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Abstract

The cycling operation is a special kind of conjugation that can be applied to elements in
Artin’s braid groups, in order to reduce their length. It is a key ingredient of the usual solutions
to the conjugacy problem in braid groups. In their seminal paper on braid-cryptography, Ko,
Lee et al. proposed the cycling problem as a hard problem in braid groups that could be
interesting for cryptography. In this paper we give a polynomial solution to that problem,
mainly by showing that cycling is surjective, and using a result by Maffre which shows that
pre-images under cycling can be computed fast. This result also holds in every Artin-Tits
group of spherical type.

On the other hand, the conjugacy search problem in braid groups is usually solved by
computing some finite sets called (left) ultra summit sets (left-USS), using left normal forms
of braids. But one can equally use right normal forms and compute right-USS’s. Hard
instances of the conjugacy search problem correspond to elements having big (left and right)
USS’s. One may think that even if some element has a big left-USS, it could possibly have a
small right-USS. We show that this is not the case in the important particular case of rigid

braids. More precisely, we show that the left-USS and the right-USS of a given rigid braid
determine isomorphic graphs, with the arrows reversed, the isomorphism being defined using
iterated cycling. We conjecture that the same is true for every element, not necessarily rigid,
in braid groups and Artin-Tits groups of spherical type.

1 Introduction

Braid groups [3] were related to cryptography in two independent seminal papers [2, 17]. In
both papers, the security of the proposed cryptosystems relied on the presumed difficulty of
some problems in non-commutative groups, namely the conjugacy search problem (CSP) and the
multiple simultaneous conjugacy problem (MSCP). They proposed Artin braid groups as good
candidates to implement their cryptosystem, and a lot of literature has been produced on this
subject since then. The results in this paper refer to braid groups as the main example, but some
of them also hold in other instances of the so-called Garside groups [9, 10], which is a family of
groups sharing some basic algebraic properties with braid groups, and which contain all Artin-Tits
groups of spherical type.

It seems clear that the main objection to the above cryptosystems, either in braid groups or in
other groups, is the choice of keys. If one just chooses public and secret keys at random in a braid
group, with given parameters such as length or number of strands, none of the above cryptosystems
can be considered to be secure. It is then crucial to be able to choose hard instances that resist
all known attacks.

∗Partially supported by MTM2004-07203-C02-01 and FEDER.
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There are other presumably hard problems in braid groups that have been proposed as being
possibly interesting for cryptography. In [17], the cycling problem, among others, was suggested.
It can be explained as follows. In braid groups one has a well known left normal form, that is, a
unique way to write a braid on n strands x ∈ Bn as a product x = ∆px1 · · ·xr , where ∆ is the
Garside element, and each xi is a simple braid. This normal form will be explicitly defined later.
If we define the initial factor of x as ι(x) = ∆px1∆

−p for r > 0, and ι(x) = 1 for r = 0, then
one has x = ι(x) ∆px2 · · ·xr . The left cycling of x is defined to be the conjugate of x by its
initial factor. That is, cL(x) = ∆px2 · · ·xr ι(x). The same definition makes sense in every Garside
group.

The cycling problem asks for, given a braid y and a positive integer t such that y is in the image
of ct

L, find a braid x such that ct
L(x) = y.

In this paper we will show that the cycling problem has a polynomial solution. Namely, it was
shown in [20] that the cycling problem for t = 1 has a very efficient solution. That is, if y is the
cycling of some braid, then one can find x such that cL(x) = y very fast. In the first part of
this paper we will show the following result, which holds in a special kind of Garside groups (for
instance, it holds in every braid group, and in every Artin-Tits group of spherical type).

Theorem 1.1. If G is a Garside group which is atom-friendly (on the left), then cL : G→ G is
surjective.

As an immediate corollary, a solution to the cycling problem is just given by applying t times the
algorithm in [20]. This clearly gives a polynomial solution to the cycling problem, since it is so
for t = 1.

The proof of Theorem 1.1 makes use not only of left normal forms, but of right normal forms
of elements in Bn (or in G). We shall see that, under certain conditions, an inverse of x under
cycling, using left normal forms, is precisely the cycling of x using right normal forms. This shows
that left and right cyclings, cL and cR, are closely related.

The cycling operation is mainly used to find simpler conjugates of a braid, and also to compute
finite sets which are invariants of conjugacy classes and allow to solve the conjugacy problem in
Bn. One of such sets is the ultra summit set of a given braid x, USS(x). One usually defines
this set by using left normal forms, but it is equally possible to define it using right normal forms,
hence one usually has two finite sets associated to x, that we denote USSL(x) and USSR(x).

The algorithmic solution to the conjugacy search problem in braid groups (and in any Garside
group) developed in [15] relies on computing ultra summit sets. Hence braids having small ultra
summit sets are not hard instances for the conjugacy search problem. This means that if one
wants to find a good key for a cryptographic protocol, one needs to choose a braid with a big
ultra summit set. But we have seen that there are two kind of ultra summit sets, USSL(x) and
USSR(x), and the question arises on whether one of them can be big while the other one is small.

On the other hand, there are three geometric kind of braids: periodic, reducible and pseudo-
Anosov [8]. The conjugacy search problem for periodic braids is solvable in polynomial time [7].
Reducible braids are those which can be decomposed, in some sense, into braids with fewer strands.
There are algorithms to find this decomposition [4], see also [19], although they are not polynomial.
Nevertheless, in most cases the decomposition can be found very fast, and the conjugacy problem
is split into several conjugacy problems on fewer strands. Hence, it would be desirable to know
pseudo-Anosov braids whose ultra summit sets are big.

But one can solve the conjugacy search problem for pseudo-Anosov braids using rigid braids (these
will be defined later): In [16] it is shown that the conjugacy search problem for two pseudo-Anosov
braids x and y is equivalent to the same problem for xm and ym, for every nonzero integer m.
And in [5] it is shown that every pseudo-Anosov element in its ultra summit set, has a small power
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which is rigid (we will be more explicit in the next section). Therefore, one just needs to care
about rigid braids. So the above question is transformed into the following: if x is a rigid braid,
is it possible that USSL(x) is big and USSR(x) is small, or vice versa? The answer is negative,
and it is given by the following results.

Theorem 1.2. A braid x ∈ Bn with ℓ(x) > 1 is conjugate to a left rigid braid if and only if it is
conjugate to a right rigid braid.

In the above case, we will show that #(USSL(x)) = #(USSR(x)). Therefore, if one is able to find
a rigid element x such that USSL(x) is big, the same will happen with USSR(x), so the conjugacy
search problem will be equally difficult by using either left or right normal forms.

Moreover, we will show that the relation between USSL(x) and USSR(x) is deeper than just
having the same number of elements. In order to compute USSL(x) using the algorithm in [15],
one actually computes a directed graph, that we will denote USGL(x) (left ultra summit graph of
x). The vertices of USGL(x) correspond to the elements of USSL(x), and the arrows are labeled
by simple braids, in such a way that there is an arrow labeled by s, going from u to v, if and
only if s−1us = v. In the same way, one can define USGR(x), where in this case the vertices
correspond to elements in USSR(x), and there is an arrow labeled by s, going from u to v, if and
only if sus−1 = v. We will denote by USGR(x)op the graph which is isomorphic to USGR(x)
as a (non-directed) graph, but with the arrows reversed. The result that compares the graphs
USSL(x) and USSR(x) is the following:

Theorem 1.3. Let x ∈ Bn with ℓ(x) > 1 be conjugate to a left rigid braid. Then USGL(x) and
USGR(x)op are isomorphic directed graphs.

Remark 1.4. We recently learnt from Jean Michel, François Digne et David Bessis, that USGL(x)
(and thus USGR(x)) are Garside categories. In this context, the notation USGR(x)op makes sense,
since it refers to the opposite category. Then Theorem 1.3 says that USGL(x) and USGR(x)op

are isomorphic Garside categories. Or in other words, there exists a contravariant isomorphism
from USGL(x) to USGR(x)

This paper is structured as follows: In Section 2 some basic notions of braids and Garside theory
are given. Specialists in Garside theory may skip this Section and go directly to Section 3, in
which Theorem 1.1 is shown. The proofs of Theorems 1.2 and 1.3 are given in Section 4.

Acknowledgements: This paper was conceived in the framework of a collaboration of the authors
with Joan S. Birman. Most arguments in it have been discussed with her, and in particular she
participated in finding the right conjectures that became Theorems 1.2 and 1.3. We are deeply
grateful to her for these contributions, and also for her advice and support. The first author
thanks Thierry Berger and Samuel Maffre for inviting him to Limoges, to the PhD defense of the
latter, where he learnt about the results which are a key tool in Section 3.

2 Basic ingredients of Garside theory.

In this section we will explain the notions and results that will be used throughout the rest of
the paper. Namely, we will briefly describe the basic ingredients of the Garside structure of braid
groups. In general, a Garside group is a group satisfying the structural properties defined in this
section, and the main examples are braid groups and Artin-Tits groups of spherical type. For a
short introduction to Garside theory, with a precise definition of a Garside group, see [5].

The braid group on n strands, Bn can be defined by its well known group presentation [3]:

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣
σiσj = σjσi, if |j − i| > 1
σiσjσi = σjσiσj , if |j − i| = 1

〉
.
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If we consider the above as a monoid presentation, this defines the monoid of positive braids,
B+

n . Garside [14] showed that B+
n embeds into Bn, so the elements of B+

n , called positive braids
can be seen as the braids in Bn that can be written as a word in the generators (but not their
inverses). There is a special positive element, called half twist or Garside element, defined
by ∆ = σ1(σ2σ1) · · · (σn−1 · · ·σ1). Artin [3] showed that the center of Bn is the cyclic subgroup
generated by ∆2. In general, every Garside group has a distinguished monoid of positive elements,
and a special Garside element, ∆, which has a central power ∆e. Conjugation by ∆ is an inner
automorphism which preserves the set of simple elements; we denote this automorphism by τ .

In Bn one can define two partial relations, related to left and right divisibility, respectively. Namely,
given a, b ∈ Bn we say that a 4 b if a−1b ∈ B+

n , that is, if ap = b for some positive braid p. We
then say that a is a left-divisor, or a prefix of b. On the other hand, we say that a < b if ab−1 ∈ B+

n ,
that is, if a = pb for some positive braid p. In this case we say that b is a right-divisor, or a suffix
of a. Notice that B+

n = {p ∈ Bn; 1 4 p} = {p ∈ Bn; p < 1}.

Each of the above partial orders define a lattice structure on Bn. This means that given two
braids a, b ∈ Bn, there exist a unique greatest common divisor a ∧L b and a unique least common
multiple a ∨L b, naturally defined by the left divisibility relation 4, and also unique gcd’s and
lcm’s, a ∧R b and a ∨R b, naturally defined by <.

In Bn, the generators σ1, · · · , σn−1 are called atoms. In general, in a Garside group, an atom
is a positive element that cannot be decomposed as a product of two positive elements. In the
particular case of Bn and of Artin-Tits groups of spherical type, the Garside element ∆ is the
(left and right) least common multiple of all atoms. This is not true in general for other Garside
groups, and this is one of the reasons why the proof of Theorem 1.1 above does not generalize to
every Garside group.

Several normal forms for elements in Bn have been defined. We will concentrate in the one
defined independently by Adjan [1], Deligne [11], Elrifai-Morton [12] and Thurston [13], which is
an improvement of the solution to the word problem given by Garside [14]. We say that a braid is
simple if it is a positive prefix of ∆. It is well known that this happens if and only if it is a positive
suffix of ∆. The set of simple braids is then S = {s ∈ Bn; 1 4 s 4 ∆} = {s ∈ Bn; ∆ < s < 1}.

Definition 2.1. Given two simple elements s, s′, we say that the decomposition ss′ is left-

weighted if s is the maximal simple prefix of ss′, that is, if s = (ss′) ∧L ∆. Similarly, we
say that ss′ is right-weighted if s′ is the maximal simple suffix of ss′, that is, if s′ = (ss′)∧R ∆.

For a simple element s we call ∂(s) = s−1∆ the right complement of s. Note that as s 4 ∆ and
s ∂(s) = ∆, the element ∂(s) is simple. Hence, this defines a map ∂ : S → S on the set S of simple
elements. As ∂(∂(s)) = ∆−1s∆ = τ(s) for any simple s, the map ∂ is a bijection on S and ∂2 = τ .
We similarly define the left complement of s as ∆s−1 = ∆∂(s)∆−1 = τ−1(∂(s)) = ∂−1(s).

Observe that, given two simple elements s and s′, the product ss′ is left weighted if and only if
there is no prefix t 4 s′ such that st is simple, or in other words, such that t 4 ∂(s). Hence
ss′ is left weighted if and only if ∂(s) ∧L s′ = 1. Similarly, ss′ is right weighted if and only if
s ∧R ∂−1(s′) = 1.

Definition 2.2. Given a braid x ∈ Bn, its left normal form is a decomposition x = ∆px1 · · ·xr,
satisfying the following conditions:

1. p ∈ Z is the maximal integer such that ∆−px is positive.

2. xi = (xi · · ·xr) ∧L ∆ 6= 1 for i = 1, . . . , r.

In other words, each xi is a proper simple element (different from 1 and ∆), and it is the biggest
simple prefix of xi · · ·xr. It is well known that normal forms can be recognized ‘locally’. This
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means that ∆px1 · · ·xr is in left normal form if and only if each xi is a proper simple element and
xixi+1 is left-weighted for i = 1, . . . , r− 1. The left normal form of a braid exists and it is unique.
The integers p and r are then determined by x, so one can define the infimum, supremum and
canonical length of x, respectively, by inf(x) = p, sup(x) = p+r and ℓ(x) = r. This terminology
is explained by noticing that p and p + r are, respectively, the biggest and the smallest integers
such that ∆p 4 x 4 ∆p+r , which is usually written x ∈ [∆p, ∆p+r ], or simply x ∈ [p, p + r]. The
canonical length r is just the size of this interval, which corresponds to the number of non-Delta
factors in the left normal form of x.

We notice that one has the analogous definitions related to <:

Definition 2.3. Given a braid x ∈ Bn, its right normal form is a decomposition x = y1 · · · yr∆
p,

satisfying the following conditions:

1. p ∈ Z is the maximal integer such that x∆−p is positive.

2. yi = (y1 · · · yi) ∧R ∆ 6= 1 for i = 1, . . . , r.

The property of being a right normal form is also a local property (yiyi+1 is right-weighted for
every i), and this decomposition also exists and is unique for each braid. We remark that the
integers p and r in this case are exactly the same as those corresponding to the left normal form.
This means that inf(x) = p and sup(x) = p+r are, respectively, the maximal and minimal integers
such that ∆p+r

< x < ∆p, hence inf(x), sup(x) and ℓ(x) can be equally defined using right normal
forms instead of left normal forms.

Recall that we defined the initial factor of a braid in the introduction. Since we are using two
distinct structures in Bn, we will define left and right versions of initial and final factors, as follows.
Given x = ∆px1 · · ·xr in left normal form, we define its left initial factor as ιL(x) = τ−p(x1), and
its left final factor by ϕL(x) = xr . In the same way, if x = y1 · · · yr∆

p is in right normal form,
we define its right initial factor by ιR(x) = τp(yr), and its right final factor by ϕR(x) = y1.

There are special maps from the braid group to itself that consist of conjugating each element
by the above initial or final factors. These operations, called cyclings and decyclings, are key
ingredients in most of the known solutions to the conjugacy problem in braid groups. The precise
definition is as follows.

Definition 2.4. The following maps, from Bn to itself, are defined for each x ∈ Bn as follows:

1. Left cycling: cL(x) = ιL(x)−1 · x · ιL(x).

2. Left decycling: dL(x) = ϕL(x) · x · ϕL(x)−1.

3. right cycling: cR(x) = ιR(x) · x · ιR(x)−1.

4. right decycling: dR(x) = ϕR(x)−1 · x · ϕR(x).

In other words, if x = ∆px1 · · ·xr is in left normal form, then

cL(x) = ∆px2 · · ·xrτ
−p(x1), dL(x) = xr∆

px1 · · ·xr−1,

and if x = y1 · · · yr∆
p is in right normal form, then

cR(x) = τp(yr)y1 · · · yr−1∆
p, dR(x) = y2 · · · yr∆

py1.

We notice that there is an involution of the braid group, rev : Bn → Bn, which sends every braid
x = σe1

i1
· · ·σem

im
to its reverse rev(x) =←−x = σem

im
· · ·σe1

i1
, that is, the same word read backwards.
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Observe that the map rev is well-defined, as the relations of Bn are invariant under rev. The map
rev is an anti-isomorphism, and one can easily check that the left normal form of x is mapped by

rev to the right normal form of ←−x , and vice versa. Also
←−−−
ιR(x) = ιL(←−x ),

←−−−
ϕR(x) = ϕL(←−x ), and

then
←−−−
cR(x) = cL(←−x ) and

←−−−
dR(x) = dL(←−x ). This means that applying cR and dR to a braid x

corresponds to applying the usual cycling and decycling operations, cL and dL, to its reverse ←−x .
This implies that all results which are usually shown using left normal forms, cL and dL, will also
hold using right normal forms, cR and dR, by symmetry.

Cyclings and decyclings have been used to define suitable finite subsets of Bn which allow to solve
the conjugacy decision problem and the conjugacy search problem in braid groups. Namely, the
super summit set of an element x, denoted SSS(x) [12] is defined as follows. If we denote C(x)
the conjugacy class of x, then

SSS(x) = {y ∈ C(x); ℓ(y) is minimal}.

Notice that this set does not depend on which structure of Bn (left or right) we used to define
ℓ(y). A subset of SSS(x) is the ultra summit set of x [15]. In this case, since USS(x) is defined
by using cyclings, one needs to distinguish between the left ultra summit set of x,

USSL(x) = {y ∈ SSS(x); ∃t ≥ 1, ct
L(y) = y},

and the right ultra summit set of x,

USSR(x) = {y ∈ SSS(x); ∃t ≥ 1, ct
R(y) = y}.

Both SSS(x), USSL(x) and USSR(x) are, by definition, invariants of the conjugacy class of x.
Hence one can determine whether two braids x, y ∈ Bn are conjugate by computing, say, USSL(x)
and USSL(y) and checking if they are equal. Actually, it suffices to compute USSL(x), one element
y′ ∈ USSL(y) and to check whether y′ ∈ USSL(x). In [12] it is shown how to compute SSS(x),
and [15] gives an algorithm to compute USSL(x) (which can also be used to compute USSR(x)).
More precisely, the algorithm computes a directed graph whose set of vertices is USSL(x). We
will define such a graph as follows.

Definition 2.5. Given x ∈ Bn, we define the left ultra summit graph of x, denoted USGL(x),
as the directed graph whose set of vertices is USSL(x) and whose arrows are labeled by simple
elements, in such a way that there is an arrow labeled s, starting at u and ending at v, if s−1us = v.

In the same way, we define the right ultra summit graph of x, denoted USGR(x), as the
directed graph whose set of vertices is USSR(x) and whose arrows are labeled by simple elements,
in such a way that there is an arrow labeled s, starting at u and ending at v, if sus−1 = v.

We remark that in [15], the graph that is computed is not precisely USGL(x), but one with less
arrows:

Definition 2.6. Given x ∈ Bn, we define the graph minUSGL(x) to be the subgraph of USGL(x)
with the same set of vertices, but only with minimal arrows. An arrow labeled by s and starting
at u is said to be minimal if it cannot be decomposed as a product of arrows, that is, if there is no
directed path in USGL(x) starting at u, with labels s1, . . . , sk, such that s = s1 · · · sk.

In the same way, we define the graph minUSGR(x) to be the subgraph of USGR(x) with the same
set of vertices, but only with minimal arrows.

It is known that all the above graphs are connected. The arrows in these graphs allow to know
how to connect, by a conjugation, x to any element in USSL(x) and y to any element in USSL(y).
Hence, the above procedure also solves the conjugacy search problem in Bn (and in any Garside
group), that is, it finds a conjugating element from x to y provided it exists.
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In [5] one can find is a project to find a polynomial solution to the conjugacy search problem in
braid groups. One of the crucial open problems in this project concerns rigid braids, which are
defined as follows. As above, since we are using two different structures of Bn we will define rigid
elements on the left and on the right. In this way, we will say that an element x = ∆px1 · · ·xr

(written here in left normal form, with r > 0) is left rigid, if ∆px1 · · ·xrιL(x) is in left normal
form as written. In the same way, we will say that x = y1 · · · yr∆

p (written in right normal form,
with r > 0) is right rigid if ιR(x)y1 · · · yr∆

p is in right normal form as written, or alternatively,
if ←−x is left rigid. These are the elements that have the best possible behavior with respect to
cyclings and decyclings, since in this case iterated cyclings or decyclings just correspond to cyclic
permutation of the factors (for non-rigid elements this is not the case, since one needs to compute
the left normal form of cL(x) in order to be able to apply cL again, and this modifies some of the
original factors of x).

There are some interesting results concerning rigid braids.

Theorem 2.7. [5] If x ∈ Bn is left [right] rigid then x ∈ USSL(x) [x ∈ USSR(x)]. Moreover, if
ℓ(x) > 1 then USSL(x) [USSR(x)] is precisely the set of left [right] rigid conjugates of x.

Theorem 2.8. [5] If x ∈ Bn is a pseudo-Anosov braid, and x ∈ USSL(x) [x ∈ USSR(x)], then

xm is left [right] rigid for some m < (n(n−1)
2 )3.

Since pseudo-Anosov braids seem to be generic in Bn, and the conjugacy search problem for
pseudo-Anosov braids x and y can be solved just by solving it for xm and ym for any m 6= 0 [16],
the rigid case turns out to be probably the most important case to solve the conjugacy search
problem in Bn.

As was noticed in [15], if the canonical length of a random braid x is big enough with respect to the
number of strands, then USSL(x) consists exactly of 2ℓ(x) elements in 100% of the tested cases,
meaning that the probability of getting a larger USSL(x) seems to tend to zero very rapidly as ℓ(x)
grows. Moreover, in this ‘generic’ cases the braids in USSL(x) are pseudo-Anosov and left rigid.
We remark that Gebhardt’s algorithm is a deterministic algorithm that is ‘generically’ polynomial,
although there is no written proof, to our knowledge, that either pseudo-Anosov braids or braids
conjugate to a rigid element are generic in Bn.

There are instances of left rigid elements whose ultra summit set is much bigger than expected.
For instance, as is noticed in [5], the braid in B12

E = (σ2σ1σ7σ6σ5σ4σ3σ8σ7σ11σ10) · (σ1σ2σ3σ2σ1σ4σ3σ10) ·

(σ1σ3σ4σ10) · (σ1σ10) · (σ1σ10σ9σ8σ7σ11) · (σ1σ2σ7σ11)

is a pseudo-Anosov, rigid braid with ℓ(E) = 6, such that #(USSL(E)) = 264 = 44 · 6, instead of
the expected value of 12 = 2 · 6. Also, the braid in B12

F = (σ3σ2σ1σ4σ6σ8σ7σ6σ9σ10σ11σ10) · (σ1σ2σ4σ3σ2σ1σ5σ7σ10σ11σ10) ·

(σ3σ5σ7σ10σ11σ10) · (σ3σ5σ7σ6σ8σ10σ11)

is pseudo-Anosov and rigid, with ℓ(F ) = 4 and #(USSL(F )) = 232 = 58 · 4, instead of the
expected value of 8 = 2 · 4. The reason why these special examples of rigid braids exist, and
how one can compute them, is still a mystery. Solving this problem would be an important step
towards finding secure keys for cryptographic protocols with braid groups.

But recall that we are considering two distinct structures in Bn. Hence it could be possible, a
priori, that USSR(E) or USSR(F ) are much smaller that USSL(E) or USSL(F ), respectively.
Theorem 1.2 tells us that this is not the case, since #(USS(x)) = #(USS(x)) for every rigid braid
x of canonical length greater than 1.
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3 Cycling is surjective

In this section we will show Theorem 1.1, that is, we will show that cL (and thus cR) is a surjective
map.

First we recall the definition of the right complement ∂(s) of a simple element s from Definition 2.1.
A product ss′ of two simple elements s and s′ is left-weighted if and only if ∂(s) ∧L s′ = 1.

It was shown by Maffre [20] that the pre-image of a braid x ∈ Bn under cL can be computed
fast, provided that x is in the image of cL. The procedure depends on whether the infimum of
the existing pre-image of x is equal to inf(x) or not. We will treat the situation from a slightly
different point of view, although the pre-images that we will compute are exactly the same as
those given by Maffre.

The following result holds for every Garside group G. In the particular case of Bn, recall that
the atoms are just the generators σ1, . . . , σn−1. We will see that in some particular cases, we can
obtain a pre-image of x by cL, just by conjugating x by an atom, and then by ∆−1.

Proposition 3.1. Let G be a Garside group, and let x = ∆px1 · · ·xr ∈ G be written in left normal
form. If there is an atom a such that τp(a) 64 x1 · · ·xra, then cL(τ−1(a−1xa)) = x.

Proof. Define z = a−1xa = ∂(a)∆p−1x1 · · ·xra = ∆p−1∂2p−1(a)x1 · · ·xra. Notice that ∂(∂2p−1(a)) =
∂2p(a) = τp(a) 64 x1 · · ·xra. But τ transforms atoms into atoms, hence τp(a) is an atom. This
means that τp(a) 64 x1 · · ·xra is equivalent to τp(a) ∧L x1 · · ·xra = 1, since an atom has no
nontrivial prefixes.

Notice that ∆ 64 x1 · · ·xra, otherwise a 4 ∆ 4 x1 · · ·xra. Hence inf(x1 · · ·xra) = 0 which
implies that ι(x1 · · ·xra) is precisely the biggest simple prefix of x1 · · ·xra. Therefore, since
τp(a) ∧L x1 · · ·xra = 1, we also have τp(a) ∧L ι(x1 · · ·xra) = 1. In other words, if z2 · · · zk is the
left normal form of x1 · · ·xra, then τp(a) ∧L z2 = 1, that is ∂(∂2p−1(a)) ∧L z2 = 1, so ∂2p−1(a)z2

is left-weighted. This implies that ∂2p−1(a)z2 · · · zk is the left normal form of ∂2p−1(a)x1 · · ·xra.
Hence ι(z) = τ−p+1(∂2p−1(a)) = ∂−2p+2(∂2p−1(a)) = ∂(a).

If we apply left-cycling to z, we then obtain

cL(z) = z∂(a) = ∆p−1x1 · · ·xra∂(a) = ∆p−1x1 · · ·xr∆ = τ(x)

It is well known (and can be derived from the definitions and from the fact that τ is a bijection of
S) that τ sends left (and right) normal forms to left (and right) normal forms. Hence τ commutes
with cL (and with cR). Therefore cL(τ−1(z)) = τ−1(cL(z)) = τ−1(τ(x)) = x, as we wanted to
show.

We will now see that, in the cases where the hypothesis of Proposition 3.1 are not satisfied, then
a preimage by cL of x is just cR(x). This time our proof does not work for every Garside group,
but we need some special property to be satisfied. Given a Garside group G, we will denote
by A the set of atoms. Given a simple element s ∈ G, we will define the starting set of s as
S(s) = {a ∈ A; a 4 s}.

Definition 3.2. Given a Garside group G, we will say that G is atom-friendly (on the left) if

1. lcmL(A) = ∆.

2. S(lcmL(B)) = B for every B ⊂ A.
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We remark that the terminology atom-friendly is new. To our knowledge, no common name has
been given to those Garside groups satisfying the above two conditions. It is nevertheless well
known [21] that braid groups, and more generally Artin-Tits group of spherical type are atom-
friendly (on the left and on the right). Hence the following result holds in all Artin-Tits groups of
spherical type.

Proposition 3.3. Let G be a Garside group which is atom-friendly (on the left). Let x =
∆px1 · · ·xr ∈ G be written in left normal form. If for every atom a one has τp(a) 4 x1 · · ·xra,
then cL(cR(x))) = x.

Proof. Let us define D to be the set of atoms a such that τp(a) 64 x1. That is D = A\S(τ−p(x1)) =
A\S(ι(x)). Define also the simple element D = lcmL(D). Let us show that ∆ 4 x1 · · ·xrD.
Indeed, for every atom a /∈ D one has τp(a) 4 x1 4 x1 · · ·xrD, and for every atom a ∈ D one
has a 4 D, so using the hypothesis it follows that τp(a) 4 x1 · · ·xra 4 x1 · · ·xrD. Therefore
τp(a) 4 x1 · · ·xrD for every atom a. Since τp induces a permutation on the set of atoms, this
means that a 4 x1 · · ·xrD for every atom a. But since G is atom-friendly, ∆ = lcm(A), hence we
finally obtain that ∆ 4 x1 · · ·xrD.

Now denote z1 · · · zr the right normal form of x1 · · ·xr. We just showed that ∆ 4 z1 · · · zrD, but
this is equivalent to say that z1 · · · zrD < ∆. Since z1 · · · zr is in right normal form, this implies
that zrD < ∆, which is equivalent to ∆ 4 zrD or, in other words, ∂(zr) 4 D.

Now we use again that G is atom-friendly, so S(D) = D. But since D = A\S(ι(x))), one has
that S(D) ∩ S(ι(x)) = ∅. This means that D ∧L ι(x) = D ∧L τ−p(x1) = 1, which is equivalent to
τp(D) ∧L x1 = 1.

Finally, consider y = cR(x) = xz−1

r = ∆pτp(zr)z1 · · · zr−1. We will show that cL(y) = x. Recall
that ∂(zr) 4 D, hence ∂(τp(zr)) 4 τp(D). On the other hand, z1 · · · zr−1 4 z1 · · · zr = x1 · · ·xr.
Hence, if we denote by α = ι(z1 · · · zr−1), we have α 4 ι(z1 · · · zr) = ι(x1 · · ·xr) = x1. But
since τp(D) ∧L x1 = 1, and we are considering left divisors ∂(τp(zr)) 4 τp(D) and α 4 x1,
it follows that ∂(τp(zr)) ∧L α = 1. In other words, τp(zr)α is left weighted as written. This
is equivalent to say that τp(zr) is the first factor in the left normal form of τp(zr)z1 · · · zr−1.
Therefore cL(y) = yzr = x, as we wanted to show.

We have thus shown Theorem 1.1, since Propositions 3.1 and 3.3 run over all possibilities.

We end this section by recalling a result by Maffre [20] showing when each of the above two cases
hold.

Theorem 3.4. [20] Let G be a Garside groups, and let x = ∆px1 · · ·xr ∈ G be written in left
normal form. Then

1. cL(y) = x for some y ∈ G with inf(y) = p−1, if and only if cL(τ−1(xa)) = x for some atom a.

2. cL(y) = x for some y ∈ G with inf(y) = p, if and only if cL(cR(x)) = x.

What we showed in Theorem 1.1 is that at least one of the above cases must happen.
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4 Rigid ultra summit sets

4.1 Left rigid and right rigid elements

In this section we will show Theorem 1.2. Let x ∈ Bn, and recall the definition of USSL(x) and
USSR(x) given in Section 2. Since the statement of Theorem 1.2 refers to the conjugacy class of
x, and not to x itself, we can assume that x ∈ SSS(x), that is, x has minimal canonical length
in its conjugacy class. We will see how one can determine if x is conjugate to a rigid braid by
looking at its powers. First we will see that if x is conjugate to a rigid element, then the infimum
and supremum of its powers behave as one should expect.

Definition 4.1. [18] Given an element x in a Garside group G, we say that x is periodically

geodesic if inf(xm) = m inf(x) and sup(xm) = m sup(x) for every m ≥ 1.

Lemma 4.2. If x ∈ SSS(x) in a Garside group G, and x is conjugate to a (left or right) rigid
element, then x is periodically geodesic.

Proof. Let y = ∆py1 · · · yr be a left rigid element conjugate to x. Then every power of y is left rigid
and y is periodically geodesic. Notice also that the left normal form of x is x = ∆px1 · · ·xr, where
p and r are the same as above, since x ∈ SSS(x). Hence inf(xm) ≥ pm and sup(xm) ≤ (p + r)m.
Now ym is rigid, thus ym ∈ USS(ym) ⊂ SSS(ym), hence inf(ym) = pm is maximal in its conjugacy
class, and sup(ym) = (p+ r)m is minimal in its conjugacy class. Since xm is conjugate to ym, this
implies that inf(xm) = pm = m inf(x) and sup(xm) = (p + r)m = m sup(x), so x is periodically
geodesic.

The above result is not the only one relating periodically geodesic and rigid elements.

Lemma 4.3. Let x be an element in a Garside group G. If x is periodically geodesic and xm is
left (resp. right) rigid for some m ≥ 1, then x is left (resp. right) rigid.

Proof. Let ∆px1 · · ·xr be the left normal form of x. Since x is periodically geodesic, the left
normal form of xm is ∆mpz1 · · · zrm, where

z1 · · · zrm = τ (m−1)p(x1 · · ·xr)τ
(m−2)p(x1 · · ·xr) · · · τ

p(x1 · · ·xr)(x1 · · ·xr).

This means that τ (m−1)p(x1) 4 z1 · · · zrm, hence τ (m−1)p(x1) 4 z1, since z1 · · · zrm is in left normal
form. But then ι(x) = τ−p(x1) 4 τ−mp(z1) = ι(xm).

In the same way, since the last simple factor in the above decomposition of z1 · · · zrm is xr , and
the number of factors is precisely rm, it follows that xr < zrm. In other words, ϕ(x) < ϕ(xm).

Finally, recall that xm is rigid, which means that ϕ(xm)ι(xm) is left weighted as written, that
is, ∂(ϕ(xm)) ∧L ι(xm) = 1. Since ϕ(x) < ϕ(xm) is equivalent to ∂(ϕ(x)) 4 ∂(ϕ(xm)), we have
∂(ϕ(x))∧L ι(x) 4 ∂(ϕ(xm))∧L ι(xm) = 1. That is, ϕ(x)ι(x) is left weighted, whence x is rigid.

Corollary 4.4. Let x be an element of a Garside group G. If x has a left rigid power and x is
conjugate to a right rigid element, then x if left rigid. Also, if x has a right rigid power and x is
conjugate to a left rigid element, then x is right rigid.

Proof. This is a direct consequence of Lemmas 4.2 and 4.3.

After this result, in order to show that every left rigid element is conjugate to a right rigid element,
and vice versa, we must show that every left rigid element has a conjugate which has a right rigid
power. In braid groups, this holds for pseudo-Anosov braids, since one has the following result.
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Theorem 4.5. [5, Theorem 3.23] Let x ∈ Bn be a pseudo-Anosov braid. If x ∈ USSL(x) and
ℓ(x) > 1, then x has a left rigid power. In the same way, if x ∈ USSR(x) and ℓ(x) > 1, then x
has a right rigid power.

Corollary 4.6. If x ∈ Bn is a left (resp. right) rigid, pseudo-Anosov braid, and ℓ(x) > 1, then x
is conjugate to a right (resp. left) rigid braid.

Proof. Suppose that x is left rigid, and consider y ∈ USSR(x). By Theorem 4.5, the braid y has
a right rigid power, hence y itself must be right rigid by Corollary 4.4. If x is right rigid, the proof
follows the same reasoning.

But there are two more kind of braids, namely periodic and reducible ones. Does the above result
hold for these ones? The answer is positive, as we shall see. We recall that a braid x ∈ Bn is
called periodic if xm = ∆t for some nonzero integers m and t. The above result holds trivially
for periodic braids, due to the following lemma.

Lemma 4.7. A left or right rigid braid can never be periodic.

Proof. By definition, if x ∈ Bn is rigid then ℓ(x) > 0. Also, by Lemma 4.2, x is periodically
geodesic. Hence ℓ(xm) = |m|ℓ(x) > 0 for every nonzero integer m. Therefore no power of x can
be a power of ∆, since ℓ(∆t) = 0 for every t.

It just remains to show the case of reducible braids. A braid x ∈ Bn is said to be reducible if,
regarding x as a homeomorphism of the n-times punctured disc, it preserves a family of disjoint,
closed, essential curves, up to isotopy [8]. This can be expressed in other terms: A braid x ∈ Bn

is said to admit a coherent tape structure [4] if it can be obtained from a braid x̂ ∈ Bm, with
m < n, by replacing, for each i = 1, . . . , m, the i-th strand of x̂ by a braid x[i] ∈ Bki

, with ki ≥ 1.
One can think that the i-th strand of x̂ becomes a tube, and that x[i] lies inside that tube. One
further requirement is that the m-tuple (k1, . . . , km) is coherent with the permutation induced
by x̂, that is, if the i-th strand of x̂ ends at position j, then ki = kj . The braid x̂ is called the
tubular, or external braid of this decomposition of x, while each x[i] is called the i-th internal

braid. A braid is then periodic if one of its conjugates admits a coherent tape structure.

We can now extend the result of Corollary 4.6 to the whole Bn, so we can show the following
result, which is equivalent to Theorem 1.2.

Theorem 4.8. If x ∈ Bn is a left (resp. right) rigid braid, and ℓ(x) > 1, then x is conjugate to
a right (resp. left) rigid braid.

Proof. Suppose that x is left rigid. We will show the result by induction on n. If n = 1, x is
trivial and there is nothing to show. If n = 2, x is either trivial or periodic and by Lemma 4.7, it
cannot be rigid. We then suppose that n > 2 and that the result holds for braids with less than
n strands.

If x is pseudo-Anosov, the result is given by Corollary 4.6. On the other hand, x cannot be periodic
by Lemma 4.7. Hence we can assume that x is reducible.

In [4] it was shown that if a braid α admits a coherent tape structure, so do cL(α) and dL(α). By
symmetry, the same property holds for cR(α) and dR(α). This implies that for every reducible
braid, there is some element in its (left or right) ultra summit set that admits a coherent tape
structure. Since we are assuming that x is left rigid and ℓ(x) > 1, USSL(x) is the set of left rigid
conjugates of x, hence there is a conjugate of x which is left rigid, and admits a coherent tape
structure. We can then assume that x itself admits a coherent tape structure.
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Let y ∈ USSR(x), obtained from y by a finite number of applications of cR and dR. After [4], y
admits a coherent tape structure. By Corollary 4.4, we just need to show that y has a right rigid
power.

We will denote ŷ ∈ Bm and y[1], . . . , y[m], respectively, the external and internal braids associated
to y, where y[i] ∈ Bki

for i = 1, . . . , m, and k1 + · · ·+ km = n. Notice that if y admits a coherent
tape structure, so does every power of y. In order to simplify the notation, we will replace y by
a power ym such that the permutation induced by ŷm is trivial (ŷm is a pure braid). Notice that
xm is left-rigid, ym admits a coherent tape structure, and if we show that ym has a right rigid
power, this will also be true for y. Hence can assume that ŷ is a pure braid.

Let p = inf(x) and p + r = sup(x) > 1. Notice that, since x is left rigid, ϕ(x)ι(x) is left weighted.
One can see the tape structure of x in this pair of simple elements, in the following way. One has
inf(x) = min{inf(x̂), inf(x[1]), . . . , inf(x[m])} and sup(x) = max{sup(x̂), sup(x[1]), . . . , sup(x[m])}.
The part of x̂ (resp. x[i]) that one can see in ϕ(x) will be ϕ(x̂) (resp. ϕ(x[i])) if sup(x̂) = p + r
(resp. sup(x[i]) = p + r), and will be trivial otherwise. Analogously, the part of x̂ (resp. x[i]) that
one can see in ι(x) will be ι(x̂) (resp. ι(x[i])) if inf(x̂) = p (resp. inf(x[i]) = p), and will be equal to
∆ ∈ Bm (resp. ∆ ∈ Bki

) otherwise. If we had a trivial component in ϕ(x), then ϕ(x)ι(x) could not
be left weighted, unless the corresponding component of ι(x) would be trivial. In the same way, If
we had a ∆ component in ι(x), then ϕ(x)ι(x) could not be left weighted, unless the corresponding
component of ι(x) would be also ∆. Therefore, each external or internal component of x must be
as follows: either it is trivial, or it is ∆p+r (with the corresponding number of strands), or it is left
rigid with infimum p and supremum p + r. This has an important consequence: applying (left or
right) cyclings and decyclings to x induces (left or right) cyclings and decyclings to x̂, x[1], . . . , x[m].
Therefore, y ∈ USSR(x) implies that ŷ ∈ USSR(x̂) and y[i] ∈ USSR(x[i]) for i = 1, . . . , m.

Finally, each of the components of y (having less than n strands) which is neither trivial nor ∆p+r

is conjugate to a left rigid braid with canonical length greater than 1. The induction hypothesis
tells us that each of these components is then right rigid, and it has infimum p and supremum
p + r. Therefore, y itself must be right rigid, as we wanted to show.

4.2 Left and right ultra summit graphs are isomorphic

We will now show that given a left rigid braid x ∈ USSL(x) with ℓ(x) > 1, then the directed
graphs USGL(x) and USGR(x) are isomorphic, with the arrows reversed. That is, we will show
Theorem 1.3. We need to define an isomorphism of directed graphs (in other words, an invertible
functor from the category USGL(x) to the category USGR(x)op). The isomorphism is very easy
to define at the level of vertices (objects), that is, the elements of the ultra summit sets.

Definition 4.9. Let x ∈ Bn be a left rigid braid, with ℓ(x) = r > 1. We define Φ(x) = c2rt
R (x),

where t is any non-negative integer such that c2rt
R (x) is right rigid.

Notice that Φ is well defined: Since x is left rigid, x ∈ SSS(x), so one can go from x to USSR(x)
by iterated right cycling. Since ℓ(x) > 1, Theorem 4.8 tells us that x is conjugate to a right rigid
element, hence USSR(x) consists of right rigid elements, and one obtains a right rigid element by
applying iterated right cycling to x. Also, for every right rigid element z with ℓ(z) = r, one has
c2r

R (z) = z. Hence, if t is an integer such that c2rt
R (x) is right rigid, then c2rt

R (x) = c2r(c2rt
R (x)) =

c
2r(t+1)
R (x). This implies that if c2rt

R (x) and c2rt′

R (x) are both right rigid, they are equal. Hence Φ
is well defined.

We will show below that Φ is a bijective map from USSL(x) to USSR(x). But we also want to
show that USGL(x) is isomorphic to USGR(x)op. We already know a map Φ that sends vertices
(objects) of USGL(x) to vertices (objects) of USGR(x)op. Let us see how Φ is defined on the
arrows (morphisms) of USGL(x). In order to do this, we recall the definition of the transport

12



map. This map is defined in [15] using left normal forms, but it can be equally defined, by
symmetry, using right normal forms.

Definition 4.10. [15] Given x ∈ SSS(x) in a Garside group, and given a positive element u such
that u−1xu = y ∈ SSS(x), one defines the left transport of u as:

u
(1)
L = ιL(x)−1 · u · ιL(y).

The iterated left transports of u are defined recursively, for every i ≥ 1, by

u
(i)
L =

(
u

(i−1)
L

)(1)

L
.

Notice that, since u−1xu = y, one has
(
u

(i)
L

)
−1

ci
L(x) u

(i)
L = ci

L(y). In other words, since u

conjugates (on the right) x to y , the i-th left transport of u conjugates (on the right) the i-th left
cycling of x to the i-th left cycling of y.

Definition 4.11. [15] Given x ∈ SSS(x) in a Garside group, and given a positive element v such
that vxv−1 = z ∈ SSS(x), one defines the right transport of v as:

v
(1)
R = ιR(z) · v · ιR(x)−1.

The iterated right transports of v are defined recursively, for every i ≥ 1, by

v
(i)
R =

(
v
(i−1)
R

)(1)

R
.

In this case, since vxv−1 = z, one has v
(i)
R ci

R(x)
(
v
(i)
R

)
−1

= ci
R(z). In other words, since v

conjugates (on the left) x to z, the i-th right transport of v conjugates (on the left) the i-th right
cycling of x to the i-th right cycling of z.

Theorem 4.12. [15] With the above conditions, one has the following properties, for every i ≥ 1:

1. If u1 4 u2 then (u1)
(i)
L 4 (u2)

(i)
L . If v1 < v2 then (v1)

(i)
R < (v2)

(i)
R .

2. (u1 ∧L u2)
(i)
L = (u1)

(i)
L ∧L (u2)

(i)
L . (v1 ∧R v2)

(i)
R = (v1)

(i)
R ∧R (v2)

(i)
R .

3. ∆
(i)
L = ∆, 1

(i)
L = 1. ∆

(i)
R = ∆, 1

(i)
R = 1.

4. If u is simple, u
(i)
L is simple. If v is simple, v

(i)
R is simple.

Let us then define Φ on the arrows of USSL(x).

Definition 4.13. Let x, y ∈ USSL(x) ⊂ Bn be left rigid braids with ℓ(x) > 1, and let t be
a nonnegative integer such that Φ(x) = c2rt

R (x) and Φ(y) = c2rt
R (y). Given u ∈ Bn such that

u−1xu = y, so that uyu−1 = x, we define Φ(u) = u
(2rt)
R .

Proposition 4.14. Φ is a well defined map of directed graphs (a well defined functor) from
USGL(x) to USGR(x)op.

Proof. We already know that Φ(y) ∈ USSR(x) for every y ∈ USSL(x), hence Φ sends vertices of
USGL(x) to vertices of USGR(x)op. Now consider an arrow s going from x to y in USGL(x).

Since s−1xs = y, one has sys−1 = x. Hence, if we denote s0 = s
(2rt)
R for an integer t such that

Φ(x) = c2rt
R (x) and Φ(y) = c2rt

R (y), we have s0 c2rt
R (y) s−1

0 = c2rt
R (x), that is, s0 Φ(y) s−1

0 = Φ(x),
where Φ(y) and Φ(x) are right rigid.
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Notice that, since Φ(y) is right rigid and has canonical length r, then c2r
R (Φ(y)) = Φ(y), since the

product of the 2r conjugating elements for right cycling is precisely Φ(y)2∆−2. In the same way,
the product of the 2r conjugating elements that perform iterated right cycling of Φ(x) is precisely

Φ(x)2∆−2. Hence, the 2r-th iterated right transport of s0 is s
(2r)
0 = Φ(x)2∆−2s0∆

2Φ(y)−2 =

Φ(x)2s0Φ(y)−2 = Φ(x)s0Φ(y)−1 = s0. This means that s(2rt′) = s(2rt) for every t′ ≥ t. Hence
Φ(s) is a well defined simple element which is, by the above argument, an arrow in USGR(x)
going from Φ(y) to Φ(x), hence an arrow in USGR(x)op going from Φ(x) to Φ(y).

It remains to show that Φ is invertible. In order to do this, we start by recalling a result from [5]
that relies cyclings and powers. Given x in a Garside group G, denote Ci = ι(ci−1

L (x)) for every
i ≥ 1. That is, Ci is the conjugating element from ci−1

L (x) to ci
L(x), and xC1···Ci = ci

L(x). Then
one has:

Lemma 4.15. [5, Lemma 2.4] Let G be a Garside group and let x ∈ SSS(x) ⊂ G, with inf(x) = p
and ℓ(x) > 1. Then, for every m ≥ 1,

xm∆−mp = C1 · · ·CmRm,

where

1. sup(C1 · · ·Cm) = m and ϕL(C1 · · ·Cm) < ϕL(cm
L (x)).

2. inf(Rm) = 0 and ιL(Rm) 4 Cm+1 = ιL(cm
L (x)).

This result can be improved if x is conjugate to a rigid element.

Lemma 4.16. Let G be a Garside group and let x ∈ SSS(x) ⊂ G, with inf(x) = p and ℓ(x) > 1.
Suppose that x is conjugate to a left rigid element, and let m be such that y = cm

L (x) is rigid.
Then

C1 · · ·Cm = (xm∆−mp) ∧L ∆m,

where inf(C1 · · ·Cm) = 0 and sup(C1 · · ·Cm) = m.

Proof. By the above lemma, C1 · · ·Cm 4 xm∆−mp. But since m is conjugate to a rigid element,
Lemma 4.2 implies that inf(xm) = mp, so inf(xm∆−mp) = 0. This means that inf(C1 · · ·Cm) = 0.

Recall also that xm∆−pm = C1 · · ·CmRm, where ϕL(C1 · · ·Cm) < ϕL(cm(x)) = ϕL(y) and
ιL(Rm) 4 ιL(cm(x)) = ιL(y). Since y is left rigid, the decomposition ϕL(y)ιL(y) is left weighted.
Hence, if z1 · · · zm is the left normal form of C1 · · ·Cm, this means that z1 · · · zmιL(Rm) is in left
normal form as written. In other words, the first m factors of the left normal form of xm∆−mp

are precisely z1 · · · zm = C1 · · ·Cm. That is, C1 · · ·Cm = (xm∆−mp) ∧L ∆m, as we wanted to
show.

This allows us to determine very precisely the left normal form of xm, for m big enough, when x
is conjugate to a left rigid element. In order to avoid confusing notation produced by the powers
of ∆ in the normal forms, we will introduce the following notion:

Definition 4.17. Let G be a Garside group. Given an element z ∈ G, whose left normal form is
∆pz1 · · · zr and whose right normal form is z′1 · · · z

′

r∆
p, we define the left interior of z as

z◦L = z∆−p = τ−p(z1) · · · τ
−p(zr) = z′1 · · · z

′

r,

and the right interior of z as

z◦R = ∆−pz = z1 · · · zr = τp(z′1) · · · τ
p(z′r).
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Notice that the above factorizations are, respectively, the left and right normal forms of z◦L and of
z◦R. Notice also that if y = ∆py1 · · · yr is left rigid, then

(ym)◦L = ym∆−pm =
(
τ−p(y1) · · · τ

−p(yr)
) (

τ−2p(y1) · · · τ
−2p(yr)

)
· · ·

(
τ−mp(y1) · · · τ

−mp(yr)
)
,

and it is in left normal form as written. Moreover, in this case (ym)◦L is precisely the conjugating
element that takes y to crm

L (y).

Lemma 4.18. Let G be a Garside group and let x ∈ SSS(x) ⊂ G, with inf(x) = p and ℓ(x) =
r > 1. Suppose that x is conjugate to a left rigid element. Let N be such that y = cN

L (x) is left
rigid. Then:

1. There exists an integer M such that
(
yM

)
◦

R
< C1 · · ·CN .

2. Let M be an integer satisfying the above condition. If z1 · · · zN is the left normal form
of C1 · · ·CN , and z′1 · · · z

′

s is the left normal form of
(
yM

)
◦

R
(C1 · · ·CN )−1, then for every

m ≥M , the left normal form of (xm)◦L is

(xm)◦L = (z1 · · · zN ) ·
(
ym−M

)◦
L
·
(
τ−pm(z′1) · · · τ

−pm(z′s)
)
,

where the central factor is assumed to be written in left normal form. Moreover, N +s = Mr.

Proof. Recall that xC1···CN = cN
L (x) = y, so

(
xN

)C1···CN

= yN . Recall also by Lemma 4.16

that C1 · · ·CN 4
(
xN

)
◦

L
= xN∆−pN . This means that α = (C1 · · ·CN )−1

(
xN

)
◦

L
is a positive

braid. Hence yN = (C1 · · ·CN )−1xN (C1 · · ·CN ) = α∆pNC1 · · ·CN = ∆pN τpN (α)C1 · · ·Cn, so(
yN

)
◦

R
= ∆−pNyN = τpN (α)C1 · · ·Cn < C1 · · ·CN . Hence the first property is satisfied for

M = N .

Now let M , m, z1 · · · zN and z′1 · · · z
′

s be defined as in Condition 2. Notice that since m ≥ M ,
one has (ym)

◦

R = ∆−pmym < ∆−pMyM < C1 · · ·CN . That is, there exists a positive braid β
such that ym = ∆mpβC1 · · ·CN . Since y is a left rigid element, by Lemma 4.15, ϕL(C1 · · ·CN ) <

ϕL(cN
L (x)) = ϕL(y). Also, ι(τ−mp(β)) 4 ι(ym) = ι(y). This implies, as ϕ(y)ι(y) is left weighted,

that zN ι(τ−mp(β)) is also left weighted.

If we now conjugate ym by (C1 · · ·CN )−1, we obtain xm = C1 · · ·CN∆mpβ = C1 · · ·CN τ−mp(β)∆mp,
hence (xm)

◦

= C1 · · ·CN τ−mp(β) = z1 · · · zNτ−mp(β). Since zN ι(τ−mp(β)) is left weighted, it fol-
lows that the first N factors in the left normal form of (xm)

◦

L are precisely z1 · · · zN .

Now recall that z′1 · · · z
′

s is the left normal form of ∆−pMyM (C1 · · ·CN )−1. Hence

ym = ym−MyM = ym−M∆pMz′1 · · · z
′

sC1 · · ·CN =
(
ym−M

)◦
L

∆p(m−M)∆pMz′1 · · · z
′

sC1 · · ·CN

=
(
ym−M

)◦
L

∆pmz′1 · · · z
′

sC1 · · ·CN =
(
ym−M

)◦
L

(
τ−pm(z′1) · · · τ

−pm(z′s)
)
∆pmC1 · · ·CN .

Conjugating by (C1 · · ·CN )−1, one obtains

xm = (C1 · · ·CN )
(
ym−M

)◦
L

(
τ−pm(z′1) · · · τ

−pm(z′s)
)
∆pm,

hence
(xm)◦L = (z1 · · · zN) ·

(
ym−M

)◦
L
·
(
τ−pm(z′1) · · · τ

−pm(z′s)
)
.

This is written in left normal form since ϕ
((

ym−M
)
◦

L

)
τ−pm(z′1) is left weighted, as can be seen by

noticing that ϕ
((

ym−M
)
◦

L

)
= ϕ

(
τ−p(m−M)(y)

)
, and also that z′1 = ι

(
∆−pMyM (C1 · · ·CN )−1

)
4

ι
(
τpM (y)

)
, so τ−pm(z′1) 4 ι

(
τ−p(m−M)(y)

)
.

Finally, since y is left rigid, x is periodically geodesic. Hence ℓ(xm) = ℓ ((xm)◦L) = mr. But we
just computed the left normal form of (xm)◦L, which has N + (m −M)r + s factors. Therefore
N + (m−M)r + s = mr, so N + s = Mr, as we wanted to show.
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By symmetry, one has the analogous result for conjugates of right rigid braids, but we will perform
a slight modification:

Lemma 4.19. Let G be a Garside group and let x ∈ SSS(x) ⊂ G, with inf(x) = p and
ℓ(x) = r > 1. Suppose that x is conjugate to a right rigid element. Let N be such that
y = cN

R (x) is right rigid, and let C′

1, · · · , C
′

N the conjugating elements for the N right cyclings,
that is, (C′

N · · ·C
′

1) x (C′

N · · ·C
′

1)
−1 = y. Then:

1. There exists an integer M such that C′

N · · ·C
′

1 4
(
yM

)
◦

L
.

2. Let M be an even integer satisfying the above condition. If z′N · · · z
′

1 is the right normal

form of C′

N · · ·C
′

1, and zs · · · z1 is the right normal form of (C′

N · · ·C
′

1)
−1

(
yM

)
◦

L
, then for

every m ≥M , the right normal form of (xm)◦L is

(xm)◦L = (zs · · · z1) ·
(
ym−M

)◦
L
·
(
τ−pm(z′N ) · · · τ−pm(z′1)

)
,

where the central factor is assumed to be written in right normal form. Moreover, N + s = Mr.

Proof. If one follows the argument of Lemma 4.18 for right normal forms, one obtains that the
right normal form of (xm)◦R is

(xm)◦R = (τpm(zs) · · · τ
pm(z1)) ·

(
ym−M

)◦
R
· (z′N · · · z

′

1) ,

and now one just needs to notice that (xm)◦L = τ−mp ((xm)◦R) and that, since M is even,

τ−pm
((

ym−M
)
◦

R

)
= τ−p(m−M)

((
ym−M

)
◦

R

)
=

(
ym−M

)
◦

L
.

We can now show that Φ is a bijective map on the vertices.

Proposition 4.20. Let x ∈ Bn be a left rigid braid with ℓ(x) > 1. The map Φ : USSL(x)→ USSR(x)
defined above is bijective.

Proof. Let us define the map Ψ : USSR(x)→ USSL(x), which is defined just as Φ, by symmetry.

That is, Ψ(z) =
←−−−
Φ(←−z ). We will show that Ψ is the inverse of Φ.

Let ∆px1 · · ·xr be the left normal form of x. Recall that Φ(x) = c2rt
R (x) for some t, and then

Φ(x) = c2rt′

R (x) for every t′ ≥ t. We also have Ψ(Φ(x)) = c2rs
L (Φ(x)) for some s, and then

Ψ(Φ(x)) = c2rs′

L (Φ(x)) for every s′ ≥ s. Hence, if we denote N = 2r max(t, s), we have Φ(x) =
cN

R (x) and Ψ(Φ(x)) = cN
L (Φ(x)) = cN

L (cN
R (x)). We must then show that cN

L (cN
R (x)) = x.

In order to do it, we will study some decompositions of xm, for m big enough. For simplicity, we
will consider m to be even. First, since x is left rigid, the left normal form of (xm)◦L for every even
m is precisely:

(xm)
◦

L =
(
τ−p(x1) · · · τ

−p(xr)
) (

τ−2p(x1) · · · τ
−2p(xr)

)
· · ·

(
τ−mp(x1) · · · τ

−mp(xr)
)

=
(
τ−p(x1) · · · τ

−p(xr) x1 · · ·xr

)m/2

=
((

x2
)◦
L

)m/2

.

Notice that if p is even, the above expression is just (x1 · · ·xr)
m, but if p is odd this does not

happen in general.

Now x is conjugate to a right rigid braid, y = Φ(x). We can then apply Lemma 4.19 to x. We fix
M as in Lemma 4.19, where we can assume that M is even (otherwise, take M + 1). We take m
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big enough, so that m > 2M and m is even. We then obtain that the right normal form of (xm)
◦

L

is:
(xm)◦L = (zs · · · z1) ·

(
ym−M

)◦
L
·
(
τ−pm(z′N ) · · · τ−pm(z′1)

)

= (zs · · · z1) ·
(
ym−M

)◦
L
· (z′N · · · z

′

1)

Notice that, by definition, (z′N · · · z
′

1)(zs · · · z1) = (yM )◦L = yM∆−pM . Also, by definition z′N , . . . , z′1
are the conjugate elements of the iterated right cyclings from x to y, that is, (z′N · · · z

′

1)x(z′N · · · z
′

1)
−1 =

y. Hence
(
xM

)
◦

L
= xM∆−pM = (z′N · · · z

′

1)
−1yM∆−pM (z′N · · · z

′

1) = (zs · · · z1)(z
′

N · · · z
′

1). Notice

that we used that M is even, so ∆pM is central.

We then obtain the following decomposition:

(xm)◦L = (zs · · · z1) (z′N · · · z
′

1) ·
(
xm−2M

)◦
L
· (zs · · · z1) (z′N · · · z

′

1) .

Hence (
ym−M

)◦
L

= (z′N · · · z
′

1) ·
(
xm−2M

)◦
L
· (zs · · · z1) .

Let us write the above factors in left normal form. Let w1 · · ·wN the left normal form of z′N · · · z
′

1,
and let w′

1 · · ·w
′

s be the left normal form of zs · · · z1. Then

(
ym−M

)◦
L

= (w1 · · ·wN ) ·
(
xm−2M

)◦
L
· (w′

1 · · ·w
′

s) .

We will now show that this decomposition is precisely the left normal form of
(
ym−M

)
◦

L
. Indeed,

since
(
xM

)
◦

L
= (zs · · · z1)(z

′

N · · · z
′

1) = (w′

1 · · ·w
′

s) (w1 · · ·wN ) and s + N = Mr by Lemma 4.19, it

follows that the final factor of the left normal form of
(
xM

)
◦

L
is a suffix of wN . That is, wN < xr.

Since x is left rigid, this implies that wN · τ−p(x1) is left weighted, where the second factor in this
expression is the initial factor in the left normal form of

(
xm−2M

)
◦

L
. But also w′

1 must be a prefix

of the initial factor of
(
xM

)
◦

L
, that is, w′

1 4 τ−p(x1). This implies that xr · w′

1 is left weighted,

where xr is the final factor in the left normal form of
(
xm−2M

)
◦

L
. Hence, the above expression is

the left normal form of
(
ym−M

)
◦

L
, for m big enough.

But recall from Lemma 4.16 that the product of the first m−M factors in the left normal form of(
ym−M

)
◦

L
is precisely the product of the m−M conjugating elements for iterated left cycling of y.

If we take m big enough so that m−M ≥ N and m−M (as well as N) is a multiple of 2r, the first
m−M factors in the left normal form of

(
ym−M

)
◦

L
are precisely w1 · · ·wN

(
x2k

)
◦

L
, where

(
x2k

)
◦

L

commutes with x. Since (w1 · · ·wN )−1y(w1 · · ·wN ) = x, it then follows that cm−M (y) = x. Since
x is left rigid, and m−M is a multiple of 2r, we finally obtain Ψ(y) = x, that is, Ψ(Φ(x)) = x, as
we wanted to show.

In order to finish the proof of Theorem 1.3, it just remains to show that the map Ψ can be extended
to the arrows of USGR(x), so that Ψ ◦ Φ = idUSGL(x). We will use the following result:

Lemma 4.21. Let x ∈ Bn be a left rigid braid with ℓ(x) = r > 1. Let T = 2rt be such that
Φ(x) = cT

R(x) and Ψ(Φ(x)) = cT
L(Φ(x)). Let C′

T , . . . , C′

1 be the conjugating elements for the
iterated right cyclings of x, and let C1, . . . , CT be the conjugating elements for the iterated left
cyclings of Φ(x). That is,

Φ(x) = (C′

1 · · ·C
′

T ) x (C′

1 · · ·C
′

T )−1

and
Ψ(Φ(x)) = (C1 · · ·CT )−1 Φ(x) (C1 · · ·CT ).

Then C1 · · ·CT = C′

1 · · ·C
′

T .
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Proof. Using the notation in the proof of Proposition 4.20, we notice that the right normal form of
C′

1 · · ·C
′

T is (y2k)◦L(z′N · · · z
′

1) for some k, and the left normal form of C1 · · ·CT is (w1 · · ·wN )(x2k)◦L,
where k is the same as above since the supremum of both elements is precisely T . But notice that
(y2k)◦L(z′N · · · z

′

1) = (z′N · · · z
′

1)(x
2k)◦L = (w1 · · ·wN )(x2k)◦L, hence the result follows.

Proof of Theorem 1.3. We define Ψ : USGR(x)op → USGL(x) in the natural way. For every
element u ∈ USSR(x), we define Ψ(u) as above, in the same way as Φ but using right normal

forms, that is, Ψ(u) =
←−−−
Φ(←−u ). In the case of the arrows of USGR(x)op, we proceed exactly the

same way. If s is a simple element such that sus−1 = v with u, v ∈ USSR(x), that is, if s is an

arrow in USGR(x)op going from v to u, we define Ψ(s) =
←−−−
Φ(←−s ), where←−s corresponds to an arrow

in USSL(←−x ) going from ←−u to ←−v .

Let us show that, if s is an arrow in USGL(x) going from x to y, then Ψ(Φ(s)) = s. First, by
construction Ψ(Φ(s)) is a simple element conjugating Ψ(Φ(x)) = x to Ψ(Φ(y)) = y, hence Ψ(Φ(s))
is an arrow in USGL(x) going from x to y. We just need to show that s and Ψ(Φ(s)) are the same
as simple elements.

Let N = 2rt be big enough, so that Φ(x) = cN
R (x), Φ(y) = cN

R (y), Ψ(Φ(x)) = cN
L (Φ(x)) and

Ψ(Φ(y)) = cN
L (Φ(y)). By Lemma 4.21, the product of conjugating elements (on the left) to go

from x to Φ(x) is the same as the product of conjugating elements (on the right) to go from Φ(x)
to Ψ(Φ(x)) = x. Denote this product by α. The same happens with y and Φ(y), and we denote

the corresponding product by β. Hence, Ψ(Φ(s)) = Ψ(s
(N)
R ) = Ψ(αsβ−1) = α−1(αsβ−1)β = s, so

the result follows.

We remark that, since the left transport preserves left gcd’s, Φ sends minimal arrows of USGL(x)
to minimal arrows of USGR(x). By symmetry, Ψ sends minimal arrows in USGR(x) to minimal
arrows of USGL(x). Therefore, we have:

Corollary 4.22. Let x ∈ Bn be a left rigid braid with ℓ(x) > 1. The restriction of Φ to
minUSGL(x) is an isomorphism of directed graphs: Φ : minUSGL(x)→ minUSGR(x)op.

4.2.1 Φ respects the structure of ultra summit graphs

It was shown in [6] that the arrows of minUSGL(x), and similarly those of minUSGR(x)op, can
be partitioned naturally into two categories, namely partial cycling and partial twisted decycling

components. In this subsection we show that the isomorphism Φ is natural in the sense that it
preserves this decomposition of ultra summit graphs.

Proposition 4.23. [6] Let x ∈ Bn with ℓ(x) > 0 and let s be an arrow in minUSGL(x) going
from x to xs. Then at least one of the following conditions holds:

1. s 4 ιL(x)

2. s 4 ιL(x−1)

Notice that ιL(x−1) = ∂(ϕL(x)).

Definition 4.24. [6] Let x ∈ Bn with ℓ(x) > 0 and let s be an arrow in USGL(x) going from x to
xs. We call s a partial left cycling of x and say that the arrow s is black if s 4 ιL(x). We call s
a partial twisted left decycling of x and say that the arrow s is grey if s 4 ιL(x−1) = ∂(ϕL(x)).

By symmetry we have
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Proposition 4.25. [6] Let x ∈ Bn with ℓ(x) > 0 and let s be an arrow in minUSGR(x) going
from x to xs. Then at least one of the following conditions holds:

1. ιR(x) < s

2. ιR(x−1) < s

Notice that ιR(x−1) = ∂−1(ϕR(x)).

Definition 4.26. [6] Let x ∈ Bn with ℓ(x) > 0 and let s be an arrow in USGR(x) going from x
to xs. We call s a partial right cycling of x and say that the arrow s is black if ιR(x) < s. We
call s a partial twisted right decycling of x and say that the arrow s is grey if ∂−1(ϕR(x)) =
ιR(x−1) < s.

Note that the intuitive meaning of “cycling” (respectively “decycling”) is to move the first simple
factor to the end (respectively, the last simple factor to the front) with respect to the normal form

under consideration. Note also that τ ◦dL(x) = τ(xϕL(x)−1

) = τ(xιL(x−1)∆−1

) = xιL(x−1) and that

τ−1 ◦ dR(x) = τ−1(xϕR(x)) = τ−1(xιR(x−1)−1∆) = xιR(x−1)−1

Hence, the definitions of “partial
cycling” and “partial twisted decycling” are natural: a partial cycling or decycling corresponds to
moving a prefix or suffix of the first or last simple factor; “twisting” refers to composition with τ .

Partial cyclings and partial twisted decyclings are preserved by the graph isomorphism Φ according
to the following results.

Proposition 4.27. Let x ∈ Bn be a rigid braid with ℓ(x) > 1, and let s be an arrow from x to y
in USGL(x) such that s 4 ιL(x). Then, Φ(s) is an arrow from Φ(y) to Φ(x) in USGR(x) such
that ιR(Φ(y)) < Φ(s).

Proof. Recall that Φ(s) is defined via iterated transport. As transport is monotonic, we obtain
Φ(s) 4 ιL(Φ(x)). Moreover, Φ(s) is simple. If Φ(x) = ∆px1 · · ·xr is in left normal form, we have
τp(Φ(s)) 4 x1, whence Φ(y) = Φ(s)−1Φ(x)Φ(s) = ∆p(τp(Φ(s))−1x1)x2 · · ·xrΦ(s). The latter
implies ιR(Φ(y)) < Φ(s) as claimed, since inf(Φ(y)) = inf(Φ(x)) = p.

Corollary 4.28. Φ and Ψ are isomorphisms of directed graphs preserving the colours of arrows.

Proof. We know that Φ and Ψ are isomorphisms of directed graphs by Theorem 1.3; it remains
to be shown that they preserve the colours of arrows.

By Proposition 4.27, the image of a black arrow under Φ is a black arrow. Applying Proposi-
tion 4.27 to x−1, which is also a rigid element with ℓ(x−1) > 1, it follows that the image of a grey
arrow under Φ is a grey arrow. The analogous result holds for Ψ by symmetry.
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