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insofar as their discovery may lead to major understanding
of evolutive processes in living organisms.

Since Stormo [37] reviewed strategies to find motifs with
computer algorithms, a large amount of algorithms have
been developed. A major classification of these algorithms
is done according to the type of DNA data sequence used
to find motifs. Although there is no universal consensus on
how to divide algorithms based on the input data, three major
groups are generally considered [7]:

1) The algorithms that use information from coregulated
genes from a single genome.

2) The algorithms that use information of a single gene
in multiple species.

3) The algorithms that use information from phylogenetic
footprints.

Despite the large amount of works found and grouped
in classes 2) (see [31], [38], [30]) and 3) (see [1], [12],
[46]), this paper is focused on providing a general overview
on current algorithms that make use of the information
that promoter sequences of coregulated genes generate.
Actually, these methods can also be subdivided into mul-
tiple strategies, but this work only examines those based
on dictionaries, ensembles and artificial intelligence-based
techniques, as they represent the classical and the leading
ones, respectively.

The rest of the paper is structured as follows. Section II
discusses the most relevant works recently published related
to dictionary-based algorithms. On the other hand, Section
III presents ensemble algorithms used to find motifs in DNA.
As for Section IV, it presents the latest AI works in the
DNA motifs discovery field. Finally, Section V provides a
brief summary of strengths and weaknesses of the reviewed
strategies.

II. DICTIONARY-BASED ALGORITHMS

These are enumerative algorithms which, in contrast
to heuristic methods, exhaustively cover the space of all
possible motifs for a specific motif model description.
The methodology progressively considers over-represented
words, from short to long. The over-representativeness of
a long word is computed as the weighted average of the
short words in the current dictionary which could be part
of the long word. Although this methodology is, in essence,
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Abstract—Many approaches are currently devoted to find 
DNA motifs in nucleotide sequences. However, this task remains 
challenging for specialists nowadays due to the difficulties 
they find to deeply understand gene regulatory mechanisms, 
especially when analyzing binding sites in DNA. These sites or 
specific nucleotide sequences are known to be responsible for 
transcription processes. Thus, this work aims at providing an 
updated overview on strategies developed to discover meaning-
ful motifs in DNA-related sequences, and, in particular, their 
attempts to find out relevant binding sites. From all existing 
approaches, this work is focused on dictionary, ensemble, and 
artificial intelligence-based algorithms since they represent the 
classical and the leading ones, respectively.

Keywords-motifs discovery, DNA sequences, regulatory 
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I. INTRODUCTION

Genes are the main biological units of heredity and can 
be understood as a string of bases or sequence of chem-
icals whose apparently random combination encodes the 
hereditary information as well as genetic traits (individual 
characteristics). In particular, genes are composed of four 
different bases: Adenine (A), thymine (T), cytosine (C) and 
guanine (G).

Deoxyribonucleic acid (DNA) appears as a double helix of 
paired bases, i.e. two paired rungs of base sequences. But the 
matching of both rungs is not random. Instead, bases always 
appear matched with the same pair, adenine with thymine 
(A–T) and cytosine with guanine (C–G). That is, each of 
the two rungs consists of a sequence of bases (ATCCTG...) 
and the other one consists of the complementary sequence 
of bases (TAGGAC...).

In DNA helices it is usual to find particular sequences of 
bases, called binding sites, devoted to regulate transcriptions 
factors or factors that regulate gene expression by activating 
or inhibiting transcription machinery. In other words, from 
all the sequence of bases, these short specific sequences 
(typically from five to twenty pair long, versus 220 million 
existing base pairs long) are bound by more than one DNA-
binding protein complexes.

Therefore, DNA motifs are meaningful base sequence pat-
terns that identify binding sites responsible for transcription 
factors, and are known to appear in different genes and 
more than once within a gene. Finding motifs in DNA is a 
challenging task that many researchers are fielding nowadays



word counting based, it can filter out many spurious motifs
which are over-represented owing to their overlapping with
some real motifs. Therefore, it has a higher accuracy than
a pure word counting method. However, computing the
over-representativeness of a longer word by concatenating
shorter ones is problematic, and may miss substantial over-
represented motifs.

In this sense, van Helden et al. [40] developed a motif
finding algorithm. The program counts all nucleotide occur-
rences within the sequence, and estimates their statistical
significance. An essential prerequisite is that the system has
to be calibrated to take into account the uneven nucleotide
representation in the genome. Although conceptually simple,
the algorithm proved efficient for extracting motifs from
most of the yeast (Saccharomyces cerevisiae) regulatory
families analyzed. These motifs had been previously found
by laboratory experimental analysis. Furthermore, putative
new regulatory sites were predicted within upstream regions
of coregulated genes. However, its range of detection is
limited to relatively simple patterns that include short motifs
with highly conserved cores.

Later, van Helden et al. [41] extended their method to find
transcription factors forming a dimer, with each unit binding
to a similar small element, accounting for the symmetry of
the site. The fixed spacing in the DNA site is due to the
existence of a linker domain in the transcription factor, sep-
arating the DNA-binding and dimerization domains. These
are called spaced dyad motifs, for the detection of spaced
pairs shared by a set of upstream regions. The method is
based on a systematic counting of pairs of short words
separated by a fixed distance (space dyads) followed by
a calculation of their statistical significance. Because the
spacer can be different for distinct motifs, the spacer length
is systematically varied between 0 and 16. The significance
of this type of motif can be computed based on the combined
score of the two conserved parts in the input data or based on
the estimated complete dyad frequency from a background
dataset. There is a big drawback in van Helden et al.
[40] approach: there are no variations allowed within an
nucleotide.

This problem was addressed by Tompa [39] with a pro-
posal of an exact dictionary-based method. Tompa took into
account both the absolute number of occurrences and the
background distribution and created a table that, for each
sequence 𝑠 of a given length, records the number 𝑛 of
sequences containing an occurrence of 𝑠. There is a fixed
number of substitutions 𝑠𝑏 allowed for the occurrences. The
existence of a motif is calculated based on the probability of
having 𝑛 occurrences in a random sequence according to the
background distribution. Thus, Tompa proposed an efficient
algorithm to estimate the probability that a single random
sequence contains at least one occurrence of the sequence
𝑠 from a set of background sequences based on a Markov
chain.

Brazma et al. [2] used a dictionary-based approach that
searches exhaustively for an a priori unknown regular
expression-type patterns that are over-represented in a given
set of sequences. This proposal is capable to discover
various subclasses of regular expression type patterns of
unlimited length common to as few as ten sequences from
thousands. It was applied in two cases, (1) discovery of
patterns in the complete set of > 6000 sequences taken
upstream of the putative yeast genes and (2) discovery of
patterns in the regions upstream of the genes with similar
expression profiles. Among the highest rating patterns, most
had matches to known motifs in yeast.

Sagot [35] introduced a dictionary-based approach for
motif finding that is based on the representation of a set
of sequences with a suffix tree. Vanet et al. [42] used
suffix trees to search for single motifs in whole genomes
of bacteria. Marsan and Sagot [29] extended this method
to search for combinations of motifs. Representation of
upstream sequences as suffix trees gave a large number
of possible combinations, however, the implementation was
still efficient.

Bussemaker [4] presented MobyDick, suitable for discov-
ering multiple motifs from a large collection of sequences.
This approach formalizes how one would proceed to deci-
pher a text consisting of a long string of letters written in
an unknown language in which words are not delineated.
The algorithm is based on a statistical mechanics model
that segments the string probabilistically into words and
concurrently builds a dictionary of these words. MobyDick
can simultaneously find hundreds of different motifs, each
of them present in only a small subset of the sequences, e.g.,
between 10 and 100 copies within the 6000 upstream regions
in the yeast genome. The algorithm does not need an external
reference dataset to calibrate probabilities and finds the
optimal lengths of motifs automatically. They illustrated and
validated the approach by segmenting a scrambled English
novel, by extracting regulatory motifs from the entire yeast
genome, and by analyzing data generated from a few DNA
microarray experiments.

Wang [43] approached the problem of motif finding from
the perspective of steganography [44]. They thought of the
sequences as if they formed a stegoscript in which functional
transcription factor binding motifs were secret messages
embedded in a text of background sequences.They devel-
oped WordSpy, a dictionary based motif finding algorithm,
integrating a word counting method and a statistical model.
The word counting method is used to examine every possible
word and the statistical model to capture over-represented
motifs and background words in the given sequences. The
algorithm presents some advantages. First, it does not re-
quire a background sequence, because it is capable of
modeling background words based on the steganographic
approach to the problem. This is an important feature for
applications where a true background sequence model is
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hard to determine. Second, WordSpy measures the over-
representativeness of a word relative to that of all the other
words modeled by the statistical model, resulting in an
accurate measure of the over-representativeness. This feature
helps to identify motifs of exact length. Third, the algorithm
can incorporate gene expression profiling information to
separate biologically significant motifs from spurious ones.
Fourth, WordSpy is a discriminative motif finding algorithm.
It can directly take as input two sets of sequences and find
motifs that are over-represented in one set of sequences
but not in the other set. Finally, the algorithm can conduct
a whole genome analysis on the motifs that discovers the
fidelity of the motifs to the given sequences.

Sharov and Minoru [36] presented CisFinder, a software
that generates a comprehensive list of motifs enriched in
a set of DNA sequences and describes them with position
frequency matrices. A new algorithm was designed to es-
timate these matrices directly from counts of words with
and without gaps; then the matrices are extended over gaps
and flanking regions and clustered to generate non-redundant
sets of motifs. The algorithm successfully identified binding
motifs for twelve transcription factors in embryonic stem
cells based on published chromatin immunoprecipitation
sequencing data. Furthermore, CisFinder successfully iden-
tified alternative binding motifs of transcription factors and
motifs for known and unknown co-factors of genes associ-
ated with the pluripotent state of ES cells. CisFinder also
showed robust performance in the identification of motifs
that were only slightly enriched in a set of DNA sequences.

III. ENSEMBLE ALGORITHMS

Many motif finders have been proposed using different
approaches. They have shown to be effective for discov-
ering motifs in small living organisms, such as yeast [10].
However, their effectiveness remains unproven when dealing
with huge DNA sequences belonging to more complex living
forms.

In an attempt to solve this problem, Burset and Guigó [3]
presented the idea of combining the outputs of several gene
finding algorithms. Each algorithm typically covers only a
small subset of the known binding sites, with relatively
little overlap between the algorithms. They analyzed 9 motif
finding programs with 570 DNA sequences. The dataset
contained 2649 exons, and 174 of them where predicted by
all programs and only 33 of them where not predicted by
any of them. It is therefore advised to combine the results
from multiple motif discovery tools, ideally covering a range
of motif descriptions and search algorithms.

Harbison et al. [8] observed that different motif finders
have different strengths. They successfully identified more
binding sites by combining results of six motif finders
compared to using only single finder. In fact, the benchmark
datasets from Tompa et al. [10] also support this. By simply
taking the union of all binding sites predicted by 10 selected

motif finders, the sensitivity can be increased by more than
double over each selected motif finder. However, the union
of all predicted sites could contain a lot of noise therefore
decreasing specificity. It is not trivial to distinguish the real
binding sites from the noise.

Hu and Kihara, [16] proposed an algorithm which sys-
tematically combines predictions from five popular motif
discovery algorithms. All the possible combinations of one
to five component algorithms are examined. To be able to
combine predictions of different runs from different compo-
nent algorithms an algorithm termed EMD was developed.
They tested their approach on two different types of datasets.
One dataset is generated from the intergenic regions of
the E. coli genome, and the other is comprised of the
input sequences of different lengths generated by adding
margins of different sizes to each known site. The best
ensemble algorithm performed 22.4% better than the best
single component algorithm in terms of the nucleotide level
accuracy.

Wijaya et al. [45] presented MotifVoter, which, given a
set of sequences, executes 𝑚 different motif finders, each
reporting 𝑛 motifs. Note that each motif also defines a set
of predicted binding sites. MotifVoter comprises two stages.
(1) Motif filtering: in the first stage, MotifVoter processes
the candidate motifs predicted by the 𝑚 motif finders and
attempts to remove the spurious motifs. The main idea is
to find a cluster of motifs with high conformity based on a
certain motif similarity measure. (2) Sites extraction: based
on the candidate motifs retained in Stage 1, MotifVoter then
identifies a set of sites with high confidence that they are
real. They evaluated their approach on Tompa’s benchmark
and obtained a 95.2% of accuracy in the sensitivity. In E.coli
dataset, MotifVoter achieved 95.7%.

Liu et al. presented EVIGAN [25] (EVidence Integra-
tion for Genome ANnotation using a Network). EVIGAN
employs a dynamic Bayes net (DBN), a type of prob-
abilistic graphical model that can accommodate multiple
(possibly incomplete) gene predictions and other lines of
evidence, yielding consensus gene models that maximize
the probability of the evidence provided. The DBN model
supports a wide variety of evidence types, including com-
putational gene predictions, sequence homology search re-
sults, EST alignments and splice site predictions and it
is easily extensible to incorporate other evidence types,
such as proteomics hits, predicted domain architecture,
SAGE tags, or Affymetrix tiling array data. EVIGAN’s
annotation process simulates an idealized human curator:
different evidence sources are compared, those that tend to
agree in particular contexts are assigned higher confidence
and a consensus model is then created that reflects those
confidence estimates. EVIGAN can produce a single con-
sensus gene model or an ordered list of the n-best gene
models, along with associated posterior probabilities for
each. They applied EVIGAN to three large-scale datasets:
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The ENCODE regions of the human genome [33], and the
genomes of Plasmodium vivax and Arabidopsis thaliana [9].
These experiments demonstrate that for all three species,
EVIGAN achieves better performance than any individual
data source used as evidence.

Rubio-Escudero et al. [34] formulated the motif finding
as a classification problem. It was interpreted as a decision
between which section of a sequence is protein coding and
which is not. The methodology uses a multi-objective ap-
proach to extract the best methods aggregations by maximiz-
ing the specificity and sensitivity of their predictions individ-
ually. It was applied to the EGASP sets from the ENCODE
Genome Annotation Assessment Project (EGASP) [13],
[11]. These datasets contain manually curated fragments of
the human genome originating from the ENCODE project
[33]. This dataset was selected by the EGASP assessment
because the genes encoded in these regions were not used
to train any particular gene predictor. Therefore, it is not a
biased dataset. The aggregation of the results from various
methods is accomplished using the union and intersection
operators [14]. The methodology obtained successful results
and consistently outperformed even the best individual ap-
proach and, in some cases, produced dramatic improvements
in sensitivity and specificity. Moreover, they observed that
even the worst methods contributed to the aggregation with
more accurate programs.

IV. ARTIFICIAL INTELLIGENCE-BASED TECHNIQUES

This section explores the latest AI-based works published
in the field of DNA motifs discovery. In particular, this sec-
tion reviews approaches based on evolutionary techniques,
self-organized maps, clustering and support-vector machines
techniques.

Thus, a new multi-objective genetic algorithm (MO-GA)
was introduced in [47] for the dyad motif discovery issue. In
particular, the authors focused on optimizing three features:
The sum of pairs, the number of matches and the information
content. They also proposed new genetic operators to carry
out such a task. Another GA-based approach was described
in [26]. However, this time, the authors preferred to adopt
a mechanism to regulate the concentration so that both the
population diversity and vaccine mechanism are maintained
in order to inhibit degeneracy during the evolutive process.
Also in 2010, a GA was developed in [24]. This algorithm
used a stochastic optimization technique based on particle
swarm optimization (PSO). In particular, they proposed a
modification of the standard PSO algorithm to adapt it to
the discrete values that DNA sequences exhibit. The authors
claim that the approach is especially useful when gaps are
present in the motifs.

The application of self-organizing maps (SOM) can also
be found in the literature. Hence, a SOM-based clustering
algorithm was presented in [23], in which the authors
extracted binding sites in DNA sequences. The main novelty

of this work was to consider two different types signals
in DNA sequences, showing that treating them separably
better results can be achieved. On the contrary, three self-
organizing neural networks were presented in [27] to find
short motifs. Another SOM-based technique called SOMIX
was introduced in [22] to discover binding sites in a set
of regulatory regions. The tool proposed a intra-node soft
competitive procedure in each node model to achieve max-
imum discrimination of motif from background signals, by
weighting two different models: position specific scoring
matrix and Markov chain. As it happened in [23] and [27],
this method was inserted in another SOM-based approach,
called SOMBRERO [28], that constructed models for motifs
that were structurally similar.

The use of clustering techniques is also a usually strategy
among researchers in this area. Thus, a hierarchical model
with variable number of clusters was described in [17]. In
particular, they used the Gibbs sampling strategy to allow
width variation for each of the motifs. Moreover, a tool
called Matlign based on hierarchical clustering was pre-
sented in [19]. The authors claimed that the tool was capable
of post-processing large collections of DNA sequence motifs
and of providing a non-redundant set of motifs, which
could be further associated to known regulatory elements.
Also, the well-known Fuzzy C-means (FCM) algorithm
was applied in [20] to identify motifs in some particular
regions of DNA sequences. The authors also tested K-means
and Expectation-Maximization algorithms, showing that the
fuzzy solution outperformed all others. The use of the K-
means, and in particular an improved version, has been also
explored in [5]. Thus, based on a previous enhancement
by Zhong et al. [48] to overcome the random initialization
problem associated to the original K-means version, the
authors proposed two granular computing models that use
FCM to split the dataset into smaller ones. Once divided,
they applied their own K-means clustering algorithm version
to every set to extract meaningful knowledge, reducing thus
time costs.

There are also some relevant works that made use of
support-vector machines (SVM) techniques. Thus, an ap-
proach that used one-class SVM algorithms to recognize
transcription factor binding sites was proposed in [18].
Its main feature lied on the assumption that there exist
correlations between transcription factors. The use of SVM
combined with evolutionary processes can be found in [21].
This time the authors developed a method to predict binding
proteins in DNA sequences. Thus, they created several SVM
modules that were successfully combined with position
specific scoring matrix (PSSM) profiles, a sort of evolu-
tionary information. Pavesi and Valentini [32] formalized
the problem of predicting genes’ functional information as
a classification problem, by using SVM with non-linear
kernels. The training of such SVMs were carried out by
means of both some particular DNA motifs and statistical
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procedures. Finally, another SVM classifier can be found in
[6], in which the authors used stochastic grammar rules to
find regulatory DNA sequences that were indeed evaluated
by means of SVM.

V. CONCLUSIONS

Gene expression regulatory mechanisms are widely stud-
ied among biologists and computer scientists. Particularly,
most of their efforts are directed towards analyzing protein
generation in the so-called binding sites. The discovery of
these particular sequence of bases (or motifs) has generated
numerous works insofar as they provide meaningful infor-
mation on evolutive processes.

Many different strategies and subsequent approaches have
been published. Consequently, experts need to have a piece
of advice when selecting one or another algorithm in order
to find motifs the best possible way. Although all of them
are limited in what they can find [15], and it has been a
challenging task to conduct studies on performance com-
parisons of motif finding tools, the scientific community
agrees in labeling ensemble algorithms as the most effective
ones owing to their capability of retrieving results from
cooperative different methods.

In contrast, algorithms based on dictionaries have proven
to be useful when analyzing small organisms but insufficient
in big organisms. However, their inherent simplicity makes
them as popular as widespread, and many experts continue
conducting research on this topic nowadays.

Despite dictionary-based and ensembles approaches pro-
vides the researcher with reasonably good results, the dis-
covery of DNA motifs has to deal with enormous amounts of
data, being difficult to mine them with classical methodolo-
gies. Therefore artificial intelligence techniques have turned
into necessary tools to speed up the full analysis of such
data, as the other ones usually are able to partially face the
complexities associated to such a problem.

None of these algorithms claim to be the panacea, and
they are not indeed. However, it is an undeniable fact that the
combination of all their strengths are leading to important
discoveries that are helping to better understand transcription
mechanisms in genes and therefore in human beings.
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