all, only for extremely large values of k.

References

[1] M.Albenque, P.Nadeau. Growth function for a class of monoids. FPSAC 2009,
Hagenberg, Austria. DMTCS proc. AK (2009) 25–38.

[2] A.Bronfman. Growth functions of a class of monoids. Preprint. 2001.

[3] W.Bosma, J. Cannon, C. Playoust. The MAGMA algebra system I: The user
language. J. Symbolic Comput. 24 (1997) 235–265.

[4] P.Deligne. Les immeubles des groupes de tresses généralisés. Invent. Math. 17

(1972), 273–302.

[5] D. Epstein, J. Cannon, D.Holt, S. Levy, M. Paterson, W.Thurston. Word process-

ing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.

[6] P. Flajolet, P. Zimmermann, B.Cutsem. A calculus for the random generation of
labelled combinatorial structures. Theor. Comp. Sci. 132 (1994), 1–35.

[7] J. González-Meneses. On the growth function of braid monoids. In preparation.

[8] E. Stanley. On the number of Reduced Decompositions of Elements of Coxeter
Groups. Europ. J. of Combinatorics 5 (1984), 359–372.

[9] A.M.Vershik, S.Nechaev, R.Bikbov. Statistical properties of locally free groups
with applications to braid groups and growth of random heaps. Commun. Math.

Phys. 212 (2000), 469–501.

[10] H.Wilf. A unified setting for sequencing, ranking, and selection algorithms for
combinatorial objects. Adv. Math. 24 (1977), 281–291.

22

Volker Gebhardt

School of Computing, Engineering and Mathematics
University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia.
E-mail: v.gebhardt@uws.edu.au

J.González-Meneses

Departamento de Álgebra, Facultad de Matemáticas, Instituto de Matemáticas
(IMUS), Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain.
E-mail: meneses@us.es

23

	1 Introduction
	2 Structure of the algorithm
	3 Counting all positive braids of a given length
	4 Forbidden prefixes
	5 A minimal finite state automaton accepting Ln
	6 Counting braids with suitable prefixes
	7 Complexity and timing analysis

