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Department of Statistics and Operational Research, Universidad de Sevilla
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Louvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium

e-mail: anouar.elghouch@uclouvain.be

Abstract: In this paper we are interested in checking whether the condi-
tional variances are equal in k ≥ 2 location-scale regression models. Our
procedure is fully nonparametric and is based on the comparison of the error
distributions under the null hypothesis of equality of variances and without
making use of this null hypothesis. We propose four test statistics based
on empirical distribution functions (Kolmogorov-Smirnov and Cramér-von
Mises type test statistics) and two test statistics based on empirical charac-
teristic functions. The limiting distributions of these six test statistics are
established under the null hypothesis and under local alternatives. We show
how to approximate the critical values using either an estimated version of
the asymptotic null distribution or a bootstrap procedure. Simulation stu-
dies are conducted to assess the finite sample performance of the proposed
tests. We also apply our tests to data on household expenditures.

MSC 2010 subject classifications: Primary 62G10, 62G08; secondary
62G20, 62G09.
Keywords and phrases: Asymptotics, bootstrap, comparison of curves,
empirical characteristic function, empirical distribution function, kernel
smoothing, local alternatives, regression residuals.

Received July 2014.

∗These authors were financially supported by grant MTM2014-55966-P (ERDF support
included) of the Spanish Ministry of Economy and Competitiveness.

†This author was financially supported by IAP research network P6/03 of the Belgian
Government (Belgian Science Policy), and from the contract ‘Projet d’Actions de Recherche
Concertées’ (ARC) 11/16-039 of the ‘Communauté française de Belgique’, granted by the
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1. Introduction

When comparing k (k ≥ 2) populations it is interesting not only comparing
the means, but also other characteristics, like the variances. For example, in
quality control, it is important to check the uniformity and the stability of
the production process under different experimental and practical conditions.
In biomedical research, detecting variation in gene expression levels is impor-
tant for many reasons, for example, to identify experimental and environmental
factors that affect a biological process; for a concrete example, see e.g. [19].
Equality of variances, when satisfied, can also be used to develop more powerful
and simple ANOVA-type test statistics. Without controlling for the effect of
covariates, there are a substantial number of tests available in the literature for
the equality of (unconditional) variances of two or more populations. The stan-
dard procedures include the classical F-test and Levene’s test (see [17]) which
is known to be robust to the violation of normality; see [11] for a recent review
and some interesting examples and applications.

In this paper, we are interested in the comparison of conditional variances. We
assume that in each population, along with the variable of interest or response
variable, Y , it is also observed another variable, X, the covariate, so that the
mean and the variance of the response variable depend on the values of X. More
specifically, let (Xj , Yj), 1 ≤ j ≤ k, be k independent random vectors satisfying
general nonparametric regression models

Yj = mj(Xj) + σj(Xj)εj , (1)

where mj(x) = E(Yj | Xj = x) is the regression function, σ2
j (x) = V ar(Yj |

Xj = x) is the conditional variance function and εj is the regression error, which
is assumed to be independent of Xj . Note that, by construction, E(εj) = 0 and
V ar(εj)=1. The covariate Xj is continuous with density function fj . Since the
objective is to compare the variance functions, it is reasonable to assume that the
covariates have common support, say R. The regression functions, the variance
functions, the distribution of the errors and the distribution of the covariates
are completely unknown and no parametric models are assumed for them. Thus,
our approach is completely nonparametric. In this conditional setting, the hy-
pothesis of equality of variances is stated in terms of the conditional variance
functions, H0 : σ2

1(x) = σ2
2(x) = · · · = σ2

k(x) for all x ∈ R, or, equivalently,

H0 : σj(x)/σ0(x) = 1, for 1 ≤ j ≤ k,

where σ2
0(x) is the common variance that can be expressed as

σ2
0(x) =

k∑
j=1

πj(x)σ
2
j (x),

for some positive functions π1, . . . , πk satisfying
∑k

j=1 πj(x) = 1. The alternative
hypothesis is

H1 : σj(x)/σ0(x) �= 1, for some j ∈ {1 . . . , k} .
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We will develop several test statistics and study their distribution under H0 and
under local alternatives converging to the null hypothesis at the rate n−1/2, n
being the total sample size. Specifically, we consider the following local alterna-
tive hypothesis

H1,n : σj(x)/σ0(x) = 1 + n−1/2δj(x), for 1 ≤ j ≤ k,

for some functions δj . To be more precise, in the previous expression we should
have written σn,j(x)/σn,0(x) instead of σj(x)/σ0(x), as this function depends
on n. However, to short the notation we suppress this explicit dependence on n.
Observe that as n increases H1,n becomes closer and closer to H0. Also, when
δj(x) = 0, for 1 ≤ j ≤ k, H1,n reduces to H0.

Statistical literature concerning the problem of testing for common features
in several regression models has mainly focused on testing for common regres-
sion curves or testing for common error distributions. The problem of testing for
the equality of regression curves in nonparametric settings has been extensively
treated; see for example [3, 16, 22, 25, 24, 27], and [12] for a recent review.
On the other hand, testing for the equality of error distributions has been ad-
dressed in [23]. To the best of our knowledge, the comparison of conditional
variance functions has not been studied before. Most papers dealing with test-
ing on the conditional variance function focus on homoscedasticity assumption
(see for example [18, 4] and the references therein) or, more in general, on the
parametric form of the conditional variance function (see for example [5, 15]
and the references therein).

In order to construct a test for testing H0, several approaches are possible.
Here we follow the ideas in [25, 24] for testing the equality of the regression
functions, m1, . . . ,mk, which consist of comparing the distributions of the errors
of the regression models. Specifically, let

εj =
Yj −mj(Xj)

σj(Xj)
(2)

be the regression error in population j, 1 ≤ j ≤ k. Define

ε0j =
Yj −mj(Xj)

σ0(Xj)
= εj

σj(Xj)

σ0(Xj)
(3)

to be the error under the null hypothesis, 1 ≤ j ≤ k. Let Fεj (t) = P (εj ≤ t) and
Fε0j (t) = P (ε0j ≤ t) be the cumulative distribution function (CDF) of εj and
ε0j , respectively. The following theorem shows that H0 is true if and only if the
distributions of εj and ε0j coincide. The proof can be found in the Appendix.

Theorem 1. Assume that σj is continuous on R and 0 < E(ε4j ) < ∞, for
1 ≤ j ≤ k.

(i) H0 is true if and only if the random variables εj and ε0j have the same
distribution for all 1 ≤ j ≤ k.

(ii) Let p1, . . . , pk be such that pj > 0, 1 ≤ j ≤ k, and
∑k

j=1 pk = 1. Let

Fε(t) =
∑k

j=1 pjFεj (t) and Fε0(t) =
∑k

j=1 pjFε0j (t). Assume also that
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E(ε41) = · · · = E(ε4k). Then H0 is true if and only if Fε(t) = Fε0(t), for
all t ∈ R.

The assertions in the previous result can be interpreted in terms of the CDF
or in terms of any other function characterizing a probability law, such as the
characteristic function (CF). In this paper we will consider both cases, that is,
to test H0 we will compare consistent estimators of the CDFs and CFs of the
random variables εj and ε0j , 1 ≤ j ≤ k.

With this aim, the paper is organized as follows. In Section 2 we introduce
the test statistics and explain the testing procedures. Sections 3 and 4 contain
the main asymptotic results concerning the empirical CDF-based test statis-
tics and the empirical CF-based test statistics, respectively, and discuss some
practical considerations. In Section 5 we explain how the critical values of the
proposed test statistics can be approximated. Investigating the finite sample
performance of our tests is the topic of Section 6. A data example follows in
Section 7 and conclusions are given in Section 8. All proofs of the theoretical
results are deferred to the Appendix.

The following notation will be used along the paper: P0 denotes probability
assuming that H0 is true; E0 denotes expectation assuming that H0 is true; P∗
denotes the conditional probability law, given the data; all limits in this paper

are taken when n → ∞;
L−→ denotes convergence in distribution;

P−→ denotes
convergence in probability; if x ∈ R

k, with x′ = (x1, . . . , xk), then diag(x) is
the k × k diagonal matrix whose (i, i) entry is xi, 1 ≤ i ≤ k; for any complex
number z = a + ib, Re(z) = a is its real part, Im(z) = b is its imaginary part,
z̄ = a− ib is its conjugate and |z| is its modulus; Nk(μ,Σ) denotes the k-variate
normal distribution with mean vector μ and variance-covariance matrix Σ; an
unspecified integral denotes integration over the whole real line R; supt stands
for supt∈R

; I(S) denotes the indicator function of a set S.

2. The test statistics

As in the Introduction, let (Xj , Yj), 1 ≤ j ≤ k, be k independent random vectors
satisfying general nonparametric regression models (1). For 1 ≤ j ≤ k, let εj
and ε0j be as defined in (2) and (3), respectively. As justified in Theorem 1,
to test for H0 we will compare consistent estimators of the CDFs and CFs of
the random variables εj and ε0j , 1 ≤ j ≤ k, and also consistent estimators of
the CDFs Fε and Fε0 and of their associated CFs. Since neither εj nor ε0j are
observable, the inference must be based on residuals. Next we construct them.

Let (Xjl, Yjl), 1 ≤ l ≤ nj , be independent and identically distributed (iid)

observations from (Xj , Yj), 1 ≤ j ≤ k, and let n =
∑k

j=1 nj . Along the paper it
will be assumed that nj/n → pj > 0, 1 ≤ j ≤ k. In order to estimate the errors,
we first need to estimate the regression functions, mj(x) = E(Yj |Xj = x), the
variance functions, σ2

j (x) = E[{Yj−mj(x)}2|Xj = x], and the common variance

function under H0, σ
2
0(x). With this aim we use nonparametric estimators based

on kernel smoothing techniques. Let K denote a nonnegative kernel function
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defined on R, let 0 < hn ≡ h → 0 be the bandwidth or smoothing parameter
and Kh(x) = h−1K(x/h). We use the following estimators for the functions mj ,
σ2
j and σ2

0 :

m̂j(x) =

nj∑
l=1

wjl(x)Yjl, σ̂
2
j (x) =

nj∑
l=1

wjl(x)Y
2
jl− m̂2

j (x), σ̂
2
0(x) =

k∑
j=1

πj(x)σ̂
2
j (x).

The quantities wjl are either the local-linear weights given by

wjl(x) =
Kh(Xjl − x)

{
S2,nj (x)− (Xjl − x)S1,nj

}
S0,nj (x)S2,nj (x)− S2

1,nj
(x)

,

with Sk,nj (x) =
∑nj

l=1(Xjl−x)kKh(Xjl−x), k = 0, 1, 2, or the Nadaraya-Watson
weights

wjl(x) =
Kh(Xjl − x)∑nj

v=1 Kh(Xjv − x)
.

Both are particular cases of local-polynomial weighting (see [8]). Under the
model assumptions that will be stated in the next section, the results in this
article are valid for local-linear and for Nadaraya-Watson (local-constant) esti-
mators. Note that we have implicitly assumed that the functions π1, . . . , πk do
not depend on unknowns. The theory also apply to the case where they depend
on unknowns, replacing πj by π̂j in the expression σ̂2

0(x), whenever π̂j converges
to πi fast enough. Later we will discuss this issue in more detail.

Based on these estimators, for each population j, 1 ≤ j ≤ k, we construct
two samples of residuals,

ε̂jl =
Yjl − m̂j(Xjl)

σ̂j(Xjl)
and ε̂0jl =

Yjl − m̂j(Xjl)

σ̂0(Xjl)
, (4)

1 ≤ l ≤ nj . Then we can construct the corresponding empirical CDFs (ECDFs),

F̂εj (t) =
1

nj

nj∑
l=1

I(ε̂jl ≤ t) and F̂ε0j (t) =
1

nj

nj∑
l=1

I(ε̂0jl ≤ t),

and empirical CFs (ECFs),

ϕ̂εj (t) =
1

nj

nj∑
l=1

exp(itε̂jl) and ϕ̂ε0j (t) =
1

nj

nj∑
l=1

exp(itε̂0jl),

respectively. These ECDFs are consistent kernel-based nonparametric estima-
tors of the population CDFs Fεj (t) and Fε0j (t), respectively (see Theorem 2
below). Analogously, the above ECFs are consistent kernel-based nonparamet-
ric estimators of the population CFs ϕεj (t) = E{exp(itεj)} and ϕε0j (t) =
E{exp(itε0j)}, respectively (see Theorem 6 below). We can also consider the
following ECDFs

F̂ε(t) =
1

n

k∑
j=1

nj∑
l=1

I(ε̂jl ≤ t) and F̂ε0(t) =
1

n

k∑
j=1

nj∑
l=1

I(ε̂0jl ≤ t),
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and ECFs

ϕ̂ε(t) =
1

n

k∑
j=1

nj∑
l=1

exp(itε̂jl) and ϕ̂ε0(t) =
1

n

k∑
j=1

nj∑
l=1

exp(itε̂0jl),

which estimate the functions Fε(t) =
∑k

j=1 pjFεj (t), Fε0(t) =
∑k

j=1 pjFε0j (t),

ϕε(t) =
∑k

j=1 pjϕεj (t) and ϕε0(t) =
∑k

j=1 pjϕε0j (t), respectively.
To test for H0, we will construct Kolmogorov-Smirnov type statistics and

Cramér-von Mises type statistics to compare the ECDFs, and weighted L2-
distances to compare the ECFs. More precisely, the considered statistics are

T 1
KS =

k∑
j=1

√
nj sup

t
|F̂εj (t)− F̂ε0j (t)|,

T 1
CM =

k∑
j=1

nj

∫
{F̂εj (t)− F̂ε0j (t)}2dF̂ε0j (t),

T 2
KS =

√
n sup

t
|F̂ε(t)− F̂ε0(t)|,

T 2
CM = n

∫
{F̂ε(t)− F̂ε0(t)}2dF̂ε0(t),

T1 =

k∑
j=1

nj

∫ ∣∣ϕ̂εj (t)− ϕ̂ε0j (t)
∣∣2 w(t)dt,

T2 = n

∫
|ϕ̂ε(t)− ϕ̂ε0(t)|

2
w(t)dt,

where w is a positive weight function that is needed to guarantee consistency
(see Section 4). Note that in the case of T1 and T2, | · | represents the modulus
of a complex number. In Section 3 we will study the asymptotic properties of
the statistics T 1

KS , T
1
CM , T 2

KS and T 2
CM and in Section 4 we will deal with T1

and T2.

3. Asymptotics for ECDF-based test statistics

This section studies some asymptotic properties of the ECDF-based test statis-
tics T 1

KS , T
1
CM , T 2

KS and T 2
CM . To derive them we will need some commonly

assumed regularity assumptions. First let us define Fj(t|x) = P (Yj ≤ t|Xj = x)
and Fj(x) = P (Xj ≤ x), for 1 ≤ j ≤ k.

Assumption (A1): For 1 ≤ j ≤ k,

(i) Xj is absolutely continuous with compact support R and density fj .

(ii) fj , mj , σj and πj are twice continuously differentiable on R.

(iii) infx∈R fj(x) ≥ c > 0 and infx∈R σj(x) ≥ d > 0, for some c, d ∈ R.

(iv) E(ε4j ) < ∞.

(v) nh4
n → 0 and nh3+2δ

n (log h−1
n )−1 → ∞, for some δ > 0.
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(vi) The kernel K is a symmetric density function with compact support
and twice continuously differentiable.

Assumption (A2): For 1 ≤ j ≤ k, Fj(t|x) is continuous in (x, t) and diffe-
rentiable with respect to t, ∂

∂tFj(t|x) = F ′
j(t|x) is continuous in (x, t) and

supx,t |t2F ′
j(t|x)| < ∞. The same holds for all other partial derivatives of

Fj(t|x) with respect to x and t up to order two.

From now on we will name Assumption A to be the set of Assumptions (A1)–
(A2). Assumption A (skipping (A1)(iv)) was also considered in [25] to derive
asymptotic properties of some ECDF-based tests designed to detect differences
between the conditional mean functions. This assumption is mainly needed to
guarantee the uniform consistency of the estimators f̂j , σ̂j , m̂j and σ̂0. Also note
that Assumption (A2), which will only be needed for the asymptotics related to
ECDF-based tests, implies that εj has a density, denoted by fεj .

We first give the following result that justifies the use of the test statistics
T 1
KS , T

1
CM , T 2

KS and T 2
CM for testing H0.

Theorem 2. Suppose that Assumption A holds. Then, F̂ε0j (t) = Fε0j (t)+op(1)

and F̂εj (t) = Fεj (t) + op(1), uniformly in t, 1 ≤ j ≤ k.

Corollary 3. Suppose that Assumption A holds. Then,

1√
n
T 1
KS

P−→
k∑

j=1

√
pj sup

t
|Fεj (t)− Fε0j (t)|,

1

n
T 1
CM

P−→
k∑

j=1

pj

∫
{Fεj (t)− Fε0j (t)}2dFε0j (t),

1√
n
T 2
KS

P−→ sup
t

|Fε(t)− Fε0(t)|,

1

n
T 2
CM

P−→
∫
{Fε(t)− Fε0(t)}2dFε0(t).

Observe that all considered test statistics converge in probability to non-
negative quantities. Under the assumptions in Theorem 1, such quantities are 0 if
and only if H0 is true. Therefore it seems reasonable to reject the null hypothesis
for large values of these test statistics. Now, to determine what a large value
means in each case, we must calculate the null distribution of the test statistic,
or at least an approximation to it. Since the null distributions are unknown, we
study their asymptotic null distributions.

Theorem 4. Suppose that Assumption A holds. Then, under H1,n,

√
nj

{
F̂εj (t)− F̂ε0j (t)

}
=

1

2
tfεj (t)(p

1/2
j Δj + Zn,j) + op(1),

uniformly in t, where Δj = 2E [δj(Xj)], and

Zn,j =
√
nj

k∑
v=1

1

nv

nv∑
l=1

{
I(v = j)− πv(Xvl)

fj(Xvl)

fv(Xvl)

}(
ε2vl − 1

)
. (5)
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The next Corollary, derived mainly by applying the multivariate Central
Limit Theorem to Zn = (Zn,1, . . . , Zn,k)

′, gives the asymptotic distribution
of our ECDF-based test statistics under H0 and H1,n.

Corollary 5. Suppose that Assumption A holds. Then, under H1,n,

T 1
KS

L−→ 1

2

k∑
j=1

|Zj + p
1/2
j Δj | sup

t
|tfεj (t)|,

T 1
CM

L−→ 1

4

k∑
j=1

(Zj + p
1/2
j Δj)

2

∫
t2f2

εj (t)dFεj (t),

T 2
KS

L−→ 1

2
sup
y

|Z(t) + Δ(t)|,

T 2
CM

L−→ 1

4

∫
{Z(t) + Δ(t)}2dFε(t),

where Z(t) =
∑k

j=1 p
1/2
j tfεj (t)Zj and Δ(t) =

∑k
j=1 pjtfεj (t)Δj, with (Z1, . . . ,

Zk)
′ ∼ Nk(0,Σ), Σ = (σjv) being the k × k-matrix whose elements are

σjv = (pjpv)
1/2

k∑
l=1

E{(ε2l − 1)2}
pl

× (6)

×E

[{
πl(Xl)

fj(Xl)

fl(Xl)
− I(l = j)

}{
πl(Xl)

fv(Xl)

fl(Xl)
− I(l = v)

}]

1 ≤ j, v ≤ k.

Let T denote any of the test statistics T 1
KS , T

1
CM , T 2

KS and T 2
CM . Since H0

can be seen as a special case of H1,n with δj = 0, 1 ≤ j ≤ k, the asymptotic
distribution of T under the null hypothesis trivially follows by setting Δj = 0.
For example, under H0,

T 1
KS

L−→ 1

2

k∑
j=1

|Zj | sup
t

|tfεj (t)|, and T 2
KS

L−→ 1

2
sup
t

|Z(t)|.

Let α ∈ (0, 1) be arbitrary but fixed. As an immediate consequence of Theorem 1
and Corollaries 3 and 5, the test that rejects H0 when T ≥ tα, where tα is the
1−α percentile of the null distribution of T or any consistent estimator of it, is
consistent against all fixed alternatives. It is also able to detect local alternatives
converging to the null at the rate n−1/2, whenever Δj �= 0 for some 1 ≤ j ≤ k.

So far we have assumed that the weight functions π1, . . . , πk are known.
Nevertheless we did not make any restriction on them except the fact that they
are positive and sum up to one. In our simulation study, see Section 6, we take
πj = nj/n. This simple choice is shown to work reasonably well for all the
investigated examples. Another possibility is to choose the πj ’s from the data.
For example, as for the problem of testing the equality of regression curves, see
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[25, 24], one may take πj(x) = pjfj(x)/fmix(x), with fmix(x) =
∑k

j=1 pjfj(x).
For this choice, since f1, . . . fk are unknown, the functions π1, . . . , πk must be
estimated. A careful reading of the proofs reveals that all the results in this paper
continue to be true whenever π1, . . . , πk are replaced by estimators π̂1, . . . , π̂k

satisfying supx∈R |πj(x)− π̂j(x)| = op(n
−1/4), 1 ≤ j ≤ k.

4. Asymptotics for ECF-based test statistics

In order to study the limit behaviour of the test statistics T1 and T2 we also
need some regularity conditions. Recall that to derive the asymptotic properties
for the ECDF-based test statistics we assumed that the regression errors have
a twice differentiable CDF. Analogously, to derive the asymptotic properties
for the ECF-based test statistics we need that the regression errors has a twice
differentiable CF, which is tantamount to assume that the regression errors has
finite second order moment. But this assumption is implicit in the the definition
of the regression models (1). As a consequence, the assumptions required to
derive the asymptotics for ECF-based test statistics will be weaker than those
assumed in Section 3, in the sense that no restriction on the distribution of the
errors will be imposed, such as the existence of a density. Specifically, we mainly
need to assume that Assumption (A1) holds. The motivation behind the test
statistics T1 and T2 is in the following result.

Theorem 6. Suppose that Assumption (A1) holds and that w ≥ 0 is such that∫
t2w(t)dt < ∞. Then, n−1Ti = τi + op(1), i = 1, 2, where

τ1 =

k∑
j=1

pj

∫ ∣∣ϕεj (t)− ϕε0j (t)
∣∣2 w(t)dt, τ2 =

∫
|ϕε(t)− ϕε0(t)|

2
w(t)dt.

Thus, T1 and T2 converge in probability to non-negative quantities. Since
two distinct CFs can be equal in a finite interval (see, for example, [10], p. 479),
a general way to ensure that τ1 > 0 and τ2 > 0 whenever σr �= σs, for some
1 ≤ r, s ≤ k, r �= s, is to take w(t) > 0, for all t ∈ R. For instance, one can take
w as the pdf of a normal law. Now, the reasoning made just after Corollary 3 can
be repeated for the test statistics T1 and T2. So our next goal is to determine the
asymptotic distribution of T1 and T2. With this aim we first give a result that
provides an asymptotic approximation for

√
nj{ϕ̂εj (t)− ϕ̂ε0j (t)}, 1 ≤ j ≤ k. Let

ϕ′
εj (t) =

∂
∂tϕεj (t) =

∂
∂tReϕεj (t) + i ∂∂tImϕεj (t) = iE [εj exp(itεj)], which exists

because E(|εj |) < ∞, 1 ≤ j ≤ k.

Theorem 7. Suppose that Assumption (A1) holds. Then, under H1,n,

√
nj

{
ϕ̂εj (t)− ϕ̂ε0j (t)

}
=

1

2
tϕ′

εj (t)(p
1/2
j Δj − Zn,j) + tR1j(t) + t2R2j(t),

where supt |Rsj(t)| = op(1), s = 1, 2, and Zn,j and Δj , 1 ≤ j ≤ k, are defined
as in Theorem 4.
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Corollary 8. Suppose that Assumption (A1) holds and that w ≥ 0 is such that∫
t4w(t)dt < ∞. Then, under H1,n,

T1
L−→ 1

4

k∑
j=1

(Zj + p
1/2
j Δj)

2

∫
t2|ϕ′

εj (t)|
2w(t)dt,

T2
L−→ 1

4

∫
|V (t) +W (t)|2w(t)dt,

where V (t) =
∑k

j=1 p
1/2
j tϕ′

εj (t)Zj , W (t) =
∑k

j=1 pjtϕ
′
εj (t)Δj , and (Z1, . . . , Zk)

′

∼ Nk(0,Σ).

Similar comments to those made after Corollary 5 for the test statistics T 1
KS ,

T 1
CM , T 2

KS and T 2
CM can be done for T1 and T2.

Before ending this section, we give a brief discussion on the choice the weight
function w. It has been seen that taking w > 0 ensures that the test that rejects
H0 for large values of T1 or T2 is consistent against any fixed alternative. It also
ensures that T1 converges in law, under H0, to a non-degenerate distribution
(see Section 5). From a theoretical point of view, any positive function w sa-
tisfying

∫
t4w(t)dt < ∞ can be used. From a practical point of view, the ease

of computation of T1 and T2 is closely related to the choice of w. In fact, an
alternative and more useful expression for T1 and T2 is given by (see Lemma 1
in [2])

T1 =

k∑
j=1

1

nj

⎧⎨
⎩

nj∑
l,s=1

Iw(ε̂jl − ε̂js) +

nj∑
l,s=1

Iw(ε̂0jl − ε̂0js)− 2

nj∑
l,s=1

Iw(ε̂jl − ε̂0js)

⎫⎬
⎭ ,

T2 =
1

n

k∑
j,v=1

nj∑
l=1

nv∑
s=1

{Iw(ε̂jl − ε̂vs) + Iw(ε̂0jl − ε̂0vs)− 2Iw(ε̂jl − ε̂0vs)} ,

where

Iw(t) =

∫
cos(tx)w(x)dx. (7)

These expressions are specially appealing when one wishes to employ the boot-
strap to approximate the null distribution, which requires to evaluate the test
statistic in a high number of artificial samples. Another point that should be
taken into account is the fact that the ECF estimates more accurately the po-
pulation CF around t = 0. Consequently, w should put most of the weight near
the origin. For the problem of testing the equality of mean regression curves,
[24] take w to be the standard normal density. We also considered this choice
for w in our simulation study.

5. Estimation of the null distribution

The results in Corollaries 5 and 8 reveal that the asymptotic null distributions
of the proposed test statistics are in all cases unknown because they depend
on unknown quantities. Therefore, the asymptotic null distribution cannot be
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directly used to approximate the null distribution of these statistics. Two solu-
tions can be considered: (a) approximate the null distributions by a bootstrap
procedure, or (b) construct an approximation of the asymptotic null distribu-
tion. The first approach was also considered in [25] for the problem of testing
the equality of conditional mean functions. They employed a bootstrap proce-
dure based on smoothed residuals, whose theoretical justification can be found
in [21]. The same bootstrap procedure could be used to approximate the null
distribution of the test statistics studied in this paper.

The second possibility is to approximate the null distribution by means of
an estimator of the asymptotic null distribution of the test statistic. This es-
timator is usually called a bootstrap-in-the-limit estimator. Let us first con-

sider the test statistic T 1
CM . According to Corollary 5, under H0, 4T

1
CM

L−→
W1 :=

∑k
j=1 αjχ

2
1,j , where χ2

1,1, . . . , χ
2
1,k are independent chi-square random

variables with one degree of freedom and α1, . . . , αk are the eigenvalues of AΣ,
A = diag(a1, . . . , ak), aj =

∫
t2f2

εj (t)dFεj (t), 1 ≤ j ≤ k. Before employing a
bootstrap-in-the-limit estimator we must be sure that the asymptotic null dis-
tribution is non-degenerate. Since, under our assumptions, aj > 0 and σjj > 0,

1 ≤ j ≤ k, we have that
∑k

j=1 αj = trace(AΣ) =
∑k

j=1 ajσjj > 0, and there-
fore its asymptotic null distribution is non-degenerate. The quantities αj in W1

are unknown but can be estimated consistently from the data, say by α̂j , the

eigenvalues of ÂΣ̂, using a plug-in principle and kernel smoothing methods. In
such a case,

sup
t

∣∣∣P0{T 1
CM ≤ t} − P∗(Ŵ1 ≤ t)

∣∣∣ P−→ 0,

where Ŵ1 =
∑k

j=1 α̂jχ
2
1j . Analogously, one could also estimate the null distri-

bution of T 2
CM , T1 and T2.

As for T1, Corollary 8 says that 4T1 converges in law to W2 :=
∑k

j=1 βjχ
2
1,j ,

where χ2
1,1, . . . , χ

2
1,k are as before and β1, . . . , βk are the eigenvalues of BΣ,

B = diag(b1, . . . , bk), with bj =
∫
t2|ϕ′

εj (t)|2w(t)dt, 1 ≤ j ≤ k. Since σjj > 0,

1 ≤ j ≤ k, and
∑k

j=1 βj =
∑k

j=1 bjσjj , to ensure that W2 is non-degenerate
we must have that bj > 0 for some 1 ≤ j ≤ k. Since E(εj) = ϕ′

εj (0) = 0 and

E(ε2j ) = −ϕ′′
εj (0) = 1, where ϕ′′

εj (t) = ∂2

∂t2Reϕεj (t) + i ∂
2

∂t2 Imϕεj (t), it readily
follows that |ϕ′

εj (t)| > 0, for all t ∈ (−δ, 0) ∪ (0, δ), for some δ > 0. Thus, if the
weight function w is positive in an open neighborhood of the origin, we have
that bj > 0, 1 ≤ j ≤ k, which implies that W2 is non-degenerate.

Interestingly, if all the covariates have the same distribution, f1 = · · · = fk,
E[(ε21 − 1)2] = · · · = E[(ε2k − 1)2] := θ and πj(x) = pj , 1 ≤ j ≤ k, then

Σ = θ(Ik − pp′), p′ = (
√
p1, . . . ,

√
pk). (8)

It is easy to see that the matrix Ik − pp′ has two different eigenvalues: 0, with
multiplicity 1, and 1, with multiplicity k− 1. Therefore, if the laws of the errors
also satisfy a1 = · · · = ak (for instance, if all errors have the same distribution),

then 4(θa1)
−1T 1

CM
L−→ χ2

k−1, which coincides with the null distribution of the
classical Levene’s test for equality of variances in two or more groups. To get a
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consistent null distribution estimator of T 1
CM in this case, it suffices to estimate

θ and a1 consistently, which is a quite easy task. The same is true for T1 if
b1 = · · · = bk.

The asymptotic behaviours of T 2
CM and T2 is somewhat different. From Corol-

lary 5, 4T 2
CM converges in law to W3 :=

∑k
j=1 γjχ

2
1,j , where χ2

1,1, . . . , χ
2
1,k are

as before and γ1, . . . , γk are the eigenvalues of CΣ, C = diag(p)Mdiag(p), with

p as defined in (8) and M = (mrs), mrs =
∑k

v=1 pv
∫
t2fεr(t)fεs(t)fεv (t)dt,

1 ≤ r, s ≤ k. Note that if Σ is as in (8), since (Ik − pp′)p = 0 we have that
trace(CΣ) = 0, and thus W3 = 0. That is to say that, in this case, the asymp-
totic null distribution of T 2

CM is degenerate. The same happens to T2. Since in
practice Σ is unknown, in order to estimate the null distribution of T 2

CM and T2

it is preferable to use the bootstrap procedure mentioned in the first paragraph
of this section.

6. Finite sample performance

This section is devoted to the study of the practical performance of the proposed
test statistics in terms of level approximation and power. With that purpose, we
consider the following variance models in a two-population (k = 2) framework:

(L1) σ2
1(x) = σ2

2(x) = 0.25

(L2) σ2
1(x) = σ2

2(x) =
(
7
60.50x+ 1

20.50
)2

(P1) σ2
1(x) = 0.25; σ2

2(x) = 0.50
(P2) σ2

1(x) = 0.25; σ2
2(x) = 0.75

(P3) σ2
1(x) = 0.25; σ2

2(x) =
(
7
8

√
0.50x+ 1

2

√
0.50

)2
(P4) σ2

1(x) =
(
7
60.50x+ 1

20.50
)2
; σ2

2(x) =
(
7
8

√
0.50x+ 1

2

√
0.50

)2
In all cases the regression functions arem1(x) = m2(x) = x. The distributions

of the covariates X1 and X2 are Beta(1.5, 2) and Beta(2, 1.5), respectively, and
the regression errors ε1 and ε2 are N(0, 1). Models (L1) and (L2) are under the
null hypothesis, so they will be used to study the level approximation. On the
other hand, the power will be investigated through models (P1), (P2), (P3) and
(P4). The variance functions are chosen to make the homoscedastic models (P1
and P2) and the heteroscedastic models (P3 and P4) somehow comparable: in
the four models E[σ1(X1)] = 0.50, while and E[σ2(X2)] =

√
0.50 for models

(P1), (P3) and (P4), and E[σ2(X2)] =
√
0.75 for model (P2).

The weight function w required to construct the ECF-based test statistics is
the density of a standard normal and we choose πj = nj/n, j = 1, 2. The tables
below display the observed proportion of rejections in 1000 simulated data sets
with significance level α = 0.05 (other significance levels were also considered
and similar results were obtained).

Nonparametric estimation of the regression functions is performed by local-
linear estimation, while the estimation of the conditional variance functions
is done with the local-constant (Nadaraya-Watson) estimator, as it guaran-
tees the positiveness of the estimation. The application of these smoothing
techniques requires the specification of a kernel function and a smoothing pa-
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Table 1

Observed rejection frequencies in 1000 simulated data sets for the tests based on the critical
values obtained from the asymptotic null distribution of T 1

CM and T1

model (n1, n2) h : cv 0.10 0.20 0.30 cv 0.10 0.20 0.30

T 1
CM T1

(L1) (100, 100) 0.065 0.069 0.061 0.071 0.046 0.046 0.043 0.046
(200, 100) 0.036 0.037 0.039 0.036 0.047 0.048 0.050 0.049
(200, 200) 0.033 0.033 0.038 0.034 0.050 0.052 0.051 0.052

(L2) (100, 100) 0.102 0.093 0.092 0.092 0.074 0.070 0.075 0.076
(200, 100) 0.040 0.041 0.043 0.046 0.061 0.062 0.063 0.065
(200, 200) 0.056 0.056 0.054 0.055 0.067 0.069 0.070 0.072

(P1) (100, 100) 0.909 0.907 0.902 0.908 0.905 0.907 0.901 0.900
(200, 100) 0.927 0.926 0.923 0.924 0.960 0.957 0.955 0.957
(200, 200) 0.992 0.992 0.992 0.991 0.993 0.993 0.993 0.993

(P2) (100, 100) 0.994 0.991 0.987 0.988 0.999 0.997 0.995 0.995
(200, 100) 0.994 0.992 0.991 0.990 0.995 0.995 0.994 0.994
(200, 200) 0.999 0.997 0.997 0.997 1.000 0.998 0.998 0.997

(P3) (100, 100) 0.776 0.775 0.773 0.778 0.768 0.766 0.770 0.771
(200, 100) 0.783 0.781 0.775 0.780 0.888 0.883 0.880 0.882
(200, 200) 0.934 0.937 0.931 0.932 0.964 0.965 0.964 0.964

(P4) (100, 100) 0.676 0.673 0.664 0.669 0.636 0.631 0.635 0.635
(200, 100) 0.650 0.645 0.636 0.640 0.691 0.681 0.684 0.689
(200, 200) 0.852 0.852 0.854 0.854 0.887 0.887 0.884 0.884

rameter or bandwidth. For the kernel, we choose the kernel of Epanechnikov
K(u) = 0.75(1 − u2)I(|u| ≤ 1). On the other hand, the optimal choice of the
smoothing parameter in testing frameworks is not a solved problem (see, for
example, the discussion about this topic in [12]). To study the impact of the
smoothing parameters in our tests, we will show results obtained under fixed
values and also for values obtained by cross-validation. From some unreported
simulations, we have learned that taking the same bandwidth in all popula-
tions is recommended. In the case of the cross-validation (indicated by cv in
the tables), the regular least-squares method was applied to find the smoothing
parameters to estimate σ2

j , j = 1, 2, and then the average of the two obtained
quantities is used to perform the estimation. A similar procedure is used to ob-
tain the cross-validation bandwidth to estimate the regression functions mj . On
the other hand, in the case of fixed bandwidths we take values 0.1, 0.2 and 0.3
(recall that the support of the covariates is [0,1]) to estimate both the regression
and the variance functions.

We first study the behaviour of the tests based on the approximation of
the asymptotic null distribution. We will only study the tests based on T 1

CM

and T1 because, as explained in Section 5, the asymptotic null distribution of
these statistics is a non-degenerate combination of chi-square random variables.
Since we are dealing with approximations based on asymptotics, we consider
moderate sample sizes (100 and 200). The obtained results are displayed in
Table 1. In terms of level approximation, the behaviour of both statistics is
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reasonable for model (L1). For model (L2), the level is clearly overestimated
for samples sizes (100,100), specially in the case of T 1

CM . The approximation
improves as the sample sizes increase. In terms of power, both statistics present
a similar behaviour. The choice of the smoothing parameter does not seems to
have an important impact, neither in the approximation of the level, nor in the
values of the power.

Another possibility to obtain critical values is by means of bootstrap. In
particular, in the current setup, as in other related papers (see for example
[25, 6]) a smoothed bootstrap of residuals is recommended. We have applied this
bootstrap mechanism with 200 bootstrap replications to the six test statistics
proposed in Section 2. Tables 2 and 3 display the observed rejection probabilities
for the ECDF-based tests and for the ECF-based tests, respectively. In this case,
smaller sample sizes (50 and 100) are employed. The approximation of the level
(models L1 and L2) is good for the tests statistics based on L2-distances T

1
CM ,

T 2
CM , T1 and T2. On the other hand, the Kolmogorov-Smirnov type statistics

are a bit conservative, specially T 2
KS . Regarding the power, T 1

CM , T 1
KS and T1

achieve better results than T 2
CM , T 2

KS and T2, respectively. Globally, the tests
based on L2-distances (for example, T 1

CM and T1) produce very similar results,
and they outperform the Kolmogorov-Smirnov-type statistics. As before, the
choice of the smoothing parameters does not have much impact on the rejection
frequencies.

The models considered so far for the regression functions, the conditional
variances and the distributions of the errors are somewhat simple. One may
wonder if the proposed procedures still work for more complicated models.
With this purpose, we consider the regression functions m1(x) = x + sin(2πx)
and m2(x) = sin(2πx) and two new models for the conditional variance func-
tions:

(L3) σ2
1(x) = σ2

1(x) = 0.52 exp(2x).
(P5) σ2

1(x) = 0.52 exp(2x) and σ2
2(x) = 0.72 exp(2x).

Model (L3) is under the null hypothesis and model (P5) is under the al-
ternative. For the regression errors, in addition to the normal distribution, we
also consider laws with heavier tails,

√
5/3 εj ∼ t5 and

√
7/5 εj ∼ t7, and an

asymmetric distribution, εj + 1 ∼ Exponential(1). From the results in the pre-
vious tables, we have learned that the tests based on the statistics T 1

CM and
T1 exhibit the best results in terms of power. Moreover, the critical values for
these two statistics can be approximated from their asymptotic null distribu-
tions. Because of these reasons, we have conducted a similar study to that in
Table 1. For the new models described above, T1 exhibits better behavior than
T 1
CM in most cases. Table 4 reports the obtained results, which, for the sake of

brevity are restricted to T1 with models (L2), (L3), (P4) and (P5) and cross-
validation bandwidths. For non-normal errors, larger sample sizes are required
in order to get a reasonable approximation of the nominal level. The distri-
bution of the errors also affects the power, in the sense that lower values are
observed for heavy-tailed and asymmetric laws when compared to the normal
case.
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Table 2

Observed rejection frequencies in 1000 simulated data sets for the tests based on the test
statistics T 1

CM , T 2
CM , T 1

KS and T 2
KS . The critical values obtained by bootstrap

model (n1, n2) h : cv 0.10 0.20 0.30 cv 0.10 0.20 0.30

T 1
CM T 2

CM

(L1) (50, 50) 0.045 0.047 0.053 0.048 0.044 0.037 0.050 0.053
(100, 50) 0.038 0.036 0.041 0.036 0.049 0.051 0.039 0.046
(100, 100) 0.044 0.043 0.039 0.048 0.045 0.046 0.047 0.047

(L2) (50, 50) 0.072 0.068 0.070 0.070 0.058 0.049 0.057 0.063
(100, 50) 0.040 0.044 0.045 0.045 0.049 0.046 0.052 0.058
(100, 100) 0.058 0.049 0.053 0.058 0.061 0.059 0.070 0.066

(P1) (50, 50) 0.549 0.530 0.531 0.536 0.383 0.372 0.388 0.368
(100, 50) 0.647 0.657 0.634 0.641 0.573 0.569 0.563 0.568
(100, 100) 0.885 0.889 0.874 0.884 0.687 0.691 0.690 0.686

(P2) (50, 50) 0.905 0.906 0.911 0.902 0.769 0.771 0.783 0.763
(100, 50) 0.951 0.954 0.947 0.944 0.900 0.896 0.893 0.895
(100, 100) 0.996 0.995 0.995 0.993 0.974 0.976 0.969 0.973

(P3) (50, 50) 0.395 0.397 0.397 0.402 0.289 0.291 0.297 0.287
(100, 50) 0.503 0.504 0.501 0.496 0.393 0.417 0.413 0.412
(100, 100) 0.705 0.713 0.709 0.707 0.521 0.510 0.517 0.512

(P4) (50, 50) 0.326 0.310 0.319 0.308 0.216 0.225 0.221 0.221
(100, 50) 0.356 0.359 0.355 0.356 0.318 0.312 0.332 0.336
(100, 100) 0.555 0.569 0.574 0.567 0.406 0.394 0.394 0.402

T 1
KS T 2

KS

(L1) (50, 50) 0.032 0.034 0.034 0.037 0.025 0.028 0.026 0.028
(100, 50) 0.029 0.038 0.035 0.029 0.035 0.034 0.029 0.020
(100, 100) 0.034 0.040 0.040 0.038 0.025 0.028 0.022 0.026

(L2) (50, 50) 0.050 0.047 0.051 0.049 0.029 0.028 0.032 0.032
(100, 50) 0.038 0.040 0.035 0.043 0.033 0.033 0.029 0.037
(100, 100) 0.054 0.045 0.042 0.050 0.046 0.033 0.037 0.048

(P1) (50, 50) 0.409 0.409 0.401 0.397 0.210 0.183 0.208 0.208
(100, 50) 0.586 0.593 0.593 0.598 0.360 0.358 0.362 0.372
(100, 100) 0.802 0.812 0.800 0.809 0.457 0.431 0.452 0.469

(P2) (50, 50) 0.788 0.806 0.795 0.784 0.497 0.481 0.515 0.506
(100, 50) 0.927 0.934 0.920 0.915 0.754 0.756 0.732 0.732
(100, 100) 0.992 0.988 0.988 0.992 0.862 0.871 0.869 0.873

(P3) (50, 50) 0.296 0.290 0.301 0.289 0.155 0.127 0.145 0.146
(100, 50) 0.454 0.444 0.449 0.433 0.216 0.215 0.212 0.225
(100, 100) 0.631 0.634 0.630 0.609 0.269 0.254 0.280 0.262

(P4) (50, 50) 0.224 0.239 0.224 0.220 0.099 0.104 0.104 0.101
(100, 50) 0.313 0.319 0.326 0.314 0.173 0.183 0.183 0.177
(100, 100) 0.464 0.486 0.456 0.470 0.226 0.258 0.240 0.243
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Table 3

Observed rejection frequencies in 1000 simulated data sets for the tests based on the test
statistics T1 and T2. The critical values obtained by bootstrap

model (n1, n2) h : cv 0.10 0.20 0.30 cv 0.10 0.20 0.30

T1 T2

(L1) (50, 50) 0.046 0.046 0.052 0.045 0.040 0.051 0.045 0.047
(100, 50) 0.035 0.032 0.035 0.031 0.041 0.044 0.041 0.041
(100, 100) 0.040 0.038 0.040 0.041 0.048 0.053 0.046 0.052

(L2) (50, 50) 0.070 0.067 0.076 0.069 0.055 0.061 0.056 0.058
(100, 50) 0.043 0.045 0.043 0.041 0.040 0.041 0.034 0.037
(100, 100) 0.058 0.056 0.052 0.060 0.063 0.063 0.057 0.059

(P1) (50, 50) 0.562 0.566 0.553 0.556 0.361 0.358 0.371 0.367
(100, 50) 0.693 0.686 0.679 0.679 0.466 0.480 0.488 0.490
(100, 100) 0.895 0.896 0.887 0.894 0.543 0.541 0.546 0.547

(P2) (50, 50) 0.928 0.926 0.926 0.917 0.726 0.716 0.738 0.738
(100, 50) 0.968 0.971 0.961 0.956 0.850 0.857 0.869 0.859
(100, 100) 0.997 0.997 0.995 0.993 0.937 0.936 0.935 0.938

(P3) (50, 50) 0.427 0.431 0.424 0.440 0.298 0.294 0.300 0.301
(100, 50) 0.581 0.580 0.565 0.566 0.367 0.356 0.376 0.381
(100, 100) 0.743 0.737 0.744 0.742 0.432 0.421 0.412 0.400

(P4) (50, 50) 0.328 0.326 0.331 0.319 0.194 0.192 0.206 0.203
(100, 50) 0.381 0.380 0.383 0.383 0.238 0.240 0.249 0.248
(100, 100) 0.573 0.574 0.581 0.572 0.306 0.308 0.309 0.313

Table 4

Observed rejection frequencies in 1000 simulated data sets for the tests based on the critical
values obtained from the asymptotic null distribution of T1 for several error distributions

and cross-validation bandwidths

model (n1, n2) errors: N(0, 1) t5/
√

5/3 t7/
√

7/5 Exp(1)− 1

(L2) (100, 100) 0.065 0.065 0.063 0.082
(200, 100) 0.052 0.086 0.083 0.088
(200, 200) 0.051 0.067 0.070 0.061
(400, 200) 0.050 0.083 0.070 0.045
(400, 400) 0.041 0.064 0.046 0.051

(L3) (100, 100) 0.100 0.077 0.066 0.088
(200, 100) 0.062 0.082 0.086 0.090
(200, 200) 0.066 0.073 0.073 0.070
(400, 200) 0.055 0.077 0.074 0.041
(400, 400) 0.051 0.065 0.051 0.063

(P4) (100, 100) 0.494 0.374 0.378 0.264
(200, 100) 0.542 0.348 0.390 0.289
(200, 200) 0.796 0.532 0.614 0.391
(400, 200) 0.859 0.582 0.664 0.432
(400, 400) 0.968 0.776 0.876 0.596

(P5) (100, 100) 0.917 0.669 0.729 0.518
(200, 100) 0.936 0.740 0.831 0.587
(200, 200) 0.992 0.872 0.946 0.755
(400, 200) 0.997 0.927 0.975 0.847
(400, 400) 0.999 0.966 0.996 0.939
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Table 5

p-values for testing for the equality of the conditional variance functions for the data set
concerning expenditures of Dutch households

asymptotic bootstrap

h T 1
CM T1 T 1

CM T 2
CM T 1

KS T 2
KS T1 T2

0.20 0.011 0.395 0.207 0.101 0.123 0.135 0.428 0.735
0.25 0.028 0.380 0.321 0.296 0.378 0.350 0.387 0.688
0.30 0.028 0.368 0.349 0.269 0.386 0.302 0.387 0.615
0.35 0.045 0.384 0.417 0.280 0.344 0.263 0.377 0.509
0.40 0.049 0.435 0.443 0.274 0.450 0.247 0.435 0.470
0.45 0.078 0.509 0.588 0.247 0.439 0.241 0.536 0.435
0.50 0.083 0.597 0.602 0.239 0.477 0.237 0.647 0.419

7. Application to data

To illustrate our testing procedure we will use a data set concerning monthly
expenditures of Dutch households. The variable ‘log of the total monthly ex-
penditure’ is considered as a covariate and ‘log of the expenditure on food’ is
considered as the response. See [7, 25] for more details on these data. In the
latter paper, the equality of the regression curves of households of 2, 3 and 4
members was tested and the equality between the regression curves of 3-member
households (43 observations) and 4-member households (73 observations) was
accepted. Here we move one step further in the comparison of the regression
models and test for the equality of the conditional variance functions. Table 5
shows the p-values obtained from the asymptotic null distribution for T1 and
T 1
CM and from the bootstrap for the six test statistics with fixed bandwidths

ranging from 0.20 and 0.50 (the support of the covariates is approximately bet-
ween 9.5 and 11.5). The results are quite homogeneous, as all test statistics,
except the asymptotic version of T 1

CM , lead to the acceptance of the equality of
the conditional variance functions. As we have seen in the simulations presented
in Section 6, the approximation of the asymptotic null distribution of the T 1

CM

is not satisfactory, specially for small sample sizes. Since here we are working
with 43 and 73 observations, the results for this test statistic are not reliable,
and we should only consider its bootstrap version.

8. Conclusions

In this paper, we have constructed and studied six tests for the equality of k
conditional variances. To do so, we compare the ECDF and ECF of the error
terms estimated nonparametrically under H0 and H1. Under some regularity
conditions, the proposed tests are consistent against any fixed alternative and
are able to detect contiguous alternatives converging to the null at a rate n−1/2.
The assumptions needed to derive these properties are weaker for the ECF-
based test statistics. Specifically, no requirement is imposed on the distributions
of the errors. An approximation of the asymptotic null distribution has been
proposed and the performance of each test has been evaluated by means of
some simulations. The proposed approximation works, in the sense of providing
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type I errors close to the nominal values, specially when the sample sizes are
large (at least 200). For smaller sample sizes it is recommended to approximate
the null distribution through a bootstrap mechanism.

The estimation of the conditional variance functions has been also studied
in the econometric literature when the data present dependence structure (see
for example [9, 28, 20]). The proposed tests could be extended to this setting
by assuming mixing conditions on the data and using appropriate results for
the nonparametric estimators for the variance and regression functions in the
same line of [6], who tested for a constant variation coefficient in regression
models with stationary data and used the results about kernel estimators with
dependent data given in [13].

Although the results in this paper are presented for local-constant and local-
linear weights variance estimators, in practice, it is well-known that the local-
linear variance estimator may take negative values. In our simulations and ap-
plication to real data we used the local-constant estimator to estimate the con-
ditional variance functions, as it guarantees the positiveness of the estimate.
There are other possibilities to obtain positive estimators, such us, for instance,
the local-exponential estimator studied by [28]. Under suitably adapted con-
ditions, the procedures and the results in this paper can be extended for the
local-exponential and other conditional variance estimators.

The above extensions, as well as others motivated by recent applications (for
instance, in casual inference, [14]) constitute fields of future research.

Appendix

We now sketch the proofs of the results stated in Sections 1–4. With this aim
we first give some preliminary results, some of them are of independent interest.

A.1. Preliminary results

Under Assumption (A1), and consequently under Assumption A, we have that,

for 1 ≤ j ≤ k, supx∈R |m̂j(x) − mj(x)| = op(n
−1/4
j ), supx∈R |σ̂j(x) − σj(x)| =

op(n
−1/4
j ), and supx∈R |f̂j(x) − fj(x)| = op(n

−1/4
j ). This, together with some

routine calculations, show that

sup
x∈R

∣∣∣∣∣σ̂2
j (x)− σ2

j (x)−
1

njfj(x)

nj∑
s=1

Kh(Xjs − x)
[
{Yjs −mj(x)}2 − σ2

j (x)
]∣∣∣∣∣

= op(n
−1/2). (9)

Also, from the equality

σ̂j(x)− σj(x) =
σ̂2
j (x)− σ2

j (x)

2σj(x)
− {σ̂j(x)− σj(x)}2

2σj(x)
,
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it follows that,

sup
x∈R

∣∣∣∣∣σ̂j(x)− σj(x)−
σ̂2
j (x)− σ2

j (x)

2σj(x)

∣∣∣∣∣ = op(n
−1/2). (10)

So, by the definition of σ̂0(x) and σ0(x), we also have that supx∈R |σ̂0(x) −
σ0(x)| = op(n

−1/4) and

sup
x∈R

∣∣∣∣∣∣σ̂0(x)− σ0(x)−
k∑

j=1

πj(x)
σ̂2
j (x)− σ2

j (x)

2σ0(x)

∣∣∣∣∣∣ = op(n
−1/2). (11)

Lemma 9. Suppose that Assumption (A1) holds. Then,

(i) For 1 ≤ j ≤ k,

∫
σ̂j(x)− σj(x)

σj(x)
fj(x)dx =

1

2nj

nj∑
s=1

(
ε2js − 1

)
+ op(n

−1/2).

(ii) ∫
σ̂0(x)− σ0(x)

σ0(x)
fj(x)dx

=

k∑
v=1

1

2nv

nv∑
s=1

πv(Xvs)
fj(Xvs)

fv(Xvs)

σ2
v(Xvs)

σ2
0(Xvs)

(
ε2vs − 1

)
+ op(n

−1/2).

Proof. From (9) and (10), we get∫
σ̂j(x)− σj(x)

σ0(x)
fj(x)dx

=
1

2nj

nj∑
s=1

∫
Kh(Xjs − x)

[
{Yjs −mj(x)}2 /σ2

j (x)− 1
]
dx+ op(n

−1/2).

Part (i) follows from the above equality by making the change of variable
Ujs = (Xjs−x)/h and applying a Taylor’s development. Part (ii) can be proved
similarly by using (9) and (11).

Lemma 10. Let ϕ̃εj (t) =
1
nj

∑nj

l=1 exp(itεjl), ϕ̂εj (t) =
1
nj

∑nj

l=1 exp(itε̂jl), and

similarly define ϕ̃ε0j (t) and ϕ̂ε0j (t). Suppose that Assumption (A1) holds. Then,
for 1 ≤ j ≤ k,

(i)

ϕ̂εj (t) = ϕ̃εj (t) + i
t

nj

nj∑
l=1

exp(itεjl)
mj(Xjl)− m̂j(Xjl)

σj(Xjl)
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+ i
t

nj

nj∑
l=1

exp(itεjl)
σj(Xjl)− σ̂j(Xjl)

σj(Xjl)
εjl

+ tRj,1(t) + t2Rj,2(t),

with supt |Rj,s(t)| = op(n
−1/2), s = 1, 2.

(ii)

ϕ̂ε0j (t) = ϕ̃ε0j (t) + i
t

nj

nj∑
l=1

exp(itε0jl)
mj(Xjl)− m̂j(Xjl)

σ0(Xjl)

+ i
t

nj

nj∑
l=1

exp(itε0jl)
σ0(Xjl)− σ̂0(Xjl)

σ0(Xjl)
ε0jl

+ tR0j,1(t) + t2R0j,2(t),

with supt |R0j,s(t)| = op(n
−1/2), s = 1, 2.

Proof. Using a Taylor’s development, we get

ϕ̂εj (t)− ϕ̃εj (t) = i
t

nj

nj∑
l=1

(ε̂jl − εjl) exp(itεjl) + t2Rj(t)
1

nj

nj∑
l=1

(ε̂jl − εjl)
2,

with supt |Rj(t)| = Op(1). Part (i) follows from the equality

ε̂j − εj =
mj(Xj)− m̂j(Xj)

σ̂j(Xj)
+

σj(Xj)− σ̂j(Xj)

σ̂j(Xj)
εj

=
mj(Xj)− m̂j(Xj)

σj(Xj)
+

{mj(Xj)− m̂j(Xj)}{σj(Xj)− σ̂j(Xj)}
σj(Xj)σ̂j(Xj)

+
σj(Xj)− σ̂j(Xj)

σj(Xj)
εj +

{σj(Xj)− σ̂j(Xj)}2
σ(Xj)σ̂j(Xj)

εj .

Similarly, one can prove (ii).

Lemma 11. Let g be a bounded function. Suppose Assumption (A1) holds.
Then,

it
√
nj

nj∑
l=1

εjl exp(itεjl)g(Xjl)
σ̂v(Xjl)− σv(Xjl)

σv(Xjl)

=
t

2
ϕ′
εj (t)

√
nj

nv

nv∑
s=1

(ε2vs − 1)g(Xvs)
fj(Xvs)

fv(Xvs)
+ tRj,v(t),

with supt |Rj,v(t)| = op(1), 1 ≤ j, v ≤ k.

Proof. From (9) and (10),

it
√
nj

nj∑
l=1

exp(itεjl)εjlg(Xjl)
σ̂v(Xjl)− σv(Xjl)

σv(Xjl)
=

it

2

√
njHjv + tR1(t),
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where supt |R1(t)| = op(1) and

Hjv(t) =
1

njnv

nj∑
l=1

nv∑
s=1

Uv(Xjl, εjl;Xvs, εvs; t),

with

Uv(X1, ε1;X2, ε2; t)

= ε1 exp(itε1)
g(X1)

fv(X1)
Kh(X1 −X2)

[
{mv(X2) + ε2σv(X2)−mv(X1)}2

σ2
v(X1)

− 1

]
.

• If j �= v, then, for every t, Hjv(t) is a two sample U-statistic of degree (1, 1)
with kernel Uv(Xjl, εjl;Xvs, εvs; t). Its Hájek projection, H ′

jv(t), is given by

H ′
jv(t) = −iϕ′

εj (t)
1

nv

nv∑
s=1

(ε2vs − 1)g(Xvs)
fj(Xvs)

fv(Xvs)
+R′

jv(t)

where supt |R′
jv(t)| = Op(h

2). Moreover,

V ar{Hjv(t)−H ′
jv(t)} ≤ 1

njnv
E{U2

h(Xj , εj ;Xv, εv; t)} = O(n−1
j n−1

v h−1).

Therefore,

√
njHjv(t) = −iϕ′

εj (t)

√
nj

nv

nv∑
s=1

(ε2vs − 1)g(Xvs)
fj(Xvs)

fv(Xvs)
+Rjv(t), (12)

with supt |Rjv(t)| = op(1).
• If j = v, then

Hjj(t) =
K(0)

n2
jh

nj∑
l=1

εjl exp(itεjl)(ε
2
jl − 1)

g(Xjl)

fj(Xjl)
+

nj − 1

2nj
Hj(t),

where, for every t, Hj(t) is a one sample U-statistic of degree 2 with kernel
Uj(Xjl, εjl;Xjs, εjs; t)+Uj(Xjs, εjs;Xjl, εjl; t). Arguments very similar to those
employed for the case j �= v can be used to show that

√
njHj(t) = −2iϕ′

εj (t)
1

√
nj

nj∑
s=1

(ε2js − 1)g(Xjs) +Rj(t),

with supt |Rj(t)| = op(1). Since

√
nj

K(0)

n2
jh

∣∣∣∣∣
nj∑
l=1

εjl exp(itεjl)(ε
2
jl − 1)

g(Xjl)

fj(Xjl)

∣∣∣∣∣ ≤ M√
nh2

1

nj

nj∑
l=1

|εjl|3,

for some positive constant M , we conclude that Hjj(t) also satisfies (12) with
j = v. This proves the result.
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A.2. Proofs of main results

Proof of Theorem 1. (i) The direct implication is trivial. To prove the converse
implication, assume that ε0j and εj have the same distribution. They will also
share the same moments. Now, because of the independence of εj and Xj , we
get

E(ε20j) = E(ε2j ) ⇒ E{σ2
j (Xj)/σ

2
0(Xj)} = 1, and

E(ε40j) = E(ε4j ) ⇒ E{σ4
j (Xj)/σ

4
0(Xj)} = 1.

Hence, E[(
σ2
j (Xj)

σ2
0(Xj)

− 1)2] = 0, for 1 ≤ j ≤ k, and so we deduce that H0 holds.

(ii) Let ε (respectively, ε0) be a random variable with CDF Fε (respectively,
Fε0). Note that ε (respectively, ε0) is the mixture of the random variables
{εj , 1 ≤ j ≤ k} (respectively, {εj0, 1 ≤ j ≤ k} ) with probabilities {pj , 1 ≤
j ≤ k}. As for part (i), using the fact that E(ε2j ) = 1 and E(ε4j ) = E(ε41) > 0,
for 1 ≤ j ≤ k, we obtain

E(ε20) = E(ε2) ⇒
k∑

j=1

pjE{σ2
j (Xj)/σ

2
0(Xj)} = 1, and

E(ε40) = E(ε4) ⇒
k∑

j=1

pjE{σ4
j (Xj)/σ

4
0(Xj)} = 1.

Hence,
∑k

j=1 pjE[(
σ2
j (Xj)

σ2
0(Xj)

− 1)2] = 0. Since pj > 0, we conclude that H0 is

true.

Proof of Theorem 2. From the proof of Theorem 1 in [1],

F̂ε0j (t) =
1

nj

nj∑
l=1

I(ε0jl ≤ t) + tfε0j (t)

∫
σ̂0(x)− σ0(x)

σ0(x)
fj(x)dx

+ fε0j (t)

∫
m̂j(x)−mj(x)

σ0(x)
fj(x)dx+ op(n

−1/2),

(13)

and

F̂εj (t) =
1

nj

nj∑
l=1

I(εjl ≤ t) + tfεj (t)

∫
σ̂j(x)− σj(x)

σj(x)
fj(x)dx

+ fεj (t)

∫
m̂j(x)−mj(x)

σj(x)
fj(x)dx+ op(n

−1/2),

(14)

uniformly in t, where fε0j denotes the density corresponding to Fε0j . The desired
results follow directly from (13) and (14).

Proof of Theorem 4. From the proof of Lemma 1 in [1], we have that

1

nj

nj∑
l=1

I(εjl ≤ t) =
1

nj

nj∑
l=1

I(ε0jl ≤ t) + Fεj (t)− Fε0j (t) + op(n
−1/2), (15)



1848 J. C. Pardo-Fernández et al.

uniformly in t. Observe that

σ0(x)

σj(x)
= 1− n−1/2σ0(x)

σj(x)
δj(x) = 1− n−1/2δj(x) + n−1σ0(x)

σj(x)
δ2j (x).

Using this and a Taylor’s development leads to

Fε0j (t) = E

[
Fεj

{
t
σ0(Xj)

σj(Xj)

}]
= Fεj (t)− n−1/2tfεj (t)E [δj(Xj)] + o(n−1/2),

(16)

uniformly in t,

sup
t

|fεj (t)− fε0j (t)| = O(n−1/2), and sup
t

|tfεj (t)− tfε0j (t)| = o(1). (17)

From (13)–(17), after some routine calculations, using the fact that σj(Xj)/
σ0(Xj) = 1 + n−1/2δj(Xj), we obtain that,

√
nj

{
F̂εj (t)− F̂ε0j (t)

}
=p

1/2
j tfεj (t)E [δj(Xj)] +

t

2
fεj (t)Zn,j + op(1),

uniformly in t, where Zn,j is defined in (5).

Proof of Theorem 6. First observe that

ϕ̂εj (t)− ϕ̂ε0j (t)

=
{
ϕ̂εj (t)− ϕ̃εj (t)

}
−

{
ϕ̂ε0j (t)− ϕ̃ε0j (t)

}
+

{
ϕ̃εj (t)− ϕ̃ε0j (t)

}
. (18)

We have that∫
|ϕ̂εj (t)− ϕ̃εj (t)|2w(t) ≤

2

nj

∑
l

(ε̂jl − εjl)
2

∫
t2w(t)dt = op(1),

and, similarly,
∫
|ϕ̂ε0j (t)− ϕ̃ε0j (t)|2w(t) = op(1). On the other hand,∫ ∣∣ϕ̃εj (t)− ϕ̃ε0j (t)

∣∣2 w(t)dt
=

1

n2
j

nj∑
r,s=1

{Iw(εjr − εjs) + Iw(ε0jr − ε0js)− 2Iw(εjr − ε0js)} ,

with Iw as defined in (7), is a V -statistic of degree 2 with a bounded kernel and

thus (see [26]) it converges to its expected value
∫ ∣∣ϕεj (t)− ϕε0j (t)

∣∣2 w(t)dt. We

conclude that 1
nT1

p−→ τ1. The limit of 1
nT2 can be similarly derived.

Proof of Theorem 7. Using a Taylor’s development, we get

ϕ̃ε0j (t)− ϕ̃εj (t) = i
t

nj

nj∑
l=1

(ε0jl − εjl) exp(itεjl) + t2R0j(t)
1

nj

nj∑
l=1

(ε0jl − εjl)
2,
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with supt |R0j(t)| = Op(1). This, together with the fact that

ε0j − εj =

{
σj(Xj)

σ0(Xj)
− 1

}
εj = n−1/2δj(Xj)εj , (19)

leads to

√
nj

{
ϕ̃ε0j (t)− ϕ̃εj (t)

}
= p

1/2
j tϕ

′

εj (t)E [δj(Xj)] + tR
(1)
0j (t) + t2R

(2)
0j (t), (20)

with supt |R
(s)
0j (t)| = op(1), s = 1, 2.

Now using (11), (10), (19) and Lemmas 11 and 10, we obtain that{
ϕ̂εj (t)− ϕ̃εj (t)

}
−
{
ϕ̂ε0j (t)− ϕ̃ε0j (t)

}
= i

t

nj

nj∑
l=1

exp(itεjl)
m̂j(Xjl)−mj(Xjl)

σj(Xjl)

{
σj(Xjl)

σ0(Xjl)
− 1

}

+
t

2
ϕ′
εj (t)

k∑
v=1

1

nv

nv∑
s=1

(ε2vs − 1)πv(Xvs)
fj(Xvs)

fv(Xvs)

{
σ2
j (Xvs)

σ2
0(Xvs)

− 1

}

− t

2
ϕ′
εj (t)

1
√
nj

Zn,j + tR
(2)
0j,1(t) + t2R

(2)
0j,2(t)

= − t

2
ϕ′
εj (t)

1
√
nj

Zn,j + tR
(2)
0j,1(t) + t2R

(2)
0j,2(t), (21)

where Zn,j is given by (5) and supt |R
(2)
0j,s(t)| = op(n

−1/2), s = 1, 2.
Combining (18), (20) and (21), we conclude that

√
nj

{
ϕ̂εj (t)−ϕ̂ε0j (t)

}
= p

1/2
j tϕ

′

εj (t)E [δj(Xj)]−
t

2
ϕ′
εj (t)Zn,j+tR1j(t)+t2R2j(t),

with supt |Rsj(t)| = op(1), s = 1, 2.
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