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SMOOTHNESS PROPERTIES FOR THE OPTIMAL MIXTURE OF
TWO ISOTROPIC MATERIALS: THE COMPLIANCE AND
EIGENVALUE PROBLEMS*
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Abstract. The present paper is devoted to obtaining some smoothness results for the solution of
two classical control problems relative to the optimal mixture of two isotropic materials. In the first
one, the goal is to maximize the energy. In the second one, we want to minimize the first eigenvalue
of the corresponding elliptic operator. At least for the first problem it is well known that it does not
have a solution in general. Thus, we deal with a relaxed formulation. One of the applications of our
results is in fact the nonexistence of a solution for the unrelaxed problem. In this sense, we improve
a classical nonexistence result by Murat and Tartar for the maximization of the energy which was
obtained assuming the solution smooth. We also get a counterexample to the existence of a solution
for the eigenvalue problem which, to our knowledge, was an open problem.
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1. Introduction. A very classical problem in optimal design, which we will refer
as the compliance problem, consists in mixing two isotropic elastic materials in the
cross-section of a beam in order to minimize the torsion. This can be modeled as
follows: Assume the beam defined as  x (0, L) with Q@ C R? open and bounded and
the elastic materials given through their corresponding Lamé’s constants (A1, 1),
(A2, ti2). They are homogeneously distributed in the direction of the axis of the beam
in two sets wx (0, L) and (Q\w) x (0, L) with w C Q measurable. In the basis {z3 = 0},
the beam is not rotated, while in {z3 = L} it is rotated with small angle a. If the
volume and surface forces are neglected, the deformation of the beam v = (vy, va, v3)
is the solution of the elasticity system

—dive* =0 in Q x (0, L),
o*v =0 on dQ x (0,L), (c*v)3 =0 on Q x {0, L},
vy =vy =0 on Q x {0}, vy = —aLxy, vo =aLxy on Q x {L},

where v denotes the unitary outward vector and the stress tensor o* is given by

o* = (MXwx(0,0) + A2X(@\w)x(0,0)) (W) T 4 2(11 Xwx (0,1) + H2X(@\w)x (0,1)) €(V).

It can be proved (see, e.g., [11] for \y = A2, p1 = p2) that the components of o*
satisfy

* _ * _ * _ * _
071 = 039 = 033 = 075 =0,
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and, assuming () simply connected,
015 = 2a0a2u, 055 = —2a01u  in  x (0, L)
with wu, solution of the Dirichlet problem

{ —div (] "Xw + 15 Xonw)Vu) =1 in Q,

1.1
- u=0 on ON.

Our aim is to choose w such that the energy required to carry out the torsion is
maximal. This is equivalent to maximizing the potential energy given by

/ o re(v)dr = 2a2L/ (11 "X + 15 xonw) [VulPdzy das.
Qx(0,L) Q

Assuming g3 > peo, the solution is trivial and given by w = . The interesting
problem comes when for economic reasons, the quantity of the best material is limited
and then the choice w = € is not possible. Another classical application of the same
mathematical formulation is the optimal arrangement of two viscous fluids moving
parallel to the axis of a pipe (Poiseuille flow) in order to maximize the flux.

Using the characterization of (1.1) as a minimum problem and denoting a = puj ",
B =y ! the problem can be also modeled as

(1.2) min {/Q ((axw + Bxonw) [Vul? — Qu)dgc Cow€ HYNQ), |w] < /i} .

This problem has been studied in several papers. It is known that it does not have
a solution in general (see, e.g., [19], [20] for nonexistence results in optimal design).
Then it is usual to work with a relaxed formulation which can be obtained by using
the homogenization theory (see, e.g., [2], [21], [24], [26]). For (1.2), it is shown in [22]
that it consists in replacing the mixture ax. + Bxa\w by the harmonic mean of «
and 8 with respective proportions 6 and 1 — 6, where 6 € L>(; [0, 1]) represents the
density of the material o in the homogenized mixture. Thus, instead of (1.2), we have

(1.3) min{/Q <<g+%)l|VU|2—2u>d9€: u € Hy (), /Qﬁdx</<a}.

Although the solution can be not unique in general, it has been shown in [22] that for
every solution (u, 0), the density flux

9 1-06\""
1.4 =—-—4+—— \Y
(1.4 o= (2+357) v
is unique and there exists p > 0 such that

{zeQ: lo|>put CcwcC{reQ: |o>pu}

Therefore, if the measure of the set {|o| = p} has null measure, we get the existence
and uniqueness of a solution for the unrelaxed problem. Moreover, the interface of the
corresponding solution is the level curve {|o| = p}. Assuming it is smooth, it can also
be shown that it is a level curve for the state function u. However, these assumptions
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do not usually hold. Namely, for Q2 simply connected, the following interesting result
has been proved in [22]:

(1.5) if (1.3) has a solution (u,w) with w smooth, = ) is a circle.

A numerical study of (1.3) is carried out in [15] (see also [16]) by using a different
relaxation. It can be obtained from (1.3) by directly computing the minimum in 6 for
every u € H} ().

Our aim in the present paper is to obtain some smoothness results for the solutions
of (1.3) or more exactly for a generalized problem where €2 is a bounded open set in
RY with N > 2 and where the right-hand side 1 in (1.1) is replaced by an arbitrary
f € HY(Q). Similarly to (1.3), this provides

(1.6) min{/ﬂ <g+%)_l|VU|2dx—2<f,u>: we HL(Q), /QOda:S/e}.

Our results are based on the relaxed formulation given in [15]. They mainly refer to
the function o given by (1.4), which we recall is unique. Assuming € C11, we prove
(local smoothness is also obtained)

(1.7) feWw P(Q), p>1=0ccLP(Q)V,
(1.8) feLP(Q), p>N =0 c L®Q)",
o€ H{(Q)N,
(1.9) fewh Q) nL*(Q) =
{ aier—aj90i6L2(Q), 1§Z,]§N

We observe that (1.7) and (1.8) are equivalent to u € W1P(Q), p > 1, and u €
W1°(Q), respectively. The assertion u € WllocOO (©) has been previously obtained
in [16] as an application of the results in [6]. Thus, the main novelty of the above
theorem refers to the boundary estimates and especially to (1.9), which is the main
result of the paper. On the one hand, it shows that ¢ is once derivable. On the other
hand, it shows that the density function 6 is derivable in the orthogonal directions to
o or equivalently to Vu because these two vectors are parallel, i.e., 6 is derivable in
the direction of the level sets of w.

In a later work, we want to use the above result to estimate the error in the
numerical computation of the solution of (1.6). We refer to [4] for estimates in the
numerical study of some optimal design problems for two-phase materials in dimension
one. In the present paper, we observe that (1.9) has important consequences with
respect to the existence of a solution for the unrelaxed problem, i.e., where 6 is a
characteristic function. In such a case, the derivative in the orthogonal directions to
o can only vanish. We will show that this is very restrictive and allows us to improve
(1.5) by eliminating the strong restriction w smooth.

In [3], we have studied a problem related to (1.6), the energy problem, where
instead of maximizing the energy we want to minimize it. Sometimes this is also
called the compliance problem, playing the displacement the role of the torsion in our
case. The smoothness results we got are in some sense dual of the obtained in the
present paper. While here it is o, defined by (1.4), which is unique and once derivable,
for the energy problem it is the state function « which is unique and twice derivable.
As we will see in the proof of Theorem 3.1 below, to obtain our smoothness result,
we must deal with a linear elliptic problem where the matrix is bounded but not
uniformly elliptic (see (3.21) below). For the energy problem, we deal with a problem
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where the matrix is uniformly elliptic but not bounded. We mention that although in
the present paper our smoothness results are local, in [3] we are only able to obtain
global regularity.

Another classical problem in the optimal design of two-phase materials is choosing
a measurable subset w C 2 such that the first eigenvalue of the operator

u € Hy(Q) = —div((axw + ﬁXQ\w)VU) e HY(Q)

becomes minimal. It models, for example, the optimal distribution of two materials
in heat conduction in order to obtain the most insulated one.

For dimension one, the existence and characterization of a solution has been
obtained in [17]. For arbitrary dimension, assuming existence and regularity, some
optimality conditions have been obtained in [9, 10]. The results in this paper are de-
voted not only to the first eigenvalue but to an arbitrary one and refer to minimization
and maximization.

A more detailed study of the problem has been carried out when 2 is a ball. In
this case, the results in [1] show that there exists a solution and that the optimal
set w is an union of annuli. From some numerical computations, it was conjectured
in [8] that the optimal solution is in fact obtained by taking the bad material § in a
concentric ball to 2 and the good material « in the annulus around this ball. However,
taking « close to 8 an asymptotic calculus has shown that the result is more involved
and that other annuli can appear ([7], [14], [18]). In [7], the authors also give some
numerical results for domains different from a ball and S close to a.

In the present paper, we show that the problem of minimizing the first eigenvalue
is in fact very related to the previous one. For the relaxed formulation, it consists in
solving (1.6) for an arbitrary f € L*(Q2) with norm smaller or equal than 1 and then
minimizing in f. Thus, the smoothness results obtained for the previous problem also
apply for this one. As an application, we give a counterexample to the existence of a
solution for the unrelaxed eigenvalue problem which, to our knowledge, was an open
question. Namely, we show that although a solution always exists for a circle, this is
not true for a rectangle or an ellipse.

2. Preliminary results for the compliance problem. In this section, we
introduce the compliance problem and recall some well known results about it ([2],
6, [15], [16], [22]).

We consider a bounded open set Q C RY and two positive constants a, 5 > 0
with @ < (. Then, for a distribution f € H~'(Q) and a constant & € (0,]Q]), we
consider the control problem

max {/ (axw + Bxovw) |Vuw|2dx} ,
Q

(2.1) w C 2 measurable, |w| <k,
—div ((axw + ﬁxg\w) Vuw) =f inQ, u, € Hy ().

A different formulation can be obtained as follows: Choosing u,, as a test function in
the state equation in (2.1), we deduce

/Q (an + BXQ\w) |vuw|2dx = <f7 uw>
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and thus
/ (an + 6XQ\w) |Vuw|2d$ == (/ (an + 6XQ\w) |Vuw|2d$ - 2<.]Ea uw>> :
Q Q

Combining this equality with the classical characterization of w,, as the solution of a
minimum problem, we get

| (o + o) Vi s
(2.2)
= — min {/Q (axw + Bxoww) [Vul*de — 2<f,u>} .

u€H (Q)

Therefore, the control problem (2.1) is equivalent to

min {</Q (an + BXQ\w) |Vu|2dx - 2<f7 ’U,>} )

w C Q measurable, |w| <k, u€ HHQ).

(2.3)

Remark 1. From (2.3), it is clear that if we eliminate the volume restriction
|w| < K, then the solution of problem (2.1) is given by w = €. This restriction means
that although the material « is better than the material 3, it is also more expensive
and thus we want to use only a certain quantity x of such material.

It is known that problem (2.1) has no solution in general and thus it is necessary
to introduce a relaxation. Following [22], this can be obtained by replacing in (2.1)
the mixtures of materials of the form

(2.4) aXw + BXo\w, w C 2, measurable,
by the most general ones

0 1-0\"
2.5 24 =—7) . 6er>(o1]).
(25) (2+5°) @:[0.1)

These new mixtures are obtained from the previous ones by using a rank-one laminate
in the direction of the gradient of o and g with respective proportions # and 1 — 6.
Introducing

B—a 1=
2. = = _
(26) =28 g
we then get the following relaxed formulation for (2.1) or (2.3):
2
max de,
Q 14+ ch
(2.7) 0 € L>=(Q;10,1]), 0dx < K,
Q
. Vug - . 1
—dIVm = f m Q, Uy € HO (Q)
2
min{ 1|Zuc|9da:—2<f,u>},
(2.8) e
0 € L>°(9Q;1[0,1]), Odr <k, uc H ).
Q
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The solution @ of (2.7) is not unique in general, but reasoning similarly to [22] we can
prove that the product Vug/(1 4 ¢f) is independent of the solution 6 chosen. This is
given by the following theorem

THEOREM 2.1. There exists a unique function & € L*(Q)N such that for every 6
solution of (2.7), we have

VUé
1+ch

(2.9) o=
This function ¢ is characterized as the unique solution of

(2.10) min _ max /(1 + cO)|o|*da.
cer2(@)N [qb0de<r [
—dive=f 0<6<1

Moreover, a functioné is a solution of (2.7) if and only if it is a solution of

(2.11) max  min /(1 +c0)|o|de,
Jotde<n oceL2@)N o
0<6<1 —divo=f

and in this case the minimum in o for such 0 is given by 7.
Proof. By duality (see, e.g., [13, Chapter 1, section 7]), the solution ug of the
state equation in (2.7) is such that oy := Vug/(1 + ¢0) is the unique solution of

min / (1+c0)|o|*dz.
iy e

Thus, we have

\V4 2
(2.12) max [Vuo| dr = max  min / (1+c0)|o|*dz.
Jobdz<r [q 1+ ch Jgbdez<r cecrL2(@)N Jq
0<6<1 0<6<1 —divo=f

This proves that  is a solution of (2.7) if and only if it is a solution of (2.11).
Applying the min-max theorem, the right-hand side of (2.12) also agrees with
(2.10). Moreover, 0 is a solution of (2.12) and ¢ is a solution of (2.10) if and only if
(0, 0) is a saddle point.
Since for 6 fixed, the problem

min /(1 +c6)|ode
ceL2(@)N Jo
—divo=f
has as unique solution g, we then deduce that oy must be a solution of (2.10), but
this problem has a unique solution because as maximum (not just a supremum) of a

family of strictly convex functionals, the functional

o L*(Q)Y - max /(1 +cb)|o|*dax
Jooda<n [q
0<0<1
is strictly convex. O
A simple application of the Kuhn—Tucker theorem allows us to compute the max-
imum in @ in (2.11) for o = 6. This proves the following.
THEOREM 2.2. Define & € L*(Q)N by Theorem 2.1 and fi by

(2.13) f=min{p>0:|[{z € Q: |6(z) > pu}| < K}
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Then, if 0 is a solution of (2.7), it satisfies

A 1 if|o(z)| > 4,
2.14 0(x) =
244 ) {o if [6(2)] < i

Moreover, if i > 0, then

(2.15) /Qédx = K.

Remark 2. The constant i given by (2.13) is zero if and only if the solution of
problem

—Au=f in Q,
(2.16)
u=0 on 9N
satisfies
(2.17) {zeQ: |Vu(z) =0} > 19| — &

In such case every function 6 € L>(€; [0,1]) such that 6 = 1 in {z € Q : |Vu(z)| > 0}
and has an integral less or equal than « is a solution of (2.7).

Taking into account (2.14), equality (2.9), and —divé = f in Q, we get Theo-
rem 2.3 below. It is related to another relaxation formulation for problem (2.1), which
can be found in [15]. It can also be obtained from (2.8) computing the minimum in
0 for every u € H} ().

THEOREM 2.3. For [i given by (2.13), we define the positive convex function
F e W2>2(0,+00) by

5? if 0<s<j,
s — i f 1<s< 0
(2.18) F(s) = 20s —fi if p<s<(1+c)i,
2
S 2 .
+c if s> (1+c)p.
g ter Y s>U+oi

Then, zfé € L>(Q;[0,1]) is a solution of (2.7), the corresponding function ug is a
solution of

(2.19) min ){/QF(|Vu|)dx—2<f,u>}.

u€H (Q

Moreover, if i > 0, then every solution 0 of (2.7) can be obtained from the corre-
sponding state function u, by

0 if 0<|Vuy| < g,
o 1 |VUé| PN N
(2:20) 0(x) = A\ L) if p<|Vugl <140,
1 if [Vugl > (1+ o).

Remark 3. For a solution u of (2.19), we define 6 by (2.20) with u; replaced by
u. Since F' in Theorem (2.3) is not strictly convex, uniqueness for problem (2.19) can
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fail and thus, if 6 is a solution of (2.7), we can have u # uy, 6 # 6. However, taking
into account that F' is strictly convex outside the interval [fi, (1 + ¢)/i] and that the
function x € RY s |z| € R satisfies

if 2,y e RN,z #£y, |z +y| = |z| + |y = IN >0 such that y = Az,

we get

(2.21) Vu = Lt CGA Vu, a.e.in €.
1+co

The function 6§ € L>°(£2,; [0, 1]) is not necessarily a solution of (2.7) because its integral
can be strictly greater than x, but by (2.9) we have

Vu

T+ oo a.e. in Q)

a':

with & given by (2.2).

3. Some smoothness results for the compliance theorem. In this section,
we get some smoothness properties for the solutions of the relaxed problem (2.7). They
mainly refer to the function & defined by Theorem 2.1, which we recall is unique. As
we will see later, it has several applications relative to the nonexistence of a solution
for the unrelaxed problem (2.1).

THEOREM 3.1. We consider an open set U C RN such that UNKQ is of class C1!
and define 6 by Theorem 2.1. Then we have the following:

e For every p € [2,00) and every open set O € U, there exists C > 0, depending
on p and O, such that if f belongs to W~1P(UNQ), then & belongs to LP(ON
DN and

(3.1) 161 eoneyy < C (Ifllw-rewney + 1flm-1(2)) -

o For every p > N and every open set O € U, there exists C > 0, depending on
p and O, such that if f belongs to LP(U N ), then & belongs to L>(0O NQ)N
and

(3.2) 60 L 0noyy < C (Iflewney + 1l H-10)) -

e For every open set O € U, there exists C' > 0, depending on O, such that if
f belongs to WHHU N Q)N L2(U N Q), then & belongs to HX(O N Q)N and

(3.3)  ollmronayy <C A +Iflrzwne + IIflwriwne) + 1flla-1@) -
Moreover, the tangential component of 6 vanishes on U N OS2 and every solu-
tion 0 of (2.7) satisfies that 0;06; — 0;06; belongs to L>(ONQ), 1 <i,j <N
with
(3.4)
10i06; — 0,05 L2(0na)~
<O+ Ifllezwne) + Iflwirwney + 1 flla-1@), 1 <4, <N.
o If f belongs to WL (U NQ)NLA(U NQ) and there exists a solution 6 of (2.7)
taking only the values 0 and 1, then
(3.5) 9,06; — 0,06, =0 inUNQ, 1<4,j<N,
(3.6) curl(6) =0 in UNQ.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/10/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

THE COMPLIANCE AND EIGENVALUE PROBLEMS 2327

Theorem 3.1 clearly implies the following.
COROLLARY 3.2. Assume Q € CY! and define 6 by Theorem 2.1. Then we have
the following:
e For every p € [1,00), there exists C > 0, depending on p, such that if f
belongs to W—L1P(Q), then & belongs to LP(Q)N and

(3.7) 61l r)n < Cllfllw-1.0(0)-

e [or every p > N, there exists C > 0 such that if f belongs to LP(S2), then &
belongs to L>=(Q)N and

(3.8) 6]l @~ < CllfllLee)-

o There exists C > 0 such that if f belongs to WH1(Q) N L2(Q), then & belongs
HY Q)N and
(3.9) 161y < C L+ Ifll2) + 1flwrie)) -

Moreover, the tangential component of & vanishes on 0S2.

Remark 4. Observe that (3.1) and (3.2) prove that if § is a solution of (2.7)
and f belongs to W=1P(UNQ), p > 2 or f belongs to LP(U N ), p > N, then the
corresponding state function u is in WHP(0O N Q) and W (0 N (), respectively.

Remark 5. Since (3.5), (3.6) refer to interior points in €2, they hold without any
smoothness assumptions on U.

Remark 6. Taking into account that if (é,ué) is a solution of (2.7), then & is
proportional to Vu,, estimate (3.4) shows that 6 is smooth in the directions of the
level sets of u;.

Remark 7. If problem (2.1) has a solution (&, ug) with & smooth (for example,
C%1), then, using that

VX@ = VHN_ll_aw

with v the unitary outward nornqal to @ on 0w and Hy_1 the N —1 Hausdorff measure,
we get that equality (3.5) with § = x4 equivalent to ¢ and then Vug parallel to v on
Ow. This proves that u is constant on the connected components of d, which is a
classical optimality condition for the smooth solutions of problem (2.1).

Remark 8. If Q € C™! is a simply connected open set with connected boundary,
f e L2(Q)NWhi(Q), and there exists a solution (@, ug) of (2.1), then we deduce from
(3.6) and the tangential component of & vanishing on U N JS (see the third assertion
in Theorem 3.1) the existence of w € H'(Q2) such that 6 = Vw with Vw normal on
09). Since we have assumed 92 connected and know that —dive = f in Q, we get
that w can be chosen as the unique solution of the Dirichlet problem

(3.10) —Aw=f inQ, w=0 on .

This remark has also been carried out in [22], but assuming that w is an open set of
class C2.

The condition & = Vw with w a solution of (3.10) is too restrictive and allows us
to show that problem (2.1) does not have a solution in general. For the minimization
of the torsion in a beam (see the introduction), the following interesting result has
been proved in [22]: If 2 is the interior of a smooth Jordan curve in R?, then problem
(1.1) has a smooth solution if and only if €2 is a circle. Here, we extend the result
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to any dimension and (most importantly) eliminate the strong restriction w smooth.
The result is given by the following theorem, which we prove below.

THEOREM 3.3. Assume that Q € C%1 is a simply connected open set in R with
connected boundary such that problem (2.1) with f =1 has a solution. Then Q is a
ball.

Proof of Theorem 3.1. Along the proof, we fix a solution 6 of (2.7) and denote by
u = uy the corresponding state function, solution of

\Y

(3.11) —div—"" =f inQ, u=0 on d.
1+ch

Step 1. From Theorem 2.3, we know that u satisfies
F'(|V

_div (ﬁvu) —f mUNQ,

u=0 ondQNU,

(3.12)

which, using that F’(s) = 2s/(1 + ¢) for s > (1 + ¢)i, can also be written as
1 ) F'(|Vul) 1 )
1+ CAU = div <( 2[Vul  1+c Vuxivul<a+ony | +f s,
u =0 on 0.

Observing that the first term on the right-hand side is in W=5°(U N Q), we then
deduce (3.1) from the classical smoothness results for the Poisson equation and

F([Vul)

—————Vu in Q.
2[Vu| U in

(3.13) &=

Step 2. For F given by (2.18) and £ > 0, small enough, we consider a sequence
F. of nonnegative convex functions of class C® in [0, +00), such that

F.(s) = F(s), F.(s)> T+o

F.(s)=F(s)Vs>(1+c)ji, [F||L=(0,00) bounded.

, Fl'(s)>e, Vs>0,

Assuming that the restriction of f to U N is in a certain space X D L?(U N§) such
that C°°(U N Q) is dense in X, we take f. € C°(U N Q) such that

(3.14) fo— f in X.

Then we define u. € H'(U N ) as the unique solution of

(3.15) min (/ (F-(|Vv]) + [v — ul?) d — 2 fsvdx) ,
v—u€H(UND2) \Juno UnQ

or equivalently, as the unique solution of

!
(3.16) —div (MV%> tu.—u=f nUNQ, u.=u ondUNN).
Using F/(s)/s > 1/(1 + ¢) for every s € [0,+00), ||F/||1=(0,00) bounded, and f.
bounded in H~!(Q), we get u. bounded in H'(U N Q) and

/
(3.17) o, = ElVud) g,

2|Vu,| ‘
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bounded in L2(U N Q)N. Therefore, extracting a subsequence if necessary, we can
assume that u. converges weakly in HY(U N ) to some function @ and that o.
converges weakly in L2(UNQ)YN to some function &. From (3.16), these functions are
related by

(3.18) —dive+u—u=f inUNQ.
In order to characterize & and , we apply the Minity trick. First, we observe that

taking u. —u as test function in (3.16) and @ — u as test function in (3.18), we deduce

lim e - Vu.dr
e—0 UnQ

= lim ( fe(ue —u)de — / lue — u|?da —|—/ oe - Vu dx)
=0 \Juna UnQ UnQ

:( f(ﬂ—u)dx—/ |a—u|2dx+/ &-Vuodx) :/ 5 - Vadz.
UunQ UunQ UunQ UunQ

This allows us to pass to the limit in
F!(|Vuel) F/(|Vi + t®|)
0< —————Vu, — S=———=(Va+t®) | - (V(ue — @) — tP)dx
= /UﬁQ < WV VT gva ] Vet ) (Vi —d) —td)de
for every ® € L2(U N Q)Y and every t € R to deduce
F'(|Va + t®
0< —t/ (a—— M(vaw@) ~bdr VO e LA(UNQY, Vi eR,
UnQ 2|Vu—|—t<1>|
and then that
F(|va)
2|Vl
Therefore, the function @ satisfies
F'(|Vu
—div (Mva) fa—u=f nUNQ,
@=wu on d(UNN).

(3.19) 5= Vi in UNQ.

By convexity, this means that @ is a solution of

min (/ (F(IVo)) + v — ul?) da:—2/ fvda:) .
v—u€Hg (UN2) \Juna UnQ

On the other hand, since u is a solution of (2.19), it is also a solution of

min ( F(|Vv|)dx —2 fvda:) .
v—u€H(UND2) \Junn UnQ
Thus, we have
F(|Vu|)dx — 2 fude < F(|Va|)de — 2 fadx
UnQ Ung Ung Ung

< /Um (F(IVal) + |& — uf?) dz — 2 /Um Fiide

< F(|Vu|)dx—2/ fudz,
UnQ UnQ
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and then

/ |t — u|?dx = 0,
UnQ

ie, @ =w ae. in UN, while from (3.13) and (3.19), we also deduce that 5 = &.
Reasoning as in Step 1 for problem (3.16), we also observe that

(320) o<l zaconn) < C(If-llw-ra@wno) + IfllH-1)) YO €U open, q > 2.

Step 3. We assume that U N§ is of class C%7 for some v € (0,1). Then, applying
Theorem 15.11 in [12] to problem (3.16), we have that u. is in C*7(UNQ). Thus, we
can derive with respect to z; in (3.16) 1 <i < N to deduce that d;u. satisfies

(3.21) —div (M:V(0;ue)) 4+ 0i(ue —u) = 0ife in UNK
with

(3.22) M, = F"(|Vuc|)

Vue @ Vue  F/(|Vuel) (I— VUE®VUE>
[Vue|? [V [Vue|?

Using the existence of C' > 0 such that 0 < F/ < C and 0 < F! < Cs in [0, +00), we
have that M, satisfies (remark that M. is barely elliptic by a constant ¢)

(323 M)l < SM)e£< SleP vEeRY vaeTAN

Moreover, we observe that

F(|Vuel)

(3.24) 81»05 = 51‘ ( 2|VUE|

Vua) = M. V(0u:) inUNQ.

In order to estimate Vo;u. from (3.21), we will also need some boundary condi-
tions. Given a point z € U N 0%, we can consider a ball B(z,r) C U and functions
7 = (1{,...,7%) € CY(B(z0,7)), 1 < i < N, providing an orthonormal basis of
RY for every x € B(z,r) and such that 77V agrees with the unitary outward normal
vector to © on B(Z,r) N ON.

We define the functions vg €0 (Q),1<j<N,by

(3.25) v/ =Vu.-77, 1<j<N.
From (3.21), we deduce that v/ satisfies

N
—div (MEva) =V(f—u.+u) 77— ZMEV&-UE . Vrij

i=1

(3.26)
N .
- Zdiv (MEVTZ.]@Z-UE) in B(z,r)NSQ.
i=1
Since u. = 0 on 0f) implies that the tangential derivative of wu. vanishes on

B(z,r) N 09, we conclude with the following Dirichlet boundary conditions for vJ
with 1 <7< N —1:

(3.27) v/ =0 on B(z,r)NadN, 1<j<N-—1.
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It remains to obtain a boundary condition for vY. Developing the first term in (3.16),
we get

(A Vue])
[Vu|

)Au —<F”(|Vu - Fé(W“eD) Do, Vue Ve

: 2 e —u) = 2
V| V] Va2t =2/

in B(z,7) NQ, or equivalently
(3.28) —M. : D*u. = f. — (uc —u) in B(z,r) N

Now, we use that by definition (3.25) of v/, we have
N

(3.29) Vu, = Zv}gl in B(z,r)N Q.
=1

Deriving this expression and using that for 1 <[ < N — 1 the functions vé and then
their tangential derivatives vanish on B(z,r) N J2, we deduce

N—-1
D*ue =V @ Vol + 0DV + Y (Vur - V) 7' @ 7 on B(z,r) N 00
=1

Substituting this expression in (3.28) and using that u. = u = 0 on B(Z,r) N 0N, we
then get

N-1
M. VN N = —f. — M. : DNy — Z MY (VoL -7N) on B(z,r) N oQ.
=1
In the last term of this equality, we use again that u. vanishes on 02, which implies
that Vu. is proportional to 7 on B(Z,r) N dQ and then, from the expression (3.22)

of M., that M. is also proportional to 7. This shows

MY 72'=0 onUNON, 1<I< N —1.

Using also that |7V| = 1 implies D7V 7V = 0, expression (3.22) of M., and Vu,

parallel to 7V on B(Z,r) N 5, we finally get the Neumann boundary condition for
N

/UE

F/ N
_ # sgn(v))divr™ on B(z,r) N oQ.

Step 4. Let us prove that for f € LP(Q), p > N, the function Vu and then o is
in L*(0ONnQ)N.
By (3.21) and (3.24), for every ¢ € C°(U) with 0 < ¢ < 1, the function J;u.¢,
< i < N, satisfies
31)
—div(M.V(0;ucp)) = 90;(fe —ue +u) — div(M:Vp d;u.) — %(%UE -V in U.

(3.30) M. VoY N = —f.

1
(3
By (3.20), the sequence o, and then Vu. is bounded in L} (U)N for every ¢ < +oo.
Then the right-hand side of (3.31), which we denote as h., is bounded in Wl;cl’p(U).
Multiplying (3.31) by (Qjue ¢ — k)™ with k > (1 + ¢) and observing that d;u. ¢ >
(1+ ¢)ji implies that (1 + ¢)M, = I, we get

/ IV (Oruep) P < C / IV (Gruep)lP da

{Oiuc o>k} {Biuc o>k}

2
P
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This inequality allows us to repeat the classical Stampacchia’s reasoning to estimate
the solution of an elliptic equation in L*°(U) (see Theorem 4.1 in [25]) to prove the
existence of C' > 0, depending on ¢ such that

diucp < C (|lucllmrwnay + [1fllLe@wna) + lullLe@ng)) ae. in U.

A similar reasoning using as a test function (Q;u. ¢ + k)~ with k& < (1 + ¢)i also
provides a lower bound for d;u.p and then proves

0sus ol oo wnny < C (uellmr@wna) + 1 fellLr@wne) + llullLe@wne)) -

In order to obtain boundary estimates, we reason analogously, using (3.26), (3.27),
and (3.30). Therefore, we have proved that for every open set O strictly contained
in U, there exists C' > 0, depending on the distance of O to 92 and of the norm in
W12 of the functions 7¢ in Step 3, such that

0suc|| Lo (0ne) < C (Jucllmrwney + I fellLr@wne) + IfllLr@n), 1<i<N.

Taking in Step 2 X = LP(U N Q) with p > N, we can then pass to the limit in this
equality to conclude with (3.2) for U N of class C%7 with v € (0,1). Observe that
the dependence of C' with respect to the smoothness of (U N Q) is throughout the
norm in W1 of the functions 7% in Step 3. Thus, regularizing the boundary, we can
show that the result holds true just assuming U N2 of class C!.

Step 5. For ¢ € C*(UNQ), ¢ >0,and 1 < i < N, we take Jju-0? as a test
function in (3.22). This gives

M.V (9;ue)V (0;u.) p*dx + 2 M.V (0;us )V O;ucp dx
UnQ UnQ

= / O; f-0yucp?dx — / 0 (ue — u)Ojuc o de.
UnQ

UunQ

(3.32)

We introduce the truncated function 7" by
—(14+c¢p fs< -1+,
T(s)=4( s it —(1+c)p<s<(d+0o)p,
I+ if (1+4c¢)i<s.
Then the first term on the right-hand side of this equality can be estimated by

using

/ @k%@ﬁMZ/ amT@%w%mﬁ/ 0, /- (Brue — T(Oue))p*de
UnQ UunQ

UunQ

_ / 00T (D) de — / f-02usPda
UnQ {

[Oiue|>(1+c) i}

-2 fe(Oiue — T (Ohue))0sp  da.
UnQ

The first and third terms on the right-hand side of this equality satisfy

/ 0, f.T (D) p*de| < Clf-llwrswray.
Uung

fe(Oiue — T(Oue))0ip p dx
UnQ

< O\l fellL2wney lluell 2 (vney »
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while for the second term on the right-hand side, using that (1 + ¢)M. = I a.e. in
{IVue| > (1 +¢)fi}, we get

f02up?dz| < C||fellp2wna) | MV (0ius) @l L2 (wna)-

~/{|64u5>(1+c)ﬂ}

Taking into account these estimates in (3.32) and applying Young’s inequality, we
have then proved

M.V (9;u.)V (0su.) 2 dx
(3.33) une

< O (el oy + lulldray + 13z won) + I fellwswan))

for a constant C' depending on ¢. Using (3.24) and (3.23), we then conclude that, for
1<i<N,
(3.34)

/ |5z‘05|2902d9”:/ | M.V (Biuc)|* o dx
UunQ unQ

<C (||Ua||%{1(um) + lullzn oy + 1fl72na) + HfEHWMv(UﬁQ)) :

Using then X = WHH({UNQ)NL2(UNN) in Step 2, we can pass to the limit in (3.34)
when ¢ tends to zero to deduce for 1 <i < N

e3s) [ il < 0 (g + 1 e + 1 lwawnn)
N

for every ¢ € C°(U), where the constant C' depends on .

In order to obtain the corresponding boundary estimates, we consider a point
T € UNON a ball B(z,r) and functions 7¢ as in Step 3. Defining the functions vJ
by (3.25) and taking into account (3.26), (3.27), we can reason as above to prove
similarly to (3.33)

/B( o M.Vv! - Vol o da
(3.36) zr)0

<C (HUH?P(Q) + lluellF ey + Il 2wna) + ”fE”lel(UﬁQ))

for 1 <j< N —1and ¢ € C(B(Z,r)).
The estimate for the normal derivative v of wu. is a little more difficult. For
© € C(B(z,7)), we take v¥p? as test function in (3.26). By (3.30) and 2M.7V =
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F/([oM) 7™ on B(z,r) N 0Q, we get

MY Vol o de + 2 M. VoY - Vool de + / fovNp?ds
B(z,r)NQ B(z,r)NQ B(z,r)NoQ

+ Fé(|vév|)|N s N, 23 N N 2
——= o |divr g ds = Ve Vv de
B(z,r)NoQ 2 B(z,r)NQ

N

— / V(ue —u) -V o p?dx — Z M.V (9;u. )Vl vl p?da
B(z,r)N2 i—1 Y B(@,1)NQ

—|—Z M.VTN VvNauschda:—l—ZZ/ M NN Vvl du. pdx
B(z,r)NQ (Z,r)NQ

F// N
— Z/ {CAl) VTZ-N 7N O v pPda.
B(z,r)NoQ 2

Using in the first term on the right-hand side of this equality the decomposition

/ Vf.-mN vévcpzdx
(

B(z,r)NQ

= / Vi ™ T(vév)gozda: —l—/ Vi - (vév — T(vév))chdx
B (

(z,r)NQ2 B(z,r)NQ

= / Vf. - T(vév)@de - / fediv(T N 2) (vév — T(vév))dx
B(z,r B(z,r

z,r)N$ z,r)NQ

- / Vo NG / fo @Y — T(WN))p2ds,
{loN]>(14e)} B(z,r)Nox

then Young’s inequality and then (1+c¢)M, = I a.e. on {|Vu.| > (14+¢)i} D {|Vu| >
[N} N {[oY] > (1 + ¢)ii}, we deduce that for every § > 0, there exists a constant
Cs > 0, such that

/ MVl - Vol o* de < 52/ MV (9jue) - V(iue) @* dz
B

(z,r)NQ (Z,r)NQ

+Cs ('uﬁfl(ﬂ) + luellFn wnay + 1l Z2wna
Sl + [ 2d5> |
B(7,r)N9Q

The last term can be estimated by using that the embedding of H'(B(z,r) N Q) into
L?(B(z,7) N dQ) is compact, which implies the existence of a positive constant, still
denoted by Cs such that

/ |w|?dx
B(z,r)noQ

<94 |Vw|2dac+C[;/ lw|*dz Yw € H'(B(z,r) N 1),
B(z,r)NQ B(z,r)N$2
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and then (for a different Cj)

/ o Ppds = / (o) s + / WY — (o) Pp?ds
B(z,r)NoQ B(z,r)NoQ B(z,r)nNoQ

< O (1 n |\u€||§{1(U)) +

J / N2 2
[V [fp?da
Lt c Jgoy>a+aay

< Cs (1 + ||ue |3 UmQ)) +0 e )ZWQVU Vol pide.
z,r)N

Therefore, we have proved that for every § > 0, there exists Cs > 0 such that

/ M Vol - Vol o* de < 52/ MV (djue) - V(iue) ¢* dz
B(z,r)

,r)NQ B(z,r)NQ
+ Co (1 Nl gy + el ey + eIz

I Fellwss o).

Combining this inequality with (3.36) and taking into account that the definition of
the functions v also implies

Z/ M.V (0;us) - V(djue) ¢* dx
B

(z,r)NQ2
< CZ/ M Vol - Vol % d + Cllucl2na)»

we conclude with the inequality
N

Z/ ( Msv(azus) : V(&us) (p2 dx

i—1 Y B(z,r)NQ

<C (1 + ||U||§{1(Q) + HUEH%P(UOQ) + HfEH%?(UﬁQ) + HfaHWM(UmQ)) ~

Taking into account (3.24) and (3.23), this also implies
(3.37) / |Do.|?p? da
B(z,r)NQ

<C (1 + llull ) + lusllfnwnay + Ifellzz@wng) + HfEHlel(UﬂQ)) :

Taking X = WHHU N Q)N L*(U N Q) in Step 2, we can then pass to the limit to
prove (3.3) for U N Q of class C*7. The case U N Q of class C1! follows as in Step 3
by remarking that the constant C' in (3.3) only depends on the smoothness of U N 0f2
throughout the norm in W1:°° of the functions 7.

Since the gradient of u. is parallel to the outward normal of 2 on U N9S2, we also
get that the tangential components of 6 vanish on U N 99).

To prove (3.4), we use that (1+cf)s = Vu and that 6 is in H'(ONQ) for every
open set O strictly contained in U. This gives

(338) 0= az((l + Cé)&j) — 63((1 + Cé)&z) = C(aiéaj — @é&l) + (1 + Cé)(ai&j — 81‘&1‘),
and then from (3.3) we get (3.4).
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Step 6. Let us now prove that if 6 only takes the values 0 and 1 and f belongs to
WLHUNQ) N L2(UNQ), then (3.5) and (3.6) hold.
We define 6. and 6. by

- 2|Vu,]| . en
(339) 1+ 095 = m, 05 = maX{O, mln{@s, 1}}

and observe that definition (2.18) of F and the uniform convergence of F to F’ prove
(3.40) . —0. -0 in LU NN)
and the existence of § € L>(Q), such that up to a subsequence
0.,0. — 6 in L(Q) weak-* .
In order to characterize 6, we observe that
(3.41) (14 cf.)o. = Vue.

Using then that u. converges weakly to u in H'(U N ) and 0. converges weakly to
6 in H} (UNQ) and then strongly in L} (U NQ), we get

(14+ch)6 =Vu inQ,
which proves
0=0 ae. in{5#0}.

Since only take the values 0 and 1, and 6. is compressed between 0 and 1, this allows
us to show

(3.42) /' |@—ﬁux:/‘ ) 0ﬂx+/‘ - (1—6.)dz — 0.
{60} {60, 6=0} {60, =1}

On the other hand, we observe that 6. converges strongly to zero in L?({6 = 0}),
which combined with |[Vu.| < (1 + ¢)|d¢| also proves that Vu. converges strongly to
zero in L?({6 = 0}), and then by definition (2.18) of F we get

1 ifa=0,
(3.43) 0. — in L'({6 = 0}).
0 ifp>0

Now, we observe that analogously to (3.38), equality (3.41) proves

. . 1+c
.00 ; — 0600 = L (B0 s — Dj00s), 1<irj <N,
C

where using (3.40), (3.42), (3.43), and (3.38) we can pass to the limit in € to deduce
81»9;0573» — ajé50'571‘ — 8ié&j — 8jé&i in Lg(O N Q) VOoeU, 1< 1,7 < N.
Using again (3.40), (3.42), and (3.43), we also have

é?(aiégo‘g’j — ajé50'571‘) — 9’“(819&3 - @é&z) in LZ(O N Q) vOoeU, 1<i,57<N,
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for every k € N, but on the other hand, we have

~ ~ ~ 1 ~ ~ ~
95(81'950'5’j — 8]49505_,1-) = k——|—]_ (8i(9§+1057j) — 8j(0§+10'5’1‘) — 9§+1(81'0'5’j — 8jcrs,l-))
1 N pas 2 ~ A A ~
TS (0:(0"%165) — 0;(05 " 6,) — 01 (Di6; — 9;64)),

in H-1(O N Q), for every O € U open. Then, taking into account that 0 takes only
the values 0 and 1, we get

b
ket 1

é(@lé&j — @é&z) = (81(9&3) - @(6‘&1) — é(@z&j — 83&1)) ae.inUNQVE>1.
Taking k converging to infinity, this proves

(&éc}j — 8jé(5’i)x{é:1} =0.
Similarly, we can show

~ A A 1 A A ~ . .
(1= 0)(0i66; — 0;00:) = == (0:((1 = 0)5;) — 0;((1 = 0)6:) — (1 = 0)(0i6; — 9;64))
a.e. in U N for every k > 1 and then

(&éfrj — 6jé5’i)x{é20} =0.

This proves (3.5), which combined with (3.38) also proves (3.6). O
Proof of Theorem 3.3. Assume that (w,u,,) is a solution of (2.1). From Remark 8,
we know that

(3.44) (axw + Bxa\w)Viw = Vw in Q

with w the unique solution of

—Aw =1 in Q,
(3.45)

w=0 on Of.
Defining fi by (2.13), statement (2.14) with 6 = y., implies
(3.46) {reQ: |[Vw(z)| >i} CwC{reQ: |Vw(x)| > i}

On the other hand, taking into account that Aw = 0 a.e. in {Vw = 0}, we get that
|[Vw| > 0 a.e. in ©, and then we can apply Remark 2 and (2.15) to get

(3.47) |w| = k.

Step 1. Let us prove the existence of a point zg € €2, such that
(3.48) |Vw(zo)| = fi, V|Vw|?(xg) # 0.

We consider a connected component O of the set

{r e Q: |[Vw(x)| < i1}
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(for example, the connected component corresponding to a point where w attains its
maximum). Since by (3.46) and (3.47), O does not agree with €2, we have that 00 N {2
is not empty and so we can take a point z* in 00 N Q). Now, we choose Zg € O
sufficiently close to xz* to have

|Zo — 2*| < dist(zg, 0),
and we take
r = dist(Zg, 00) < |Tg — ™| < dist(Zg, 0Q)
and zg € 00 such that
|Zg — xo| =7

Note that xg is not in 9 since r < dist(Zg, 92). By the definition of O and xy € 90,
we have that the first equality in (3.48) holds and

xo € OB(Zo, 1), |Vw|* < |[Vw(zo)|*> in B(Zo,r).
This inequality combined with
—A|Vw|? = —=2|D*w|? <0 in Q,

which is a consequence of (3.45), allows us to use the Hopf’s lemma to deduce that the
normal derivative to O of |Vwl|? at zq is strictly positive, and then that xq satisfies
the second assertion in (3.48).

Step 2. Since from (3.45) w is analytic in €2, we can apply the implicit function
theorem to deduce the existence of a neighborhood U C € of x such that (use (3.46))

Undw=Un{xe: |Vw|l =i}

is a connected analytic manifold of dimension NV — 1. From Remark 7, we also have
that Vw is parallel to the normal on dw and then that the tangential derivative of w
in the connected variety U N dw vanishes. Since w > 0 in €, we deduce the existence
of a > 0 such that

w=a onUNow,
i.e., the N — 1 variety U N 0w satisfies
Uﬂ@w:Uﬂ{xEQ: w(z) =a, |[Vw(z) :ﬂ}.

We define the analytic manifold M by

M = {w €eQ: wx)=a, |[Vw(x)| >

N =
—

and M as the interior of the set
{r e Q: wx)=a, [Vw(z)|=/i}

with respect to M. Remark that M is not empty because the N — 1 variety U N Qw
is contained in M and then M is also an analytic manifold of dimension N — 1. Let
us prove that M is closed.
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We consider a sequence z,, € M which converges to r € Q. Then Z belongs to
the analytic manifold M, and so there exists a ball B of center the origin in RY and
an analytic injective function ® : B — RY with ®(B) open, such that

®(0) =z, ®BN{y=(y1,-.-,yn): ynv =0}) = M N &(B).
The function ¥ : BN{y = (y1,...,yn) : ynv =0} — R defined by

U(y1,. - yn—1) = [Vw(®(y1, - .-, yn—-1,0))[?

is then analytic. On the other hand, since x,, € M converges to &, M is open with
respect to M, and |[Vw| = [i on M, there exists a ball B’ C B such that ¥ = /i on
B’. The analyticity of ¥ then proves that ¥ = i on BN {yy = 0} or equivalently
that |Vw| = i on M N ®(B), which combined with ®(B) open proves that Z belongs
to M.

Since w = a and |Vw| = i in M, we also have that Vw is a nonvanishing normal
vector on M and thus M is orientable.

Step 3. We consider a connected component M* of M. Then M* is a connected
compact orientable manifold of dimension N — 1 contained in 2. By the Jordan—
Brower theorem, it is then the boundary of an open set ©® C ). On this point, we
follow the ideas in [22]. We have proved that w satisfies

—Aw=1 on O,

(3.49)
w=c on 00O, 8_w constant on 00.

ov

Since we also know that M* = 90 is analytic, we can apply Serrin’s theorem (see
[23]) to deduce that © is a ball B(zp, R) and that w solution of (3.49) satisfies

1

(3.50) w(x) = IN

(R* — |z — 20|*) + ¢ in B(zo, R).

Since w is analytic in €2, we have that (3.50) is valid not only in B(zp, R) but in the
whole of €2, and then, using that w = 0 on 02, we get that  agrees with the ball

B(z0,VRZ ¥ 2cN). O

4. Applications to the minimization of the first eigenvalue. In the present
section, we show how the results obtained previously for problem (2.1) or its relaxed
version (2.7) can be applied to the minimization of the first eigenvalue corresponding
to the operator

u € Hy(Q) — —div((axw + B(1 — xw))Vu) € H (),

under the restriction |w| < k, i.e., to the control problem

min/ (ozxu) +8(1— xw)) |Vu|2da:,
(4.1) “
w C Q, measurable, |w| <k, u€ Hj(Q), / lu|?dx =1,
)

where as in the previous sections €2 is a bounded open set of RV, 0 < a < 3, and
0 < k < |Q|. As for the compliance problem, it is not clear that this problem has a
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solution, and thus it is necessary to introduce a relaxation which is given by

. / |Vul?
min dx,
Q 1 + 09

0 € L*(Q;1]0,1)), /deg/@, u € HHS), /|u|2dx=1,
Q Q

(4.2)

with ¢ defined by (2.6).

The relationship between problems (4.2) and (2.3) is a consequence of the follow-
ing result (see [2], [5]).

LEMMA 4.1. For A € L®(Q)N*N symmetric and uniformly elliptic, the first
eigenvalue

(4.3) M(A) = min / AVu - Vudz
Q

ueH(Q)
lull 2 qy=1

of the operator u € H} () — —div (AVu) € H=1(Q) is characterized by

1

WOy

= max {/ AVu -Vudr : —div(AVu)=f inQ, ue Hg(Q)}
||fHL2(Q):1 Q

Moreover, the mazimum in (4.4) is attained in a certain f if and only if f is an
eigenfunction relative to Ay (A).

Proof. Let f be in L*(Q) with || f||2() = 1 and define u € Hj () as the solution
of

(4.5) —div(AVu) = f in Q, wue€ H} Q).
We observe that definition (4.3) of A;(A) implies

2

1
(4.6) /AVu-Vudx:/fudxg lullL2(0) < <—/AVu-Vudx) )
Q Q M(A4) Jo

and then the arbitrariness of f proves

1
max AVu-Vudr: —div(AVu) = f in Q, uEHlﬁ}g )
£ 22 0)=1 {/Q (AVu)=f o) A(4)

In order to prove the contrary inequality, we take f € HJ(£2) as an eigenfunction
relative to A1 (A) of the unitary norm in L?(£2). Then the solution u of problem (4.5)
is given by u = f/A1(A) and satisfies

1
AVu-Vudx:/ udxr = .
/. o N

To finish the proof, it only remains to show that if the maximum in (4.4) is
attained in a certain f, then f is an eigenfunction relative to A1(A). For this purpose,
we obseve that for such f, the inequalities in (4.6) are in fact equalities. Using then

1l ey = 1. /Q fude = Jull 2@y,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/10/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

THE COMPLIANCE AND EIGENVALUE PROBLEMS 2341

we deduce the existence of t > 0 such that u = tf. Since we also know

1 3
—div(AVu) = f in Q, llullp2(0) = <M/QAVU-Vuda:> ,

we deduce that t = 1/A1(A), which finishes the proof. O
From Lemma 4.1, problem (4.2) is equivalent to

{ [Vul®

max max —

PEL= @10 || fll 2=t (Jo 1+l

. Vu . 1
dx : —d1v(1+09) =f in Q, uEHO(Q)}

or changing the order in the maximum problems to

2
(4.7) max max {/ [Vl dzr : —div <&> =finQ, ue Hg(Q)} ,
1 llp2e=t et= @l o 1+ cf 1+co

Jo 0dz<r

i.e., it consists of solving the compliance problem for every f € L?(Q) with unitary
norm and then taking the maximum in f.
As an consequence of this equivalence and Theorem 3.1, we get the following.
THEOREM 4.2. We consider an open set U C RY such that U N Q is of class
CY', and consider a pair (é,ﬂ) solution of (4.2). Then, for every open set O € U,
we have the following:
o The function 4 belongs to W12 (0).
e The function

Y%7
1+cé

6:

belongs to H'(O)N, and its tangential component vanishes on U N OS.
o For everyi,j € {l,...,N}, we have

810}}] — 8Jé(5'1 S L2(O)
. Ifé only takes the values 0 and 1, then

(4'8) 81‘9[73'—3]‘9&1':0 mUNQ, 1<14j<N,
(4.9) curl(6) =0 in UNQ.

Proof. By Lemma 4.1, we know that (4, 6) is also a solution of problem (2.8) with

u
(4.10) = —
HU||L2(Q)

Then the result follows from Theorem 3.1, just proving that @ is smooth enough (we
just need @ € LP(O), p > N) for every open set O € U N .
Since 4 belongs to Hg (), the Sobolev imbedding theorem implies

W-LoQ)  if N <4,
i e

WhRE(Q) i N > 4
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Thus, by Theorem 3.1 with f given by (4.10) (see also Remark 4) we conclude that
for every open set O € U N (2, we have

L>=(0) if N <6,
ael LP(O)Vpe0,00) if N=6,
L% (0) if N > 6.

This proves smoothness for f given by (4.10) and allows us to improve the smoothness
for @ using again Theorem 3.1. Thus a bootstrap argument finishes the proof. O
From the last assertion in Theorem 4.2, we can now obtain a counterexample to
the existence of solution for problem (4.1). This is given by the following result.
THEOREM 4.3. Take Q = (—7,7) x (=27,2m)N =1, Then there exists ¢9 > 0 such
that for every € € (0,eq), problem (4.1) with k = |Q| — & has no solution.
Proof. We reason by contradiction.
Step 1. Assume that problem (4.1) with x = |Q2] — € has a solution (w, u.), where
we can take u. strictly positive in 2. By Remark 2 and (2.15), we have that

(4.11) we| = 0 — e.

Moreover, taking into account (4.9) and 2 simply connected, we deduce the existence
of w. € H'(O) such that

(4.12) (ast +B(1 — Xwe))VuE =Vw,, —Aw.=Au. inQ

with A ¢ the minimum value of (4.1). Since Vw, is normal to each side of 052, we
have that w. is constant in each side of 92, and then, since it is in H'(Q), it must be
constant on 9. Thus, we can take w. as the solution of

(4.13) w. =0 on 9.

Step 2. We define

N+3
(4.14) Alo=a min / |Vul*dz = « i
’ werb(@) Jo 16
lull 12 gy =1
and

(1.19) o = 2 cos (1) Hcos (&),

a unique solution of
—AUQ = )\1’011,0 in Q, Uug € H&(Q), Uuop 2 0 in Q, HUOHLz(Q) =1.
Then, observing that

M= min a/ |Vu|*dz + (B — a)/ |Vul?dz |,
e Q Q\w

lull L2,y =
[Q\w|=¢
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we deduce that for every ¢ > 0, we have

A0 <A < Ao+ (B—a) inf / |VU0|2d$7
Rwl=2 Jou

which proves

(416) lim /\175 = /\170.

e—0

From (4.12), (4.13), (4.16), u. nonnegative, and |luc| r2() = 1, we get that u. is
bounded in Hg (), which combined with (4.11), (4.16), and

—aAue = A cus + (f — a)diV(XQ\wE Vug) in Q

implies that u. converges weakly in H}(Q) to the function wug. Using (4.12), Q
Lipschitz, and a bootstrap argument, we conclude that

(4.17) w. — up in HY(Q) N COQ),
(4.18) we — ug in C*7(0) YO &€, open Vv € (0,1).
Step 3. We have

2 11 1
2 - . ; i -
(4.19) D=up(0) = N diag <4, 6 16) .

In particular, D?ug(0) is not singular, and thus there exists § > 0 such that

(4.20) det(D?ug) # 0 in B(0,0).
By (4.15) and (4.20), we have
(4.21) det(D*w.) # 0 in B(0,6) for £ > 0 small enough.

Now, we recall that by Theorem 2.2 and the definition of w, in (4.12), there exists
e > 0 such that

(4.22) {z € Q: |Vwe(x)] > pe} Cwe C{x € Q:|Vw(x)] > pet.

Since |we| tends to |, we have that u. converges to zero.
Step 4. We take z. €  such that

we (z2) = max we,
Q

and we observe that (4.17) and ug attaining its maximum at zero imply
(4.23) xe — 0.

We denote by O. the connected component of the open set {z € Q : [Vw.| < pe}
containing z.. Taking ¢ > 0 small enough to have x. € B(0,) and such that (use
(4.18))

min |Vw.| >
88(076)| el > pe,

we get that O, is contained in B(0,§), and then from (4.21) and |Vw,| = pe > 0 on
00, we deduce that

V(|[Vw:|?) = D*w.Vw. # 0 in 90,

which allows us to use the implicit function theorem to prove that O, is of class C!
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and that, up to a set of null measure,
(Q\we) N B(0,0) = {z € B(0,0) : [Vwe| < e}
From Remark 7 and |Vw.| = p. on 90., we also know that

ow
(4.24) we, —— are constant on each connected component of JO..

ov

In particular, since w, is a C? function, this proves that 90, is not only C'* but C?2.
Step 5. Let us now show that O. is star-shaped with respect to z. and then that
00; is connected. For this purpose, let us estimate

d
2 (oo + ry)[> = 2D*w. (z= + ry) Ve (zc + 1Y) -y

for every y € RV with |y| = 1 and every > 0 such that x. + ry € B(0,0).
Fixing v € (0, 1) and using (4.18), we have

(4.25) |D?w, (z. + ry) — D*w.(z.)| < Cr.

Using then that Vw(z:) = 0, we can use a Taylor expansion to prove the existence
of t € (0,1) (depending on 7, y and ¢) such that

(4.26) |Vwe(z- + 1Y) — rD*w. (2 )y| < r|D*w.(ze + try)y — D*w.(z.)y| < Cr* 1.
From (4.25) and (4.26), we deduce

d
$|Vw€(w5 + ry)|2 — 27“D2u0(0)2y syl < 2T|D2w5(x€) — D2u0(0)| +Cortt,

and then, thanks to (4.19), we deduce the existence of a constant v > 0 such that for
g,r > 0 small enough, we have

12>~

d
ar |V’LU5 (335 + Ty)

which proves that for every unitary vector y € RV the equation |Vw. (2. +ry)| = .
(which is equivalent to z. + ry € 90O.) has at most a solution r > 0 such that
xe + ry € B(0,9). Since x. belongs to O. C B(0, ), we then have that this equation
has in fact a unique solution and then that O. is star-shaped.

Step 6. From (4.12) and O, C Q\ ., we get that

BVu. = Vw. in O,

which combined with O. connected shows the existence of ¢, € R such that

Ue = =We + Ce.

B

Then, taking into account (4.24) and the second assertion in (4.12) we get that w; is
a solution of

1
—Aw. = A ¢ (Ewa + ca> in O,

ow
We, 8—; constant on 00;.
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Using that O, is C? and connected, we can then apply Serrin’s theorem [23] to deduce
that O. is a ball and w. is radial. Since we also know that Vw. vanishes at z., we
get that z. is the center of the ball O, and then that D?w, is a scalar matrix at
x.. Therefore, passing to the limit in ¢ by (4.18), we conclude that D?uq is a scalar
matrix in contradiction with (4.19). O

To illustrate the example given in Theorem 4.3, we have introduced Figures 1,
2, 3. They correspond to the numerical solution of problem (4.2) for € given as in
Theorem 4.3 with N =2, =1, 8 =5and ¢ = 0.1|Q|, e = 0.5|Q], e = 0.9]9],
respectively. White color corresponds to the good material «, black color corresponds
to the bad material 8, and grey colors refer to homogenization mixtures. Although
Theorem 4.3 refers to € small, we have always found homogenized zones, and in fact
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they become especially signifiant for e large, i.e., when we only dispose of a little
quantity of the good material a.

To better appreciate the homogenized zones, the figures have been obtained by
using a large precision where ) is decomposed in 250,000 triangles. The algorithm
used consists in finding the corresponding eigenvalue function u for a given choice of
6 and then constructing a new function 6 by solving the minimum in the first line
of (2.8) for u fixed. The calculus has been carried out using MATLAB. However, we
remark that we have not proved the convergence of the method. We do not know if
there is uniqueness for the optimal solution, but using different initializations we have
always obtained the same result.

Remark 9. The unique properties of €2 that we have used in the proof of Theo-
rem 4.3 are that € is a simply connected sufficiently smooth open set with connected
boundary, that the positive eigenfunction ug corresponding to the first eigenvalue of
the Laplace operator with homogeneous Dirichlet condition at the boundary has a
unique maximum point xg, and that

(4.27) D?ug(x0) is nonsingular and not a scalar matrix.

This allows us to extend the result to some other choices of 2. In particular, using
the following result, it applies to an ellipse in R? which is not a circle. (We recall
that the unrelaxed problem always has a solution if §2 is a circle [1].) This provides a
counterexample to the existence of a solution for problem (4.1), for which Q is very
smooth.

PROPOSITION 4.4. For 0 < b < a, we define Q as the ellipse in R? given by

x2 x2
Q:{(xl,x2)€R2Z a—;+b—22<1},

and we denote by A1 the first eigenvalue of the problem

—Au = Mu in €,
(4.28)

u=0 on ON.

Then, if u is a positive eigenfunction corresponding to A1, we have that zero is the
unique point where u attaints its maximum and

(4.29) D?u(0,0) = diag(dy,da) with 0 > dy > d.

Proof. From the symmetry properties of €2 and the dimension of the space of
eigenfunctions relative to A; equals to one, it is clear that u has the following symmetry
properties:

(4.30) u(zy, x2) = u(—x1, 22) = u(r1, —x2) V(21,22) €

In particular,

(4.31) Au(0,22) =0 Vg € [-b,0], Au(x1,0) =0 Va1 € [—a,al,
and thus
(4.32) 07,u(0,0) = 0.
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Now, we observe that thanks to the Hopf lemma, there exists h € C*°(99Q) strictly
positive such that

ou
5 = —h on 3(2,

while the Dirichlet condition uw =0 on 92 implies (v = (v1,12))
—Ohuvs + Ourvy =0 on 99,

and then

(4.33) O1u= —hvy, Ou= —hvy on ON.

From (4.31), (4.33), and the definition of u, we have that 0;u satisfies

—Adiu = A\01u in QN {:Ul > 0},
u=0 on{x; =0}, Au<0 ondQn{x; >0},

which combined with

. de o0y | VUPdz Vo|2d
(4.34) A min fﬂm{ 1>0} 5 >  min M =)\
vEHL (N {z1>0}) fm{z1>o} lv|2dz "~ vemi(e) [, |v]*dz

allows us to use the strong maximum principle and the Holpf lemma to deduce
(4.35) O1u <0 in QN {x; > 0}, Ohu(0,29) <0, Vay € (—b,b).
Analogously, we can prove

(4.36) Oou < 0 in QN {xe > 0}, 03,u(r1,0) <0, Va1 € (—a,a).

From (4.30), (4.31), (4.35), and (4.36), we conclude that zero is the unique point
where u attains its maximum.
We introduce

.’,C2 .’,C2
O:{(xl,xg)€R2Z 0 < |zo| < 1, a—§+b—; <1}

and z : O — R by (observe that O C Q)
2(x1,m2) = u(wy, x2) — u(we, 1) V(21,22) € O.

Thanks to the definition of u, (4.30), u > 0 in 2, and v = 0 on 052, the function z
satisfies

—Az=M\z in O,
(4.37)

z=0 on 00N {|zz] =z1}, 2>0 on dO\ {|z2| = 21},

but reasoning as in (4.34), we get that the first eigenvalue of the Laplace operator
with Dirichlet conditions on O is strictly smaller than A\;, and then we can apply the
strong maximum principle to (4.37) to deduce

(4.38) z>0 in O.
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Now, identifying R? with the complex field C, we take
(7) = {(£C1,£C2)2 : (xl,fbg) S O} ,
and we define 7 : O — R by

2(.7:1,.7:2)22'( (331,332)) Y (21, 12) € O

i.e., using polar coordinates,

Z(x1,22) = u (\/7_“ cos (g) , /T sin (g)) —u (\/F sin (g) ,\/T cos (g))
with

r1 =T1Ccosp, Xy =rsinp

for

1+ cos 1 — cos

—nm < p<m, r( o 02

The function Z satisfies

A _
~Ai="L3>0 in O,
4|x|

=0 on 00N{x; =0}, 2>0 ondO\ {z; =0},

and it is in C°°(O) thanks to z € C°°(0), Vz(0,0) = 0. So, we can apply the Hopf
lemma to deduce

012>0 on dON {z; =0},
which, thanks to Vu(0,0) = 0, shows in particular

(v'h,0) — z(0,0)

i ~ 2(h,0) — 30,0 oz
0<00,0) = iy ST iy ZRE
= lim U,(\/E, O) B “(07 \/E) _ (912111,(0, O) B (922211,(0, O)
N h—0t h N 2 '

Combining this inequality with (4.35) and (4.32), we then deduce (4.29). a
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