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NUMERICAL APPROXIMATION OF A ONE-DIMENSIONAL
ELLIPTIC OPTIMAL DESIGN PROBLEM"
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Abstract. We address the numerical approximation by finite-element methods of an optimal design
problem for a two phase material in one space dimension. This problem, in the continuous setting, due to high
frequency oscillations, often does not have a classical solution, and a relaxed formulation is needed to ensure
existence. On the contrary, the discrete versions obtained by numerical approximation have a solution. In this
article we prove the convergence of the discretizations and obtain convergence rates. We also show a faster
convergence when the relaxed version of the continuous problem is taken into account when building the dis-
cretization strategy. In particular it is worth emphasizing that, even when the original problem has a classical
solution so that relaxation is not necessary, numerical algorithms converge faster when implemented on the
relaxed version.
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1. Introduction. This paper is devoted to the finite-element numerical analysis of
a problem of optimal mixture of two (thermal or electrical) materials in order to mini-
mize a given functional in one space dimension.

Let Q be a bounded open set of RV, N > 1 (although our analysis is limited to the
case N = 1, the problem makes sense in any space dimension), and consider the follow-
ing optimization problem:

Find w, € U such that
(1.1) {

J(wp) = min J(w).
weld
Here w, the control, is a measurable subset of Q, 7 (w), the cost functional, is of the form

(1.2) j(a)):[UFl(x, u,Vu)d:c—i—/ Fy(z, u, Vu)dz,

Q\w

where F, F5:Q x R x RY — R are given functions, and u, the state, is the solution of
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(1.3) { ;Cﬁvo((axw +B(1 — X)) V) = f Z;%éz

for some given source term f:Q — R. The positive constants o, 8 represent the two
materials, determining the coefficients of the corresponding diffusion matrices. Some
restrictions can and must be imposed to the control w depending on the problem.
For example, an interesting case is when the material « is more efficient than the
material B but it is also more expensive. Then, it is usual to consider a restriction of
the form |w| < k, limiting the use of the material «. We include this restriction in
the admissible set of controls U,

(1.4) U = {w C Q:wmeasurable, || < «}.

The existence of an optimal set w fulfilling these constraints, for which the function
u solution of (1.3) minimizes 7, does not hold in general (see [15], [16]). In these cases, it
is natural to look for minimizing sequences, i.e., sequences {w,;}°; C U such that

fp I (@) = 7e)

since they provide near optimal designs. A usual procedure to find such sequences is to
introduce a relaxed version of the problem for which a minimizer exists. Then, a suitable
approximation of the minimizers provides minimizing sequences of the original
problem.

For a sequentially continuous functional J, in the weak topology of the Sobolev
space H'(Q) (see [1], [13], [20]), this relaxation can be obtained by replacing in
(1.3) the function x,, with a measurable function 6 taking its values in the closed interval
[0,1] and the function (ex, + B(1 — x,)) with a matrix function A4 in the set K(8) of
matrices constructed by homogenization (see, e.g., [17], [19], [21]) mixing the materials «
and B with respective proportions 8 and 1 — 6. Remark that the set K(0) is known in the
case described above, corresponding to the mixture of two isotropic materials (see [14],
[22]), but not in other interesting cases such as the mixture of more than two materials,
anisotropic materials, etc. Henceforth we denote by U the set of relaxed controls (6, 4).

Note that functionals of the form (1.2) are not sequentially continuous in the weak
topology of H'(Q), in general. In those cases, to obtain the relaxed version (see [6]) we
must replace the set of controls x, and coefficients (ay, + B(1 — x,)) with the pairs
(6,A) € U as above, and the functional J with another one of the form

(1.5) J(0,A) = / H(z, u,Vu, AVu, 0)dz,
Q

where u is solution of the homogenized problem
(1.6) —div <AVU) =f inQ,
u=20 on 0Q.

An explicit expression of the function H is only known in some particular cases
(see the references [2], [6], [7], [8], [11], [12], [18], [23]). It satisfies

H(z,u,Vu, AVu,0) = F(z,u, V)Xo + Fo(x, u, Vi) X o\ if 0= y,,
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APPROXIMATION OF AN OPTIMAL DESIGN PROBLEM 1183

and A = (ax, + B(1 — x,))I and, so, the relaxed functional is in fact an extension of the
original one to the larger set of relaxed controls. The relaxed control problem reads

(1.7) T (6. Ag) = min_ J(6, A).

{ Find (6,, 4y) € U such that
(6,A)eld

In practical applications, in order to solve numerically the above control problem
(1.1), it is necessary to introduce a discretization of both the control set and the func-
tional. In the present context, we have at least two approaches to this numerical ap-
proximation issue. One based on the discretization of the original problem and one
relying on the discretization of the relaxed version. Recently, in [8] and [9], both discre-
tization procedures have been shown to converge. In these articles, some partially
relaxed versions have also been studied in which the class of controls under consideration
is enlarged but not to the extent of exhausting the class of the relaxed version of the
problem; we refer to [12] for a related result. We also refer to [26] for the numerical study
of the relaxed formulation of a particular case of problem (1.1).

In this paper we compare and get convergence rates for the sequences of discrete
minimizers obtained with both approximation methods. These issues are addressed
in the simplest one-dimensional setting, where the partial differential equation (1.3)
is reduced to an ordinary differential equation, the set K(6) is well known to be reduced
to the harmonic mean of & and B with respective proportions ¢ and 1 — @, and the func-
tion H is explicitly known. Note that in this case we can write J (0, A) = J(0) in (1.5),
since A is completely determined by 6, and U is just the set of measurable functions
0:Q — [0,1] with integral less or equal than «.

To make our results precise, we first consider the discretization of the set of controls
but not of the state equation (1.3). In the context of finite-element approximation meth-
ods, we can consider a decomposition of  in elements with maximum size r and subsets
w constituted by unions of a subset of such elements. If we denote by U" the set of such
subsets, the discrete problem reads

Find wj € U" such that
(1.8) {

(@) = min T (@)

The discrete space of controls obtained in this way U" is compact in the strong topology
of L'(Q), and the corresponding state functions are compact in H'(Q). Therefore, the
discretized problem has a solution without the need for a relaxed version.

In this way we obtain a sequence of discrete minimizers {w}, that are likely to
constitute a minimizing sequence of J in U, as r — 0. We show that this is the case,
and we give convergence rates for
(1.9) J(w}) — inf J(w) as r — 0.

wel

On the other hand, instead of discretizing the original control problem, we can dis-
cretize the relaxed version. After introducing a decomposition of Q in elements, with
maximal size r, we can consider the set U" of functions @ € I which are constant on
each element. The discrete relaxed problem reads

Find 6 € U" such that
(1.10) {

J () = min 7 (6).
(=
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As above, we show that

(1.11) J(@) — inf J(u)—0  asr—0,

well’

and we give convergence rates.
Once a discrete relaxed minimizer is known €; we can construct a sequence
{wk "} | C U such that

lim J(0br) = 7).

k—o00
This provides a minimizing sequence of the original problem. As we show, the sequence
{(o’”}i@:1 can be constructed explicitly from 96 with almost no computational cost.

Our results show that it is better to discretize the relaxed problem, in the sense that
we get a faster convergence rate, as r — 0, for (1.11) than the one obtained for (1.9).
This is true even in the case where the original problem has a solution, and so the re-
laxation is unnecessary from a theoretical point of view. Despite this, the relaxed version
of the original minimization problem can always be formulated, and our results show
that it is indeed better to approximate the optimal design problem numerically in these
cases as well.

From a computational point of view, besides discretizing the set of controls, we must
also discretize the state equation (1.3) or (1.6). This requires a second decomposition of
Q constituted by elements of maximum size h. A natural assumption is to consider this
new decomposition as a refinement of the one used for the control set, or vice versa.

In the context of the original unrelaxed control problem, denoting by u" the
P,-finite-element approximation of the solution of (1.3), and defining J" as

T ) :/Fl(l’, uh',Vuh)der/ Fy(z, ut, Vuh)da,
9] Q\w

the full discrete control problem reads

Find a)g'h’ € U" such that
(1.12)

h,rhYy _ s h
THwy”) = min J"(w).

Analogously, we can define a full discretization of the relaxed problem by
considering

(1.13) T"0) = / H(z, uh, Vuh, AVu", 6)dz,
Q

where u” is the P;-finite-element approximation of (1.6). The fully discrete relaxed
problem in this case is

Find 6;" € U" such that
(1.14) {

J"O5") = min 7" (6).
ocu

We focus on the convergence rates for the sequences {a)g’h}n , and {@Sh}r 5 Obtained
with the two approaches above, respectively. More precisely, we compare the sequences

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



APPROXIMATION OF AN OPTIMAL DESIGN PROBLEM 1185

T (0f") — inf J () and  J(65") — 1I€1£ J(w),

weld
as r,h — 0.

The following results are proven:

e Discretizing the relaxed formulation, we show that, solving the state equation

with the P;-finite-element method in a mesh of size h and taking the control
6 to be piecewise constant on elements of a coarser mesh of size v/h, the error
is of order h.
This constitutes a bigrid or multiscale strategy, implemented on the relaxed
version, in the sense that the discretization of the PDE and that of the control
are performed on two different grids. The PDE is discretized in the fine grid of
size h, while the control is discretized in the coarse one of size v/h.

e Discretizing the original unrelaxed problem, solving the state equation with a
P;-finite-element method in a mesh of size h, and taking the control x, piece-
wise constant in the elements of such mesh, we show that the error is of order
h'~¢ with ¢ arbitrarily small if the functions F; in (1.2) do not depend on the
variable v and ¢ = 1 /2 otherwise.

A bigrid strategy consisting in discretizing the PDE in the coarser grid (instead of
the finer one) can produce lack of convergence for both the unrelaxed and relaxed pro-
blems. In particular, the minimizers for the discrete problem will possibly give a non-
minimizing sequence of the continuous control problem, as r,h — 0.

We also give an explicit example in which the functional is independent of u, show-
ing our estimates are nearly sharp. To be more precise, our example shows the optimality
of the estimates in the case in which the relaxed version of the problem is discretized,
while an order & of convergence is obtained when the original problem is discretized, thus
showing that our estimates are nearly optimal.

Therefore the approach based on the discretization of the relaxed formulation pro-
vides a better approximation and a faster convergence rate with a lower computational
cost. The computational cost and the complexity of this approach is lower since the
controls are discretized in a mesh or order v/h instead of h. Furthermore, the minimizers
for the corresponding discrete optimization problems are easier to find numerically.
Indeed, thanks to the convexity of the relaxed control set, gradient-like algorithms
can be implemented. This is in contrast to the unrelaxed problem, where the control
set is not convex and we cannot compute variations. Instead, much less efficient methods
such as Monte Carlo or genetic algorithms should be used.

On the contrary, the advantages of discretizing the original problem directly are
that, on one hand, one does not need to know the relaxed formulation and, on the other
hand, it provides a physical control (i.e., a characteristic function) instead of a relaxed
one. However, this latter drawback can be overcome by approximating the relaxed con-
trols by physical ones, with almost no computational cost.

This paper provides a complete analysis of the rate of convergence of the finite-
element approximation of the optimal design problem under consideration. Whether
this classical engineering practice leads to convergent algorithms is unknown in many
other optimal design problems, except in some other particular examples as it occurs
when dealing with the optimal shape design of the domain for Dirichlet Laplacian in
two space dimensions (see [10]). Note, however, that, in the later, there is no result about
the convergence rate.

Although the present article is devoted to the study of the 1 — d optimal design
problem, some remarks about the N-dimensional case are given in the last section of
the paper. As above these remarks are devoted to the case of diffusion coefficients that
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are uniformly elliptic and bounded; the case where we consider matrix diffusions such
that their smaller and/or larger eigenvalues can approximate to zero or infinity, respec-
tively, is more involved. Indeed, even the definition of solution of the state equation is
not clear in this case, where in particular Lavrentiev’s phenomenon can occur; i.e.,
smooth functions cannot be dense in the space of functions with bounded energy
(see, e.g., [25] and the references therein). In this sense, we remark that in order to prove
the convergence of the finite-element method, it is necessary to have the density of the
Lipschitz functions in the space where we are looking for the solution of the state equa-
tion. A reciprocate of this result has been obtained in [5] for a calculus of variations
problem without restrictions.

As we have already remarked, control problem (1.1) does not have a solution in
general. To have a well-posed problem, such as we do in the present paper, an approach
consists of obtaining a relaxation of (1.1) by using homogenization techniques. However,
there exist other approaches, for instance, the filtering technique. Loosely speaking, the
idea of the filtering technique consists of replacing the set of controls in (1.1) with a
smoother class, defined by mean of a convolution operator. More precisely, in (1.3)
the characteristic functions y,, with @ € U, are replaced by the smooth functions
pr* 0, with 8 € L>°(Q; [0, 1]) satisfying the volume restriction, where p p is the typical
mollifier function pp(z) = p(z/R) /R with p a fixed C* nonnegative function with
support in the ball of center 0 and radius 1, and integral equals 1. Thus, we obtain a new
problem (filtered problem) with a compact set of controls in C°°(Q), which guarantees
the existence of a solution when the cost functional J is sequentially lower continuous in
the weak topology of H'(Q). The filtered problems are then smooth approximations of
(1.1) when R > 0 is small, at least formally. Given R fixed, the finite-element approx-
imation of the filtered problem has been studied in [4], in the framework of a control
problem in the coefficients in elasticity—mamely the compliance problem. In [4], the
convergence of the finite-element approximation, as the mesh size tends to zero, is
proved but without explicit rates.

Some definitions and notations:

e For a number r € R, we denote by [r] the integer part of r.
e For a (Lebesgue) measurable subset £ of (0, 1), with positive measure, and a
function w in L'(0, 1), we denote the mean value of w in E by

1
wdz = — [ wda.
][E |E|/E

o The set of functions of bounded variation in (0, 1) is denoted by BV(0,1). If  is
in BV(0,1) and T is a subinterval of [0, 1], then V(1) represents the total var-
iation of v in I.

e Throughout the paper, @ and B are two positive constants.

e For p € [0,1], we denote by M(p) € R the harmonic mean of o and B with
proportions p and 1 — p, respectively, given by

_(p 1-p\7'_ ap
M(p)_(0t+ B ) (1—pla+pp’

Note that M(1) = «, M(0) = B, and

(1.15) a<Mp)<p Vpelol].
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For every 6 € L>(0,1;]0,1]) we define My € L*(Q) by
My(z) = M(9(x)) for a.e. z € (0,1).
e For a matrix A € RV*Y we denote by Eig(A) the set of its eigenvalues.

e Let @ be a function defined in the interval (0, §) for some 6 > 0. The equality
® = o(h) (Landau symbol) means

h—0 h

e We denote by C a generic positive constant that can change from line to line.

2. Discretization and error estimates.

2.1. The main results. In this section we state the main results of the paper. They
are referred to the numerical analysis of a control problem for the 1 — d elliptic state
equation in Q = (0,1) below, the control being the space-dependent coefficient

(2.1) {%<(axw+ﬂ(1xw))%> =f in(0,1),
u(0) = u(1) =0,

where a and B are two fixed positive constants and f a given function in (at least)
LY(0,1).

Defining, for a fixed constant k > 0, the set of admissible controls as (1.4), our aim is
to choose w € U such that the unique solution v, € H, 3(0,1) of problem (2.1) minimizes
the functional J:UR defined as the 1 — d version of (1.2); 1

(2.2) J(w) = /F1<x uw,d )d +/ F2<x uw,d >dx Voel.
w dz 0.1)\w dzx

Here I}, F'3:(0,1) x R x R — R satisfy
(2.3) F,e Wv=((0,1) x (=R, R) x (-R,R)) Vie{1,2} VR>0.

As we said in the introduction, o and B represent two materials that we want to mix
in order to minimize J. The constant k is the maximum quantity of material & that can
be used in the mixture. Note that taking x > 1 would be equivalent to not imposing any
restriction in the set of admissible sets w.

Remark 1. In (2.1), we consider homogeneous Dirichlet conditions to fix ideas, but
our results also hold for nonhomogeneous Dirichlet conditions or other boundary
conditions, such as Fourier or Neumann ones. We can also consider the functions F,
satisfying weaker assumptions than (2.3), but then the error estimates we find for
the numerical approximations defined below are worse.

It is well known that the original minimization problem (1.1) does not have a solu-
tion in general (see [15], [16]). Therefore, it is necessary to introduce a relaxation. How-
ever, as we have mentioned in the introduction, for numerical purposes it is often
convenient to work in the relaxed version of the problem even when the original formu-
lation has a minimizer. The relaxed version thus plays a key role in the numerical
analysis we develop in this article.

The following result provides a characterization of the relaxation.
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TueorReM 2.1. A relaxation of problem (1.1) is given by

Find 6, € u such that
24) { T (0y) = min T (0),
ot
where

(2.5) U= {HGL"C(O,l;[O, 1]):A10dx§1<},

and J:U — R is defined by

A 1 M, d M. d
2o 5= [ (on (50050 ) 4 (- 08 (500,22 52) o

for every 6 € U with u = ug the solution of

@) { — (M%) = n0,1),
u(0) = u(1) = 0.

Remark 2. Theorem 2.1 also holds true for every f € H1(0,1) and more general
nonlinearities F';, Fy. Indeed, it is enough to assume that F';, Fy are two Carathéodory
functions (measurable with respect to z and continuous with respect to (s, £)) such that
for every R > 0, the functions ¢4 g, ¢4 p defined as

vir(z)= sup |Fi(z,s&) forae ze(0,1) Vie{l,2}
sl +g[<R

belong to L'(0,1).
Remark 3. For every w C (0,1) measurable, we have

~

J(@) =T (Xa)-

Therefore, j is in fact an extension of the functional x, + J(w) defined on the space
L>(0,1;{0,1}) to the relaxed control set L>(0,1; [0, 1]).

Remark 4. Theorem 2.1 is a generalization of Proposition 4.1 and Theorem 4.3 in
[6], where the multidimensional case is also considered.

In the present paper, we are interested mainly in the numerical analysis of problem
(1.1). For this purpose, thanks to Theorem 2.1, two choices are possible: to discretize
directly problem (1.1) or to discretize the relaxed problem (2.4). Our goal is to compare
these two possibilities.

To this aim, given r > 0, we take a partition P" = {y;};, of [0,1], with m, € N,
such that
(2.8) r= max (y; — yp1)-

1<k<m,

Then, we define U" and U" as the subsets of I given by

(2.9) U = {6’ cl:0= Z LeX (g 1yp) A€ in(0,1) with¢, € [0,1], 1 <k < m,},
k=1
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(2.10) U ={oc(0.1):x, €U}

Associated to these subsets we can consider the two discretizations of the control pro-
blem given by (1.10) and (1.8).

Note that problem (1.8) is a discretization of the original minimization problem
(1.1), while (1.10) is a discretization of the relaxed problem (2.4).

The following theorems provide estimates on the difference between these problems
and (2.4). Some versions of Theorem 2.2 can also be obtained in the N-dimensional case;
see section 8.

THEOREM 2.2. Assuming f € L'(0,1), problem (1.10) has a solution for every r > 0,
and we have

(2.11) 0 < min J(6) — min 7 (6) = o(r).
ocu” ocuU

Moreover, if f € L*(0,1) and problem (2.4) has a solution 6, in BV (0,1), then

(2.12) 0 < min J(6) — min J(6) < Cr2.
ocu” ocuU

THEOREM 2.3. Assuming f € L*(0,1), problem (1.8) has a solution for every r > 0,
and we have

(2.13) 0 < min J(w) — inf J(w) < Cr2.

weld” weld

Moreover, if for some integer | > 1, we have that f belongs to the space W"'(0,1) and
Fi(z,5,8), Fy(z, 5,£) are independent of s and belong to CLL([0,1] x R); then we have

loc

(2.14) 0 < min J(w) — inf J(w) < Cree.
weld” weld

2.2. Optimality. We now give an example showing that the previous results are
nearly optimal.
Ezample 1. We consider problem (1.1) witha < 8, f = 1,k =2 /3, and J given by

2
dz.

du,,
dzx

duy,

2
. dz— B

(2.15) J(@) = —a /

(0,1)\w
For every n € N, we define P,, as the partition of [0, 1] given by
P, = {k107:0 < k < 10"}

We define

10"
(216) Z/{n = {6 cU:0= Z TkX((k—l)lO’",k’lO’"’) with T € [O, 1} Vk € {1, ey 10”}}7
k=1

(2.17) U ={wecld:x, €U"}.

We will prove in section 6 the following result.
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ProrosiTioN 2.4. For Example 1 above, we have

ming 7 0) = 1.T@) a5 g)

2.1 li - :

(2.18) b 102" 27ap
mianMH j(w) — inf j(a)) o

(2.19) lim el _boa

Remark 5. In Example 1, we are considering the discretization of problem (1.1) cor-
responding to control functions that are constant in the partition P, of size r = 107".
Observe that in this case the functions F(z, s,&) = —a|§[?, Fy(x,s,&) = —BJ&|* do not
depend on the variable s.

e Statement (2.18) shows that discretizing the relaxed control problem (2.4), the
error between the infimum of the original problem and the minimum of the
discretized one is exactly of order 2 = 1072". Thus, estimate (2.12) is optimal.

e Statement (2.19) shows that discretizing directly the original control problem
(1.1), the error between the infimum of the original problem and the minimum
of the discretized one is, in this case, of order r = 10~". Thus, estimate (2.14) is
nearly optimal as well, in the sense that the upper bound cannot be of order o(r)
as in (2.11). However, the question remains whether we can replace the right-
hand side term of (2.14) with Cr.

As we will see in the proof of Proposition 2.4 in section 6, Example 1 is very particular. In
this case problem (2.4) has the unique solution

(2.20) éo = X(0.1/3)u(2/3.1)"

Since 6 is a characteristic function, we are in a case where problem (1.1) has a solution
as well. Even in this case, as predicted by the theory, the error for the discretized relaxed
problem (1.10) is much smaller than for the discretized unrelaxed one (1.8).

2.3. Direct versus relaxed discretization. By Theorems 2.2 and 2.3 and
Proposition 2.4, it is clear that in order to obtain an approximation of a solution of
(2.4), it is better to use (1.10) than (1.8). Moreover, (1.10) is simpler to solve because
the set of controls is a convex set, while in (1.8) we are minimizing in a set of functions
which only take the values 0 or 1. The unique advantage of (1.8) with respect to (1.10) is
that it provides a physical solution and not a relaxed control.

The following proposition shows that this is not a great advantage because it is very
simple to obtain a good unrelaxed control from a relaxed one. See section 4 for its proof.

Proposition 2.5. We assume f € L*(0,1). Let P" = {y;}~,, with m, €N, be a
partition of [0, 1] with r as in (2.8). Assume that

~

0= Z th(yk—lvyk> eu’
k=1

with t;, € [0,1] for every k € {1, ..., m,}. Taking
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i = [yk_y’”l} 1, s =L vpeq . m)
72 jk

we define o C (0,1) as

M, Ji

(221) yk 1 + 1)5k, Yi—1 + (Z -1+ tk)Sk)'
k=11i=1

Then, we have

(2.22) \7(0) = T(@)] =T (0) = T (x.)| < Cr,

what ever the functional J is within the class of those considered in the general results of
section 2.1.

2.4. Finite-element approximation. So far we have focused on the discretiza-
tion of the admissible set of controls. However, a full discretization of the minimization
problem (1.1) requires also the numerical approximation of (2.1) and the cost functional
(2.2). The aim of this section is to analyze this fully discrete problem in order to see if the
finite-element approximation of the relaxed formulation provides better approximations
than the finite-element approximation of the direct optimization problem.

We first consider the finite-element approximation of the nonrelaxed problem. For
h > 0, we introduce a second partition P" = {z;}1", of [0, 1] with
(2.23) h = max (z; — z;_1)

1<i<ny,

and we denote by W the space of finite elements
(2.24) Wh = {ve CJ([0,1]):vis affine on (z;_1,z;), 1 < i< ny}.

Then, for every w € U, we introduce the finite-element approximation u” of u as the
solution of the following finite-dimensional variational problem:

h h
(2.25) {“‘” € W

Jolex ey + B = xu)) d;; gg = 3 fvdz Vve Wh

We also set

d h d h
(2.26) T w) = /F1 T, ul, o d:c—l—/ Fol z,ul, Yoliz Ve el
® dr 0.1\ dr

Once we have introduced a natural finite-element approximation to evaluate the
cost functional, we can state the fully discrete optimization problem defined by (1.12).

We now introduce the finite-element approximation of the relaxed formulation. For
every 6 € U" defined by (2.9) we introduce the finite-element approximation iy as the
solution of the following finite-dimensional variational problem:

Uy € W
(227) {f& My4edede = [} fode Vve W

We also set
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- | . M, di M, di
(2.28) T"e) = /0 (0F1 (:c wf%) +(1—¢9)F2<x, ug?e%>>dm

for the relaxed functional evaluated on the finite-element approximation. Note that, in
the particular case 8 = y,, we have

(2.29) T"@) = T"(Xa)-

Remark that j " is a discretized version of the relaxed functional :7 and J" is a discre-
tized version of the unrelaxed functional 7.

The following result is the key ingredient in our convergence results.

LemMA 2.6. Assume that v > h and P" is a refinement of PT. For every f € L'(0,1),
there exists a constant C > 0 such that

(2.30) 70) T <Cch  voel

for all functionals and finite-element approximations as above.

The condition r > h in Lemma 2.6 is necessary, in general, as we show below.

By Theorem 2.2, Theorem 2.3, Proposition 2.5, and Lemma 2.6 we have the follow-
ing two corollaries providing a numerical approximation of the control problem.
Corollary 2.7 is concerned with the discretization of the relaxed problem (2.4), while
Corollary 2.8 is concerned with the discretization of the original problem (1.1).

COROLLARY 2.7. Assume f € L*°(0, 1) and suppose that there exists an optimal con-
trol 8 of the relazed problem (2.4), which is of bounded variation in (0,1).

For h>0, we denote m=+h and we consider two partitions P’ = {yi}im,
Ph = {z;}", of [0,1] with P* a refinement of P fulfilling (2.23) and (2.8).

DefiningU" by (2.9), we consider the full discrete problem (1.14) with J" defined by
(2.28), which has a solution.

Then, every solution 0y of (1.14) satisfies

(2.31) 0 < J(wg) — ug{j(a)) < Ch,

where the unrelazed control wy € U is defined from 6, by the mechanism (2.21).
COROLLARY 2.8. For f € L*(0,1) and h > 0, we consider a partition P* = {z;}:*, of
[0, 1] satisfying (2.23). We consider the control problem

(2.32) min J"(w)

wel"

with U" defined by (2.10) (with h < r and P" a refinement of P") and J" defined by
(2.29), which has a solution.
Then, every solution w, of (2.32) satisfies

(2.33) 0 < J(wg) — inf J(w) < Crs.

Moreover, if for some nonnegative integer, we have that f belongs to W''(0,1) and
Fi(x,5,8), Fy(z, 5,&) are independent of s and belong to C:L([0,1] x R), then we have

loc

(2.34) 0.< T (o) — inf T(w) < Crie,
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Remark 6. Solving the corresponding finite-element control problems, Corollaries 2.7
and 2.8 provide a physical control wy € U such that J(wg) is close to the infimum
of J.

From a computational point of view, the discretization considered in Corollary 2.7 is
better than the one considered in Corollary 2.8 not only because the error is slightly
better but also because in Corollary 2.7, the set of controls is convex and so the discre-
tized problem (1.14) is simpler to solve. Moreover, the elements of the partition where
the controls are constant are a lot larger in Corollary 2.7 than in Corollary 2.8. This
reduces considerably the computational cost.

In Corollary 2.7, we have supposed f in L>*(0,1) and the existence of an optimal
control of bounded variation. If this is not satisfied, then taking in Corollary 2.7 r = h we
still have an estimate of order h in (2.31) thanks to (2.11).

2.5. The caser < h. In the convergence results of the previous section we assumed
r > h. Here we give two examples which show that if 7 < h, some undesirable situations
may appear. To fix ideas we focus on the particular case r = h /2. The key point is
the following lemma which establishes that the result in Lemma 2.6 may fail in this
situation.

LewvA 2.9. Leth =1/kwithk € N, let P" = {z;}!_, P2 = {y,}2k, be the uniform
partitions of [0, 1] constituted by x; = jh, j = 0,1, ...k, andy, = lh/2,1=0,1, ..., 2k,
and let

k-1 L.
1
2. nee | (2242 h/2.
(2.35) w ]L_J()(k,k+2 cu
Then,
(2.36) lim J(0"/2) = J(6,).  lim J"(@"/?) = J(6,,).
h—0 h—0

where 8 =1/2 and 6,, = o /(¢ + B). In particular, if :7(00) # j(@,n), then (2.30) will
not hold.

We prove this lemma in section 7 below.

Based on this result we show now two examples that exhibit the lack of convergence
of the fully discrete optimization problems.

FEzample 2. This example shows how minimizing sequences of the continuous opti-
mization problem can be far from being discrete optima when i < 1. In particular, this
means that any numerical algorithm able to solve the discrete optimization problem for
h small will not provide such minimizing sequences of the continuous problem.

We consider the minimization problem (1.1) with f=1, k=1/2, and the
functional

1
(2.37) T(w) = / lu(z) — u* () [2da,
0
where u*(z) = (z — 7°) /2a* and a* = M(1/2) is the harmonic mean of « and B with

proportion 1 /2. According to Theorem 2.1, a relaxation of this problem is given by (2.4).
Note that the relaxed problem has a unique minimizer corresponding to

gmin = 1/2’

since, in this case, the solution u, of (2.7) coincides with u* and J (i) = 0. Thus, this
is a case where the original problem (1.1) does not have a minimizer in U.
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Let us consider now the discretization of (1.1) given by (1.12), associated with the
uniform partition P" = {y; 7]720, where y; = jh and m; =1/h € N.
From Corollaries 2.7 and 2.8 we see that

lim min J"(w) = lim min 7"(0) = inf J(w) = 0.
h—0 pely h—0 gy weld

Moreover, minimizing sequences of the continuous problem and minimizers of the dis-
crete functionals as h — 0 are related, due to Lemma 2.6. More precisely, in the context
of the nonrelaxed problem, minimizers of J* in U* constitute a minimizing sequence for
the continuous problem as h — 0. On the other hand, any minimizing sequence of the
continuous problem w”, constituted by elements in U" as h — 0—i.e., ", € U"—is close
to a minimizer of J” in 4" in the sense that

lim(J"(!},) — min J"(w)) = 0.

h—0 weld"

Let us consider now the sequence w"/? € Y"/? defined in (2.35). It is easy to see that
it constitutes a minimizing sequence as h — 0. In fact, as stated in Lemma 2.9, the solu-
tion of (2.1) with @ = w"/?, which we write u"/?(z), satisfies

u*(z) = lim u"/?(z),
h—0
and therefore J(w"/?) — 0 as h — 0.
A rather natural conjecture is that J"(w"/?) should be close to inf, 2 J"(w) as

h — 0. We see that this is not the case.
First of all, note that, as stated in Lemma 2.9,

. Wi, h/2y 5 _ 5 o
i 7 (0"2) = 510,) = 7 55) = 0

On the other hand, we remark that lim;,_,q inf, > J"(@) = 0 since

0< inf J"w)< inf JMw),
el ol

and the right-hand side converges to zero, as h — 0, as we have seen before. This shows
that the discrete method corresponding to take r = h /2 converges in this case. Let us
show in the next example that this does not always hold.

FEzample 3. This example shows that the value of the discrete functional at discrete
optima may not converge to the infimum of the continuous functional, as h — 0.

We consider the minimization problem (1.1),\ withe > 8 >0, f =1,k =1/2, and
the functional

ﬂmzﬁﬂ%w—muwm

with u*(z) = (22 — z) /(@ + B) the solution of

e | in (0,1),
w*(0) = u*(1) = 0.

For h =1 /k, with k € N, we take P" = {xj}?:() and P"/2 = {y,;}3*, as the uniform par-
titions of [0, 1] constituted by z; = jh, j =0,1, ...,k and y; = lh/2,1=0,1, ..., 2k
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ProrosiTioN 2.10. For Example 3 above, we have

(2.38) 0 = lim min J7"(6) = lim min J"(@) < inf J (o).
=0 gegyi/2 =0 werf /2 well

Proof. For k € N, we take »"/? € U"/? as in (2.35). Then, we observe that the solu-
tion u” of

uh e Wh,
h
fol (Ot)(whn + ,3(1 - th/2))%% = fol vdz Vv e wh

agrees with the solution u*" of

{ u*,h c Wh

atB (1du"dv _ 1 h
oo Y= Jovde Yve Wh

Then, by the classical estimate for the solutions of elliptic equations via finite elements,
we know

Ju™" — || o1y < Ch,
which proves

0< min J"(0) < min J"(w) < Ch2
66&}2/2 weuh/?

This gives the equalities in (2.38). However, let us prove by contradiction that

0 < inf J(o).

weld

If not, by Theorem 2.2 there exists 0 € U such that u* satisfies

d du*
—— | M =1i 1
dx( (6) dx) in(0,1),
which implies that there exists a constant ¢ such that

(-3

Taking into account that M () 4~ is a continuous function and 4% (1 /2) = 0, we obtain

u*
dz dx

that ¢ =0 and then that M(0) = # for a.e. 6; i.e.,

o«
a+p’

a.e. in(0,1).
However, since we are assuming that o > B, this 0 satisfies

1
/de: a 1
0 Ot—l—ﬂ 2

in contradiction with the volume restriction. a
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Remark 7. In Example 3 we are discretizing the state equation (2.1) or (2.7) using a
partition of [0, 1] of size h bigger than the size r = h /2 employed in discretizing the set of
controls. Statement (2.38) shows that in this case the minimum of the discretized
problem does not tend to the infimum of (1.1). Thus, this type of discretization is
not convergent in general.

3. Proof of the relaxation result. This section is devoted to proving
Theorem 2.1, which characterizes the relaxation of problem (1.1). To do it, we use
the following lemma. o

Lemma 3.1. The functional J:U C L>(0,1) — R is sequentially continuous for the
x-weak topology of L>(0,1). A

Proof. Given a sequence 60, € U which converges weakly-* in L*°(0, 1) to a function
0 € U, we have to see that J (8,) converges to T (0). For a such sequence 6,,, we observe
that the corresponding solution u, of (2.7) is given by

ug, () = —A%%;C"dt == Ax(F(t) — cn)w(1 — 9"(3; LLLIONY

with F' a primitive of f in (0,1) and

= ([mw) U wm)

n

Therefore, it is immediate to show that

d d
g lwreon) < O, ttg, = up in CO([0, 1), M@%f M(,%% 0 in ([0, 1])

with uy the unique solution of (2.7). Then, by (2.3) we obtain

lim J(6,)

n—o0

= lim 1 0,F | zu Mo, dts, +(1-6,)F | zu Mo, dtg, dz
n—00 0 nt 1 > Y0, o dz n)4 2 > %o, ﬁ dz
1 My du, My du, A

:/O (6F1 (m ue,ng—;> +(1—6)F, <:c ug,ﬁd—Hf))dx =J®). 0O

Proof of Theorem 2.1. Taking into account that the space of controls U given by
(2.5) is sequentially compact in the *-weak topology of L*(0,1), from Lemma 3.1 we
deduce that problem (2.4) has at least a solution. On the other hand, by Remark 3 it is
clear that

inf J(w) = inf T(Xw) > min J(6).
weld Xo€U ocU

Therefore, in order to check that problem (2.4) is a relaxation of (1.1), it is enough to
prove that for every 6 € U, there exists a sequence w,, in U such that
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* .
(3.1) Xo,—0 in L>(0,1),

(3.2) T(w,) = T(0).

The existence of this sequence w, is well known (for example, it is a consequence of
Lemma 5.1 below), while by the continuity property of J proved in step 1, (3.2) is
a consequence of (3.1). So, the proof of Theorem 2.1 is complete. 0

4. Proof of the convergence estimates for the discretized relaxed control
problem. In this section we prove Theorem 2.2 referred to the convergence of the dis-
cretization of problem (2.4) given by (1.10). Note that we are discretizing the controls
but not the state equation. We also give the proof of Proposition 2.5, which permits us to
obtain a physical control from a relaxed one.

Along this section, we consider a partition P" = {y;};2,, with m, € N, satisfying
(2.8). The space U" is defined by (2.9).

In order to show Theorem 2.2, we will use the operator I1" defined by the following.

DEFINITION 4.1. We define the projection operator TI": L1(0,1) — U" by

m, yk
(4.1) oy = Z ) 1¢ds Xrwy VW ELNOD).
k=1 Yr—

The following lemma estimates the difference I1"0 — @ when r tends to zero.
Lemma 4.2, Let 0 be in L=(0,1;[0,1]). Then, for every ¢ € W(0,1), it holds that

(4.2) /01 (@ —11"0)pdx = o(r),

(4.3) A 1

Moreover, if0 is in BV (0,1), and ¢ is in W1°(0, 1), we have the following improvement
of the previous estimates:

A%mﬂ—mmeUMt

dz = o(r).

,,n2
1°(0.1)

’

(4.4) ‘ /0 LO0-TT0)pda

(4.5) /0 1

Proof. We take ¢ € W(0,1); for a given z € [0, 1], we consider y; defined by

de
< -
- CH dz

Aﬂwn—mwmwmw

dz < CH@ || Wlm(oﬁl)’r?.

y; =sup{ypiyr < 2,0 < k< m,}.

Then, using the inequality

)w(t) - ][Zi_lwds

Vie [ykflv yk}

<|%
|| dt

LM(yr-1,k)

we have
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‘ / = HTG)godt‘
0

J Yk yk T yk
:Z/ 6—][ 0ds (pdt+/ 9—][ 0ds | pdt
k=1 Y Y1 yk—1 Y; yk—1
yk
yk
yk

J Y, y yk
= Z/ (0 7][ 6ds) (¢ 7][ pds)dt
k=1 Y Y1 yk—1 yk—1

+/I (9—][ 9ds)<pdt
Y; —1

d
b [

+ ||‘P||L°<(0,1) 160 — HTQHLl(y; )
LM (yp-1.9)

(Yr-1-Y1)

J
(46) <)
=1
Integrating this inequality in (0,1), we get
1 T
/ A(ﬂﬂ—mwmwmm

16 — HTHHLI(:‘/k—hyk)

< Z
LN (ypmryn)
m, Vit
+Hmmw1§j/)|w—nmmwﬁﬁx

(4.7) < Z 2| )HG - HT&HL'(yk,I.yk) + ||‘/)||L°C(0,1)H9 - Hr@”ﬂ(o,l)r
Yr—1-Yk

If ¢ belongs to W>(0,1) and € belongs to BV(0,1), using in (4.7)

dzx

da:

(4.8) r, 60— HTH”L'(O.I) < V(U,l)(e)T’

L°(0,1)

H dx H dx

LM (y—19k)

we deduce (4.5).

Inequality (4.4) is a consequence of (4.6) with z =1 = y; and (4.8).

In order to show (4.2) and (4.3) we now take a sequence ¢, in W'>(0,1) which
converges to ¢ in W'1(0,1) and a sequence @, in BV(0,1), with 0 <@, <1 in (0,1),
which converges to @ in L*(0, 1). Then, we estimate the right-hand side of (4.7) as follows:

— IOl 11y, ) reullf — I8l L)
d |0 — 110 + el |0 —T170|| r
k= z LM (ys-1.9)
dle — ¢,)
<4\d P IO — 0, ~ IO = 0,) oy
x L'(0.1)
<= || do : :
+ Z d:vn 1 10 =110 11y, , y) + @l 200100 — 17O, || 0.1y
k=1 LN Yr-1.yr)
d(p — wn)
<o 422 P 0 — 0, ~ IO = 0,) oy
‘g 1(0.1)
de,
(%) V@ + ol V@ )
L>*(0,1)
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Dividing this inequality by r and passing to the limit first when 7 tends to zero and then
when 7 tends to infinity, we deduce (4.3). The proof of (4.2) can be obtained reasoning in a
similar way with (4.6). d
For 0 € L>(0,1;]0,1]), the following lemma estimates the difference between the
solution of (2.7) and the solution of the analogous problem when 6 is replaced by IT"6.
Levva 4.3. Assume f € LY(0,1). For 6 € L*(0,1;[0,1]), we consider 6" =11"6.
Then, the solutions uy and ug- of (2.7) for @ and 0", respectively, satisfy

(4.9) |uo — ugr || 1101y < o(r),
dU,g dU,gr
(4.10) HM — — My < o(r).
0 dl’ 0 d.T L2(0.1)

If f isin L°(0,1) and 0 is in BV(0,1), then in (4.9) and (4.10) we can take

o(r) = CV(OJ)(H)rQ.
Proof. The functions uy and ug are given by

a:g z ]
4.11 ug(z :—/ —ds+c/ —ds for a.e. z€(0,1),
(411) o) =~ [ paste [T (0.1)

4.12 ugr (T :f/ —d5+cr/ ds for a.e. z € (0,1
(412) r@) == | 5 i 0.1)

with ¢ a primitive of f and ¢, ¢, € R defined by

(4.13) c= </1de>l/1idx, cr = (/1
0 My o My 0

Using these expressions and taking into account that

1 -1 r1og
dz / dz.
My ) o Mo

min{e, B} < My, My < max{a, B},

we easily deduce

4o — vl o) < C<M1 (0 — 0")gdal + [)1 (0 — 0")da].
+/01 K(e(t)—er(t))g(t)dt deFA1 AZ(G(t)—H"(t))dt dx)
and
HM(,CZ‘; Mer% o S c(Ml (0 —0")gde +Ml (6’—9de>.

Lemma 4.3 is then a simple consequence of Lemma 4.2. 0

We are now in position to prove the following.

Proof of Theorem 2.2. The existence of solution for problem (1.10) is a simple con-
sequence of the compactness of (2.9) in L*(0,1).

On the other hand, using that F'; and F, are locally Lipschitz, and that the func-
tions uy, uy defined as in Lemma 4.2 are bounded in W>(0,1) independently of r,
we have

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1200 CASADO-DIAZ, CASTRO, LUNA-LAYNEZ, ZUAZUA
T
Myd 1 Myd
‘ / Fy (:17 ug, —2 Ue) (0 —07)dz —1—‘ / F, (l‘, ue,agdug) (60— 6")dx
z

+C/ <|Ug U9r|+Mgdd Mgr%)dﬁl?

Thanks to Lemma 4.3, we then deduce (2.11) and (2.12). O

To finish this section, we now give the proof of Proposition 2.5.

Proof of Proposition 2.5. Reasoning as in the proof of Theorem 2.2, we have that
the result is an immediate consequence of the following lemma, which is similar to
Lemma 4.2. |

Lemva 4.4. Assume 0 and o as in the statement of Proposition 2.5; then for every
@ € Wt(0,1), it holds that

(4.14)

(4.15) /0 1

Proof. Since in each interval [y,_;+ (i—1)s, yp + isp), with 1<k <m,,
1 < i < j;, the functions 6 and ¥, have the same integral, we can reason as in the proof
of (4.6) to deduce that for every z € [0, 1], we have

z d(p
_ < || 2=
/0 (@ xw)wdt) < H T

where [ is an interval of the form [y,_; + (¢ — 1)s;, y;, + 18] containing x. Taking z =1
we get (4.14). On the other hand, since 8 and y,, belong to L>(0,1; [0, 1]), inequality
(4.16) implies

/ (0 — Xo)pdz

0

|

dzx L°(0.1)

dz < H‘/)HW'“(OJ)TQ

/0 "(000) — xo(H)e (D)t

(4.16)

160 = xollon)™ + el o0 = Xollp o r
1(0.1)

\ NG xmdt\ < ol w~con

for every x € [0,1]. This inequality immediately proves (4.15). 0

5. Proof of the convergence estimates for the discretized unrelaxed
control problem. Let us now prove Theorem 2.3. As for Theorem 2.2, we will need
some preliminary lemmas.

Levma 5.1. We consider @ € L>(0,1) and | € N; then, there exists w C (0,1) mea-
surable such that

(5.1) /1 tfe(t)dtz/tfdt Viefo, ...
0 w

Moreover w can be chosen in the following way:
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If | =2n, with n € N,

= (0, J (O(ai, bi)),

i=1

where m <nand 0 < by <ay <by <---<a, <b, <1
Ifl=2n+1, with n € N,

©= U<b>

where m <n+1and0<a; <by <---<a, <b, <1
Proof. Let us prove the result in the case [ = 2n + 1, the other one being similar.
We define D C L'(0,1) as

~

m
D= {QS:ZX(GNM withm<n+1,0<a; <by <---<a,<b,< 1}
=1

and ¥:D — R by

v =3 ([ vow-swa)  veep

=0

Since D is compact in L*(0, 1) and W is continuous, we know that ¥ attains its minimum
in some function

¢ = Z X(ab) € D-
i=1

Then, we define the polynomial P as

P(1) = 2&61 (Al t(0(t) — gb(t))dt),lj.

We fix k, with 1 < k£ < m. For ¢ € R, with |¢| small (¢ must also be positive if k=1,
a; = 0), the function

ES X Ui (a;,0;) =+ X(ap+e,by)

belongs to D. Taking into account that

2n+1 1 . ate 2
v = ([ v - soars [ var)
=0 /0 o
and that ¢ is a minimum point of ¥, the derivative of ¥(¢,) with respect to & yields
P(a;) =0if a; #0, P(a;) >0if a; =0.

Analogously, we can prove
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P(by) =0if b #1,  P(b,)>0if b, = 1.

If P has 2n + 2 zeros, then it is the zero polynomial and we obtain the conclusion of
the lemma. So, we assume in the following that P has at most 2n + 1 zeros. By the above
proved we deduce that

m=n+1, a =0, and/or b, =1,
or

m<n-+1.

Let us prove that in all these cases P satisfies

m m

(5.2) P)>0in | J(anb),  P(A)<0in(0,1)\| J(a; by).
i=1 =1

(i) Casem =n+1,a; =0, b,,; = 1. Since we are supposing that the number of
zeros of P is strictly less than 2n 4+ 2 and P vanishes in the 2n points a;, with
k=2,...,n4+1,b,withk =1, ...,n, we have that P has 2n or 2n + 1 zeros
in [0, 1]. If the number of zeros is 2n + 1, then using that P(0), P(1) > 0, we
deduce that the other zero of P isin 0 or 1 and that P satisfies (5.2). If the
number of zeros is 2n, then we have P(0), P(1) > 0 and (5.2) is satisfied.

(i) Casem=n+1, a; =0, b,,; < 1. In this case we have that the 2n + 1 zeros
of P are given by the points a; with k=2,...,n+1, b, with
k=1, ...,n+ 1. Since P(0) > 0, we deduce (5.2).

(iii) Case m=n+1, a; >0, b, = 1. It is similar to the case (ii).
(iv) Case m <n—+1. In this case, we take a point ¢ € (a;, b;) for some
1€ {1, ...m}. Then for & > 0, small enough, the function

b =9 — X(c—e,c+¢)

belongs to D. Using that

v =3 ([ oo -gpars [ var)’

§=0

and deriving with respect to e, we deduce that

m

P(e)>0  VecelJ(anb).

Analogously, if ¢ € (0,1) \ U™, [a;, b;], taking
¢s =¢+ X(c—e,c+e)

we deduce that
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P(c)<0 Vce (0,1)\6[@1-,1)2-].

i=1

Thus, (5.2) is also proven in this case.
To finish, let us prove that (5.2) implies the conclusion of the lemma. For this pur-
pose, we just write

Z ([ vietn - ponar)

- (22“ | eten - ¢(t))dtsf) (0(s) — $(s))ds

=0

(5.3) — [ Peo06s) - pls)as.

If s e U™, (a;, b;) (e, ¢(s) = 1), then by (5.2), P(s) > 0 and since 6(s) < 1, we have

P(s)6(s) < P(s)(s).

If s ¢ U, (a;, b;) (ie., ¢(s) =0), then by (5.2), P(s) <0 and since (s) > 0, we also
have

P(5)0(s) < P(s)¢(s).
Therefore the last integral in (5.3) is nonpositive, which proves
2n+1 1 2
> (/ (6(t) —¢(t))dt> =0.
=0 \J0

This proves Lemma 5.1. 0
As a consequence, we deduce the following.
LEmmA 5.2. Let a, b be in R with a < b and let {y;}]", be a partition of [a, b] of size
6= max (y — yy1)-

Let also 0 be in L (a, b;[0,1]). Then for every l € N, there exists I C {1, ..., m} such
that

(5.4) & = J W1, vp)
kel
satisfies
B b
(5.5) 6] < / odz,

b
‘/ (0= xa)edz| < C(b— a)™ D" ollop + COl@lxw@sy ¥ ¢ € WHHH(0.1),
(5.6)

where C' is a positive constant that depends on I, but it is independent of 0, 8, a, and b.
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Proof. It is enough to show the case a = 0, b = 1. The general one follows using a
translation and a dilatation which transforms (a, b) in (0,1).

For a given [ € N, by Lemma 5.1 we know there exists w C (0, 1) satisfying (5.1) and
such that the number of discontinuity points of x,, in [0, 1] is at most [+ 1. We then
define

I={ke{l.....m}:(yp—1.ys) C @}
and @ by (5.4). By the definition of @, we have ® C w, and then using (5.1) when j = 0,

we obtain (5.5). Moreover, using that yx, has at most [ 4+ 1 discontinuity points in [0, 1],
we have

(5.7) lw\@| < (I+1)6.

We now fix ¢ € WH11(0,1). Taking a polynomial p of degree [ such that
1
1o = plda < 1Dl

with C independent of ¢ (take, for example, the Taylor polynomial of degree [ of ¢ €
WHL1(0,1) C C'([0,1]) in some point of [0, 1]), we get

Al(e— Xa)edz /01(9— Xo)(¢ — p)dz| + /ol(xw — x)edz

(5.8) < C||DZH<P||L1(0.1) + ([ + 1)@l 1(0.1)-

<

This proves (5.6) for a =0, b = 1. a

LeEMMA 5.3. Forr > 0 small we take a partition P" = {y;},", with m, € N such that
(2.8) is satisfied. We define U by (2.5) and U™ by (2.10).

(a) For every 0 € U, there exists w € U" such that

(5.9) < Crtllgllyray Yo e[0.1, Vo€ WH(0,1),

/Um(G — Xo)®ds

where C is a positive constant independent of € and r.
(b) For every @ € U and every | € N, there exists w € U" such that

1
5100 | [0 x)eas < Crflplpns Vo€ WD)

where C' is a positive constant that depends on l, but it is independent of @ and r.
Proof. We take 1€ N, y € (2r,1), and a subpartition P¥ = {2}, C P" of P"
which satisfies

y—r<z—z,<y Vie{l,....m, -1}, r<z, —z, 1<V

This implies in particular

(5.11) m, <
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Using that for every i € {1, ..., m, — 1} the points y;, with 2, ; < y;, < 2, are a partition

of [2z;_1, z;] with mesh r, we can apply Lemma 5.2 in each interval [z;_;, ;] to construct a
set @ € U such that for every i € {1, ..., m, — 1}, we have

(5.12) ‘/ 60— x,)pde

< C(yl+1||Dl+1§0||L'(z,,,1,z7) + ||(p||L°C(z,,1,z,,)r)

for every ¢ € WHL1(0,1).
For z € [0,1], we take the larger j such that z; < x; then, thanks to (5.12) and
(5.11), we have

‘ /Om(ﬁ — Xo)pds

_ ’/027(9—Xw)¢ds+f(9—xw)sods

J

3r
(5.13) < PPl + Illmon (4 (0= 5)).
For [ =0, the above inequality and = — z; < y prove

\ JRCETSIEE

)
< YDl on + Clellmon (;+ y).

Minimizing in y this quantity, we deduce (5.9).
On the other hand, for z = 1 = z; inequality (5.13) gives

‘ Al(ﬂ ~ Xw)ods

which minimizing in y proves (5.10). O

Using Lemma 5.3 and reasoning similarly to Lemma 4.3, we easily deduce the
following.

Levua 5.4. Let6 be inld and f € L*(0,1). Then, for everyr > 0, there existsw € U"
such that, defining ug, u, as the solutions of (2.7) for 0 and x,,, respectively, we have the
following:

(a)

(5.14) lup — urll iy < CA+ Hf”L'(O.l))T%-

-
< CYMHIDH | o) + CH‘P”L%(OJ);’

(b) If f belongs to W+(0,1), then

41
< CQ A || fll e o,0)) 0.
1(0.1)

du,
Xo dx

dU,g
1 My———M
CREN I

LemMa 5.5. Let f € L10,1) and 6 be in Z:{; then for every r > 0, there exists w € U"
such that

(5.16) |7(6) = T(@)] < Cr(1 + (11l 10

If for some | € N we have that f belongs to W+ (0,1), Fy(x,s,£), Fo(x, 5,&) are
independent of s and belong to C:L([0,1] x R); then

loc
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(5.17) |T(60) = T(@)| < Cria(1+ [ fllwo))-

As a consequence of this lemma we can now prove Theorem 2.3.

Proof of Theorem 2.3. The existence of a solution for problem (1.8) follows from the
compactness of {x,:w € U} in L'(0,1).

The proof of (2.13) is easily deduced from (5.16) with I = 0 reasoning as in the proof
of Theorem 2.2. Analogously, (2.14) is a consequence of (5.17) and that the functions
Fi(z, s, &) are supposed independent of s. O

6. An example. In this section we consider a particular case of problem (1.1) for
which we can explicitly obtain the optimal control. As a consequence we will give the
proof of Proposition 2.4.

ProposITION 6.1. We consider f € L'(0,1), f not identically zero, such that

(6.1) f)y=f1-1 a.e. t €10,1],

and we define F as the unique primitive function of f satisfying F(1/2) = 0.
For k > 0, with

(6.2) k < |{t € (0,1): F(t) # 0}
and 0 < o < B, we consider the control problem (2.4) corresponding to the functional

given by (2.15). Then, the optimal controls for (2.4) are the functions 6, € L*°(0, 1; [0, 1])
which satisfy

(6.3) Al 0y()dt =k, /01 F(t)0,(t)dt = 0,
_ 1 if|F(1) :
(64 %0 =10 Himol -
with
(6.5) vo = inf{y > 0:|{¢t € (0,1):|F(¢)| > y}| < «k}.

Proof. Using that for every 6 € L>(0,1;[0,1]) one has

dug  c—F
dt M,

in (0,1)

with ¢ defined by

le—F 11 N\ 1 F
dt=0&c= —d —daz,
A M o ¢ (A M, a:) o My ’

and that the integral of F'in (0,1) vanishes, we have
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A 1 dugl? /1(07F)(07F)
0)=— My|—| dz = — ———=dt
70 /0 ax| Ty M,

1 _ 1 -1 1 2 1 2
=[5 e () (g - [ e
0 M, 0o My o My 0o My

— 5 (B -ar; }Jijj? i [ 1P (6 - ajoar).

Since the application (z,y) € R x R — 2% /y € R is convex, we then deduce that T is
convex in 6. Moreover, taking into account that F is odd with respect to 1 /2, the above
expression shows that given 6 € L>(0, 1;[0,1]) and defining 8 € L*>(0, 1; [0, 1]) as

0t) =0(1 —1t) ae. te(0,1),

we have

J(0) = T(0)

and so, by convexity, the symmetrized function 6 of an optimal control 6, defined as
05 = (6y + 0y) /2 satisfies

(6.6) T (03) < 5(T(60) + T (00) = T(0y) = T(6;) = T ().

N | =

Using now that for every (z1,y1), (22, ¥2) € R x RT one has

T +Ty 2
2

1 21 2
- :u2:_|$1| 1z {:)ﬁ:ﬂ’
T+F 2y 2y Y1 Y2

we deduce that (6.6) implies

[L Fo,dt B [L Fo,dt
a+(B—a)fyOdt o+ (B—a)flOdt’

which using that F' is symmetric with respect to 1 /2 is equivalent to
1
(6.7) / Foydt = 0.
0

Therefore, the control problem (2.4) is equivalent to

1 1 1
max {/ |F|20dt:/ odt < «, / FGdtzO}.
0cL>(0,1;0,1]) | Jo 0 0

But thanks to (6.2) it is immediate to show that the solutions of problem

1 1
max {/ |F20dt: / odt < K}
0cL>(0,1;0,1]) | Jo 0
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are the functions 8, € L>(0, 1; [0, 1]) that satisfy the first condition in (6.3) and (6.4),
and clearly the fact that F' is odd with respect to 1 /2 permits to construct functions
satisfying these properties and (6.7). This finishes the proof. 0

Proof of Proposition 2.4. By Proposition 6.1, problem (2.4) has a unique solution 6,
given by (this is true for every f that satisfies (6.1), does not change its sign in (0, 1), and
is not the zero function)

0y = X(0.1/3)u(2/3,1)

and

A 2 3|1 2 2 3|1 2
6.8 J(0 =——/ ——tdt——/ ——t| dt.
(63) o =-= '3 AaE
Taking

n—1
ky=3) 10,
=0
the same reasoning used in Proposition 6.1 also shows that problem

min J
ocu"

has a unique solution §j given by

1 ifte(0,k,100") U (1—k,107",1),
o5(t) =< &+ if te (k107" (k, +1)107") U (1 — (k, +1)107",1 — k,107"),
0 ifte((k,+1)107",1— (k,+1)10™™)
and
n 2 k107" |1 2
op) = —— ——t| dt
‘7( U) aA 9
2 4 (b, +1)107" | 1 2 2 3 1 2
(6.9) (+>/ ’t dtf—/z ‘t dt.
3a 3B/ Ji,10 2 B Jk,+1)10- | 2
Let us now consider problem
min J.
wel"

We have seen in the proof of Proposition 6.1 that the symmetrization 6° of a function
0 € L>°(0,1;]0, 1]) satisfies (6.6). This implies that

‘1 . _ . 2 > . o
(6.10) min J(w) = min J(X,) 2 min J(6)

with

ur={0e U :0c {0,1/2,1} a.e. in(0, 1), @ symmetric with respect to 1 /2},
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but using that F'is strictly increasing we easily get that the minimum in the right-hand
side of (6.10) is attained in a unique function 6" defined by

oo =41 ite (0, k,107") U (1 — k, 107", 1),
10 ifte (k"]_()*", 1— knlo—n)

Since this function is a characteristic function, we deduce that the inequality in (6.10) is
in fact an equality and
dt —— / ' ——1
k, 107"

From (6.8), (6.9), and (6.11), we easily deduce (2.18) and (2.19). O

. 9 [E,107"
(6.11) min J () = F(00) = __/ 1 F 2t
0

weld” o

7. Solving the state equation by the finite-element method. The purpose of
this section is to prove Lemmas 2.6 and 2.9. Lemma 2.6 will permit us to estimate the
differences (see Corollary 2.8) between control problems (1.10), (1.8) and the corre-
sponding control problems where the state equations are approximated by the finite-
element method P'. Lemma 2.9 provides a counterexample for Lemma 2.6 when the
hypothesis h < r is removed.

Proof of Lemma 2.6. We know that the solution uy of (2.7) is given by (4.11) with ¢
given by (4.13) and g a primitive of f, which we take with zero mean value. Then, we
define w as

Hh

g v 1
7.1 w(zx) = —~ds — / —ds a.e.z€ (0,1
(71) @=["Gpdas=c [ 4 0.1)

with IT" the operator defined by (4.1) (relative to the partition P* = {z;}“,). Then, w is
continuous and since 6 is constant in each interval (z;_;, 2;), we get that it is affine in
each interval (z;_;, z;). Taking into account that the integral of 1" g coincides with the
integral of g in each interval (z;,_;, z;,), we get that w(0) = w(1) = 0. Therefore w is in
W". Moreover, using that in each interval (z;_,, z;,) the integral of M, %2 agrees with the
one of M,% 77, we deduce that for every v € W" one has

dw dv 1 du dv
M, = My——dz = — —dz = d
/ da:d:v A ¥ dx dx v /g = /fvx

This proves that w agrees with the solution %, of (2.27).
On the other hand, comparing (4.11) with (7.1) and using that g is in W1(0, 1), we
deduce that

luo — tgll w100y < CllFll 20,0y

From this inequality ug, @ty bounded in W>(0, 1) independently of h and the Lipschitz
property (2.3) of the functions F;, Fy, we easily deduce (2.30). 0

Proof of Lemma 2.9. Since x,+ converges weakly-+ in L>(0,1) to 6, as k tends to
infinity, the first limit in (2.36) is a consequence of Lemma 3.1. Concerning the second
limit, note that, in the weak formulation of the discrete problem (2.25), both d“h
are constant on each element (z;, z;,;). Therefore, the left-hand side in this weak for—
mulation can be written as
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1 du® dv 1_du dv
1—x,)——dz= [ a—"dz,

where @ takes a constant value in (z;, z;,1) given by

i) =7 / @t + B = o))z ae.z € (2 20).

i

Assume that h=1/k with £ € N and let us consider the particular sequence of
controls

k . .
k_ J—1j-1/2 h/2
a)—]L_Jl( P ’ euyr/=.

When considering the particular sequence w”, we see that a(r) takes the constant

value (¢ 4+ B) /2 everywhere and for any h. Therefore, the weak formulation in (2.25)
coincides with the weak formulation associated with the constant coefficient problem
with constant a and then, thanks to (2.30),

A =

lim J/4(@") = lim TVEO) = T(0),

k—00

where 0 is the constant value such that

ie, 8 = /(e + B) which, in general, is different from 6, =1 /2. O

8. Some remarks about the N-dimensional case. Although the aim of the
paper is the numerical study of the one-dimensional control problem (1.1), let us give
in this section some remarks referred to the N-dimensional problem.

For a bounded open set Q C RY, two Carathéodory functions (measurable with re-
spect the first variable and continuous with respect to the second and third variables)
Fi,Fy:Q x R x RY — R such that there exist C > 0, h € L'(Q) satisfying

[F1(,5.8)]. [ Fa(z.5.8)| < C(h(z) + [s]* + ") ¥(5.6) ERxRY ae z€Q
for a distribution f € H~!(Q) and three positive constants «, B, and k, we consider the

control problem

wel

(8.1) min (/ Fi(z, uw,Vuw)dx—l—/ Fy(z, ug, Vuw)dx),
3} Qw
where, analogously to the control problem (1.1), we have denoted by U the set
(8.2) U ={w C Q: wmeasurable, |o| <k}
and by u,, for every w € U, the solution of

(8 3) *le(an + IBXQ\w)VU = f n Q,
’ u=20 on 0Q.
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As we said in the introduction, problem (8.1) does not have a solution in general, and so
it is usual to work with a relaxed version of this problem: For p € [0, 1] we denote by
K(p) the set of matrices constructed via homogenization mixing the materials corre-
sponding to the diffusion matrices o/ and BI with respective proportions p and
1—p, and by u (the relaxed control set)

(84)  U={(6.M) e L>®(2[0.1]) x L®(Q;R¥N): M € K() a.c.in Q}.

It is proven in [7] (see also [2], [3], [6], [11], [18], [20], [23] for related results) that the
relaxed control problem is of the form

(8.5) minLH(m, u, Vu, MVu,0)dx { (9(,11]\‘;[];4:5, ffl;:e%x o u =0 on 0Q,
for a Carathéodory (measurable with respect to the first variable and continuous with
respect to the other ones) function H. Some remarks are needed.

Remark 8. Asin (2.4), the control 8 in (8.5) represents the proportion of material o
we are using in the mixture in each point, but now the mixture does not only depend on
this proportion but also on the geometric configuration of the materials. Thus, the set
K(0) is not reduced to a point as it holds for the one-dimensional problem. In the case
we are considering here, corresponding to the optimal mixture of two isotropic materials,
an algebraic representation of [C(0) is known (see [14], [22]). However this does not hold
for other interesting problems such as the mixture of more than two materials or the
mixture of anisotropic materials. In this sense, it is interesting to remark that in problem
(8.5) the matrix M always appears multiplied by Vu. Thus, problem (8.5) does not per-
mit us to calculate M but only the product MV wu. In order to work with (8.5) it is enough
to know, for every £ € RY and p € [0,1], an explicit characterization of the set

K(p)§ = {ME e RY: M € K(p)}.
In our case, the mixture of two anisotropic materials, K(p)& can be characterized in the
following way (this set is known in more general situations [6], [24]): Denoting by A(p)

and A(p), with p € [0, 1], the harmonic and arithmetic mean of & and § with proportions
pand 1 — p, i.e.,

Ap) = (§+1;Tp) 71, A(p) = ap+ B(1 —p).

we have that KC(p)& is the ball
K(p)§ = {n € RY:(n — 4(p)§) - (n — A(p)§) < 0}.

Therefore, problem (8.5) can be written in the equivalent form

min /H(a:, u, Vu,o,0)dz
Q

—divo = fin Q, wu =0 on 0Q,
0 € L*(Q;[0,1]), [o0dz <k, (6 —AO)Vu)- (0 —AO)Vu) <0 ae. in Q.

(8.6)
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This permits us, for example, to substitute in the definition of the relaxed control set U
the set /C(p) by the (more simple) set of symmetric matrices whose eigenvalues are com-
pressed between A(p) and A(p).

Remark 9. Defining

E={(&n,p) € RY xRY x [0,1]:(n — A(p)€) - (n — A(p)€) <0},

the function H that appears in (8.5) is a Carathéodory function with domain Q x R x E.
An explicit expression of H in the whole of its domain is not known in general.

In the particular case where F'i(z, s, &), Fy(, s, §) are affine functions in the variable
&, we have

H(z,s,&,n,p) =pFi(z,8,8) + (1 —p)Fa(z,8,8) V(s,&n,p) ERXE ae z€Q,

while for nonlinear functions F; in the variable &, an expression of H is only known in
some particular cases (which essentially are concerned with the nonlinear function |£/?);
see [3], [6], [8], [11], and [18].

However, an explicit representation is always known in the boundary of its domain

{(z,5,6n,p): € @xRXRx[0,1]:(n —A(p)§) - (n — A(p)§) = 0},

where H(z,s,&,1,p) is given by

Fi(z,s,§) if p=1,
(8.7) Fy(z,s.8) if p=0,
pFy (m, s, p’?g:gl)) +(1—p)F, (x, s,%) if p#0,1.

Observe that the last line can be taken as the general expression for H, taking the values
for p =0 and p =1 by continuity.

Analogously as we did in the one-dimensional case, in order to numerically solve
problem (8.5), for r > 0 we decompose Q as

(8.8) Q= U K;, K,disjoint, measurable,diam(K;) <r, i€ {l,...,m,}.
i=1

Then, we discretize problem (8.5) as

min/ H(z, u,Vu, MVu,0)dx
Q

(8.9) . .
{ —dlvMVy =finQ, u=0on o,

(0, M) €U, (6, M) constant in K;,1 <i<m,, [,0dz<xk.

As we said in Remark 9 in the case where the functions F,(z, s, &) are nonlinear in the
variable &, one of the main difficulties to solve problem (8.9) is that H is not known. To
solve this difficulty we can replace H with another function. The following result is
proved in [8] in the particular case F(z,s,&) = Fy(x, s,&) = F(&). The general case
follows similarly.
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THEOREM 8.1. We consider a function H:Q x R x E — R U {+oo} such that

A

(8.10) H(.,s,&n,p)is measurablein Q V(s,&,n,p) ER X E,

(8.11) H(z,.......)is lower semicontinuous in R x E  for a.e. z € Q,
(812)  H(z,s,&0f1) = Fi(z,58),  H(z 5§ BE0) = Fo(z,5,8),
(8.13) ﬁ(m, s,&,m,p) > H(z,8,€,n,p) V(s,&En,p) ERXE ae x€Q.

For every r > 0, we decompose Q by (8.9). Then, the problem

min/ ﬁ(x u, Vu, MVu,0)dz
(8.14) ° .
—leMV}L =finQ, wu =0 ondQ,
(0, M) el, (0, M) constantin K;,1 <i<m,, [o0dz<k

has a solution (not unique in general) (0,, M,). Taking u, as the solution of
—divM,Vu, = f in Q, u, =0 on 09,

we have

Nim [ H(z, u,, Vu,, M,Vu,,0,)dz =TI
r—0 Q

with I the minimum value of problem defined by (8.5). The sequence (0,, M,, u,) is
bounded in L*(Q) x L*(Q;RY*N) x HI(Q). Every function (0, M,u) € L*(Q)x
L®(Q;RV*NY x HY(Q) such that there exists a subsequence of r, still denoted by r,
satisfying

0,20 in L°(Q), M,—~M in I(QRVY) u, — uin HY(Q)

is such that the function (0,0, u) with 0 = MVu is a solution of (8.6).
Remark 10. A first choice of function H is to take

. Fi(z,s,&) ifp=1n=at,
H(z,s,&,n,p) =4 Fo(z,s,§) if p=0,n=pE,
+00 otherwise.

In this case, taking into account that IA{(.CL', u, Vu, MVu,0) < 400 a.e. in Q implies that 6
is a characteristic function we get that problem (8.14) can be written as

min{/ Fi(z, u,Vu)dl’—i—/ Fy(z, u,Vu)da:}
1) Qw

—div(ay, + Bxo\@w)Vu = fin Q, u =0 on 9Q,
{EIIC{I,...,mr}such that o = JK;, |o| <«k.
iel

Therefore, with this choice of function H , Theorem 8.1 gives the convergence of the nu-
merical method consisting in discretizing directly the original (unrelaxed) problem (8.1).
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Thanks to (8.7), another possibility for Histotake H = Hin dD(H), and H = o0,
otherwise. For this choice of function H, taking into account that for p # 0, 1 a matrix
M € K(p) satisfies

(Mg = A(p)§) - (M& — A(p)§) = & for some§ # 0
< M is a lamination of @/, 81 with proportions pand1 — p
< Eig(M) = (A(p). A(p). - ... A(p)).

We can write problem (8.14) as

(25 %) ]

—divMVu=finQ, u=0ondQ,
0 € L*(10,1]), M symmetric, Eig(M) = (A(0), A(0), ..., A(f)) a.e. in Q,
0, M constants in K;,i=1,....m,, [,0dz<k.

In this case, problem (8.14) consists in discretizing a partial relaxation of problem (8.1)
consisting in considering not only the original controls but also the ones obtained by a
simple lamination.

Clearly, when H is known, another possibility is to take directly H = H.1In this case
we are discretizing the relaxed control problem (8.9).

Remark11. Although Theorem 8.1 gives the convergence of the discretized problem
(8.14), it does not provide any error estimate. In particular, it does not show which
choice of the functions H mentioned in Remark 10 is better.

As we saw in the proof of the estimates for the one-dimensional problem, in order to
obtain an estimate for the convergence rate of the numerical method, one idea is to con-
struct from a relaxed control (6, M) another control (6", M") in the set of discretized
controls such that the solutions of the state equations relative to (6, M) and
(0", M) are close. In the case where H = H (which can only be used if H is known),
one idea is to take (0", M") as the mean value of (6, M) in each element of the triangula-
tion. Denoting by v and u" the solutions of

—divMVu=f inQ, —divM'"Vu" = f in Q,
u = 0 on 0Q, u = 0 on 0Q

with f in H~1(Q) and taking into account that
—divM"V(u—u") = —=div(M" — M)Vu in Q,
we deduce that

/ |V (u— u)?dz < C/ |(M" — M)Vu|*dz,
Q Q

which permits to estimate the difference of u — u” depending on the smoothness proper-
ties of M and u and then to estimate the error for the discretized method.

When H is not known and therefore we need to discretize directly the original
problem or to consider some partial relaxation, the choice of (6", M") is not clear.
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Remark 12. In Theorem 8.1, we have discretized the set of controls, but the state

equation is directly solved. It will be interesting to study the convergence when we also
discretize this equation, and in particular to study what the relation is that we must use
between the triangulation chosen for the controls and the one chosen for the resolution of
the state equation. A result in this sense can be found in [8], showing that in some cases
the method converges using the same triangulation to discretize the controls and the
state equation.
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