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Abstract

In this paper we analyze the relaxed form of a shape optimization
problem with state equation

{

− div
(

a(x)Du
)

= f in D

boundary conditions on ∂D.

The new fact is that the term f is only known up to a random pertur-
bation ξ(x, ω). The goal is to find an optimal coefficient a(x), fulfilling

the usual constraints α ≤ a ≤ β and

∫

D

a(x) dx ≤ m, which minimizes

a cost function of the form
∫

Ω

∫

D

j
(

x, ω, ua(x, ω)
)

dx dP (ω).

Some numerical examples are shown in the last section, to stress the
difference with respect to the case with no perturbation.

1 Introduction

The field of shape optimization problems received in the last years a partic-
ular attention from the mathematical community, also in view of the many
possible applications in high-tech instruments and structures, where increas-
ing the performances or decreasing the weight, even by a small percentage,
could be crucial. Several books on the field have been written, exploring
the various aspects (theoretical, numerical, modelling, . . . ) that intervene
in this very rich subject; we quote for instance [1], [3], [4], [6], [9], [11], [18],
[19].
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The general framework of a shape optimization problem is the following:
given a bounded domain D of R

d and a given right-hand side f , for every
subdomain A ⊂ D a PDE

EAu = f

is considered, with given boundary data. The PDE above produces a unique
solution uA which, inserted into an integral cost function, provides the final
cost

F (A) =

∫

D

j
(

x, uA(x),DuA(x)
)

dx.

The shape optimization problem, under a volume constraint on the class of
admissible choices, is then

min
{

F (A) : A ⊂ D, |A| ≤ m
}

.

Due to a strong instability of the class of domains, very often an optimal
shape does not exist, and the optimization problem is usually relaxed into a
more treatable form, where the main unknown is the coefficient of an elliptic
PDE on the whole set D. In the present paper we consider the simplest case,
where the PDE is of a linear elliptic type

− div
(

a(x)Du
)

= f in D (1)

with the boundary conditions on ∂D of Dirichlet type

u = u0 on ∂D.

The new fact is that the right-hand side f in (1) is only known up to a
random perturbation; more precisely, if (Ω,F, P ) is a probability space, we
assume that

f(x, ω) = f(x) + ξ(x, ω),

where the random perturbation ξ is such that
∫

Ω
ξ(x, ω) dP (ω) = 0 for a.e. x ∈ D.

There are few references in the literature of this sort of random or
stochastic optimal design problems; a general Γ-convergence framework was
introduced in [7], while an optimal design problem in a finite dimensional
setting was considered in [2].

The homogenization method (see [1], [19]) and the classical tools of non-
convex variational problems (in particular, Young measures, see [16], [17])
are the two mostly used approaches in the mathematical literature to ana-
lyze optimal design problems. We will use the Homogenization Theory in
order to obtain the existence of a solution and some necessary conditions of
optimality.

In the last section we consider some simple cases of loads f(x, ω) and
we perform a numerical analysis of the optimal configurations, showing the
differences between the deterministic case f(x) and the perturbed one f(x)+
ξ(x, ω).
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2 The optimization problem

We consider a bounded open set D ⊂ R
d with a Lipschitz boundary, two

constants α and β such that 0 < α ≤ β, and a given value m ∈ (α|D|, β|D|).
We also consider a probability space (Ω,F, P ) and a random map f :

Ω → L2(D) that we write as

f(x, ω) = f(x) + ξ(x, ω),

where ξ has the property
∫

Ω
ξ(x, ω) dP (ω) = 0 for a.e. x ∈ D.

For every coefficient a(x) verifying

α ≤ a(x) ≤ β,

∫

D

a(x) dx ≤ m

we consider the linear elliptic PDE
{

− div
(

a(x)Du
)

= f(x, ω)
u = 0 on ∂D,

(2)

which provides a unique solution ua(x, ω). Finally, we consider a cost func-
tional of the form

F (a) =

∫

Ω

[

∫

D

j
(

x, ω, ua(x, ω)
)

dx
]

dP (ω) (3)

where j(x, ω, u) is measurable, l.s.c. in u, and such that for suitable c > 0
and Λ ∈ L1(D × Ω)

j(x, ω, u) ≥ Λ(x, ω) − c|u|2 ∀(x, ω, u).

More general cost functionals, of the form

F (a) =

∫

Ω

[

∫

D

j
(

x, ω, ua(x, ω),Dua(x, ω)
)

dx
]

dP (ω)

could also be considered, but we limit ourselves to the simpler case (3),
having in mind the energy

j(x, ω, u) = −f(x, ω)u

and the compliance
j(x, ω, u) = f(x, ω)u.

The optimization problem we consider is

min
{

F (a) : α ≤ a(x) ≤ β,

∫

D

a(x) dx ≤ m
}

. (4)
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Note that the optimal coefficient we look for is deterministic, that is it does
not depend on the random variable ω.

Besides to problem (4) we will consider, mainly for the numerical pur-
poses, the penalized one

min
{

F (a) + λ

∫

D

a(x) dx : α ≤ a(x) ≤ β
}

(5)

where λ is the Lagrange multiplier of the mass constraint.

3 The state equation

The approach we follow in order to prove the existence of solution of the
optimization problem (4) consists in checking that our problem can be seen
as a relaxed optimal design problem of another auxiliary optimal design
problem and from this relaxed character we deduce the existence of a solu-
tion. We focus on the Homogenization Method. Throughout this section,
we denote by χn ∈ L∞(D; {0, 1}), n = 1, 2, ..., a sequence of characteristic
functions and An ∈Md×d a sequence of tensors of the form:

An(x) = αχn(x)Id + β(1 − χn(x))Id

with 0 < α ≤ β.

3.1 The Homogenization Method

The homogenization method is based on the concept of H-convergence (see
[1], [13], [14], [15]). We say that a sequence of tensors {An}n∈N H-converges
to the tensor A∗ ∈ L∞(D,Mn×n) if, for any f such that f(·, ω) ∈ H−1(D)
P -a.e. ω ∈ Ω, the sequence {un} of solutions of

{

− div
(

An(x)∇un(x, ω)
)

= f(x, ω) in D

un = 0 on ∂D.

satisfies
{

un(·, ω) ⇀ u(·, ω) in H1
0 (D), P -a.e. ω ∈ Ω

An∇un(·, ω) ⇀ A∗∇u(·, ω) in L2(D)d, P -a.e. ω ∈ Ω

where u(·, ω) is the solution of the homogenized equation P -a.e. ω ∈ Ω

{

− div
(

A∗(x)∇u(x, ω)
)

= f(x, ω) in D,

u = 0 on ∂D.

We shall write An
H
−→ A∗ to indicate this kind of convergence.
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We consider A,B ∈ Md×d, {χn}n∈N ⊂ L∞(D, {0, 1}) a sequence of
characteristics functions, {An}n∈N the sequence of matrices

An(x) = χn(x)A + (1 − χn(x))B.

We assume (which always occurs for a subsequence) that there exist θ ∈
L∞(D, [0, 1]) and A∗ ∈ L∞(D,Md×d) such that

χn(x)
∗
⇀ θ(x) in L∞(D, [0, 1])

and
An

H
−→ A∗.

In this case A∗ is called the homogenized tensor obtained by the composition
of the two phases A and B, in proportions θ and 1−θ respectively, and with
the microstructure defined by the sequence {χn}n∈N .

In this sense the homogenized tensor A∗ is characterized by three com-
ponents, the phases A and B and the proportion θ. Therefore an important
issue is to identify all possible homogenized tensors once fixed these three
components, this is the so-called G-closure problem.

Fortunately, for the case of two isotropic matrices, the G-closure in the
deterministic case is well known (see [1], [10], [13], [15]). We will prove that
our “random” G-closure remains equal to the deterministic one. We denote
Gθ and G̃θ the G-closure associated with the deterministic and random
equations.

Theorem 1. Given θ ∈ L∞(D; [0, 1]) the G-closure of the two isotropic
tensors αId and βId with proportions θ and (1− θ) respectively, is the set of
symmetric matrices with eigenvalues λ1, λ2, ..., λd such that,

λ−θ ≤ λi ≤ λ+
θ 1 ≤ i ≤ d

d
∑

i=1

1

λi − α
≤

1

λ−θ − α
+

d− 1

λ+
θ − α

d
∑

i=1

1

β − λi
≤

1

β − λ−θ
+

d− 1

β − λ+
θ

where λ+
θ and λ−θ are the arithmetic and harmonic means of α and β with

proportions θ,

λ−θ =
( θ

α
+

1 − θ

β

)−1
and λ+

θ = θα+ (1 − θ)β.

Proof. We will prove that Gθ = G̃θ.
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We start proving that Gθ ⊂ G̃θ and we consider A∗ ∈ Gθ. Therefore
there exists a sequence of matrices {An}n∈N of the form αχnId+β(1−χn)Id
with χn

∗
⇀ θ, such that for every right-hand side f(x) the solutions un of

{

− div
(

An(x)∇un(x)
)

= f(x) in D

un = 0 on ∂D

satisfy
{

un ⇀ u in H1
0 (D),

An∇un ⇀ A∗∇u in L2(D)d,

where u is the solution of the homogenized equation
{

− div
(

A∗(x)∇u(x)
)

= f(x) in D

u = 0 on ∂D.

It is enough to observe that when f(x) is replaced by f(x, ω) the above
convergence holds P -a.e. ω ∈ Ω, and therefore A∗ ∈ G̃θ.

We prove now that G̃θ ⊂ Gθ and we take A∗ ∈ G̃θ. Therefore there
exists a sequence of matrices {An}n∈N of the form αχnI + β(1 − χn)I with

χn
∗
⇀ θ, such that for every right-hand side f̃(x, ω) the solutions ũn of

{

− div
(

An(x)∇ũn(x, ω)
)

= f̃(x, ω) in D

ũn = 0 on ∂D
(6)

satisfy
{

ũn(·, ω) ⇀ ũ(·, ω) in H1
0 (D), P -a.e. ω ∈ Ω

An∇ũn(·, ω) ⇀ A∗∇ũ(·, ω) in L2(D)d, P -a.e. ω ∈ Ω
(7)

where ũ(·, ω) is the solution of the homogenized equation P -a.e. ω ∈ Ω

{

− div
(

A∗(x)∇ũ(x, ω)
)

= f̃(x, ω) in D

ũ = 0 on ∂D.
(8)

Integrating the above expressions (6), (7), (8) with respect to the random
variable ω ∈ Ω and setting

u(x) =

∫

Ω
ũ(x, ω) dP (ω), un(x) =

∫

Ω
ũn(x, ω) dP (ω),

and f(x) =

∫

Ω
f̃(x, ω) dP (ω), one has

{

− div
(

An(x)∇un(x)
)

= f(x) in D

un = 0 on ∂D.

and
{

un ⇀ u in H1
0 (D),

An∇un ⇀ A∗∇u in L2(D)d,
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where u is the solution of the homogenized equation
{

− div
(

A∗(x)∇u(x)
)

= f(x) in D

u = 0 on ∂D.

¿From the generality of f̃ we can deduce that A∗ ∈ Gθ.

3.2 Relaxation

We now consider the classical optimal design problem

(Oc) min I(χ) =

∫

Ω

[

∫

D

j(x, ω, uχ(x, ω)) dx
]

dP (ω)

subject to

χ ∈ L∞(Ω; {0, 1}), with A = αIdχ+ βId(1 − χ),
− div

(

A(x)∇u(x, ω)
)

= f(x, ω) in D,

u = 0 on ∂D,

P -a.e. ω ∈ Ω, and to the volume constraint
∫

D

χ(x) dx ≤ L,

with L ∈ (0, |D|).
The lack of optimal solutions for problems of the type (Oc) is well known

even in the deterministic case (see [12]).
The basic idea for the relaxation process consists in considering a larger

class of admissible designs, in order a new (relaxed) problem on this larger
class admits optimal solutions. Having in mind the above Theorem 1, we
consider the space of generalized designs

GD =
{

(θ,A∗) ∈ L∞(D, [0, 1]) ×Md×d : A∗ ∈ Gθ(x) a.e. x ∈ D
}

.

Therefore we define the relaxed version (Or) of the above optimal design
problem as

(Or) min I(θ,A∗) =

∫

Ω

[

∫

D

j(x, ω, u(x, ω)) dx
]

dP (ω)

subject to
θ ∈ L∞(D; [0, 1]), with A∗ ∈ Gθ,

− div
(

A∗(x)∇u(x, ω)
)

= f(x, ω) in D,

u = 0 on ∂D,

(9)

P -a.e. ω ∈ Ω, and the volume constraint
∫

D

θ(x) dx ≤ L.
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Theorem 2. (Or) is a relaxation of (Oc) in the sense that

1. the infima of both problems coincide

2. there are optimal solutions for the relaxed problem (Or).

Proof. See for instance [1] Section 3.2, Theorem 3.2.1.

4 Optimal solutions

In this section we consider the above problems (Oc) and (Or) in the special
case when the cost functionals are either the compliance

j(x, ω, u) = f(x, ω)u

or the energy
j(x, ω, u) = −f(x, ω)u

and we will prove that in these situations our original design problem

(O) min I(a) =

∫

Ω

∫

D

j(x, ω, ua(x, ω))dx dP

subject to,
a ∈ L∞(D), with α ≤ a ≤ β,

− div
(

a(x)∇u(x)
)

= f in D,

u = 0 on ∂D,
∫

D
a(x) dx = m

admits optimal solutions.

Theorem 3. In the cases either of the compliance or of the energy the
optimization problem (4) admits a solution.

We know that the (Or) problem admits optimal solution (since is the
relaxed problem of (Oc)), we check that these optimal solutions are solutions
of our problem (O) from which we deduce the well-posed character of our
problem.

We analyze the optimality condition for (Or) for the matrix A∗. We
denote by p the adjoint state, which is the unique solution in H1

0 (D) P -a.e.
ω ∈ Ω of the adjoint state equation







− div
(

A∗(x)∇p(x, ω)
)

=
∂j(x, ω, u)

∂u
in D,

p = 0 on ∂D,
(10)

We remark that from (10) it follows that in the compliance case we have
p = u and in the energy case we have p = −u.
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We fix the density θ ∈ L∞(D; [0, 1]) and we introduce the Lagrangian

L(M,φ,ψ) =

∫

Ω

∫

D

j(x, ω, φ(x, ω)) dx dP (ω) +

∫

Ω

∫

D

[

div
(

M(x)∇φ(x, ω)
)

+ f(x, ω)
]

ψ dx dP (ω)

for any M ∈ L∞(D;Md×d) and φ,ψ ∈ H1
0 (D) P -a.e. ω ∈ Ω. We compute

the partial derivative for any variable.
It is clear that

〈

∂
∂ψ

L(M,φ,ψ);ψ1

〉

= 0 taking φ = u solution of (9). We

then determine the solution p so that, for all φ1 ∈ H1(D) P -a.e. ω ∈ Ω, we
have

〈 ∂

∂φ
L(M,φ, p);φ1

〉

= 0,

which leads to the formulation of the adjoint problem (10).
Finally, from I(·,M) = L(M,u, p) it is easy to compute

〈 ∂

∂M
L(M,u, p);M1

〉

= −

∫

Ω

∫

D

M1∇u · ∇p dx dP (ω).

Therefore it is easy to deduce that our cost functional is Gâteaux differen-
tiable with respect to the matrix variable and its derivative in the direction
M1 is given by the above formula with u and p solutions of the state and
adjoint equation respectively. Hence if M∗ if optimal, the optimality condi-
tion

〈 ∂

∂M
L(M∗, u, p);M −M∗

〉

≥ 0 ∀M ∈ Gθ

becomes

−

∫

D

∫

Ω
(M −M∗)∇u · ∇p dP (ω) dx ≥ 0 ∀M ∈ Gθ. (11)

¿From the optimality condition (11) we obtain

∫

D

∫

Ω
M∗∇u · ∇p dP (ω) dx = max

M∈Gθ

∫

D

∫

Ω
M∇u · ∇p dP (ω) dx. (12)

Using the algebraic expression

4My · z = M(z + y) · (z + y) −M(z − y) · (z − y),

we have that for any M ∈ Gθ

4M∇u ·∇p ≤ max
A∈Gθ

A(∇u+∇p) · (∇u+∇p)− min
A∈Gθ

A(∇u−∇p) · (∇u−∇p)

and using the identification of Gθ we obtain

4M∇u · ∇p ≤ λ+
θ |∇u+ ∇p|2 − λ−θ |∇u−∇p|2.
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Having in mind that in our problem u = p for the compliance and u = −p
for the energy, the necessary condition above reads

∫

D

∫

Ω
M∗∇u · ∇u dP (ω) dx =

∫

D

∫

Ω
λθ|∇u|

2 dP (ω) dx (13)

with λθ = λ+
θ for the compliance and λθ = λ−θ for the energy.

If we analyze the optimality condition (13) we obtain that λθ is an eigen-
value of M∗ and ∇u(x, ω) is an eigenvector P -a.e ω ∈ Ω, i.e.,

M∗∇u = λθ∇u P -a.e. ω ∈ Ω (14)

where u is the solution of the state equation.
For the compliance case u = p and

M∗∇u · ∇u = λ+
θ |∇u|

2,

there exist several matrices in Gθ with this property, and it is enough to
take a rank one laminate with normal direction of lamination ~n orthogonal
to ∇u and the optimal volume fraction λ+

θ .
For the energy case u = −p and

M∗∇u · ∇u = λ−θ |∇u|
2,

there exist an unique matrix in Gθ with this property which corresponds to
a rank one laminate with normal direction of lamination ~n parallel to ∇u
and the optimal volume fraction λ−θ .

We would like to stress that for any case the optimal matrix M∗ is a first
order laminate with deterministic optimal volume fraction λθ and random
direction of lamination according with the random value of ∇u.

Therefore, from the analysis of the optimality condition we concluded
that the optimal matrix M∗ ∈ Gθ verifies the condition (14). We remark that
this condition does not imply that the optimal matrix M∗ is the isotropic
matrix λθId; the important conclusion of (14) is that λθ is an eigenvalue of
M∗ and ∇u is an associated eigenvector, where u is the solution of the state
equation. In particular, this implies that the optimal value from the (Or) is
attained on the simpler problem

(O) min I(θ) =

∫

Ω

∫

D

j(x, ω, u(x, ω))dx dP (ω)

subject to,
θ ∈ L∞(D; [0, 1]),

− div
(

λθ(x)∇u(x)
)

= f in D,

u = u0 on ∂D,
∫

Ω θ(x) dx = L

Finally, the proof of Theorem 3 reduces to the fact that for θ ∈ L∞(D; [0, 1])
one has that λθ ∈ L∞(D; [α, β]), in particular it is enough to take a = λθ to
deduce the existence of optimal solution of our original problem (O).
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5 Numerical analysis of the optimal design prob-

lem

We approach in this section the numerical resolution of the problem (O)
for the compliance case for which j(x, ω, u) = u(x)f(x, ω) with Dirichlet
boundary condition, for which the cost can be written as

∫

Ω

∫

D

a(x)|∇u(x, ω)|2 dx dP (ω).

We first describe an algorithm of minimization and then present some nu-
merical experiments. We treat the problem

(O) min I(a) =

∫

D

∫

Ω
u(x)(f(x) + ξ(x, ω)) dP (ω) dx

subject to,

a ∈ L∞(D), with α ≤ a ≤ β,

− div
(

a(x)∇u
)

= f + ξ in D, P -a.e. ω ∈ Ω
u = 0 on ∂D,
∫

D
a(x) dx = m

(15)

where ξ is a random variable ξ = ξ(x, ω). Similar computations are also
made for the energy case j(x, ω, u) = −u(x)f(x, ω).

5.1 Algorithm of minimization

We present the resolution of the optimal design problem (O) using a gradient
descent method. In this respect, we compute the first variation of the cost
function with respect to a.

For any η ∈ R
+, η ≪ 1, and any ã ∈ L∞(D), we associate to the

perturbation aη = a + ηã of a the derivative of I with respect to a in the
direction ã as follows:

∂I(a)

∂a
· ã = lim

η→0

I(a+ ηã) − I(a)

η
.

Theorem 4. The first derivative of I with respect to a in any direction ã

exists and takes the form

∂I(a)

∂a
· ã = −

∫

D

ã
(

∫

Ω
∇u∇p dP (ω)

)

dx, (16)

where u is the solution of (15) and p is the solution in H1
0 (D) of the adjoint

problem
{

− div
(

a(x)∇p
)

= f + ξ in D, P -a.e. ω ∈ Ω
p = 0 on ∂D.

(17)
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Proof. We introduce the Lagrangian

L(a, φ, ψ) =

∫

D

∫

Ω
φ(x, ω)(f(x) + ξ(x, ω)) dP (ω) dx +

∫

D

∫

Ω

[

div
(

a(x)∇φ(x, ω)
)

+ f(x) + ξ(x, ω)
]

ψ dx dP (ω)

for any a ∈ L∞(D; [α, β]) and φ,ψ ∈ H1
0 (D) P -a.e. ω ∈ Ω. We compute the

partial derivative for any variable.
It is clear that

〈

∂
∂ψ

L(a, φ, ψ);ψ1

〉

= 0 taking φ = u solution of (15). We

then determine the solution p so that, for all φ1 ∈ H1(D), we have

〈 ∂

∂φ
L(a, φ, p);φ1

〉

= 0,

which leads to the formulation of the adjoint problem (17).
Finally, it is easy to compute

〈 ∂

∂a
L(a, u, p); ã

〉

= −

∫

D

ã
(

∫

Ω
∇u∇p dP (ω)

)

dx. (18)

Next, writing that I(a) = L(a, u, p), we obtain (16) from (18).

In order to take into account the volume constraint on a, we introduce
the Lagrange multiplier γ ∈ R and the functional

Iγ(a) = I(a) + γ

∫

D

a(x) dx.

Using Theorem 4, we then obtain easily that the first derivative of Iγ is

∂Iγ(a)

∂a
· ã = −

∫

D

ã
(

∫

Ω
∇u∇p dP (ω)

)

dx+ γ

∫

D

ã(x) dx,

which leads us to define the following descent direction:

ã(x) =
(

∫

Ω
∇u∇p dP (ω) − γ

)

∀x ∈ D. (19)

In this way, for any function η ∈ L∞(D,R+) with ‖η‖L∞(D) small enough,
we have Iγ(a + ηã) ≤ Iγ(a). The multiplier γ is then determined so that,
for any function η ∈ L∞(D,R+), ‖a+ ηã‖L1(D) = m, leading to

γ =

(

∫

D

a(x)dx −m
)

+

∫

D

η

∫

Ω
∇u∇p dP (ω) dx

∫

D

η(x) dx

(20)
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where the function η is chosen such that a + ηã ∈ [α, β] for all x ∈ D. A
simple and efficient choice consists of taking η(x) = ε(a(x) − α)(β − a(x))
for all x ∈ D with ε small and positive.

Finally we show the descent algorithm to solve numerically the optimiza-
tion problem (O).

We consider 0 < α ≤ β, m ∈ (α|D|, β|D|) and ε < 1, ε1 ≪ 1 data of the
problem, the structure of the algorithm is as follows.

• Initialization of the density a0 ∈ L∞(D; [α, β]);

• for k ≥ 0, iteration until convergence (i.e., |Iγ(ak+1) − Iγ(ak)| ≤
ε1|Iγ(a0)|) as follows:

– compute the solution uak of (15) and then the solution pak of
(17), both corresponding to a = ak;

– compute the descent direction ã defined by (19), where the mul-
tiplier γ is defined by (20);

– update the density ak in D:

ak+1 = ak + ε(ak − α)(β − ak)ãk,

with ε ∈ R
+ small enough to ensure the decrease of the cost

function, ak+1 ∈ L∞(D, [α, β]).

5.2 Numerical experiments

In this section we implement the gradient descent algorithm explained in
the previous subsection. These sort of problems have been studied by other
authors ([1], [3], [5], [16]), and we will show the numerical results according
with previous numerical simulations of the previous authors.

We solve the problem (O) on the square domain D = (0, 1)2 for two
phases α = 1 and β = 2, the determinist part of the right-hand side of the
state equation f ≡ 1 and we consider the volume constraint m = α+β

2 = 1.5,
i.e. we can use the same amount of α or β mass. In order to simplify the
numerical computations we choose the random variable ξ with a discrete
distribution of probability. We consider two different cases for ξ:

• Case 1: ξ(x) = ±χD0
where D0 = [14 ,

3
4 ]2 ⊂ D

• Case 2: ξ(x) = ±χD1
where D1 = D \D0

and in both cases P ({ξ = χ}) = P ({ξ = −χ}) = 1
2 . It could be possible

that the algorithm fall down into local minima of I, for this reason, we
consider a constant initialization a0 = m, without any privilege for the
optimal localization.
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In the figures below we represent the corresponding optimal mass distri-
bution a. We show numerical results for full deterministic case and the two
random cases described above, all for the compliance and energy minimiza-
tion. The result are qualitatively different for any case.
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Figure 1: Optimal distribution for the full deterministic case. Left: Com-
pliance minimization. Right: Energy minimization.
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Figure 2: Optimal distribution for the random Case 1. Left: Compliance
minimization. Right: Energy minimization

With respect to the compliance minimization, we observe that the limit
densities follow a similar distribution, where the smaller amount of mass is
placed as a cross-shape. Taking as reference the picture of Figure 1 (the
deterministic case) we observe different densities for the two random cases.

14



Optimal design random
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Figure 3: Optimal distribution for the random Case 2. Left: Compliance
minimization. Right: Energy minimization

For the Case 1, where the random perturbation is at the middle of the square
a bigger amount of mass (the white color at the pictures) is distributed for
this place and the thickness of the cross is bigger at the corners (in order
to save the volume constraint) (see Figure 2). For the Case 2 the effect is
the inverse, in this case the random perturbation is near the boundary; the
optimal distribution consists in a smaller amount of mass in the middle and
a bigger concentration near to the boundary with a smaller thickness of the
cross (see Figure 3).

For the energy minimization, the optimal distribution is fully different
and it is in accord with previous analysis (see [1], [8]). We take again the
deterministic case as the reference design; for this case the simulations show
that a bigger amount of mass is placed at the corners and at a square in
the middle of the domain of design. For the Case 1 the optimal distribution
is very similar to the deterministic one, and the changes correspond with
placing a bit more of mass at the corners of the domain. For the Case 2,
the effect is the reverse, in this case there are less mass at the corners and
almost all the mass is placed at a square in the middle of the domain.

Finally, and in conclusion the numerical experiments indicate that under
random forces the optimal distribution consists in placing a bigger amount
of mass where this random force acts in, in order to take into account the
possibility for the load to have a random variation.
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Mathématiques et Applications 48, Springer-Verlag, Berlin (2005).

[10] Lurie K.A., Cherkaev A.V.: Exact estimates of conductivity of compos-
ites formed by two isotropically conducting media taken in prescribed
proportion. Proc. R. Soc. Edinb. A, 99 (1984), 71–87.

[11] Milton G.W.: The theory of Composites. Cambridge University Press,
Cambridge (2002).

[12] Murat F.: Contre-exemples pour divers problèmes où le contrôle inter-
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