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Abstract

In this paper we study the reduction curves of a braid, and how
they can be used to decompose the braid into simpler ones in a precise
way, which does not correspond exactly to the decomposition given by
Thurston theory. Then we study how a cyclic sliding (which is a partic-
ular kind of conjugation) affects the normal form of a braid with respect
to the normal forms of its components. Finally, using the above meth-
ods, we provide the example of a family of braids whose sets of sliding
circuits (hence ultra summit sets) have exponential size with respect to
the number of strands and also with respect to the canonical length.

1 Introduction

Braids can be seen as isotopy classes of orientation-preserving automorphisms
of the n-times punctured disc Dn, that is, the braid group on n strands Bn

is isomorphic to the mapping class group M(Dn). Attending to the Nielsen-
Thurston classification of mapping classes, braids can be periodic, reducible or
pseudo-Anosov. In this paper we shall study reducible braids, which are those
braids preserving a family of disjoint, non-degenerate, simple closed curves in
Dn.

From the algebraic point of view, the braid group Bn has a well known lattice
structure. The submonoid B+

n ⊂ Bn consists of those elements of Bn which
can be written as positive powers of the standard generators σ1, . . . , σn−1. This
monoid defines a partial order of Bn given by a 4 b ⇔ a−1b ∈ B+

n . This is a lat-
tice order, which is invariant under left multiplication. The triple (Bn, B

+
n ,∆),

where ∆ = σ1(σ2σ1) · · · (σn−1σn−2 · · ·σ1) is the braid known as half twist or
Garside element, determines a Garside structure of the braid group Bn [8]. This
structure, first discovered by Garside [13], has been very useful for showing many
properties of Bn, as well as for providing a substantial number of solutions to
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the word problem and the conjugacy problem in this group. These algorithms
can also be used in other groups sharing the same algebraic properties, which
are known under the common name of Garside groups [8].

One of the latest solutions to the conjugacy problem in Garside groups, thus
in braid groups, is given in [15] (see also [16]). In that paper, the cyclic sliding

is defined as a special conjugation that can be applied to any given braid. It-
erated application of cyclic sliding conjugates any braid to another one which
has minimal length in its conjugacy class, and has some other good algebraic
properties [15]. But in the case of braid groups, reducible braids can behave not
so nicely with respect to cyclic sliding, as we shall see. Hence, if one is interested
in conjugacy properties of braids, a deeper study of the relation between the
geometric and algebraic properties of braids is needed.

It is well known that the essential reduction curves of a given braid decompose
it into ‘pieces’, or components, in the spirit of Thurston’s decomposition of
a mapping class. If the decomposition is done in the appropriate way, each
component is again a braid, with fewer number of strands. These components
are, in general, not carefully defined in the papers dealing with reducible braids:
A reference to Thurston’s decomposition of a mapping class is given instead.
But the decomposition in the case of braids is not exactly the same, at least if
one needs each of the resulting components to be a braid. In Section 2 we will
explain the notion of reducible braid, and the decomposition of such a braid
into braid components.

In Section 3 we briefly recall the notions we need from Garside theory. In
particular we will define cyclic sliding and the set of sliding circuits of a braid.
These sets are the ones computed in [15] to solve the conjugacy problem in
Garside groups.

The normal form of a braid obtained from the Garside structure of Bn is related
to the normal form of each of its components, and this relation is more clear
in the case in which the reduction curves are isotopic to geometric circles. We
will study this in Section 4, and we will see how the application of a cyclic
sliding may transform the normal form of a reducible braid, and of each of its
components.

Finally, using the results from previous sections we will provide, in Section 5,
an example of a family of braids whose sets of sliding circuits have exponential
size, with respect to the number of strands and also with respect to the length
of the braids. We believe this is the first example of this kind.
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2 Reducible braids

2.1 Reduction curves

Let Dn be the n-times punctured closed disc D2\{P1, . . . , Pn}. For simplicity,
we will assume that D2 is embedded in the complex plane C, that its boundary
is a geometric circle, and the n punctures are the first n natural numbers. A
simple closed curve C in Dn is said to be non-degenerate if it is not isotopic
to a puncture or to the boundary of Dn, that is, if it encloses more than one
and less than n punctures. We will consider such curves up to isotopy, so we
will denote by [C] the isotopy class of a curve C. The term curve in this paper
will be applied to either a particular non-degenerate, simple closed curve, or its
isotopy class.

From now on, a family of curves F will mean a family of disjoint, non-degenerate,
simple closed curves in Dn. Its isotopy class will be denoted [F ]. We will say
that a curve C is round if it is isotopic in Dn to a geometric circle. A family of
curves F is round if each of its curves is round, or equivalently, if F is isotopic
to a family of geometric circles.

A braid, being an isotopy class of automorphisms of Dn, acts on the set of
(isotopy classes of) simple closed curves in Dn. Given a curve C and a braid
β ∈ Bn, we will denote by [C]β the curve obtained from [C] after the action
induced by β. Similarly, we use the notation [F ]β , where [F ] is a family of
curves.

A braid β ∈ Bn is said to be reducible if there exists a family of curves [F ]
such that [F ]β = [F ]. Equivalently, β is reducible if there exist a curve C and a

positive integer m such that [C]β
m

= [C] and the curves {C, Cβ, . . . , Cβ
m−1

} are
pairwise disjoint. Such curves are called reduction curves of β. For instance, the
braid β = (σ1σ2σ3σ4σ5)

2 ∈ B6 is a reducible braid, as it preserves the family
of round curves F = {C1,2, C3,4, C5,6}, where Ci,j is the round curve determined
by a geometric circle enclosing punctures i to j (see Figure 1). In this example
β3 preserves F curve-wise.

Reduction curves are useful for decomposing braids into simpler ones. But a
given braid may admit many (even infinite) distinct families of reduction curves,
so the mentioned decompositions are a priori not unique. Nevertheless, there
is a special, uniquely defined family of reduction curves of a braid, formed by
the so called essential reduction curves [7]. In order to define them, we recall
that the geometric intersection number of two curves C and D in a manifold,
denoted i(C,D), is the smallest cardinal of a set in {C′∩D′; C′ ∈ [C], D′ ∈ [D]}.
Given β ∈ Bn, a curve [C] is said to be an essential reduction curve of β if:

1. [C] is a reduction curve of β.
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Figure 1: The braid (σ1σ2σ3σ4σ5)
2 preserves two families of reduction curves.

2. If [D] is such that i(C,D) > 0, then [D]β
m

6= [D] for every integer m > 0.

The set of essential reduction curves of β is called the canonical reduction system

of β, and it is denoted CRS(β). Notice that CRS(β) is a family of disjoint
reduction curves of β. Some good properties of CRS(β) are that CRS(β) =
CRS(βm) for every m 6= 0, and that CRS(α−1βα) = CRS(β)α for every α, β ∈
Bn. Also, CRS(β) = ∅ if and only if β is either periodic or pseudo-Anosov.
For instance, in the example of Figure 1, CRS(β) = ∅: The curves of F =
{C1,2, C3,4, C5,6} are not essential, since they have nonzero geometric intersection
with the round reduction curves C2,3 and C4,5. Actually, in that example β is
periodic, as β3 = ∆2 (recall that a braid is periodic if it has a nontrivial power
belonging to the center of Bn, that is, to 〈∆2〉).

2.2 Decomposition of a reducible braid

Let β be a non-periodic, reducible braid, so that CRS(β) 6= ∅. This canonical
reduction system can be used to decompose β into smaller braids, as we shall
now see. The basic idea is to consider the action induced by β on the connected
components of Dn\{CRS(β)}. Roughly speaking, each of these components is
a punctured disc, so these restrictions are homeomorphisms of punctured discs,
up to isotopy, and they can be considered as braids, which are usually called the
components of β. But there are several ambiguities in this definition, which the
reader probably noticed. We will discuss about them in this section, so that we
will be able to give a precise definition for the components of a braid β ∈ Bn.

Using the theory of mapping classes, Thurston’s decomposition theorem (to-
gether with the definition of canonical reduction systems in [7]) states that
CRS(β) decomposes Dn into two (not necessarily connected) invariant subsur-
faces, such that β restricted to one of them is pseudo-Anosov, and restricted
to the second one has finite order (up to isotopy in a collar neighborhood of
CRS(β)). We recall that braid groups have no torsion, but this does not cause
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any conflict with the above statement: Thurston’s decomposition theorem deals
with mapping classes in which the admissible isotopies fix the boundary setwise
(and the theorem allows isotopy in a collar neighborhood of CRS(β)), while the
admissible isotopies for braids fix the boundary of Dn pointwise. For instance
∆2 is trivial when considered as a mapping class in Thurston’s sense, as it cor-
responds to a Dehn twist along a curve parallel to the boundary ∂(Dn), while
it is certainly not a trivial braid. Hence ∆ has finite order as a mapping class,
but not as a braid.

In general, we do not want to decompose β into a couple of mapping classes, as
above, since in that case the resulting subsurfaces are not necessarily punctured
discs, and the resulting mapping classes do not correspond to braids. We prefer
to treat each connected component of Dn\CRS(β) independently.

Notice first that there is only one component ofDn\CRS(β) which is isomorphic
to a punctured closed disc, namely the one containing the boundary of Dn. All
other components are isomorphic to punctured open discs, that is, to punctured
spheres. In order to avoid this situation, one can paste each curve of CRS(β)
to a connected component, in the following way.

Let F = CRS(β) ∪ {∂(Dn)}. As Dn embeds in the complex plane, and we
are dealing with simple closed curves, we can rigourously talk about parts of
Dn enclosed by these curves. Then, for each curve C ∈ F , there is exactly one
component XC of Dn\F which is enclosed by C, and such that C ⊂ XC . We can
then define DC = XC ∪ C, which is homeomorphic to a punctured closed disc
with at least two punctures, and we can decompose Dn as:

Dn =
⊔

C∈F

DC .

Now notice that β preserves CRS(β) set-wise, but not necessarily curve-wise.
For each C ∈ CRS(β), if β sends C to C′ ∈ CRS(β), then the punctured closed
disc DC is sent to DC′ . Hence, the restriction of our braid β to this component
is a homeomorphism βC : DC → DC′ . Both DC and DC′ are homeomorphic to
closed discs with the same number of punctures, so βC can be considered to be
a braid, but not in a canonical way. Distinct homeomorphisms taking DC and
DC′ to the same punctured disc, yield distinct braids representing βC . Hence
βC is not well defined in this way, unless we are able to find a canonical way to
send each DC to a standard punctured disc.

Even if we find such a canonical way, there is another problem: Braids are
defined up to isotopy fixing the boundary and the punctures, but one is allowed
to move a curve in the interior of Dn. For instance, suppose that [C] 6= [C′]. Now
consider two curves C1 and C2 in a collar neighborhood of C, both parallel to
and disjoint from C, one enclosing C and the other one enclosed by C. Let τ1 and
τ2 be Dehn twists along C1 and C2, respectively. Then the map γ = τ−1

2 ◦ τ1 ◦ β
is isotopic to β, so β and γ represent the same braid. But their restrictions to
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DC do not coincide: They differ by a Dehn twist along the boundary, that is,
one equals the other multiplied by the half twist ∆.

In the above example, if [C] = [C′], that is, if β sends [C] to itself, the restrictions
of β and γ to DC are conjugate by ∆. Actually, if CRS(β) is preserved by β
curve-wise, the restrictions of β to each DC are well defined up to conjugacy.
But even in this case we are not happy enough.

An alternative approach could be to consider β as a collection of strands: The
three dimensional representation of a motion of n punctures in the disc D. This
motion can be extended to an isotopy of Dn which sends the set of n punctures
to itself. Hence the curves in CRS(β) can also be thought as moving curves,
which trace a kind of tube enclosing some punctures. We could try to define
the restriction of β to DC by considering only some strands starting inside the
tube corresponding to C. More precisely, consider DC\DC. This is a family of
points and curves. The curves, C1, . . . , Cr, are the outermost curves in CRS(β)
enclosed by C. The points correspond to the punctures of Dn enclosed by C but
not by C1, . . . , Cr. We could then try to define the braid βC as the braid formed
by the strands corresponding to those punctures, together with the fat strands

corresponding to the tubes formed by C1, . . . , Cr. The problem here is that the
curve Ci is not necessarily round, so its corresponding tube can be deformed in
such a way that it is not clear to see how one could consider it as a strand. We
can try to solve this problem in the following way.

Given a braid β, we can consider a subbraid by erasing some of its strands, that
is, by filling some of the punctures of Dn. This is a priori not well defined,
as the set of punctures that remain, say I, is not necessarily preserved by the
braid. Actually, we would obtain a partial braid, an element of the fundamental
groupoid of the configuration space of m points in D ([2], see also [10]). There
is a canonical element αI in this groupoid, sending the points {1, . . . ,m} to
I, in which the punctures lie all the time along their motion in the diameter
of D corresponding to the real line (or in which the image of the diameter is

the diameter). Then, if we denote by β̃I the element of the groupoid obtained

from β by keeping only the strands starting at I, we can define βI = αI β̃Iα
−1
β(I),

in which both the starting and ending points are {1, . . . ,m}, so βI is a well
defined braid on m strands, that we will call the subbraid of β corresponding
to I. Notice that if one draws β as a flat diagram, then βI ∈ Bm is the braid
whose strands cross exactly in the same way as the strands starting at I cross
in β. See Figure 2.

We now go back to our original braid β such that CRS(β) 6= ∅. Recall that
we are trying to define a component βC associated to C ∈ CRS(β) ∪ {∂(Dn)}.
Recall also the curves C1, . . . , Cr defined above. We can now define a subset
I ⊂ {1, . . . , n} containing all punctures enclosed by C and not enclosed by any
Ci, together with one puncture enclosed by Ci, for i = 1, . . . , r. We could then
define βC as the subbraid βI , as this fits with our intuitive idea. Unfortunately,
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Figure 2: The subbraid βI , where β = (σ1σ2σ3σ4σ5)
2 and I = {2, 3, 5}.

this is not well defined, as the following example shows.

Consider, the braid β = σ2σ2σ1σ3 ∈ B4, whose canonical reduction system
CRS(β) = {C1, C2} is drawn in Figure 3. It is clear that βC1

and βC2
should be

trivial braids on two strands. But if we try to take a subbraid of β to define
β∂(D4), this would depend on the choice of punctures: β{1,2} = σ1 ∈ B2, while
β{1,4} = 1 ∈ B2. This problem comes from the fact that C1 and C2 are not
round curves, otherwise the choice of the strands inside these curves would be
irrelevant.

Figure 3: The braid β = σ2σ2σ1σ3 and its conjugate by σ2, β̂ = σ2σ1σ3σ2.

The solution to the above problem is given by Sang Jin Lee and Eon-Kyung
Lee [18]. In this remarkable paper they show that, given an isotopy class [F ]
of a family of curves in Dn, there is a unique positive braid α ∈ Bn such that
[F ]α is round, and α has minimal length among all positive braids satisfying
this property. Actually, α is a prefix of any other positive braid transforming F
into a family of round curves. Let us call α the minimal standardizer of F .

Denote β̂ = α−1βα, and notice that α sends the curves C, C1, . . . , Cr to round
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curves that we denote, respectively, Ĉ, Ĉ1, . . . , Ĉr. We will finally define βC as
the subbraid of β̂ obtained by taking one strand inside each Ĉi, plus the strands
corresponding to the punctures of DĈ . More precisely:

Definition 2.1. Let β ∈ Bn and C ∈ CRS(β)∪{∂(Dn)}. Let I ⊂ {1, . . . , n} be
obtained from DĈ\DĈ by replacing each curve with a puncture enclosed by that

curve. Then we define βC, the component of β associated to C, as the subbraid

(β̂)I .

In the example given in Figure 3, in order to obtain β∂(Dn) one first needs
to conjugate β = σ2σ2σ1σ3 by its minimal standardizer α = σ2, to obtain
β̂ = σ2σ1σ3σ2, where we can clearly see that β∂(Dn) = β̂{1,3} = β̂{1,4} = β̂{2,3} =

β̂{2,4} = σ1 ∈ B2.

We remark that this notion of component of a braid, although not stated exactly
in this way, is the same as the one given in [18].

Another important remark, to avoid confusion, is that if one decomposes β along
CRS(β) into smaller braids, these braids are not necessarily pseudo-Anosov or
periodic, as it happened in Thurston’s decomposition theorem. In order to apply
Thurston’s theorem to the case of braids, one needs the following:

Definition 2.2. Let β ∈ Bn and let F = CRS(β) ∪ {∂(Dn)}. Given C ∈ F ,

let Ci ∈ [C]β
i

for i ≥ 0, and let m be the smallest positive integer such that

[Cm] = [C0] = [C]. Then we define the interior braid of β associated to C to be

β◦
C := (βm)C = βC0

βC1
· · ·βCm−1

.

Thanks to this notion of interior braid we can use Thurston’s theorem in the
case of braids. More precisely, βC is not necessarily periodic or pseudo-Anosov
as C is not necessarily preserved by β, but if we take a suitable power of β
which fixes C, its corresponding component (β◦

C) is indeed either periodic or
pseudo-Anosov.

We end this section by pointing out that in the definition of βC we did not
make use of the fact that C is an essential curve, but only that it belongs to
a family of curves which is invariant under β. Actually, we can decompose a
braid β along any invariant family of curves F (containing ∂(Dn)), in the same
way as above. The notation should be modified in this case, and we will denote
β[C∈F ] to be the component associated to C in this decomposition. In particular
βC = β[C∈CRS(β)].

In some cases we do not even need the family F to be preserved by β. If F is
a family of round curves such that [F ]β is also a family of round curves, we can
just define β[C∈F ] as in Definition 2.1 by replacing CRS(β) with F , DĈ with

DC and β̂ with β. So in this case β[C∈F ] is the subbraid βI , where I is obtained

from DC\DC by replacing each curve with a puncture enclosed by that curve.
This subbraid is well defined thanks to the roundness of [F ] and [F ]β .
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3 Garside structure: Cyclic sliding and sliding

circuits

We now briefly recall the notions introduced in [15] to solve the conjugacy
problem in Garside groups (in particular in braid groups), and which replace
the previous notions of cyclings, decyclings [11] and ultra summit sets [14].

Recall that the braid group (and every Garside group) has a lattice structure, so
every two elements α, β ∈ Bn admit an element α ∧ β, called greatest common
prefix, which is their meet with respect to the partial order 4. Using this, one
can define a normal form of the elements in Bn, called the left normal form[9,
1, 11, 12], which is a decomposition of any element x ∈ Bn as ∆px1 · · ·xr, where
p is the maximal integer such that ∆−px is positive, each xi is nontrivial, and
xi = (xi · · ·xr)∧∆, for i = 1, . . . , r. The infimum, supremum and canonical

length of x are defined, respectively, inf(x) = p, sup(x) = p+ r and ℓ(x) = r.

The factors x1, . . . , xr in the above decomposition are simple elements, that is,
positive prefixes of ∆. If s is simple, denote ∂(s) = s−1∆, the complement of
s, which is also simple. It is well known that if a and b are two simple elements,
the left normal form of the product ab is equal to (as)t (the first factor is as
and the second one is t), where s = ∂(a) ∧ b. Notice that in this case as could
be equal to ∆ and t could be trivial.

Let τ be the inner automorphism of Bn associated to ∆, that is, τ(α) = ∆−1α∆
for any α ∈ Bn. From the left normal form x = ∆px1 · · ·xr we can define the
initial factor of x ∈ Bn as ι(x) = (x∆−p)∧∆. That is, ι(x) = (τ−p(x1 · · ·xr))∧
∆, so if r = 0 one has ι(x) = 1, while if r > 0 one obtains ι(x) = τ−p(x1). We
define the final factor of x as ϕ(x) = (∆p+r−1∧x)−1x, which means ϕ(x) = xr

if r > 0 and ϕ(x) = ∆ if r = 0. It is well known that ι(x−1) = ∂(ϕ(x)).

The preferred prefix of x is defined by p(x) = ι(x) ∧ ι(x−1), and the cyclic

sliding of x is the conjugate of x by its preferred prefix, that is, s(x) =
p(x)−1xp(x). To see why this is a natural definition, see [15]. For the mo-
ment, just notice that if x has nonzero canonical length, p(x) = ι(x−1)∧ ι(x) =
∂(xr) ∧ τ−p(x1), hence the first factor in the left normal form of xrτ

−p(x1) is
precisely xrp(x).

We say that an element y ∈ Bn is in a sliding circuit if sm(y) = y for some
m > 0. The set of sliding circuits of a braid x, denoted SC(x), is the set of
conjugates of x belonging to a sliding circuit. There is a simple algorithm to
solve the conjugacy problem in Bn (and in any Garside group), by using cyclic
slidings and by computing sets of sliding circuits [16, Algorithm 0].

In [15] it is shown that application of cyclic sliding will never increase the canon-
ical length of an element. Hence, as the set of conjugates of a given element with
bounded canonical length is finite, it follows that any braid x can be conjugated
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to a braid in SC(x) by applying iterated cyclic slidings to x.

4 Cyclic sliding and round reduction curves

4.1 cyclic sliding preserves roundness

In this section we shall investigate the behavior of the elements having round
reduction curves, under application of a cyclic sliding. The first result we need
to recall is that if the roundness of a curve is preserved by a braid x, then it is
preserved by each factor in the left normal form of x.

Theorem 4.1. [3, 18] Let x ∈ Bn be a positive braid whose left normal form is

x1 · · ·xr. If [C] is a round curve such that [C]x is also round, then [C]x1···xi is

round for i = 1, . . . , r.

Since ∆±1 preserves the roundness of every curve, the above result can be
applied to every braid, not necessarily positive. This is used in [3] to show that,
if a braid preserves a round curve, its cycling and its decycling also preserve
round curves. This immediately implies that for every reducible braid x, there is
some element in its super summit set SSS(x) which preserves a round curve [3].
Clearly, one can replace SSS(x) by USS(x) in the previous statement. Even
better, one can replace it by SC(x), as we will now see, but the proof of this fact
is slightly different: we need to show the following result, concerning invariant
families of round curves.

Proposition 4.2. Let x ∈ Bn, and let F be a family round curves such that

[F ]x = [F ]. Then [F ]p(x) is also a family of round curves. Hence, if x preserves

a family of round curves, then so does s(x).

Proof. Let ∆px1 · · ·xr be the left normal form of x. We can assume r > 0.
By Theorem 4.1 applied to each particular curve of F , one has that [F ]∆

px1 is
a family of round curves, and further application of ∆−p yields the roundness
of [F ]∆

px1∆
−p

= [F ]τ
−p(x1). In the same way, Theorem 4.1 tells us that the

curves of [F ]∆
px1···xr−1 are round. Let F1 be a family of curves such that

[F1] = [F ]∆
px1···xr−1 , and let F2 be such that [F2] = [F ]τ

−p(x1).

Notice that [F1]
xr = [F ](∆

px1···xr−1)xr = [F ]x = [F ]. Therefore we have

[F1]
xrτ

−p(x1) = [F2], where F1 and F2 are families of round curves. Now re-
call that the first factor in the left normal form of xrτ

−p(x1) is xrp(x). By
Theorem 4.1 again, we obtain that the curves of [F1]

xrp(x) are round. But
[F1]

xrp(x) = [F ]p(x), hence [F ]p(x) is a family of round curves, as we wanted to
show.
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As one can find an element in SC(x) starting from a braid x, by iterated applica-
tion of cyclic sliding, the following consequence of the above result is immediate:

Corollary 4.3. For every reducible, non periodic braid x ∈ Bn there is some

y ∈ SC(x) such that CRS(y) consists of round curves. Moreover, all elements

in the sliding circuit of y satisfy the same property.

Proof. Given x, there is always a conjugate z of x whose canonical reduction sys-
tem consists of round curves. Applying iterated cyclic sliding to z preserves the
roundness of the canonical reduction system, hence one will eventually obtain
an element in y ∈ SC(x) whose canonical reduction system is round.

Notice that the above proof does not provide an algorithm to find y, since we
do not know a priori which is the braid z conjugate to x. Nevertheless, since
SC(x) is a finite set, one can compute the whole SC(x) and check for each
element whether it preserves some family of round curves. In this way one can
find a reduction curve for y, and then for x. The computation of the whole set
SC(x), starting from x, is given in [15], and the way to check whether a given
element preserves a collection of round curves can be found in [3].

4.2 Preferred prefix and round reduction curves

We know that cyclic sliding preserves the roundness of the canonical reduction
system of a braid. That is, if CRS(y) is made of round curves, the preferred
prefix p(y) preserves this roundness. But we can say much more about the
preferred prefix, as we will see in this section. We will show that if [F ] is
a family of round curves, and [F ]y = [F ], then the components of p(y) with
respect to F are determined by the left normal forms of the components of y
with respect to F , in a very precise way.

Notice that if F is a family of curves such that [F ] and [F ]y are round, the
braid y is completely determined by F and by its components with respect to
F . Moreover, the left normal form of y determines the left normal form of its
components, and vice-versa. We will restrict to the positive case, for simplicity.
For every positive integer k, denote ∆k the half twist in the braid group Bk.

Lemma 4.4. ([18, Lemma 3.4 (x)]) Let y ∈ B+
n , and let F be a family of curves

such that [F ] and [F ]y are round. Then for every C ∈ F enclosing k punctures,

one has y[C∈F ] ∧∆k = (y ∧∆n)[C∈F ].

Notice that given a positive braid y, the braid y ∧ ∆ is the first factor in its
left normal form unless ∆ 4 y, in which case y ∧ ∆ = ∆. Some authors
prefer to define the left normal form of a positive braid y as y1 · · · yr, where
yi = (yi · · · yr) ∧∆ for i = 1, . . . , r. This allows some of the leftmost factors to
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be equal to ∆, while in the definition given in Section 3 the powers of ∆ are not
considered as factors of the normal form. Actually, with this latter definition
one can take r to be greater than the supremum of y, just by allowing some of
the rightmost factors to be trivial. With this definition y ∧∆ is the first factor
in the left normal form of y, inf(y) is the number of ∆ factors in the left normal
form, and the canonical length of y is the number of proper (nontrivial and
non-∆) factors in the left normal form. We will call this kind of decomposition
the positive left normal form of y, which is uniquely defined up to adding some
trivial factors at the end. The following result is an immediate consequence of
Lemma 4.4.

Lemma 4.5. Let y ∈ B+
n , and let F be a family of curves such that [F ] and [F ]y

are round. Let y1 · · · yr be the positive left normal form of y. Let [C] ∈ [F ]. For

i = 1, . . . , r, denote [Ci] = [C]y1···yi−1 and [Fi] = [F ]y1···yi−1 . Then the positive

left normal form of y[C∈F ] is precisely

y1[C1∈F1] y2[C2∈F2] · · · yr [Cr∈Fr].

In the case in which y ∈ Bn is not positive, we just need to make a slight
modification of the above result.

Lemma 4.6. Let y ∈ Bn, and let F be a family of curves such that [F ] and
[F ]y are round. Let ∆py1 · · · yr be the left normal form of y. Let [C] ∈ [F ]
enclosing k strands. For i = 1, . . . , r, denote [Ci] = [C]∆

py1···yi−1 and [Fi] =
[F ]∆

py1···yi−1 . Then (∆k)
−py[C∈F ] is a positive braid, and its positive left normal

form is precisely

y1[C1∈F1] y2[C2∈F2] · · · yr [Cr∈Fr].

Proof. We have [C]∆
p

= [C1] ∈ [F1] or equivalently [C1]∆
−p

= [C], and the
component of ∆−p associated to C1 is (∆−p)[C1∈F1] = ∆−p

k .

Now consider the braid ∆−py = y1 · · · yr. It is a positive braid such that
[F1]

y1···yr = [F ]y is round, and its positive left normal form is precisely y1 · · · yr.
Its component with respect to C1 will also be positive, and it is equal to
(∆−py)[C1∈F1] = (∆−p)[C1∈F1] y[C∈F ] = (∆k)

−py[C∈F ], hence the first claim is
shown. Since the above component is precisely (y1 · · · yr)[C1∈F1], its positive left
normal form is given in Lemma 4.5, and this finishes the proof.

Corollary 4.7. With the above notations, one has:

1. inf(y) ≤ inf(y[C∈F ]) and sup(y) ≥ sup(y[C∈F ]).

2. If inf(y) < inf(y[C∈F ]) then ι(y)[C∈F ] = ∆.

3. If inf(y) = inf(y[C∈F ]) then ι(y)[C∈F ] = ι(y[C∈F ]).

4. If sup(y) > sup(y[C∈F ]) then (ϕ(y))[Cr∈Fr] = 1.
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5. If sup(y) = sup(y[C∈F ]) then (ϕ(y))[Cr∈Fr] = ϕ(y[C∈F ]).

Proof. The only nontrivial fact to notice is that ι(y) sends F to a family of
round curves. Indeed, if ι(y) = 1 there is nothing to prove (in this case both y
and y[C∈F ] are powers of ∆). If ι(y) 6= 1 and inf(y) = p, Theorem 4.1 implies

the roundness of [F ]∆
py1 = [F ]ι(y)∆

p

. Applying ∆−p to this family of curves we
obtain again a round family, hence [F ]ι(y) is round, as we wanted to show. This
implies that the braid ι(y)[C∈F ] in conditions 2 and 3 is well defined. The rest
is immediate from Lemma 4.6.

Once shown that restrictions to components preserve left normal forms, we can
show that they also preserve greatest common divisors.

Lemma 4.8. Let x, y ∈ Bn, and let F be a family of curves such that [F ], [F ]x

and [F ]y are round. Then [F ]x∧y is also round, and for every C ∈ F , one has

(x ∧ y)[C∈F ] = x[C∈F ] ∧ y[C∈F ].

Proof. The first claim is shown be Lee and Lee [18, Theorem 4.2]. Now notice
that multiplying x and y by any power of ∆2 we change neither the hypothesis
nor the thesis of the result, hence we can assume that x and y are positive
braids.

As x ∧ y is a prefix of x and y, every subbraid of x ∧ y is a prefix of the
corresponding subbraids of x and y. Hence (x ∧ y)[C∈F ] 4 x[C∈F ] and (x ∧
y)[C∈F ] 4 y[C∈F ], so one has (x ∧ y)[C∈F ] 4 x[C∈F ] ∧ y[C∈F ].

On the other hand, let k be the number of punctures enclosed by C, and suppose
that a braid z ∈ Bk is a prefix of x[C∈F ]. Then there is a (unique) braid z on n
strands which sends [F ] to a family of round curves, say [G], such that z[C∈F ] = z
and all other components are trivial. We will now see that z 4 x, that is, (z)−1x
is positive. Indeed, we can define a braid x′ ∈ Bn which sends [G] to a family of
round curves, by defining its components with respect to G. For every D ∈ F ,
we have [D]z = [D′] ∈ G. If D 6= C, we define x′

[D′∈G] = x[D∈F ]. Finally we define

x′
[C′∈G] = z−1(x[C∈F ]), which is a positive braid. Since [F ]z = [G] and [G]x

′

is

round, when we multiply z and x′ we are merely multiplying their components,
hence z x′ = x. As all components of x′ are positive, x′ is positive, therefore
z 4 x.

In the same way, if z is a prefix of y[C∈F ], we have z 4 y. Hence, if z 4

x[C∈F ]∧y[C∈F ], one has z 4 x∧y, and then z = z[C∈F ] 4 (x∧y)[C∈F ]. Therefore,
x[C∈F ] ∧ y[C∈F ] 4 (x ∧ y)[C∈F ], and the equality holds.

We can finally describe the preferred prefix of a braid y preserving a family
of round curves F . Notice that we cannot assume only that y preserves the
roundness of F , as the preferred prefix of y involves also the components of y−1,
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and they will be related to the components of y in an appropriate way only if
they are considered with respect to the same family. This occurs when F is
preserved by y.

Proposition 4.9. Let y ∈ Bn, and let F be a family of round curves such that

[F ]y = [F ]. Let C, C′ ∈ F ∪ {∂(D)} be such that [C′]y = [C]. Then one has:

1. If inf(y[C∈F ]) = inf(y) and sup(y[C′∈F ]) = sup(y) then

p(y)[C∈F ] = ι(y[C∈F ]) ∧ ι((y−1)[C∈F ]) = ι(y[C∈F ]) ∧ ι((y[C′∈F ])
−1).

2. If inf(y[C∈F ]) > inf(y) and sup(y[C′∈F ]) = sup(y) then p(y)[C∈F ] = ι((y[C′∈F ])
−1).

3. If inf(y[C∈F ]) = inf(y) and sup(y[C′∈F ]) < sup(y) then p(y)[C∈F ] = ι(y[C∈F ]).

4. If inf(y[C∈F ]) > inf(y) and sup(y[C′∈F ]) < sup(y) then p(y)[C∈F ] = ∆.

Proof. First notice that (y−1)[C∈F ] = (y[C′∈F ])
−1, so the second equality in

Condition 1 holds. Now by Lemma 4.8, we know that

p(y)[C∈F ] = (ι(y) ∧ ι(y−1))[C∈F ] = ι(y)[C∈F ] ∧ ι(y−1)[C∈F ].

Corollary 4.7 tells us that ι(y)[C∈F ] is equal either to ι(y[C∈F ]) or to ∆, depending
whether inf(y[C∈F ]) is equal to inf(y) or not. We will also see that ι(y−1)[C∈F ] is
equal either to ι((y[C′∈F ])

−1) or to ∆, depending whether sup(y[C′∈F ]) is equal
to sup(y) or not, and the result will be shown.

Applying Corollary 4.7 to the curve C′, it follows that ϕ(y)[C′

r∈Fr] is equal either
to ϕ(y[C′∈F ]) or to the trivial braid, depending whether sup(y[C′∈F ]) is equal to

sup(y) or not, where C′r is a curve such that [C′r]
ϕ(y) = [C]. Now just recall that

ι(y−1) = ∂(ϕ(y)), that is, ϕ(y)ι(y−1) = ∆. Hence

∆k = ∆[C′

r∈F ] = (ϕ(y)ι(y−1))[C′

r∈Fr] = ϕ(y)[C′

r∈Fr]ι(y
−1)[C∈F ].

In other words, ∂(ϕ(y)[C′

r∈Fr]) = ι(y−1)[C∈F ]. This implies that if ϕ(y)[C′

r∈Fr]

is trivial, one has ι(y−1)[C∈F ] = ∆, while if ϕ(y)[C′

r∈Fr] = ϕ(y[C′∈F ]) one has
ι(y−1)[C∈F ] = ∂(ϕ(y[C′∈F ])) = ι((y[C′∈F ])

−1), as we wanted to show.

If [C] = [C′] in the above statement, the first condition means that restriction
preserves preferred prefixes. In this case, we can just restate it in the following
way:

Proposition 4.10. Let y ∈ Bn, and let F be a family of round curves such

that [F ]y = [F ]. Let C ∈ F such that [C]y = [C]. Then one has:

1. If inf(y[C∈F ]) = inf(y) and sup(y[C∈F ]) = sup(y) then p(y)[C∈F ] = p(y[C∈F ]).
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2. If inf(y[C∈F ]) > inf(y) and sup(y[C∈F ]) = sup(y) then p(y)[C∈F ] = ι(y−1
[C∈F ]).

3. If inf(y[C∈F ]) = inf(y) and sup(y[C∈F ]) < sup(y) then p(y)[C∈F ] = ι(y[C∈F ]).

4. If inf(y[C∈F ]) > inf(y) and sup(y[C∈F ]) < sup(y) then p(y)[C∈F ] = ∆.

Notice that in the above statement the term y−1
[C∈F ] is unambiguous, since

(y−1)[C∈F ] = (y[C∈F ])
−1 as [C] is preserved by y.

5 Big sets of cyclic slidings

Having identified the preferred prefix of a reducible braid (with round reduction
curves) in terms of its components, we observe the following facts. Suppose
that we apply a cyclic sliding to a non-periodic, reducible braid y. Then, if a
component of y has the same infimum and supremum as y, we have applied
a cyclic sliding to this component. If it has the same infimum but distinct
supremum, we have applied a cycling to this component. If it has the same
supremum but distinct infimum, we have applied a cycling to its inverse, which
corresponds to apply a decycling followed by τ (conjugation by ∆). Finally, if
both the infimum and supremum of the component are distinct from those of
y, we are merely conjugating this component by ∆ (applying τ).

From these facts it follows that if y is reducible, applying iterated cyclic sliding
to y does not necessarily simplify each of its components. It is then quite easy
to give examples of sets of sliding circuits which are exponential with respect
to the number of strands. But there are already examples of this kind; see
for instance [15] or [19]. Nevertheless, using this technique we will be able to
find families of examples whose set of sliding circuits is exponential both in
the number of strands and in the length of the braid. This is the first kind of
examples having the second feature, to our knowledge.

In order to construct our example, we recall from [6] that the braid δ =
σ1σ2 · · ·σk−1 ∈ Bk has exactly 2k−2 conjugates which are simple (infimum zero
and canonical length one). The precise permutation of each of these simple
elements is given in [6, Proposition 10]. It is immediate to deduce that these
2k−2 elements are precisely the braids of the form:

δd1,...,dm
= (σd1−1σd1−2 · · ·σ1)(σd2−1σd2−2 · · ·σd1

) · · · (σn−1σn−2 · · ·σdm
),

for any choice of integers 1 < d1 < d2 < · · · < dm < n. Since they are exactly in
one to one correspondence with the subsets of {2, . . . , n − 1}, this is why they
are precisely 2n−2. We will also define 1 < u1 < u2 < · · · < uk < n such that
{u1, . . . , uk} = {2, . . . , n− 1}\{d1, . . . , dm}.

Given a positive braid α ∈ Bn, we will denote S(α) = {σi ; σi 4 α} and
F (α) = {σi ; α < σi}, the starting and finishing sets of α, respectively.
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Lemma 5.1. Given δd1,...,dm
, denote u0 = d0 = 1. One has:

1. S(δd1,...,dm
) = {σui

; ui + 1 6= ui+1}.

2. F (δd1,...,dm
) = {σdi

; di + 1 6= di+1}.

In particular, S(δd1,...,dm
) ∩ F (δd1,...,dm

) = ∅.

Proof. From [6], the permutation associated to δd1,...,dm
is given by the single

cycle π = (1 u1 u2 · · ·uk n dm dm−1 · · · d1). As δd1,...,dm
is a simple braid, we

recall that its starting set is given by the generators σi such that π(i) > π(i+1).
Suppose that i = dj for some j. Then π(i) < i. In this case, if i + 1 = dj+1

or i + 1 = n one has π(i + 1) = dj = i > π(i), and if i + 1 = uk for some k,
one has π(i + 1) > i + 1 > π(i). In either case σi 6= S(δd1,...,dm

). Suppose now
that i = uk for some k. Then π(i) > i. In this case, if i + 1 = uk+1 one has
π(i) = i + 1 < π(i + 1), so σi 6= S(δd1,...,dm

). But if i + 1 = dj for some j or
i + 1 = n, one has π(i) > i ≥ π(i + 1), so σi ∈ S(δd1,...,dm

). The first claim is
then shown.

The second claim follows from the first one, once we notice that for every pos-
itive braid x one has F (x) = S(←−x ), where ←−x is the braid obtained from any
positive word representing x, read backwards (or the image of x under the anti-

isomorphism of Bn which sends each σi to itself). Since
←−−−−−
δd1,...,dm

= δu1,...,uk
,

the second claim follows.

Finally, the only possible element in S(δd1,...,dm
) ∩ F (δd1,...,dm

) is σ1, but σ1

belongs either to S(δd1,...,dm
) or to F (δd1,...,dm

) depending whether 2 = d1 or 2 =
u1. Since both properties are mutually exclusive, the intersection is empty.

We still need to define some other special elements for our example:

Lemma 5.2. For every i, j ∈ {1, . . . , n − 1} there is a simple braid αi,j such

that S(α) = {σi} and F (α) = {σj}.

Proof. It suffices to take, if i ≤ j, α = σiσi+1 · · ·σj , and if i ≥ j, α =
σiσi−1 · · ·σj .

Lemma 5.3. Let i1, i2, . . . , ik+1 ∈ {1, . . . , n−1}, and let η be a simple conjugate

of δ such that σi1 ∈ F (η). Then the element

xη,i1,...,ik+1
= (αi1,i2αi2,i3 · · ·αik,ik+1

)−1η (αi1,i2αi2,i3 · · ·αik,ik+1
)

is a conjugate of δ whose left normal form is:

∆−k ∂−2k+1(αik,ik+1
) · · · ∂−3(αi2,i3) ∂

−1(αi1,i2) η αi1,i2 αi2,i3 · · ·αik,ik+1
.
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Proof. The first statement is evident as xη,i1,...,ik+1
is a conjugate of η, which

is a conjugate of δ. Now, it is well known that a product of two simple factors
ab is left-weighted if and only if S(b) ⊂ F (a). Since F (αij−1,ij ) = {σij} =
S(αij ,ij+1

), the factorization αij−1,ijαij ,ij+1
is left-weighted for j = 2, . . . , k.

Also S(αi1,i2) = {σi1} ⊂ F (η), hence the factorization η αi1,i2 is also left-
weighted.

If we know the left normal form of a braid, the left normal form of its inverse is
also known [11]. In this case, since αi1,i2αi2,i3 · · ·αik,ik+1

is in left normal form
as written, it follows that the left normal form of (αi1,i2αi2,i3 · · ·αik,ik+1

)−1 is
equal to ∆−k∂−2k+1(αik,ik+1

) · · ·∂−3(αi2,i3)∂
−1(αi1,i2).

It only remains to show that ∂−1(αi1,i2)η is left-weighted. But if a and b are two
simple elements such that ab = ∆, one has F (a) ∪ S(b) = {1, . . . , n − 1}, that
is F (∂−1(b)) = {1, . . . , n − 1}\S(a). In this case F (∂−1(αi1,i2)) = {1, . . . , n −
1}\S(αi1,i2) = {1, . . . , n− 1}\{σi1}. On the other hand η is a simple conjugate
of δ, so Lemma 5.1 tells us that S(η) ∩ F (η) = ∅. Since σi1 ∈ F (η), it follows
that σi1 /∈ S(η), that is, S(η) ⊂ {1, . . . , n − 1}\{σi1} = F (∂−1(αi1,i2)), hence
∂−1(αi1,i2)η is left-weighted, as we wanted to show.

Corollary 5.4. For every i1, . . . , i2k ∈ {1, . . . , n−1} and every simple conjugate

η of δ such that σi1 ∈ F (η), the braid ∆2kxη,i1,...,i2k is a conjugate of δnk+1

whose infimum is 1 and whose canonical length is 4k−1. Moreover xη,i1,...,i2k =
xγ,j1,...,j2k if and only if η = γ and (i1, . . . , i2k) = (j1, . . . , j2k).

Proof. We saw in the previous result that xη,i1,...,i2k has infimum −2k + 1 and
canonical length 4k−1. If we multiply this braid by ∆2k, we will obtain a braid
whose infimum is 1 and whose canonical length is still 4k − 1 as stated. Since
xη,i1,...,i2k is a conjugate of δ and ∆2 = δn is a central element of Bn, it follows
that ∆2kxη,i1,...,i2k is a conjugate of ∆2kδ = δnk+1.

Multiplying an element from the left by a power of ∆ does not modify the non-
∆ factors of its left normal form. This implies that the final 2k factors of the
left normal form of ∆2kxη,i1,...,i2k are precisely ηαi1,i2αi2,i3 · · ·αi2k−1,i2k . As the
element αi,j is uniquely determined by the indices i and j, it follows that the
braid ∆2kxη,i1,...,i2k is uniquely determined by η and by the indices (i1, . . . , i2k),
as we wanted to show.

We already have all the ingredients to provide a family of elements whose set
of sliding circuits is exponential both on the number of strands and on the
canonical length.

Proposition 5.5. For n ≥ 3 and k ≥ 1, consider the braid β ∈ Bn+2 given by:

β = (σ1 · · ·σn−1)
nk+1 (σn+1)

4k+1.

Then ℓ(β) = 4k + 1 and #(SC(β)) ≥ 2n−2(n− 1)2k−1.
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Proof. We remark that SC(β) is much bigger than 2n−2(n − 1)2k−1, but we
chose this bound for the simplicity of the proof, as it is already exponential on
the braid index (n+ 2) and on the canonical length (4k + 1), as we shall see.

Denote δ = σ1 · · ·σn−1, so β = δnk+1 (σn+1)
4k+1. We recall that as δn = ∆2

n one
has δnk+1 = ∆2k

n δ, so the left normal form of β is (∆nσn+1)
2k(δσn+1)(σn+1)

2k,
which is the left-weighted product of 4k+1 simple elements (the parenthesized
terms correspond to simple factors). Hence inf(β) = 0 and ℓ(β) = 4k + 1.
Notice also that this braid is non-periodic and reducible: it is non-periodic as it
is written as a word in which σn does not appear, so the same must happen to
every power of β, hence no power of β can be equal to a power of ∆n+2. It is
reducible since it preserves curve-wise the family of circles F = {C1,n, Cn+1,n+2}.
Actually CRS(β) = F since β[∂(Dn)∈F ] is trivial, β[C1,n∈F ] = δnk+1 is periodic

and nontrivial, and β[Cn+1,n+2∈F ] = σ4k+1
1 is also periodic and nontrivial, but

we will not make use of this fact.

Now, for every simple conjugate η of δ in Bn, we can choose an index iη
such that σiη ∈ F (η). Then for every i2, . . . , i2k ∈ {1, . . . , n − 1}, denote
x = (∆n)

2kxη,iη ,i2,...,i2k and y = x(σn+1)
4k+1. We saw in Corollary 5.4 that x is

a conjugate of δnk+1 in Bn, so there exists γ ∈ Bn such that γ−1xγ = δ2k+1. We
can consider γ as a braid in Bn+2, by the standard embedding Bn → Bn+2 that
sends σi ∈ Bn to σi ∈ Bn+2 (this corresponds to adding two vertical strands to
the right of each braid). Then in Bn+2 one has γ−1yγ = γ−1(x(σn+1)

4k+1)γ =
δnk+1(σn+1)

4k+1 = β. Hence y is conjugate to our original braid β.

We will now show that y belongs to a sliding circuit. By Corollary 5.4, x ∈
Bn has infimum 1 and canonical length 4k − 1, so its left normal form is
∆ns1 · · · s4k−1 for some simple elements s1, . . . , s4k−1 (which are specified in
Corollary 5.4). The left normal form of y = x (σn+1)

4k+1 ∈ Bn+2 is then
(∆nσn+1)(s1σn+1) · · · (s4k−1σn+1)(σn+1). None of these simple factors is equal
to ∆n+1, hence inf(y) = 0 and sup(y) = 4k + 1. The preferred prefix of this
element is then p(x(σn+1)

4k+1) = ∂(σn+1) ∧ (∆nσn+1) = ∆n. Notice that this
corresponds to the fourth condition in Proposition 4.10, applied to y and C1,n.

Since p(y) = ∆n, applying a cyclic sliding to y merely conjugates its component
x by ∆n, that is, s(y) = ∆−1

n y∆n = x′(σn+1)
4k+1, where x′ = ∆−1

n x∆n. If
we define i′r = n − ir for r = 2, . . . , 2k, also i′η = n − iη and η′ = ∆−1

n η∆n,
we see that η′ is a simple conjugate of δ such that σi′η

∈ F (η′), hence x′ =

(∆n)
2kxη′,i′η ,i

′

2
...,i′

2k
. We can then apply the above argument to s(y) and x′, to

conclude that p(s(y)) = ∆n, hence s2(y) = ∆−2
n y∆2

n = y. Therefore y belongs
to a sliding circuit, so y ∈ SC(β).

Finally notice that y was defined by choosing η and i2, . . . , i2k (the index iη
is determined by η). Distinct choices of these data yield different values of
x = y[C1,n∈F ], hence different values of y. Therefore there are at least as many
elements in SC(β) as possibilities we have for choosing these values. There are
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2n−2 choices for η and n − 1 choices for each ir, for r = 2, . . . , 2k, hence there
are at least 2n−2(n− 1)2k−1 elements in SC(β).

We conclude by noticing that the above example, as well as most examples of
these kind, can be treated in a more intelligent way than just computing its
set of sliding circuits, provided one needs to know whether a given element is
conjugate to it. If one knows its essential reduction curves (as it is the case), one
can apply cyclic sliding to each component, defining a smaller subset of SC(β)
containing the conjugates of β in which every component belongs to a sliding
circuit. In order to do something like that, one needs an efficient algorithm to
detect the canonical reduction system of a braid. There are some algorithms
to do this: one is given by Bestvina and Handel [5] using the theory of train
tracks, and there is another one which will be soon available [17], which is an
improvement of the one given in [3] and [4], using Garside theory. None of these
algorithms are shown to be polynomial with respect to the number of strands
or the length of the braid, although both seem to be very fast in most cases.
There are some examples for which the algorithm in [5] is not efficient. We do
not know of any such example for the one in [17], and it is conjectured to be
polynomial. We refer to [17] for more details.
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